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Abstract. This paper studies the analyticity of the Stokes semigroup in
an infinite cylinder or more generally a cylindrical domain with several
exits to infinity in the space C0,σ, the L∞-closure of all smooth com-
pactly supported solenoidal vector fields. These domains are not strictly
admissible in the sense of the first two authors (2014). However, it is
shown that these domains are still admissible which yields the analytic-
ity in C0,σ. A new proof based on a blow-up argument is given to derive
an L∞-type resolvent estimate which enables us to conclude that the
analyticity angle of the Stokes semigroup in C0,σ is π/2.
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1. Introduction

It is important to consider the Navier-Stokes equations in various types of do-
mains since there is a huge variety of domains that a fluid might occupy. The
analysis of the Stokes equations, a linearized version of the Navier-Stokes
equations is fundamental. Especially, analyticity of the Stokes semigroup
S(t), the solution operator of the Stokes equation

vt −∆v +∇q = 0 in Ω× (0, T ), (1.1a)

div v = 0 in Ω× (0, T ), (1.1b)

v = 0 on ∂Ω× (0, T ), (1.1c)

v|t=0 = v0 on Ω, (1.1d)

i.e. S(t)v0 = v(·, t), is important to measure a regularizing effect of the Stokes
flow, where Ω is a uniformly C2 domain in Rn (n ≥ 2). Here we impose the
Dirichlet boundary condition (1.1c) to fix the idea.
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It is well-known that S(t) forms an analytic semigroup in Lp
σ(Ω) (1 <

p <∞) for various kind of domains Ω including smoothly bounded domains
[G81], [Sol77], where Lp

σ = Lp
σ(Ω) is the L

p-closure of C∞
c,σ(Ω), the space of all

solenoidal vector fields with compact support in Ω. By now analyticity results
are known for various type of unbounded domain not necessarily an exterior
domain. For example, Lp-analyticity is proved for a layer domain [AS03], an
aperture domain [FS96]. Moreover, these results are extended for the case of
variable viscosity coefficients [AT09], [A10]. In fact, the analyticity of S(t)
in Lp

σ(Ω) holds for any uniformly C2 domain provided that Lp(Ω) admits
a topological direct sum decomposition, called the Helmholtz decomposition
[GHHS]. It is also known that S(t) forms analytic semigroup for any uniformly

C2 domain if one considers L̃p spaces, i.e., L̃p
σ = Lp

σ ∩ L2
σ (for p > 2) and

L̃p
σ = Lp

σ+L
2
σ (1 < p ≤ 2) as developed by Farwig, Kozono and Sohr [FKS1],

[FKS2], [FKS3].
However, if one considers the case p = ∞, the results are still limited

since the Helmholtz projection is not bounded. If Ω = Rn
+, it is proved in

[DHP], [Sol03] that S(t) forms an analytic semigroup in C0,σ = C0,σ(Ω),
the L∞-closure of C∞

c,σ(Ω) based on an explicit representation formula. For
a general domain it is proved [AG1] that the semigroup is analytic in C0,σ

provided that the domain is “admissible” in the sense of [AG1]. Since it
turns out that a bounded domain [AG1] and an exterior domain [AG2] are
admissible (even strictly admissible), we conclude that S(t) forms an analytic
semigroup in such a domain; for improvement of these results see [AGH] where
only C2 regularity is used.

Recently, it turns out that S(t) does not form an analytic semigroup
on C0,σ(Ω) in a layer domain {(x′, xn) ∈ Rn | a < xn < b}, a, b ∈ R, a < b
provided that n ≥ 3 as proved by von Below [B]. His result in particular
implies that a layer domain is not admissible. Since a layer domain allows
an Lr-Helmholtz decomposition [Mi], the Helmholtz decomposition does not
imply admissibility. On the other hand, there is a planar non Helmholtz do-
main which is admissible so admissibility and Helmholtz domain is a different
notion.

The main goal of this paper is to show that a cylindrical domain includ-
ing a two-dimensional layer domain is admissible in the sense of [AG1]. By a
cylindrical domain we mean there are finitely many outlets which are a half
part of infinite cylinder (see Section 3 for a rigorous definition). An infinite
cylinder R×D with a bounded domain D ⊂ Rn−1 is a typical example of a
cylindrical domain. For this purpose, we consider the Neumann problem of
the Laplace equation of the form

∆u = 0 in Ω, (1.2a)
∂u
∂nΩ

= div∂Ω g on ∂Ω, (1.2b)

where nΩ is the exterior unit normal of ∂Ω and div∂Ω is the surface divergence
[G]. Admissibility (see Section 2.3) easily follows from the next weighted L∞-
estimate for the gradient of a solution of (1.2a), (1.2b).
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Theorem 1.1. Let Ω be a C2 cylindrical domain in Rn (n ≥ 2). Then there
exists a constant C such that

∥dΩ∇u∥L∞(Ω) ≤ C∥g∥L∞(∂Ω) (1.3)

holds for all weak solution u of (1.2a), (1.2b) with ∇u ∈ L2(Ω) ∩ Lr(Ω) for
some r ≥ n, where g ∈ C(∂Ω) ∩ L∞(∂Ω) with div∂Ω g ∈ C(∂Ω) satisfies
g ·nΩ = 0 on ∂Ω. Here dΩ(x) is the distance from x ∈ Ω to the boundary ∂Ω.

We shall prove this result in Theorem 2.7 for an infinite layer and in
Theorem 3.7 for a general cylindrical domain.

This type of estimate is first proved in [AG1] for a C3-bounded domain
and a half space. For a C3 exterior domain, a similar estimate is proved in
[AG2]. In both cases we need not assume that ∇u ∈ L2(Ω) ∩ Lr(Ω). We
only need to assume that u is a (very) weak solution. Moreover, we need
not assume the regularity of g. If (1.3) holds for all very weak solutions
u having finite left-hand side of (1.3), we say that Ω is strictly admissible
[AG2]. Note that an infinite cylinder is not strictly admissible because a
linear function u(x1, x

′) = x1 solves (1.2a), (1.2b) with g = 0. The estimate
(1.3) is independently proved by Kenig, Lin and Shen [KLS] for a bounded
C1,γ domain for their study on homogenization of the Neumann problem.

Let us explain our idea of the proof of Theorem 1.1 when Ω is an infinite
layer. We derive an estimate for dΩ∇u in a domain Ω(S) = (−S, S) × D
uniformly in S ≥ 1 of the form

dΩ(S)(x) |∇u(x)| ≤ C

(
∥g∥L∞((−S,S)×∂D) +

∑
x1=±S

∥∥∥∥ ∂u∂x1
∥∥∥∥
Ln−1(D)

(x1)

)
,

(1.4)
where ∥f∥pLn−1(D)(x1) =

∫
D
|f(x1, x′)|p dx′ for f = f(x1, x

′). We shall estab-

lish the estimate (1.4) by a contradiction argument and derive a contradiction
with uniqueness result of the Neumann problem under no flux condition.
As we proved in Theorem 2.3, a solution u of (1.2a), (1.2b) with g = 0
satisfying dΩ∇u ∈ L∞(Ω) must be constant provided that there is no flux∫
x1=R

∂u
∂x1

dx′ = 0. The no flux condition is essential since otherwise u = x1
is a nontrivial solution which breaks the uniqueness. We shall prove such
uniqueness essentially by strong maximum principles. Theorem 1.1 easily fol-
lows since the last term in (1.4) tends to zero as S → ∞ by ∇u ∈ L2(Ω).

Once admissibility has been established, we have analyticity of the semi-
group S(t) by applying the main result of [AG1] if Ω is C3. If one applies the
resolvent estimate [AGH], we only need C2 regularity. Although it is possible
to extend the argument in [AGH] to admissible domains, we shall estab-
lish the resolvent estimate for general admissible domain without appealing
Masuda-Stewart arguments used in [AGH]. We apply a blow-up argument to
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derive necessary resolvent estimates. We consider the resolvent equation

(λ−∆)v +∇p = f in Ω, (1.5a)

div v = 0 in Ω, (1.5b)

v = 0 on ∂Ω, (1.5c)

with ∥dΩ∇p∥∞ < ∞, where λ ∈ Σπ−ε for a fixed ε > 0. Here Σφ =

{λ ∈ C | | arg λ| < φ}. We set N(v, λ) = |λ| |v(x)|+ |λ|1/2 |∇v(x)|.

Theorem 1.2. Let Ω be an admissible, uniformly C2 domain in Rn. For ε ∈
(0, π/2) there exists a constant C and M (independent of f and λ) such that

∥N(v, λ)∥L∞(Ω) ≤ C∥f∥L∞(Ω)

for all f ∈ C∞
c,σ(Ω) and L̃

r-solution v (r > n) of (1.5a)–(1.5c) with λ ∈ Σπ−ε

and |λ| ≥M .

As we mentioned before, we appeal to a blow-up argument to prove
Theorem 1.2 which was developed by the last author [Suzuki] for higher
order elliptic problems under C1-regularity of Ω. Since we have to control
the pressure from vorticity, the present method seems to need C2-regularity
of Ω. The key equation to control the pressure from (1.5a), (1.5b) is

∆p = 0 in Ω,
∂p

∂nΩ
= − div∂Ω(ω × nΩ) on ∂Ω,

where ω = curl v is the vorticity. Here we assume n = 3 for simplicity. The
harmonicity of p is clear by taking the divergence of (1.5a) while the boundary
condition is obtained by taking inner product of (1.5a) with nΩ and use
nΩ ·∆v = − div∂Ω(ω × n) when div v = 0. This relation may be well known
but it is often implicit e.g. [JL, (1.3b)]. This pressure is sometimes called the
Stokes pressure [LLP] because it reflects the effect of viscosity.

Theorem 1.2 is considered as an extension of the main resolvent estimate
[AGH, Theorem 1.1] where the strict admissibility of Ω is assumed. As in
[AGH] one is able to assert that the Stokes operator A defined as in [AGH]
generates a C0-analytic semigroup S(t) on C0,σ(Ω) of angle π/2. We shall
state this result which follows from Theorem 1.2 as in [AGH].

Corollary 1.3. Let Ω be an admissible, uniformly C2 domain in Rn. Then
the Stokes semigroup S(t) forms an analytic semigroup on C0,σ(Ω) of angle
π/2. In particular, for a C2 cylindrical domain this analyticity holds.

The analyticity in C0,σ(Ω) is one of key tools to estimate the lifespan
from below of a solution to the Navier-Stokes equations starting from L∞

type data as shown in Abe [A2] for bounded or exterior domains.
Note that the extension to L∞

σ space is nontrivial in our setting. It is
not clear whether or not the approximate limit is uniquely defined since its
pressure is not well-controlled which is different from the case of a strictly
admissible domain.

This type of result as well as [AG1], [AG2], [AGH] is concerned with
regularizing effect locally-in-time. The boundedness of the Stokes semigroup
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S(t) for t > 0 is a different question. For a bounded domain, the semigroup
is even exponentially decaying by the Poincaré estimate [AG1]. For exterior
domains the global boundedness of S(t) was proved in [Mar], which was ex-
tended to a global time derivative estimate in [HM]. Moreover, both results
are even further extended to global boundedness in sectors of angle less than
π/2 in [BH]. For the case of the half space, these results are already estab-
lished in [Sol03] and [DHP].

This paper is organized as follows. In Section 2 we establish (1.4) and
prove Theorem 1.1 for an infinite cylinder to clarify the idea. In Section 3
we extend this idea to a cylindrical domain. In Section 4 we prove Theorem
1.2 by a blow-up argument as well as Corollary 1.3. In Appendix A we recall
an elliptic regularity theory for a very weak solution. In Appendix B we give
a way to construct a cut-off function near the boundary which satisfies the
Neumann boundary condition.

2. Infinite cylinders

2.1. Uniqueness under no flux condition

We begin with a uniqueness result for the Neumann problem

−∆u = 0 in Ω,
∂u

∂nΩ
= 0 on ∂Ω (2.1)

in a C2 infinite cylinder Ω in Rn which means in this paper that Ω := R×D
with a C2 bounded domain D in Rn−1 (n ≥ 2).

Lemma 2.1. Let u ∈ C2(Ω) ∩ C1(Ω) be a solution of (2.1) in a C2 infinite
cylinder Ω. Assume that u is bounded in Ω, i.e., u ∈ L∞(Ω). Then u is a
constant function.

Proof. We first observe that a flux

F (s) :=

∫
D

∂u

∂x1
(s, x′) dx′ (2.2)

is independent of s ∈ R since 0 =
∫ s2
s1

∫
D
∆u dx = F (s2) − F (s1) for a

solution u of (2.1). If we define

E(s) :=

∫
D

u (s, x′) dx′, (2.3)

this implies dE(s)/ds is a constant function in s. Since u is assumed to be
bounded, E(s) must be a constant function, i.e. E(s) ≡ c. We may assume
that E(s) = 0 for all s ∈ R by subtracting c/|D|, where |D| is the Lebesgue
measure of D.

We shall prove that u ≡ 0 by the strong maximum principle [PW,
Section 3]. Assume that u ̸≡ 0. Then we may assume that supΩ u > 0 by
considering −u if necessary. This supremum is NOT attained in Ω. Indeed, if
it were attained in the interior, then the strong maximum principle would im-
ply that u ≡ supu > 0 which contradicts E(s) ≡ 0 by (2.3). If the maximum
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were taken on the boundary, again we obtain u ≡ supu since otherwise the
Hopf (boundary) lemma implies ∂u/∂nΩ > 0 on ∂Ω. This again contradicts
E(s) ≡ 0.

Since the supremum supu is not attained in Ω, we may assume that
there is a sequence xm = (sm, x

′
m) such that u(xm) → supu and |sm| → ∞

as m → ∞. We may assume (by taking a subsequence) that sm → ∞ since
the case sm → −∞ can be treated similarly. Since D is compact, we may
assume that x′m → x∗ for some x∗ ∈ D by taking a subsequence if necessary.
We shift u by defining

um(x) := u (x1 + sm, x
′) for x = (x1, x

′) . (2.4)

Since u is bounded and satisfies (2.1), we observe that

sup
s∈R

∥∥um :W 2,q ((s, s+ 1)×D)
∥∥ ≤ Cq (2.5)

with Cq > 0 independent of m by elliptic regularity; see e.g. Theorem A.1 in
the Appendix. By the Sobolev embedding and Rellich’s compactness there is
a subsequence of {um} still denoted by {um} such that um in (2.4) converges
to some function v locally uniformly with its first derivatives so the boundary
condition of (2.1) is inherited. Since v is weakly harmonic in Ω, Weyl’s lemma
implies that v is smooth and harmonic in Ω. Thus v is a solution of (2.1) with
v ∈ C2(Ω) ∩ C1(Ω). Moreover, E(s) ≡ 0 implies∫

D

v (s, x′) dx′ = 0 (2.6)

for all s ∈ R. By definition of xm we observe that v takes its maximum supu
at (0, x∗). As before the Hopf lemma implies that v ≡ supu is a positive
constant which contradicts (2.6). We thus conclude u ≡ 0. �

We shall prove a uniqueness result without assuming the boundedness
but assuming ∥dΩ∇u∥∞ := ∥dΩ∇u∥L∞(Ω) < ∞. Of course, u(x) = x1 is a
solution of (2.1) satisfying ∥dΩ∇u∥∞ < ∞ so to exclude such a solution we
need some extra condition. For example, if we assume the no flux condition
F (s) = 0 for F defined by (2.2), we are able to exclude such a solution. We
prepare a lemma which asserts that no flux condition with ∥dΩ∇u∥∞ < ∞
implies boundedness of u.

Lemma 2.2. Let Ω be a C2 infinite cylinder in Rn. For S ∈ R let u ∈
C2(Ω>S) ∩ C1(Ω>S) satisfy

−∆u = 0 in Ω>S ,
∂u

∂nΩ
= 0 on (∂Ω)>S , (2.7)

where U>S = U ∩{x1 > S} for a set U ⊂ Rn. Assume that dΩ∇u is bounded
in Ω>S and F (s1) = 0 for some s1 > S. Then u is bounded in Ω>S+δ for
any δ > 0.
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Proof. As in the proof of Lemma 2.1 we observe that F (s) is independent of
s. Since F (s1) = 0, F (s) ≡ 0 for s > s1. Since dΩ∇u is bounded and F (s) = 0
for all s > s1, the integration of ∇u of one of x′ variable implies

sup
s>S

∥u : Lq ((s, s+ 1)×D)∥ <∞

for any q > 1 (cf. [AG1], [AGH, (2.1)]). In a similar way to deriving (2.5),
since u solves (2.7) by elliptic regularity (Appendix A), this implies

sup
s>S

∥∥u :W 2,q ((s+ δ, s+ 1− δ)×D)
∥∥ <∞

for any δ ∈ (0, 1/2). By the Sobolev inequality (for q > n/2) this implies that
u is bounded in (S + δ,∞)×D. �

Theorem 2.3. Let u ∈ C2(Ω) ∩ C1(Ω) satisfy (2.1) in a C2 infinite cylinder
Ω. Assume that F (s1) = 0 for some s1 ∈ R. If ∥dΩ∇u∥∞ < ∞, then u is a
constant function.

Proof. By Lemma 2.2 we observe that u is bounded. (The boundedness of u
in {x1 < 0} follows from Lemma 2.2 by reflection with respect to x1 = 0.)
Thus Theorem 2.3 follows from Lemma 2.1 �

Corollary 2.4. Let u ∈ C2(Ω>0) ∩ C1(Ω>0) satisfy (2.1) in Ω>0 when Ω is
a C2 infinite cylinder. Assume that ∂u/∂x1 = 0 at x1 = 0 for x′ ∈ D. If
∥dΩ∇u∥∞ <∞, then u is a constant function.

Proof. Since ∂u/∂x1 = 0 at x1 = 0, we extend u for x1 < 0 as an even
function, i.e., u(x1, x

′) = u(−x1, x′). Then this extended function fulfills all
assumptions of Theorem 2.3 since F (0) = 0. We apply Theorem 2.3 to con-
clude that u is a constant function. �

2.2. Weighted estimate for the Neumann problem

Our goal in this subsection is to establish a weighted L∞ estimate of the form
∥dΩ∇u∥∞ ≤ C∥g∥∞ for a weak solution u of

∆u = 0 in Ω,
∂u

∂nΩ
= div∂Ω g on ∂Ω, (2.8)

with ∇u ∈ L2(Ω) when g is tangential, i.e. g · nΩ = 0.
For this purpose we recall a Neumann problem associated to the Laplace

equation. For a bounded Lipschitz domain U in Rn there exists a weak solu-
tion v ∈ H1(U) (unique up to an additive constant) of

∆v = 0 in U,
∂v

∂nU
= h on ∂U, (2.9)

for any h ∈ H−1/2(∂U) provided that
∫
∂U

h dHn−1 = 0, where Hs denotes

the L2-Sobolev space of order s. Such a solution is called an Ḣ1 weak solution
v of (2.9), which means that v ∈ L1

loc(Ω) with ∇v ∈ L2(Ω) fulfills∫
U

∇v · ∇ψ dx =

∫
∂U

h ψ dHn−1
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for all ψ ∈ H1(U). This definition applies to the case when U is unbounded

by replacing H1 by the homogeneous Sobolev space Ḣ1. The existence of a
unique Ḣ1 weak solution for a bounded Lipschitz domain is guaranteed by
the Lax-Milgram theorem [E] or the Riesz representation theorem for the
Hilbert space

H̊1(U) =

{
u ∈ H1(U)

∣∣∣∣ ∫
U

u dx = 0

}
.

See e.g. [BF, Theorem III, 4.3]. For an unbounded domain the solution may
not exist.

In our limiting procedure we have to handle these u such that ∇u may
not be integrable near ∂Ω. For this purpose it is convenient to recall the notion
of a very weak solution of (2.9) for U = Ω(S) when h = h0 in {±S} × D

with h0 ∈ L2 ({±S} ×D) and h = div∂Ω g ∈ C
(
∂Ω(S)

)
on (∂Ω)(S) =

(−S, S)×∂D with g = (g1, g
′) ∈ C

(
(∂Ω)(S)

)
, where g is tangential. We say

that u ∈ L1 (Ω(S)) is a very weak solution of (2.9) in Ω(S) with such data h
if ∫

Ω(S)

u ∆φ dx =

∫
(∂Ω)(S)

∇∂Ωφ · g dHn−1

−
∑

x1=±S

∫
D

(φh0)(x1, x
′)dx′ −

∑
x1=±S

(sgnx1)

∫
∂D

(g1φ)(x1, x
′)dHn−2

x′

for all φ ∈ C2
(
Ω(S)

)
with ∂φ/∂nΩ(S) = 0 on ∂ (Ω(S)), where ∇∂Ω denotes

the tangential gradient [G]. Since g is tangential, ∇∂Ω can be replaced by
∇. Such a notion of a very weak solution for (2.8) is introduced by [AG1],
[AG2]. These types of notions of a very weak solution are elaborated by [MR]
to handle the case when the Neumann data equals the Dirac measure which
corresponds to the Green function of the Neumann problem.

Lemma 2.5. Let Ω be a C2 infinite cylinder in Rn (n ≥ 2). Then there exists
a constant C (depending only on D and n but independent of dilation and
translation) such that

dΩ(S)(x) |∇u(x)| ≤ C

(
∥g∥L∞((∂Ω)(S)) +

∑
x1=±S

∥∥∥∥ ∂u∂x1
∥∥∥∥
Ln−1(D)

(x1)

)
for all x ∈ Ω(S) (2.10)

holds for all S ≥ 1, and all Ḣ1 weak solution u with ∇u ∈ L2 (Ω(S)) of

(2.9) in Ω(S) with h = div∂Ω g ∈ C(∂Ω(S)) in (∂Ω)(S), h = ±∂u/∂x1 at

x1 = ±S, where g ∈ C
(
(∂Ω)(S)

)
satisfies g · nΩ = 0 on (∂Ω)(S) provided

that ∥dΩ∇u∥L∞(Ω(S)) is finite and that ∂u/∂x1(±S, ·) ∈ Ln−1(D).
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Proof. We first prove that u is a very weak solution of (2.9) with the same
data. Since ∂φ/∂nΩ(S) = 0, integration by parts yields∫

Ω(S)

u ∆φ dx = −
∫
Ω(S)

∇u · ∇φ dx.

Since u is an Ḣ1 weak solution of (2.9), we see that∫
Ω(S)

∇u · ∇φ dx =

∫
|x1|=S

h0φ dx
′ +

∫
(∂Ω)(S)

(div∂Ω g)φ dHn−1.

Since g is tangential, integration by parts yields∫
(∂Ω)(S)

(div∂Ω g)φ dHn−1 = −
∫
(∂Ω)(S)

∇∂Ωφ · g dHn−1

+
∑

x1=±S

(sgnx1)

∫
∂D

(g1φ)(x1, x
′)dHn−2

x′ .

Combining these three identities, we conclude that u is a very weak solution
of (2.9).

As in [AG1], [AG2] we argue by contradiction. There exists a sequence
{um, gm, Sm}∞m=1 such that

1 = ∥dΩm∇um∥L∞(Ωm)

> m

(
∥gm∥L∞(∂Ωm) +

∑
x1=±S

∥h0m∥Ln−1(D)(x1)

)
(2.11)

with Ωm = Ω(Sm) such that um ∈ L1
loc(Ωm) is a weak solution of (2.9) with

Ω = Ωm. Here gm ∈ L∞(∂Ωm) is assumed to satisfy gm ·nΩ = 0 on ∂Ωm and
h0m = ±∂um/∂x1 on {x1 = ±Sm}. We take xm ∈ Ωm such that

|dΩm(xm)∇um(xm)| > 1/2. (2.12)

We may assume that um(xm) = 0 by adding a constant.
There are two cases depending on the behavior of {xm}∞m=1.

Case 1. There exists a subsequence still denoted by {xm} which converges
to x̂ ∈ Ω∞ as m→ ∞.

Case 2. The sequence {xm} tends to infinity, i.e. |xm| → ∞.

We discuss Case 1 which is divided into two cases, (a) x̂ ∈ Ω∞ and (b)
x̂ ∈ ∂Ω∞. We first discuss case (a). We may assume that limm→∞ Sm =
S ∈ [1,∞] by taking a subsequence. The estimate ∥dΩm∇um∥L∞(Ωm) ≤ 1

guarantees that {um} is bounded in Lq
loc(Ω∞) for any q > 1 by (2.1). Indeed,

since um(xm) = 0 and xm → x̂ ∈ Ω∞, integrating |∇um(x)| ≤ 1/dΩm(x)
from xm yields a bound in Lq

loc(Ω) (cf. [AG1], [AGH, (2.1)]). In fact, by
[AGH, Proposition 2.1] we are able to prove that ∥um∥Lq(Ω(K)) ≤ CK for any
K(< S) since um(xm) = 0. We shall discuss case (a) since {um} is bounded
in Lq

loc(Ω∞). By a diagonal argument we see that {um} converges to some

u ∈ Lq
loc(Ω∞) weakly for some q > 1 by taking a subsequence. It is easy to see

that u is a very weak solution of (2.9) in Ω∞ = (−S, S)×D with g = 0 and
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h0 = 0 since ∥gm∥∞ → 0 and ∥h0m∥L1 → 0 by (2.11). (One should be a little
bit careful since φ cannot be taken uniformly with respect to Ωm when Sm

depends onm since we request ∂φ/∂nΩm = 0. However, it is easy to construct
a sequence {φm} converging to φ uniformly up to second derivatives so one
concludes that u is a very weak solution.)

Since {um} is bounded in Lq
loc(Ω∞) and each um is harmonic, the

Cauchy estimates for harmonic functions [E, 2.2.c] (quantitative version of
Weyl’s lemma) implies that all derivatives are locally bounded in Ω∞. Thus
the convergence um → u is locally uniform with its derivatives in Ω∞ so that
u(x̂) = 0. This in particular implies u ∈ C∞(Ω∞). We have to prove that the
limit u is C1 up to the boundary. Since u is a very weak solution of (2.9) in
Ω∞ with zero boundary Neumann data, the elliptic regularity (Appendix A,
Theorem A.1) implies that u ∈ C1(Ω∞). Note that there is a corner point of
Ω∞ if S is finite. In this case we can interpret this point as a regular point
by a reflection argument since the Neumann data at x1 = ±S is zero. (See
Remark 2.6.)

If S is finite, the uniqueness of the homogeneous Neumann problem is
still valid by a reflection argument since the problem is reduced to whole
Ω with x1-periodicity (Remark 2.6). Since u(x̂) = 0, the uniqueness implies
u ≡ 0. However, by (2.12) we have |dΩ(x̂)∇u(x̂)| ≥ 1/2 which yields a con-
tradiction.

If S = ∞ so that Ω∞ = R × D, we have to check the flux condition.
We take a cut-off function χ ∈ C2 ([0,∞)) such that χ(s) = 0 on [0, 1/2]
and χ(s) = 1 on [1,∞) such that 0 ≤ χ ≤ 1 and χ′ ≥ 0. We set χk(x1) =
χ(kx1) (k = 1, 2, . . .) and take it as a test function in the definition of a weak
solution to get∫

Ω>0

um∆χkdx =

∫
∂Ω>0

∇∂Ωχk · gmdHn−1 −
∫
|x1|=Sm

h0m χk dx
′

−
∫
∂D

g1m(Sm, x
′)dHn−1

x′ +

∫
∂D

g1m(−Sm, x
′)dHn−1

x′ .

Since ∥gm∥∞ → 0 and ∥h0m∥Ln−1 → 0 as m→ ∞, the right-hand side tends
to zero. We thus obtain

∫
Ω>0

u∆χkdx = 0. Integrating by parts yields∫ 1/k

0

(∫
D

∂u

∂x1
(x1, x

′)dx′
)
∂χk

∂x1
dx1 = 0.

Letting k → ∞ yields F (0) =
∫
D

∂u
∂x1

(0, x′)dx′ = 0. We are now able to apply
Theorem 2.3 to get u ≡ 0 which is a contradiction.

The case (b) can be treated as in [AG1] by rescaling um as vm(x) =
um (xm + dmx) with dm = dΩm(xm). Thanks to the Ln−1 norm of h in (2.10)
the estimate (2.11) is preserved for vm. Since vm is bounded in Lq

loc(Ω
′
m) with

Ω′
m = (Ωm − xm)/dm, there is a weak limit v in Lq

loc(Ω) (for some q > 1)
by taking a subsequence if necessary. We have to prove that v is a very weak
solution with homogeneous data in a half space or a quadrant type space
Rn

+<S . We give a proof in the case of half space. In other words, we have
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to prove
∫
Rn

+
v∆φ dx = 0 for all φ ∈ C2

c (R
n
+) satisfying ∂φ

∂xn
= 0 on the

boundary in the case that the limit domain is a half space. In [AG1, Proof of
Theorem 2.5, Case 2] we use C3-regularity of Ω to construct a sequence of test
functions {φm} (approximating φ ∈ C2(Rn

+) with ∂φ/∂xn = 0) satisfying
∂φm/∂nΩm = 0 on ∂Ωm, where Ωm is the rescaled domain. The reason is that
we appealed to the normal coordinate in [AG1, p. 12]. Here we use a different
construction of {φm} in Appendix B (Lemma B.3), which requires only C2-
regularity of Ω. In fact, by rotation and translation we may assume that the
rescaled domain Ωm converges to a half space Rn

+,−1 of the form Rn
+,−1 =

{(x′, xn) ∈ Rn | xn > −1}. Assume that φ ∈ C2
c (R

n
+,−1) with sptφ ⊂ BR(0)

and ∂φ/∂xn = 0 on xn = −1. Applying Lemma B.3 yields a sequence of
functions φm ∈ C2

c (Ωm) such that

∂φm

∂nΩm

= 0 on ∂Ωm, sptφm ⊂ B4R/3(0)

and that φm converges to φ uniformly in Ωm ∩Rn
+,−1, with its up to second

derivatives. The desired condition
∫
Rn

+,−1
v∆φ dx = 0 follows from the fact

that vm is a very weak solution of (2.8) in Ωm with corresponding data
gm converging to zero. We apply the uniqueness result in a half space [AG1,
Lemma 2.9] to get a contradiction. If S is finite, then there might be a chance
that the rescaled limit space is not a half space but a quadrant type space
like Rn

+<S . In this case we extend a solution by an even reflexion outside
x1 = S and the reduce the problem into the half space.

We next study Case 2, i.e. |xm| → ∞. If one writes xm = (sm, x
′
m), we

may assume that sm → ∞ and x′m → x∗ ∈ D since the case sm → −∞ can
be treated similarly. We shift um as in (2.4), i.e. wm(x) := um (x1 + sm, x

′).
If dm = dΩm(xm) → 0 by taking a subsequence, we rescale wm to consider
vm(x) := wm (dmx1, dmx

′ + x′m). We are able to reduce this case to Case 1
(b). It remains to discuss the case that inf dm > 0. We may assume that
limm→∞ (Sm − sm) = S∗ ∈ [0,∞] exists by taking a subsequence. As in Case
1 (a), by (2.10) we observe that there is a subsequence still denoted by {wm}
converging to a weak solution w of (2.8) in Ω∞ = (−∞, S∗)×D with g = 0.
Moreover, the convergence is locally uniform with its derivatives in Ω∞ so
that w(0, x∗) = 0 since {wm} is a bounded sequence in Lq

loc(Ω) and wm is

harmonic. As before, the elliptic regularity implies w ∈ C2(Ω∞) ∩ C1(Ω∞).
In the case S∗ = ∞ since the flux condition F (0) = 0 is fulfilled as in
the proof of Case 1 (a), we apply Theorem 2.3 to get w ≡ 0. This would
contradict |dΩ ((0, x∗))∇w(0, x∗)| ≥ 1/2. The case S∗ < ∞ is easier and get
a contradiction. We thus proved (2.10). �

Remark 2.6. Let u ∈ L1
loc (Ω(S)) be a very weak solution of (2.9) in Ω(S)

with g ∈ C
(
(∂Ω)(S)

)
satisfying g ·nΩ = 0 with div∂Ω g ∈ C

(
(∂Ω)(S)

)
and

h0 = 0 on {x1 = ±S}. Then one can extend this solution u to ũ by a reflection
argument so that the extended ũ is periodic in x1 direction with period 4S
and ũ is a solution of (2.8) in Ω with periodic data g̃. Indeed, we extend
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u evenly in x1 with respect to x1 = S so that the extended function still
denoted u is to be a function on Ω(−S, 3S). We then extended it periodically
with respect to x1 to get the desired ũ. Since the Neumann data at x1 = ±S
is zero, ũ is harmonic in Ω. Moreover, ũ solves (2.8) in Ω with the extended
data g̃. One is always able to reduce the problem to the whole domain Ω
having a periodicity in x1.

Theorem 2.7. Let Ω be a C2 infinite cylinder in Rn (n ≥ 2). Then there
exists a constant C (depending only on D and n) such that

∥dΩ∇u∥L∞(Ω) ≤ C∥g∥L∞(∂Ω) (2.13)

holds for all Ḣ1 weak solution u with ∇u ∈ L2(Ω)∩Lr(Ω) (with some r ≥ n)
of (2.9) in Ω with h = div∂Ω g ∈ C(∂Ω), where g ∈ C(∂Ω) ∩ L∞(∂Ω)
satisfying g · nΩ = 0 on ∂Ω.

Proof. We take S > 1. Since ∇u ∈ Lr(Ω) with some r ≥ n, as in [AG1] a
mean value theorem implies that supx∈Ω(S) dΩ(x) |∇u(x)| <∞.

Furthermore, we take S such that ∂u/∂x1 at x1 = ±S is in L2(D).

Since u is an Ḣ1 weak solution of (2.9) in Ω(S) with h = div∂Ω g in ∂Ω and
h = ±∂u/∂x1 at x1 = ±S and since ∥dΩ∇u∥L∞(Ω(S)) is finite, we are able to
apply Lemma 2.5 to conclude that

∥dΩ(S)∇u∥L∞(Ω(S)) ≤ CD

(
∥g∥L∞(∂Ω)(S) +

∑
x1=±S

∥∥∥∥ ∂u∂x1
∥∥∥∥
Ln−1(D)

(x1)

)
.

Since ∇u ∈ Ln(Ω), we see that there is a subsequence Si → ∞ such that∫
|x1|=Si

∣∣∣∣ ∂u∂x1
∣∣∣∣n−1

dx′ ≤

(∫
|x1|=Si

∣∣∣∣ ∂u∂x1
∣∣∣∣n dx′

)(n−1)/n (
Hn−1(D)

)1/n → 0.

The desired estimate now follows from the above estimate of
∥dΩ(S)∇u∥L∞(Ω(S)) by sending S = Si → ∞. �

Remark 2.8. (i) The assumption div∂Ω g ∈ C0(∂Ω) is actually unnecessary
if one observe that div∂Ω g ∈ H−1/2 ((∂Ω)(2S)) for any S > 1 which is
enough to conclude that u is a very weak solution of (2.9) in Ω(S) with
such a data.

(ii) In the proof of Theorem 2.7 we actually use a weaker assumption for

u. We just invoke that u is an Ḣ1 weak solution of (2.9) in Ω(S) with
h = div∂Ω g on ∂Ω and h = ±∂u/∂x1 at x1 = ±S for all S instead

of assuming that u is an Ḣ1 weak solution of (2.9) in whole Ω with
h = div∂Ω g on Ω. This weaker assumption requiring only that u is a
solution in Ω(S) with suitable boundary condition for all S is not enough
to derive (2.13) if Ω is an aperture domain with n ≥ 3 since there is a
nontrivial u satisfying ∇u ∈ L2(Ω) ∩ Lr(Ω) (with some r ≥ n) which

is an Ḣ1 weak solution of (2.9) in Ω(S) with g = 0 for all S as shown

in [FS96]. In fact, this u is not an Ḣ1 solution in Ω with g = 0 since
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such u must satisfy ∇u ∈ L2
σ(Ω) yielding ∇u ≡ 0, by the L2-Helmholtz

decomposition.
In two-dimensional sector like domains one is able to prove that∫

∂Br∩Ω
∂u/∂r dH1 → 0 as r → ∞ by taking a subsequence if ∇u ∈

L2(Ω) (Remark 2.13 (ii)), while in an aperture domain with n ≥ 3 the
corresponding flux may not decay under ∇u ∈ L2(Ω) (actually under
∇u ∈ Lp(Ω) with p > n/(n − 1)). In the two-dimensional setting it is
likely that Theorem 2.7 extends to an aperture domain while for the
higher dimensional aperture domain the present proof at least does not
work although there might be a chance the statement still holds.

(iii) (Strict admissibility) We have proved that a C3 bounded domain, a
C3 exterior domain are strictly admissible in [AG2]. The C3 regularity
was invoked to construct sequence {φm} converging to φ in the rescal-
ing procedure (Case 1 (b) of the proof of Lemma 2.5) as well as the
uniqueness of very weak solutions of (2.8) in a given domain. This last
uniqueness is easy to generalize to C2 domain in the argument of the
present paper. In fact, we get the assertion of Lemma 2.1 for C2 bounded
domain and exterior domain for u with ∥d∇u∥∞ <∞. The approxima-
tion of φ by {φm} requires only C2 regularity as in Case 1 (b) of the
proof of Lemma 2.5. Thus we conclude that C2 bounded domain and
C2 exterior domain are strictly admissible. In [A1] it is proved that a
C3 perturbed half space is also strictly admissible. This also requires
only C2 regularity by the same reason.

2.3. Admissibility

Theorem 2.7 is enough to guarantee that Ω is admissible in the sense of [AG1].
We say that Ω is admissible if there exists r ≥ n and a constant C such that

∥dΩQ[∇ · f ](x)∥∞ ≤ C∥f∥L∞(∂Ω) (2.14)

holds for all matrix-valued functions f = (fij)1≤i, j≤n ∈ C1(Ω) satisfying

∇ · f =
(∑n

j=0 ∂jfij

)
∈ (Lr ∩ L2)(Ω) with tr f = 0 and ∂ℓfij = ∂jfiℓ for

1 ≤ i, j, ℓ ≤ n where Q is the L2-Helmholtz projection from L2(Ω) to G2(Ω)
the orthogonal space of L2

σ(Ω).

Theorem 2.9. A C2 infinite cylinder is admissible.

Proof. Since ∇w = Q[∇ · f ] solves the Neumann problem

−∆w = 0 in Ω,
∂w

∂nΩ
= div∂Ω W

with W = (f − fT ) · n in Ḣ1 sense with W ∈ C1(∂Ω) we are able to apply
Theorem 2.7 to deduce the estimate (2.14). �

Remark 2.10. (i) To deduce analyticity of the Stokes semigroup in C0,σ

it suffices to restrict the class of f as fij = ∂jv
i with div v = 0 and

f ∈ (Lr ∩ L2)(Ω).
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(ii) By Remark 2.8 we can prove (2.14) for f ∈ C(Ω) which may not be
C1. For all domains which we have considered so far, the restriction
f ∈ C1(Ω) is actually can be weaken for f ∈ C(Ω). This replacement
enables us to conclude the analyticity of the Stokes semigroup in C0,σ

even if Ω is C2 under this stronger admissibility. For various domains
we so far proved strict admissibility in the sense of [AG2] which then in
turn yields admissibility of [AG1] with the replacement of f ∈ C1(Ω)
by f ∈ C(Ω) which is stronger than admissibility.

It turns out that the proof of [AGSS, Theorem 3.2] should be modified
with slight modification of the statement. We shall give its rigorous statement.

Theorem 2.11. Let Ω be a C2 sector-like domain in R2. Then there exists
a constant C such that the estimate (2.13) holds for all Ḣ1 weak solution
u with ∇u ∈ L2(Ω) of (2.9) in Ω with h = div∂Ω g ∈ C(∂Ω), where g ∈
C(∂Ω) ∩ L∞(∂Ω) satisfies g · nΩ = 0 on ∂Ω.

This is enough to prove the main theorem [AGSS, Theorem 1.3] claiming
that Ω is admissible.

To show Theorem 2.11 the lemma [AGSS, Lemma 3.1] is too weak. It
should be stated as Lemma 2.5 in the present paper. To state its explicit
form let us fix the notations for a sector-like domain Ω with an opening angle
θ. We may assume that Ω\BR = Sθ\BR with some R ∈ (0, 1) by dilation,
rotation and translation, where Sθ =

{
x = (x1, x2) ∈ R2 | | arg x| < θ/2

}
and

BR is the closed ball centered at the origin. We set ΩR = intB2R ∩ Ω. Let
us state the statement which is stronger than the lemma [AGSS, Lemma 3.1]
and enough to prove Theorem 2.11. This lemma is considered as a variant of
Lemma 2.5.

Lemma 2.12. Let Ω be a C2 sector-like domain in R2. Then there exists a
constant C (depending only on Ω) such that

min (dΩ(x), log(2R/|x|)) |∇u(x)| ≤ C∥g∥L∞(∂Ω∩B2R) +

∫
∂ΩR∩Ω

∣∣∣∣∂u∂r
∣∣∣∣ dH1

for all x ∈ ΩR (2.15)

holds for all R ≥ 1 and all Ḣ1 weak solution u with ∇u ∈ L2(ΩR) of (2.9) in
ΩR with h = div∂Ω g ∈ C(∂Ω) in ∂Ω ∩ B2R, h = ∂u/∂r on ∂ΩR ∩ Ω, where
g ∈ C

(
∂Ω ∩B2R

)
satisfies g ·nΩ = 0 on ∂Ω∩ΩR provided that ∥d∇u∥L∞(ΩR)

is finite and that ∂u/∂r|r=R ∈ L1(∂ΩR ∩ Ω).

Remark 2.13. (i) The proof is parallel to that of Lemma 2.5 with modi-
fication needed in the proof of [AGSS, Lemma 3.1], where ∂u/∂r = 0
at |x| = 2R is assumed. (In this case, min (dΩ(x), log(2R/|x|)) can be
replaced to dΩ(x).) The quantity log(2R/|x|) is the distance from the
boundary S = log 2R to a point S1 = log |x| if we introduce the coordi-
nates (s, φ) defined by x1 = es cosφ, x2 = es sinφ.

(ii) If ∇u ∈ L2(Ω), then
∫
∂BR∩Ω

∣∣∂u
∂r

∣∣ dH1 tends to zero as R → ∞ if one
takes a suitable subsequence. This is easy to prove if one notes that
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(s, φ) is a coordinate system which is conformal to the original one in
two-dimensional setting. In fact, for S = logR∫

Ω>R

|∇u|2dx1dx2 =

∫ ∞

S

∫
I

|∇s,φu|2dsdφ, I = (−θ/2, θ/2)

implies that ∫
I

∣∣∣∣∂u∂s
∣∣∣∣2 (S, φ)dφ→ 0

as S → ∞ by taking a subsequence {Sj}, where u(s, φ) = u(x1, x2).

This implies
∫
I

∣∣∂u
∂s

∣∣ (S, φ)dφ → 0, which implies
∫
∂BR∩Ω

∣∣∂u
∂r

∣∣ dH1 → 0

with R = Rj = (expSj)/2 → ∞.

3. Cylindrical Domains

We say a domain Ω ⊂ Rn is a C2 cylindrical domain with several exits to
infinity or, for short, C2 cylindrical domain, if it has a C2-boundary and there
is an m ∈ N such that Ω =

∪m
i=0 Ω

i, where Ω0 is a bounded domain and Ωi,
i = 1, . . . ,m are disjoint semi-infinite cylinders, that is, up to rotation and
translation,

Ωi = {xi = (xi1, . . . , x
i
n) ∈ Rn : xi1 > 0, [xi]′ = (xi2, . . . , x

i
n) ∈ Di}, (3.1)

where Di ⊆ Rn−1, i = 1, . . . ,m are bounded domains of class C2 and Ωi ∩
Ωj = ∅ for i ̸= j, i, j ≤ m. We may assume that the lateral boundary
∂Di × (0,∞) is also a part of the boundary ∂Ω.

Our goal in this section is again to show that cylindrical domains are
admissible domains. Before we come to that, we first state some properties
of this class of domains.

Remark 3.1. 1. For each C2 cylindrical domain Ω ⊆ Rn, there is an RΩ >
0 and an xΩ ∈ Ω such that

Ω \BRΩ(xΩ) =
m∪
i=1

Ωi \BRΩ(xΩ), (3.2)

where Ωi for i = 1, . . . ,m are semi-infinite cylinders given in (3.1). Here
BR(x) denotes the closed ball of radius R centered at x. Without loss
of generality, we may assume xΩ = 0 by translation.

2. The usual Sobolev embedding theorems hold, since Ω has minimally
smooth boundary, and hence extension theorems for Sobolev spaces hold
for Ω, see [A, Ch. 5,Thm. 2.4.5] and [T, Thm. 3.2.1].

3. For 1 < q < ∞, Poincaré’s inequality holds, namely there is a C > 0
such for all u ∈W 1

q,0(Ω) it holds

∥u∥Lq(Ω) ≤ C∥∇u∥Lq(Ω). (3.3)

This can be shown by using a suitable decomposition of unity and ap-
plying Poincaré’s inequality in each cylinder and in the bounded part.
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3.1. Uniqueness under no flux condition

Lemma 3.2. Let u ∈ C2(Ω) ∩ C1(Ω) be a bounded solution of (2.1) in a C2

cylindrical domain Ω ⊆ Rn. Then u is a constant function.

Proof. The proof is similar to that of Lemma 2.1. For each semi-infinite
cylinder Ωi we define the flux by

Fi(s) :=

∫
Di

∂u

∂x1
(s, x′) dx′, s > 0

where we write x1 = xi1 and x′ = [xi]′ to increase readability. We also define

Ei(s) =

∫
Di

u(s, x′) dx′.

As in Lemma 2.1 Fi(s) is independent of s > 0. Since u is bounded, this
implies that Ei(s) must be a constant ci. We may assume that one of ci, say
c1 = 0 by subtracting c1/D from u.

Our goal is again to prove u ≡ 0 in Ω by the strong maximum principle
[PW, Section 3]. Assume that u ̸≡ 0. Then we may assume supu > 0 by
considering −u if necessary.

We first show again that supu is not attained in Ω. If it is attained in
Ω, then u must be a constant supu. However, this must be zero since c1 = 0.
Also, u cannot attain its supremum on ∂Ω since, by the Hopf (boundary)
lemma, this would imply ∂u/∂nΩ > 0.

Therefore, we may assume that there is a sequence {xk} with xk =
(sk, x

′
k) for k ∈ N such that u(xk) → supu and |sk| → ∞ for k → ∞. By

the pigeonhole principle there is a subsequence of {xk} also denoted by {xk}
such that {xk} ⊂ Ωi for some i = 1, . . . ,m. The assertion then follows by the
proof of Lemma 2.1. �

Lemma 3.3. Let Ω be a C2 cylindrical domain in Rn. For S ≥ 0, let u ∈
C2(Ω>S) ∩ C1(Ω>S) satisfy

−∆u = 0 in Ω>S ,
∂u

∂nΩ
= 0 on (∂Ω)>S , (3.4)

where Ω>S :=
∪m

i=1 Ω
i ∩ {xi1 > S} and ∂Ω>S :=

∪m
i=1 ∂Ω

i ∩ {xi1 > S}.
Assume that S is taken so that Ω>S consists of mutually disjoint i semi
(infinite) cylinder. Assume that dΩ∇u is bounded in Ω>S and Fi(s1) = 0 for
some s1 > S. Then u is bounded in Ω>S+δ for any δ > 0.

This is a trivial extension of Lemma 2.2.

Theorem 3.4. Let u ∈ C2(Ω)∩C1(Ω) satisfy (2.1) in a C2 cylindrical domain
Ω in Rn. Assume that Fi(s1) = 0 for some s1 > 0 and all i = 1, . . . ,m. If
∥dΩ∇u∥∞ <∞, then u is a constant function.

Proof. By Lemma 3.3 we observe that u is bounded in Ω>s1 . In Ω(s1) :=

Ω \Ω>s1 , it is clear that by the regularity assumption on u ∈ C1(Ω(s1)) and
hence it attains its maximum there. Therefore u is bounded in Ω and Lemma
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3.3 with Elliptic Regularity in Appendix A yields boundedness inW 2
q (Ω(s1)).

Thus Theorem 3.4 follows from Lemma 3.2. �

Cylindrical domains have one disadvantage compared to infinite cylin-
ders: They are not mirror-reflexive at {x1 = S} for any S ∈ R. To overcome
this disadvantage, we need to also give a cut-off uniqueness result.

Corollary 3.5. Let Ω ⊆ Rn (n ≥ 2) be a C2 cylindrical domain. Let S > 0 be

given. Let u ∈ C2(Ω(S)) ∩ C1(Ω(S)) be a classical solution of

−∆u = 0 in Ω(S),
∂u

∂nΩ(S)
= 0 on ∂(Ω(S)), (3.5)

in Ω(S), where Ω(S) := Ω0 ∪
∪m

i=1 Ω
i ∩ {xi1 ≤ S} for S ≥ 0. Then u is a

constant function.

Proof. Since Ω(S) is bounded, u ∈ C1(Ω(S)) attains its supremum, supu, on

Ω(S). Let x ∈ Ω(S) be such that u(x) = supu. If x ∈ Ω(S) then the strong
maximum principle, implies the assertion. If x ∈ ∂Ω∩∂Ω(S), which means the
C2-part of the boundary, Hopf’s Lemma contradicts the Neumann boundary
condition. It remains to check the case x ∈ ∂Ω(S) \ ∂Ω. This implies there
is an i ∈ {1, . . . ,m} such that x ∈ {x1 = S} × ∂Di. We may evenly reflect
once at {x1 = S} × ∂Di to obtain an extension ũ of u which is harmonic
in Ω(2S) and fulfills zero Neumann boundary conditions at (∂Ω)(2S) and
conclude again with Hopf’s Lemma, that x ̸∈ ∂(Ω(S)) \ ∂Ω. �

3.2. Weighted estimate for the Neumann problem and Admissibility

For cylindrical domains we would now like to prove the equivalent of Theorem
2.7 in order to show that this class of domains is again an admissible. We
continue to use the notation for S ≥ 0,

Ω>S =
m∪
i=1

Ωi ∩ {xi1 > S}, Ω(S) = Ω \ Ω>S = Ω0 ∪
m∪
i=1

(
Ωi ∩ {xi1 ≤ S}

)
,

(∂Ω)(S) = ∂Ω \ ∂Ω>S = ∂Ω ∩

(
∂Ω0 ∪

m∪
i=1

(
∂Ωi ∩ {xi1 ≤ S}

))
.

Our goal in this subsection is to establish a weighted L∞ estimate of
the form ∥dΩ∇u∥∞ ≤ C∥g∥∞ for a weak solution u of (2.8) where Ω ⊂ Rn

(n ≥ 2) is a cylindrical domain. For this class of domains, we also consider

an Ḣ1 weak solutions of (2.9) bounded Lipschitz subdomains U ⊂ Ω.

Also this time, in our limiting procedure we have to handle u such that
∇u may not be integrable near ∂Ω. For this purpose it is convenient to recall
notion of a very weak solution of (2.9) for U = Ω(S) when h = hi0 in {S}×Di

with hi0 ∈ L2
(
{±S} ×Di

)
for i = 1, . . . ,m and h = div∂Ω g ∈ C

(
∂Ω(S)

)
on (∂Ω)(S) with g = (g1, g

′) ∈ C
(
(∂Ω)(S)

)
, where g is tangential. We say
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that u ∈ L1 (Ω(S)) is a very weak solution of (2.9) in Ω(S)) with such data
h if∫

Ω(S)

u ∆φ dx =

∫
(∂Ω)(S)

∇∂Ωφ · g dHn−1 −
m∑
i=1

∫ i

D

(φhi0)(S, x
′)dx′

−
m∑
i=1

∫
∂Di

(g1φ)(S, x
′)dHn−2

x′

for all φ ∈ C2
(
Ω(S)

)
with ∂φ/∂nΩ(S) = 0 on ∂ (Ω(S)). Since g is tangential,

∇∂Ω can be replaced by ∇.

Lemma 3.6. Let Ω ⊂ Rn (n ≥ 2) be a C2 cylindrical domain. Then there
exists a constant C = C(Di, n) > 0 such that for all x ∈ Ω≤S

dΩ(S)(x) |∇u(x)| ≤ C

(
∥g∥L∞((∂Ω)≤S) +

m∑
i=1

∥∥∥∥ ∂u∂x1
∥∥∥∥
Ln−1(Di)

(S)

)
(3.6)

holds for almost all S ≥ 1 and all Ḣ1 weak solutions u of (2.9) with boundary
data h ∈ H−1/2(∂(Ω(S))), with

h =

{
div∂Ω g in (∂Ω)(S)

hi0 := ∂u/∂x1 on {S} ×Di, (i ∈ {1, . . . ,m})
(3.7)

where g ∈ C
(
(∂Ω(S)

)
satisfies g · nΩ = 0 on (∂Ω)(S) and div∂Ω g ∈

C(∂Ω(S)), provided that ∇u ∈ L2 (Ω(S)) in Ω(S) and ∥dΩ∇u∥L∞(Ω(S)) <∞
and that ∂u/∂x1(S, ·) ∈ Ln−1(Di).

By a similar argumentation as in the proof of Lemma 2.5, u is also a
very weak solution of (2.9).

Proof. We argue again by contradiction. Assume there is a sequence
{uk, gk, Sk}∞k=1 such that 1 = ∥dΩ∇uk∥L∞(Ωk) > k∥gk∥L∞(∂Ωk), Ωk :=

Ω(Sk). Let {xk}∞k=1 be a sequence such that xk ∈ Ωk, |dΩ∇uk(xk)| > 1/2 and
again, without loss of generality uk(xk) = 0, limk→∞ Sk = S∞ ∈ [1,∞]. We
begin to treat Case 1: xk → x̂ ∈ Ω∞, more specifically Case 1 (a) x̂ ∈ Ω∞.

Similarly to Lemma 2.5, we obtain a weakly convergent subsequence
converging to some u of (2.8) in Ω∞ = Ω(S∞) with g = 0 and h0 = 0
as before. The convergence is again locally uniform with its derivatives in
Ω: Again since uk(xk) = 0 and xm → x̂ ∈ Ω integrating over |∇um(x)| ≤
1/dΩ(x) from xk yields a bound in Lq

loc(Ωk). By a diagonal argument, we

see that {uk} converges to some u ∈ Lq
loc(Ω). This u is a very weak solution

of (2.9) in Ω∞ = Ω(S∞) with zero Neumann data. Let ϕ ∈ C2(Ω∞) with
∂ϕ/∂nΩ = 0 on ∂Ω∞. Let (χi)0≤i≤mΩ

∈ C∞(Ω) be a partition of unity in Ω,

such that
∑m

i=0 χi = 1 in Ω with 0 ≤ χi ≤ 1, spt χi ⊆ Ωi, i ∈ {1, . . . ,m} and
spt χ0 ⊆ Ω(1). We write ϕ =

∑m
i=0 χiϕ =:

∑mΩ

i=0 ϕ
i. For i > 0, it follows as
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in the infinite cylinder case that
∫
Ω∞

u∞∆ϕidx = 0. For i = 0 it holds∫
Ω∞

u∞∆ϕ0dx =

∫
Ω(1)

(u∞ − um)∆ϕ0dx+

∫
Ω(1)

um∆ϕ0dx.

Form→ ∞, the first summand tends to zero, since um → u∞ weakly and the
second summand tends to zero, since [h0]m and gm tend to zero for m→ ∞.

By the Cauchy estimates for harmonic functions, [E, 2.2.c],
u ∈ C∞(Ω∞) ∩ C1(Ω∞) and u(x̂) = 0 and |dΩ∞∇u(x̂)| > 1/2.

For finite S∞, Corollary 3.5 yields a contradiction to |dΩ∇u(x̂)| > 1/2.
For S∞ = ∞; checking the flux condition can be done analogously to Lemma
2.5 by replacing D by Di to obtain F (0) = 0, then Theorem 3.4 yields the
contradiction.

In the case (b), we can use the same argumentation of Lemma 2.5. If
x̂ ∈ ∂Ω∞, note that by the argumentation given in the aforementioned proof,
C2-regularity of the boundary is enough to deduce convergence to the half
space or quadrant type space.

Case 2 can be dealt with analogously to the one in the proof of Lemma
2.5, since there is an 1 ≤ i ≤ m such that xk ∈ Ωi for sufficiently large k. �

Theorem 3.7. Let Ω be a C2 cylindrical domain in Rn (n ≥ 2). Then there
exists a constant C (depending only on Di, Ω0 and n) such that

∥dΩ∇u∥L∞(Ω) ≤ C∥g∥L∞(∂Ω) (3.8)

holds for all Ḣ1 weak solution u ∈ L1
loc(Ω) of (2.8) in Ω with ∇u ∈ L2(Ω) ∩

Lr(Ω) (with some r ≥ n) and h = div∂Ω g ∈ C(∂Ω), where g ∈ C(∂Ω) ∩
L∞(∂Ω) satisfying g · nΩ = 0 on ∂Ω.

Proof. The proof is again analogous to the one given for Theorem 2.7. Instead
of Lemma 2.5 we apply its cylindrical counterpart, Lemma 3.6 in order to
estimate (3.8). �

Subsequently, we obtain analogously to Theorem 2.7 the following re-
sult.

Theorem 3.8. A C2 cylindrical domain Ω in Rn (n ≥ 2) is admissible.

Proof. The proof is analogous to the infinite cylinder case by applying The-
orem 3.7 instead of Theorem 2.7. �

4. Stokes resolvent estimate

Let Ω be a uniformly C2 domain inRn. In this section we establish an a priori
L∞ estimate for solutions of the resolvent Stokes equations with zero Dirichlet
condition (1.5a)–(1.5c) by a blow-up argument. The version we establish here
is stronger than Theorem 1.2. We set

L∞
d (Ω) =

{
f ∈ L1

loc(Ω) | ∥f∥L∞
d (Ω) := ess. supx∈Ω |dΩ(x)f(x)| <∞

}
.
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We also use a standard notation Wm,r for describing Lr-Sobolev space of
order m and Wm,r

loc for its localized version.

Theorem 4.1 (L∞ a priori estimate). Let Ω be a uniformly C2 domain in Rn.
Let c∗ > 0. For ε ∈ (0, π/2) there exist positive constants C and M depending
only on Ω, c∗, ε such that

∥N(v, λ)∥∞ ≤ C∥f∥∞ (4.1)

for all (v, p) ∈
(
W 1,∞(Ω) ∩W 2,r

loc (Ω)
)
× L∞

d (Ω) (with some r > 1) solving

(1.5a)–(1.5c) with λ ∈ Σπ−ε ∩ {|λ| ≥M} and f ∈ L∞
σ (Ω) provided that

∥∇p∥L∞
d (Ω) ≤ c∗∥∇v∥∞. (4.2)

Since admissibility of Ω implies (4.2), Theorem 4.1 yields Theorem 1.2.
To prove (4.1) we argue by contradiction and apply a blow up argument as in
[AG1], [AG2] but not for evolution equation (1.1a)–(1.1d) but the resolvent
equations (1.5a)–(1.5c) as in [Suzuki] where elliptic problems are discussed
by a blow-up argument. We construct a blow up sequence and prove strong
convergence to a nontrivial solution with homogeneous problem which con-
tradicts the uniqueness.

4.1. Construction of a blow up sequence

We argue by contradiction to prove (4.1). Suppose that (4.1) were not valid.
Then there are ε > 0 and λk ∈ Σπ−ε, |λk| ≥ k, fk ∈ L∞

σ (Ω), (vk,∇pk) which
solve (1.5a)–(1.5c) with

k ∥fk∥L∞(Ω) < ∥N(vk, λk)∥∞ <∞, ∥∇pk∥L∞
d (Ω) ≤ c∗ ∥∇vk∥∞ .

We normalize (vk, qk) as

uk = |λk|vk/ ∥N(vk, λk)∥∞ , qk = pk/ ∥N(vk, λk)∥∞ and λk = |λk|eiθk

and observe that (uk, qk) solves(
eiθk − ∆

|λk|

)
uk +∇qk = f̃k in Ω

div uk = 0 in Ω

uk = 0 on ∂Ω

where f̃k = fk/ ∥N(vk, λk)∥∞. By definition we notice that∥∥∥∥N ( uk
|λk|

, λk

)∥∥∥∥
∞

= 1,
∥∥∥f̃k∥∥∥

∞
< 1/k, |λk| ≥ k, |θk| ≤ π − ε

We next rescale (uk, qk) around the point xk where N (uk/|λk|, λk) (xk)
is close to 1. We take a sequence {xk} ⊂ Ω such that

|uk(xk)|+ |λk|−1/2 |∇uk(xk)| > 1/2.

We rescale (uk, qk) and f̃k as

wk(x) = uk

(
xk +

x

|λk|1/2

)
ϖk = |λk|1/2qk

(
xk +

x

|λk|1/2

)
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gk = f̃k

(
xk +

x

|λk|1/2

)
.

Then we observe that rescaled (wk, ϖk) solves(
eiθk −∆

)
wk +∇ϖk = gk in Ωk, (4.3a)

divwk = 0 in Ωk, (4.3b)

wk = 0 on ∂Ωk. (4.3c)

One can translate the estimates for (uk, qk) by (wk, ϖk).

sup
x∈Ωk

|wk(x)|+ |∇wk(x)| = 1, |wk(0)|+ |∇wk(0)| > 1/2, ∥gk∥∞ ≤ 1/k,

(4.4)
where Ωk = |λk|1/2(Ω− xk). The pressure estimates becomes

∥dΩk
∇ϖk∥ ≤ c∗∥∇wk∥∞. (4.5)

4.2. Convergence

We shall divide the situation into two cases depending on whether or not

d̂ = lim supk→∞ dk with dk = d(0, ∂Ωk) = |λk|1/2d(xk, ∂Ω) is infinite.

Lemma 4.2 (Case 1, d̂ = ∞). Let {wk} be the blow up sequence in Section
4.1. Then wk converges to some w ∈W 1,∞(Rn) locally uniformly as k → ∞
with ∥∇wk∥∞ ≤ 1 by taking a subsequence. Moreover, w solves a resolvent
Laplace equation in the sense that there exists θm with |θ∞| ≤ π−ε such that
w satisfies ∫

Rn

∇w · ∇φ dx+

∫
Rn

eiθ∞wφ dx = 0 (4.6)

for all φ ∈ C∞
c (Rn).

Proof. We may assume that dk → ∞ and θk → θ∞ by taking a subsequence
if necessary. Since Ωk converges to Rn, for φ ∈ C∞

c (Rn) we may assume that
φ vanishes in neighborhood of ∂Ωk if k is sufficiently large. For such k since
(wk, ϖk) solves (4.3a), we see that∫

Rn

∇wk · ∇φ dx+
∫
Rn

eiθkwkφ dx+

∫
Rn

∇πk ·φ dx =

∫
Rn

gk ·φ dx. (4.7)

By (4.4) we note that gk converges to zero uniformly. Moreover, since
∥∇wk∥∞ ≤ 1 by (4.4), the estimate (4.5) implies that ∇ϖk tends to zero
locally uniformly in Rn. This implies that∫

Rn

∇wk · ∇φ dx+

∫
Rn

eiθkwk · φ dx→ 0 as k → ∞. (4.8)

Since {wk} is bounded in W 1,∞(Ωk) by (4.4), there is a limit w such that
∇wk → ∇w ∗ weakly in L∞ and wk → w locally uniformly by taking a subse-
quence; the latter convergence is by Ascoli-Arzelà theorem. The convergence
(4.8) now yields (4.6). �
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The case d̂ < ∞ (Case 2) is more involved. The rescaled domain Ωk

converges to a half space of the form (up to rotation)

Rn
+,−c = {(x′, xn) ∈ Rn | xn > −c}

with some c > 0. Indeed, we take a nearest boundary point yk ∈ ∂Ωk from 0.
This yk converges to some ŷ and yk/|yk| converges to some unit vector e by
taking a subsequence. We rotate the coordinate so that e = (0, . . . ,−1) and
that ŷn = −c with c ≥ 0. By this choice of coordinates one can prove that
∂Ωk converges to ∂Rn

+,−c in the sense of C2 graphs in a big cube.

Lemma 4.3 (Case 2, d̂ < ∞). Assume that Ωk converges to Rn
+,−c. Let

{(wk, ϖk)} be the blow up sequence in Section 4.1. Then wk converges to
some w ∈ W 1,∞(Rn

+,−c) locally uniformly as k → ∞ with ∥∇wk∥∞ ≤ 1
and ∇ϖk converges to some ∇ϖ ∈ L∞

d (Rn
+,−c) ∗ weakly in L∞(Rn

+,b) (with

ϖ ∈ L1
loc(R

n
+,−c)) for any b > −c by taking a subsequence. Moreover, (w,ϖ)

solves the resolvent Stokes equation in Rn
+,−c in the sense that there exists

θ∞ with |θ∞| ≤ π − ε such that (w,ϖ) satisfies∫
Rn

+,−c

∇w · ∇φ dx+

∫
Rn

+,−c

eiθ∞w · φ dx+

∫
Rn

+,−c

∇ϖ · φ dx = 0 (4.9)

for all φ ∈ C∞
c (Rn

+). Furthermore, w satisfies divw = 0 in Rn
+,−c as well as

w = 0 on ∂Rn
+,−c.

Proof. The proof parallels that of Lemma 4.2. We may assume that dk → d̂,
θk → θ∞. Moreover, for φ ∈ C∞

c (Rn
+,−c) we may assume that φ vanishes

in a neighborhood of ∂Ωk. Since (4.5) (with (4.4)) now only yields a bound
on ∥∇ϖk∥L∞(sptϖ) uniformly for large k, the last term of the left-hand side
of (4.7) does not vanish. Letting k → ∞ in (4.7) yields (4.9) for a limit of
(wk, ϖk). The remaining assertion is easy to verify. �

4.3. Uniform convergence near the origin

We shall prove that wk converges to w uniformly together with its first de-
rivative near the origin. For this purpose we recall W 2,r estimates for the
generalized Stokes system. Here Lr

av is the space of all Lr-function in Ω
whose average over Ω equals zero.

Proposition 4.4 (W 2,r estimates). Let Ω be a C2 bounded domain in Rn and
let r ∈ (1,∞). Then there exists a constant c > 0 depending only on r, n and
the C2-regularity of ∂Ω such that

∥u∥W 2,r(Ω) + ∥p∥W 2,r(Ω) ≤ C
(
∥f∥Lr(Ω) + ∥g∥W 1,r(Ω)

)
for all solutions (u, p) ∈

(
W 2,r(Ω) ∩W 1,r

0 (Ω)
)
×
(
W 1,r(Ω) ∩ Lr

av(Ω)
)
of the

Stokes system

−∆u+∇p = f, div u = g in Ω

with u = 0 on ∂Ω.
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This type of Lr estimates is by now very popular [BF, Section b.3],
[Ga, Section 4.6] and went back to R. Farwig and H. Sohr [FS94], where the
existence of solution is also established.

Lemma 4.5. Let {wk} and its limit w be as in Lemma 4.2 or Lemma 4.3.
Then ∇wk converges to ∇w locally uniformly near the origin as k → ∞. In
particular, |w(0)|+ |∇w(0)| ≥ 1/2.

Proof. Let ζ ∈ C∞
c (Rn) be a cut-off function of the form such that ζ(x) = 1

on B1(0) and ζ(x) = 0 outside B2(0) where Br(x) denotes the closed ball
of radius r centered at x. We localize wk by defining Wk = ζwk. Then Wk

solves

−∆Wk +∇Πk,0 = ζgk − eiθkWk + E in Ωk ∩B2(0)

divWk = wk · ∇ζ in Ωk ∩B2(0)

Wk = 0 on (∂Ωk ∩B2(0)) ∪ (∂B2(0) ∩ Ωk) ,

where ϖk,0 = ϖk −
∫
−Ωk∩B2(0)ϖkdx, Πk,0 = ζϖk,0 and E is the lower order

terms of wk and ϖk,0. It can be calculated as

E = −2 div(w∇ζ) + wk∆ζ +ϖk,0∇ζ
since ∆Wk = (∆w)ζ+2div(wkζ)−wk∆ζ and ∇(ϖ0,kζ) = (∇π0,k)ζ+π0,k∇ζ
by Leibniz rule.

We mollify ∂ (Ωk ∩Bk(0)) in an open neighborhood of ∂(Ωk)∩∂ (Bk(0))
so that the boundary ∂Ω′

k of Ω′
k is C2 its C2-regularity is uniform in k.

Moreover, we may take Ω′
k so that

Ωk ∩B2(0) ⊂ Ω′
k ⊂ Ωk ∩B3(0).

We now apply the W 2,r estimate (Proposition 4.4) to get

∥Wk∥W 2,r(Ω′
k)

+ ∥∇Πk∥Lr(Ω′
k)

≤ C
(
∥ − eiθkWk + ζgk + E∥Lr(Ω′

k)
+ ∥wk∇ζ∥W 1,r(Ω′

k)

)
≤ C |B2(0)|

1
r
(
∥gk∥∞ + ∥wk∥W 1,∞(Ωk)

)
+ C∥ϖk,0∥Lr(Ω′

k)
.

Here we modify the definition of ϖk,0 by ϖk−
∫
−Ω′

k
ϖkdx. By (4.4) we observe

that
∥gk∥∞ + ∥wk∥W 1,∞ ≤ 1 + 1/k ≤ 2.

By the Poincaré type inequality [AGH, (2.1)] we have

∥ϖk,0∥Lr(Ω′
k)

≤ C∥∇ϖk∥L∞
d (Ω′

k)
.

This together with (4.5) and bound on ∥∇Wk∥∞ yields ∥ϖk,0∥Lr(Ω′
k)

≤ M

withM independent of k. We thus observe that ∥Wk∥W 2,r(Ω′
k)
+∥∇Πk∥Lr(Ω′

k)

is bounded in k. We take r > n to get uniform bound for ∥wk∥C1+µ(Ωk∩B1(0))

with µ = 1 − n/r from the above W 2,r (Proposition 4.4 bound by Morrey’s
inequality [E, 5.6.2]. By Ascoli-Arzelà theorem we conclude that wk → w
uniformly (with its first derivative) in B1(0) ∩ Rn

+,−c (Case 2) or in B2(0)
(Case 1) since wk itself converges to w locally uniformly.
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Since |wk(0)| + |∇wk(0)| ≥ 1/2 by (4.4), this implies that |w(0)| +
|∇w(0)| ≥ 1/2. �

4.4. Uniqueness of the limit problem

In this subsection we give a uniqueness result for the resolvent Laplace equa-
tion in Rn and the resolvent Stokes equations in Rn

+ so that the limit w in
Lemma 4.2 and Lemma 4.3 is identically zero.

Lemma 4.6 (Uniqueness in Rn). For µ ∈ C\(−∞, 0] assume that w ∈
L∞(Rn) satisfies ∫

Rn

w(µ−∆)η dx = 0 (4.10)

for all η ∈ C∞
c (Rn). Then w = 0.

Lemma 4.7 (Uniqueness in Rn
+). For µ ∈ C\(−∞, 0] assume that w ∈

W 1,∞(Rn
+) satisfies∫

Rn
+

w(µ−∆)η dx+

∫
Rn

+

∇q · η dx = 0

with some q ∈ L1
loc(R

n
+) such that ∇q ∈ L∞

d (Rn
+) for all η ∈ C∞

c (Rn
+). If

w = 0 on ∂Rn
+, then w = 0, ∇q = 0 in Rn

+.

Proof of Theorem 4.1 admitting Lemma 4.6 and 4.7. Suppose that (4.1) were
false. Then we have w as a blow up limit of a sequence of solutions as in
Lemma 4.2 and 4.3. By Lemma 4.5 we know that |w(0)| + |∇w(0)| ≥ 1/4.
However, since w solves the resolvent Laplace equation (4.6) in Rn or the
resolvent Stokes equation (4.9), we are able to apply the uniqueness results

(Lemma 4.6 for the case d̂ = ∞ and Lemma 4.7 for the case d̂ < ∞) to get
w = 0 which is a contradiction. The proof is now complete. �

The rest of this subsection is devoted to the proof of Lemma 4.6 and
4.7.

Proof of Lemma 4.6. Since C∞
c (Rn) is dense in S(Rn), the space of rapidly

decaying functions in the sense of Schwartz, one may assume η ∈ S(Rn) in
(4.10).

For a given ψ ∈ C∞
c (Rn) there is a solution η ∈ S(Rn) of (µ−∆)η = ψ.

This is easy to prove since the Fourier transform η̂ of η is given by η̂(ζ) =(
µ+ |ζ|2

)−1
ψ̂ and the Fourier transform is bijective on S(Rn). We thus

observe that ∫
Rn

w ψ dx = 0

for all ψ ∈ C∞
c (Rn). By a fundamental theorem of calculus of variation this

implies that w = 0 a.e. �

Lemma 4.7 can be proved as in [Sol03], where the uniqueness of the
nonstationary problem has been proved. Note that Lemma 4.7 can be proved
directly by a duality argument by the following existence result which can
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be proved by the Laplace transform of L1 theory of the Stokes flow in a half
space [GMS]. We will not give its proof.

Lemma 4.8 (Existence in L1). Let f ∈ C∞
c,σ(R

n
+) be a vector field of the form

f(x) =
∑n−1

j=1 ∂jψj(x) for ψ = (ψj) ∈ C∞
c,σ(R

n
+). For µ ∈ C\(−∞, 0] there

exists η ∈W 2,1(Rn
+), π ∈ L1

loc(R
n
+) with ∇π ∈ L1(Rn

+) satisfying

(µ−∆)η +∇π = f, div η = 0 in Rn
+

with η(x′, 0) = 0. Moreover, there exists a constant C = C(µ) such that

∥η∥W 2,1 ≤ C∥ψ∥W 2,1 .

Appendix A. Elliptic local regularity

We shall prove a local regularity up to the boundary for an Lr (very) weak
solution of the Neumann problem. Such regularity results are more or less
known but it is not easy to find exact reference to our setting so we give a
proof for the reader’s convenience and completeness.

Theorem A.1. Let Ω be a domain in Rn (n ≥ 2). Let x0 be a point on ∂Ω.
Then there exists a constant C depending only on n, r ∈ (1,∞), R > 0 and
C2-regularity of ∂Ω in B2R(x0) such that

∥∇2u∥Lr(ΩR) ≤ C∥u∥Lr(Ω2R)

for all u ∈ Lr(Ω2R) which satisfies ∆u = 0 in Ω2R and ∂u/∂nΩ = 0 on
intB2R(x0) ∩ ∂Ω in a (very) weak sense provided that ∂Ω is C2 in B2R(x0).
Here ΩR = intBR(x0) ∩ Ω.

To prove this statement we need to recall unique solvability of W 2,q

solution and uniqueness of Lr (very) weak solution.

Lemma A.2. Let Ω be a C1 bounded domain in Rn and q ∈ (1,∞).

(i). For a given f ∈W−1,q(Ω) satisfying
∫
Ω
f dx = 0 there exists a unique

solution u ∈ W 1,q(Ω) with
∫
Ω
u dx = 0 (a standard weak solution based

on bilinear form) of

−∆u = f in Ω and
∂u

∂nΩ
= 0 on ∂Ω.

Moreover, there exists a constant C depending only on q, n and C1-
regularity of ∂Ω such that

∥∇u∥Lq(Ω) ≤ C∥f∥W−1,q(Ω).

(ii). Assume that Ω is C2. If f is in Lq(Ω), then u ∈W 2,q(Ω). Moreover,

∥∇2u∥Lq(Ω) ≤ C∥f∥Lq(Ω).

The first statement under C1-regularity assumption is taken from
Simader and Sohr [SS]. Both statements with C2-regularity is rather standard
and classical; see e.g. [LM, Teor. 4.1].
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Lemma A.3 (Uniqueness of Lr-solution). Let Ω be a C2 bounded domain in
Rn. For r ∈ (1,∞) let u ∈ Lr(Ω) be a (very) weak solution to the homoge-
neous Neumann problem: ∆u = 0 in Ω, ∂u/∂nΩ = 0 on ∂Ω. Then u must be
a constant.

Proof of Lemma A.3. This can be proved by a duality argument. We may
assume r < n/(n − 1) since Ω is bounded. For a given f ∈ C∞

c (Ω) with∫
Ω
f dx = 0, there is a unique W 2,r′ solution v for −∆v = f in Ω and

∂v/∂nΩ = 0 on ∂Ω with
∫
Ω
v dx = 0 by Lemma A.2 (ii) where r′ is the

conjugate exponent of r, i.e., 1/r + 1/r′ = 1. By definition of a very weak
solution we see that ∫

Ω

u∆v dx = 0.

In the definition we need v ∈ C2(Ω) but it can be replaced by v ∈ C1(Ω) ∩
W 2,r′(Ω) by an approximation. Indeed, for v ∈ C1(Ω) ∩ W 2,r′(Ω) with
∂v/∂nΩ = 0 on ∂Ω and

∫
Ω
v dx = 0, we approximate the boundary value

v ∈ W 2−1/r′,r′(∂Ω) by wm ∈ C2(∂Ω) such that ∥v − wm∥W 2−1/r′,r′ → 0.
Since the boundary is C2, there is a bounded linear extension operator E
fromW 2−1/r′,r′(∂Ω)×W 1−1/r′,r′(∂Ω) toW 2,r′(Ω) such that E(w, g)|∂Ω = w,

(∂/∂nΩ) E(w, g)|∂Ω = g and moreover, E(w, g) ∈ C2(Ω) if w ∈ C2(∂Ω), g ∈
C1(∂Ω); see [Ad]. (Such an extension operator is for example found in Appen-
dix B (Lemma B.1 and Lemma B.2.) We set vm = E(wm, 0)−

∫
−E(wm, 0)dx

and observe that ∥vm−v∥W 2,r′ → 0 and that vm ∈ C2(Ω) with
∫
Ω
vmdx = 0.

The desired identity
∫
Ω
u∆v dx = 0 follows from

∫
Ω
u∆vmdx = 0 since

vm → v in W 2,r′(Ω). We thus conclude that
∫
Ω
uf dx = 0 for all f ∈ C∞

c (Ω)
with the average zero condition. This implies that u is a constant. �

Proof of Theorem A.1. We use a cut-off function φ satisfying the homoge-
neous Neumann condition constructed in Lemma B.2. Since Ω2R is not C2,
we consider a C2 bounded domain which is slightly larger domain Ω̃2R. We
consider v = uφ and observe that v is an Lr very weak solution of

−∆v = f in Ω̃2R and ∂v/∂nΩ = 0 on ∂Ω̃2R

with f = −2 div(u∇φ)− u∆φ ∈W−1,r(Ω̃2R). By the existence (Lemma A.2
(i)) and the uniqueness (Lemma A.3) there exists a constant C ′ depending
on φ such that

∥∇u∥Lr(Ω̃2R) ≤ C ′∥u∥Lr(Ω̃2R).

In particular, v ∈W 1,r(Ω̃2R). We may take the cut-off function so that φ ≡ 1
on Ω4R/3, then we observe that u ∈W 1,r(Ω4R/3).

We repeat this argument in Ω̃4R/3 with a cut-off function such that

φ ≡ 1 on Ω̃R with φ ∈ C2
c (B4R/3) satisfying ∂φ/∂nΩ = 0 on ∂Ω (Lemma

B.2). We now apply Lemma A.2 (ii) to get the desired W 2,r-estimate in ΩR.
Such an argument is often called a bootstrap argument. �
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Appendix B. Construction of cut-off functions

We shall construct cut-off functions which keep the Neumann boundary con-
dition. We begin with an extension lemma. This is by now a standard way
to extend which is for example found in [BF, 2.4].

Lemma B.1. Let k ≥ 1 be a natural number and R, R′ > 0. Let f ∈
Ck

c (R
n−1), g ∈ Ck−1

c (Rn−1) satisfy spt f, spt g ⊂ intBn−1
2R and g = 0 on

Bn−1
4R/3. Then there exists ψ ∈ Ck

c (R
n) such that

ψ(x′, 0) = f(x′),
∂ψ

∂xn
(x′, 0) = g(x′), x′ = (x1, . . . , xn−1) ∈ Rn−1

and sptψ ⊂ intBn−1
2R ×(−2R′, 2R′) and ψ(x′, xn) = f(x′) on Bn−1

R ×[−R′, R′].
If 0 ≤ f ≤ 1, then ψ can be taken such that 0 ≤ ψ ≤ 1.

Proof. Let ρε be a symmetric Friedrichs’ mollifier in Rn−1. In other words,
we take a non-increasing function η ∈ C∞

c [0,∞) such that η = 1 on [0, 1/2]

and η = 0 on [2,∞) and 0 ≤ η ≤ 1 and that
∫ 2

0
η(s)ds = 1 and define

ρε(x
′) = η (|x′|/ε) ε1−n for ε > 0. Let a and b be small positive parameters

to be determined later. We set

ψ(x′, xn) := f(x′)η(xn/R
′) +

(
ρa|xn| ∗ g

)
(x′)η(xn/b)xn, xn ̸= 0

and ψ(x′, 0) = f(x′), when ∗ denotes the convolution inRn−1. The parameter
a > 0 is taken small so that ρa|xn|∗g = 0 on Bn−1

R × [−R′, R′]. The parameter

b > 0 is taken small so that 0 ≤ f ≤ 1 implies 0 ≤ ψ ≤ 1. Since ψ is Ck

outside xn = 0, it suffices to prove that ψ is Ck at xn = 0 and satisfies
∂ψ/∂xn = g at xn = 0.

To show C1 property at xn = 0 at ∂ψ/∂xn = g it suffices to prove that

lim
xn→0

|xn|
∥∥∂xn

(
ρa|xn| ∗ g

)∥∥
∞ = 0, (B.1)

lim
xn→0

|xn|
∥∥∂x′

(
ρa|xn| ∗ g

)∥∥
∞ = 0, (B.2)

where ∥ · ∥∞ denotes the L∞ norm in Rn−1. We first prove (B.1) when g ∈
C1

c (R
n−1). Since ρs(x

′) = s1−nη (|x′|/s), we observe that ∂sρs = −s−1 div′(x′ρs),
where div′ is the divergence in x′ variable. This implies

|xn|∂xn
(ρa|xn| ∗ g) = − div′(x′ρs) ∗ g = −x′ρs ∗ ∇′g, s = a|xn|

where ∇′ denotes the gradient in x′ variable. Since ∥x′ρs∥L1(Rn−1) ≤ C|xn|
with some C independent of xn, we observe that∥∥|xn|∂xn

(ρa|xn| ∗ g)
∥∥
∞ ≤ C|xn|∥∇′g∥∞ → 0 as xn → 0

so (B.1) is proved for g ∈ C1
c (R

n−1).

For general g ∈ Cc(R
n−1), we approximate g by gm ∈ C1

c (R
n−1) so

that ∥g − gm∥∞ → 0 as m → 0. Since
∥∥|xn| ∂xn

(
ρa|xn| ∗ g

)∥∥
∞ ≤ C∥g∥∞,
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with C independent of g and xn ̸= 0 and
∥∥|xn| ∂xn

(
ρa|xn| ∗ gm

)∥∥
∞ → 0 as

xn → 0 for gm ∈ C1
c (R

n−1), we conclude that

lim
xn→0

∥∥|xn| ∂xn

(
ρa|xn| ∗ g

)∥∥
∞ ≤ lim

xn→0

∥∥|xn| ∂xn

(
ρa|xn| ∗ gm

)∥∥
∞

+ lim
xn→0

∥∥|xn| ∂xn

(
ρa|xn|(g − gm)

)∥∥
∞ ≤ 0 + C ∥g − gm∥∞ .

This yields (B.1) by sending m→ ∞. The proof for (B.2) is similar. A similar
argument yields higher regularity if k ≥ 2; we omit the detail. �

We now construct a cut-off function near the boundary such that the
normal derivative equals zero. We are tempting to use the normal coordinates
but to get a C2 cut-off function we need C3 regularity of the boundary. We
won’t use the normal coordinates here. For a given h ∈ Ck

(
Bn−1

2R

)
with

h(0) = 0 let

Ωh =
{
(y′, yn) | yn > h(y′), y′ ∈ Bn−1

2R

}
. (B.3)

Lemma B.2. Let k ≥ 1 be a natural number and R > 0. Let Ω = Ωh be as in
(B.3). Then there exists φ ∈ Ck

c

(
intB2R ∩ Ω

)
such that 0 ≤ φ ≤ 1 in B2R∩Ω

and ∂φ/∂nΩ = 0 on ∂Ω ∩B2R with φ = 1 on BR ∩ Ω, where BR = Bn
R.

Proof. We flatten the boundary by

xn = yn − h(y′), x′ = y′. (B.4)

This transformation x = T (y) is Ck. We write φ with new independent
variables x and still denoted by φ. The condition ∂φ/∂nΩ = 0 is transformed
into

∂φ

∂xn
− ∇′h√

1 + |∇′h|2
· ∇′φ = 0 at xn = 0. (B.5)

Let f be Ck
c

(
Rn−1

)
such that f = 1 on T

(
B4R/3 ∩ Ω

)
and f = 0 on

T (B2R ∩ Ω). We set

g =
∇′h√

1 + |∇′h|2
· ∇′f ∈ Ck−1

c

(
Rn−1

)
.

Applying Ck-extension lemma (Lemma B.1) yields desired φ by choosing R
and R′ appropriately. Note that the numbers R, 4R/3, 2R do not have a
particular meaning. We may take R, C1R, C2R for 1 < C1 < C2 in Lemma
B.1 to apply to construct φ so that φ satisfies φ = 1 in BR ∩ Ω; we shall
cut-off outside B2R if necessary to fulfill sptφ ⊂ intB2R ∩ Ω. �

We conclude this section to give a way to approximate test functions φ
in Rn

+ satisfying ∂φ/∂xn = 0 on the boundary by a similar test function in
a domain approximating Rn

+.

Lemma B.3. Assume the same hypothesis of Lemma B.2. Let φ ∈ Ck
c (R

n
+)

satisfy ∂φ/∂xn = 0 at xn = 0 and sptφ ⊂ BR. Then there exists φh ∈
Ck

c (Ωh) which fulfills ∂φh/∂nΩh
= 0 on ∂Ωh with sptφh ⊂ B4R/3 such that

∥φh − φ∥L∞(Ωh+) ≤ C1∥∇h∥∞
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∥∇φh −∇φ∥L∞(Ωh+) ≤ C1∥∇h∥∞
with a constant C1 depending only on n and a bound for ∥∇h∥∞. The mapping
φ 7→ φh can be taken a linear operator. If k ≥ 2, then

∥∇2φh −∇2φ∥L∞(Ωh+) ≤ C2

(
∥∇h∥∞ + ∥∇2h∥∞

)
with C2 depending only on a bound for ∥∇h∥∞ and ∥∇2h∥∞. Here Ωh+ =
Ωh ∩Rn

+.

Proof. We again use the transformation T given in (B.4). Since T is a Ck-
transformation, it suffices to construct Φh ∈ Ck

c (R
n
+) satisfying (B.5) with

φ = Φh and sptΦh ⊂ BR0 with R0 slightly bigger than R so that T−1(BR0) ⊂
B4R/3 as well as following estimates:

∥Φh − φ∥L∞(Rn
+) ≤ C1∥∇h∥∞ (B.6)

∥∇Φh −∇φ∥L∞(Rn
+) ≤ C1∥∇h∥∞ (B.7)

∥∇2Φh −∇2φ∥L∞(Rn
+) ≤ C2

(
∥∇h∥∞ + ∥∇2h∥∞

)
if k ≥ 2. (B.8)

For this purpose we construct

Φh(x
′, xn) = φ(x′, xn) +

(
ρa|xn| ∗ g

)
η(xn/b)xn

with

g =
∇h′√

1 + |∇′h|2
· ∇′φ ∈ Ck−1(Rn−1),

where ρ, η is taken as in the proof of Lemma B.1. The positive parameter
a and b are taken small so that spt ρa|xm| ∗ g ⊂ BR0 . This Φh which linearly
depends on φ fulfills all desired properties as shown below.

Since ∂φ/∂xn = 0 and Φh = φ on the boundary {xn = 0}, Φh fulfills

∂Φh

∂xn
= g =

∇h′√
1 + |∇′h|2

· ∇′Φh at xn = 0,

which is nothing but (B.5). By the Hausdorff-Young inequality one observes
that the operator defined by U(xn)g = ρa|xn| ∗ g = g ∗ ρa|xn| fullfills

∥U(xn)g∥∞ ≤ C∥g∥∞
∥|xn|∂xnU(xn)g∥∞ ≤ C∥g∥∞, ∥|xn|∇′Uxn(xn)g∥∞ ≤ C∥g∥∞ (B.9)

with C independent of xn ∈ R, xn ̸= 0. This implies (B.6) and (B.7) since
Φh − φ = (U(xn)g) η(xn/b)xn. Similarly, the estimate (B.8) follows from
above estimate as well as

∥|xn|∇∇′U(xn)g∥∞ ≤ C∥∇′g∥,
∥∥|xn|∂2xn

U(xn)g
∥∥
∞ ≤ C∥∇′g∥∞.

The first one follows from (B.9) while the second one follows from the obser-
vation that

(U(xn)g) (x
′) = a1−n

∫
Rn−1

η

(
z′

a

)
g (x′ − |xn|z′) dz′.

As in the proof of (B.1) the function U(xn)g ∈ Ck
c (R

n
+) which implies

that Φh ∈ Ck
c (R

n
+). �
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