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Abstract. We study the motion of the so-called bent rectangles by the singular weighted mean
curvature. We are interested in the curves which can be rendered as graphs over a smooth one-
dimensional reference manifold. We establish a sufficient condition for that. Once we deal with
graphs we can have the tools of the viscosity theory available, like the Comparison Principle. With
its help we establish uniqueness of variational solutions constructed by the authors [18]. In addition,
we establish a criterion for the mobility coefficient guaranteeing vertex preservation.

1 Introduction
An important part of a model of a single crystal growing in the atmosphere or from a solution
is the Gibbs-Thomson law on a crystal surface, see [23], [24], [31], [32],

βV = κγ + σ. (1.1)

This equation relates the velocity of the advancing surface V to its weighted mean curvature κγ
and the amount of matter σ, where β > 0 denotes the mobility depending on the orientation of
the surface. The interpretation of σ depends upon the particular phenomenon we discuss. The
meaning of symbols used in (1.1) is explained in Section 2.1 We shall see then, that from the
point of view of differential equations (1.1) is the weighted mean curvature flow with forcing.

In the full model the Gibbs-Thomson relation, (1.1), is coupled to the diffusion equation
for supersaturation σ (temperature, pressure etc). The literature is abundant since this topic
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has been studied for a long time, a biased sample is: [1], [10] [12], [27], [28], [29], [30] and
references therein. Any realistic modeling attempt should take into account, see [3]:
1) lack of smoothness of the growing surface;
2) lack of smoothness of the surface energy function appearing in the definition of the wmc κγ .
If we, in addition, expect a qualitative analysis of solutions, then there is probably no theory
available.

We studied, in [18] (see also references therein), the evolution of bent rectangle by (1.1).
Deformed rectangles are approximate cross sections of columnar ice crystals found in Nature, as
this is seen from Nakaya diagram, see [26]. We established, in [18], the existence of variational
solutions to (1.1) for bent rectangles (see the definition in Section 2 below), when σ is a given
function conforming to the so-called Berg effect, see [9], [19], [25]. In the next section, we
provide more details.

Our existence result treats the situation at the onset of facet breaking or right after it, in other
words, the initial data are not general. In the simplest case we have three facets on each side of
the bent rectangle. We recall that by a facet we understand a flat part of Γ whose normal vector
is a singular direction of γ.

The variational solutions are ‘semi-explicit’ and this makes them easy to analyze. This
also becomes a drawback in more complicated situations. This is exactly the reason why we
consider, in [18], only a limited class of initial conditions. The difficulty is related to a variable
character of the endpoints of the facets. This may be explained as follows. Once we write (1.1)
in a local coordinate system, then we obtain a Hamilton-Jacobi equation with a free boundary
– the facet endpoints. The free boundary is either a ‘shock wave’ or a ‘rarefaction wave’,
depending upon the data. We have a strong feeling that growing complexity of cases, we study,
calls for a new, more general tool.

Moreover, the uniqueness result in [18] is limited to a special configuration of the data. Here,
we want to lift it, but only for bent rectangles, which are graphs of a piecewiseC1 functions over
a smooth reference manifold. We present a geometric condition on the data which guarantees
that such a manifold exists. This is done in Theorem 3.1 in Section 3. Once we reach that goal,
we concentrate on showing that the variational solutions are indeed viscosity solutions in the
sense of [16], developed for equations like

ut = a(ux)((Wp(ux))x + σ) (x, t) ∈ Ω× (0, T ) (1.2)

augmented with periodic boundary conditions as well as initial data. In this equation W is a
convex, continuous and piece-wise C2 function.

However, we can only show that a profile function u (see Definition 4.3 for a rigorous state-
ment) of a family {Γ(t)}t∈[0,T ) of bent rectangles satisfies equation like (1.2), but the coefficient
a depends not only on ux but also on u and x in a non-trivial way, as well as W depends on x,

ut = a(ux, u, x)((Wp(ux, x))x + σ) (x, t) ∈ Ω× (0, T ), (1.3)

see Theorem 3.2. This is not an obstacle for introducing the notion of viscosity solutions like in
[16], but we have to check if the Comparison Principle, [16, Theorem 7] is still valid.

We show that the variational solutions to (1.1) constructed in [18] are viscosity solutions.
This is done in Section 4. An easy part of this proof is done in [16, Section 5]. Here, we con-
centrate on the behavior of the vertex. In [18], we assumed that the verteces of Γ(t) are defined
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as intersection of facets. Here, we look more closely at this issue pointing to the behavior of the
kinetic coefficient, which is crucial to solve this issue. We formulate a condition on β which
is necessary and sufficient for the profile function to be a viscosity solution to an equation like
(1.2), see (4.16) in Theorem 4.2. We notice that a similar problem was studied in [15], it is not
surprising that the condition on the mobility coefficient 1/β, see [15, eq. (4.5)] looks similar to
(4.16). The main difference is that we consider here a non-constant σ, W depends on x, Γ(t) is
from a restricted class of curves and we have a slightly different equation (??).

As we mentioned, we have to deal with (1.3). Thus, we have to establish a Comparison
Principle for viscosity solutions of (1.3). This is done by re-working the proof presented in
[16]. The basic idea is the doubling variables. The Comparison Principle is proved in Section
5. It implies uniqueness of viscosity solutions, hence variational ones.

So far, we presented the content of this paper without drawing a bigger picture. Let us
mention that despite efforts of many researchers, see references mentioned earlier, there is no
complete study of the (two-phase or one-phase) modified Stefan problem with Gibbs-Thomson
relation (1.1), when the interface is not smooth and the interfacial energy function γ is singular.
On the other hand, we have a successful attempt by [3] to solve the complete Stefan problem
with Gibbs-Thomson law numerically. Their simulations are capable to capture quite different
qualitative behavior corresponding to different physical parameters. However, their work is
based on careful regularization of the surface energy density γ.

It is a challenge to justify theoretically the pictures obtained in [3]. A way to cope with this
problem is to study (1.1) for non-smooth γ, also when σ is given. We concentrate on an aspect
of this task in the present paper.

2 Preliminaries

2.1 The setting of variational solutions
In general, solving (1.1) is challenging. In our earlier papers we restricted our attention to bent
rectangles. Their definition is recalled below. The reason for considering such curves is the
following. The Wulff shape, Wγ , of the energy density function γ given by (2.3), i.e. the curve
minimizing the energy functional E(Γ) =

∫
Γ
γ(n) dH1 under the area constraint, is a rectangle.

A bent rectangle is a kind of a small perturbation (in the C0-topology) of a scaled Wγ , resulting
from overgrowing Wγ in a diffusion field σ.

We explain the basic notions used in this paper. In equation (1.1) V denotes the normal
velocity of curve Γ, β = β(n) is the kinetic coefficient. The driving term σ = σ(x1, x2, t) in
our setting is given, it may be interpreted as supersaturation, temperature etc. We assume that
σ satisfies the so-called Bergs effect, see [9] for the experimental evidence. Analytically, this
may be written as

xi
∂σ

∂xi
(x1, x2) > 0 (2.1)

for xi 6= 0. We consider only Γ(t) which are bent rectangles, introduced in [21]. For the sake
of self-consistency, we recall the definition below.

Formally, we define κγ as

κγ = −div (∇ξγ(ξ) |ξ=n ) , (2.2)
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where
γ(p̃1, p̃2) = γΛ|p̃1|+ γR|p̃2|. (2.3)

Then, indeed the normals to the facets of Γ(t) are singular directions of γ. The variational
definition of κγ will be recalled in subsection 2.3

2.2 Bent rectangles
We shall call a Lipschitz closed curve Γ a bent rectangle (see [22, §2]) if the following condi-
tions are satisfied:

There exist even, Lipschitz continuous functions dR, dΛ : R → R+, which are non-
decreasing for positive arguments and there are positive numbers L1, R1 such that

dΛ(L1) = R1, dR(R1) = L1.

In addition, dΛ is constant in a neighborhood of zero and L1 (respectively, dR is constant
in a neighborhood of zero and R1). Furthermore,

(BR) Γ = ∂{(x1, x2) : |x1| ≤ dΛ(x2) , |x2| ≤ dR(x1)}.

We shall call dR, dΛ a pair of admissible functions.
We shall call the points (±R1,±L1) verteces of Γ. Thus, after we set

S±
Λ = {(x1, x2) ∈ Γ : x1 = ±dΛ(x2), x2 ∈ [−L1, L1]},
S±
R = {(x1, x2) ∈ Γ : x2 = ±dR(x1), x1 ∈ [−R1, R1]},

we notice that the graphs of ± dΛ
∣∣
[−L1,L1]

, ±dR|[−R1,R1] make up the whole Γ(t), i.e.

Γ = S−
R ∪ S+

R ∪ S−
Λ ∪ S+

Λ .

We will call S±
R and S±

Λ the sides of Γ(t). Verteces of Γ are the intersections S±
R ∩ S±

Λ .
Since S−

Λ (resp. S−
R ) is the symmetric image of S+

Λ (resp. S+
R ), we will subsequently drop

the superscript, while considering only S+
Λ (resp. S+

R ).

2.3 Singular curvature κγ and the notion of a variational solution
The curvature, κγ , appearing in (1.1) is defined by (2.2). In this formula n is the outer normal
to Γ and γ is a surface energy function (2.3). Here, the fundamental problem is apparent:
∇γ(n) is not defined on bent rectangles on sets of positive H1-measure. We resolved this issue
by replacing ∇γ by ∂γ, which is always well-defined, because of the convexity of γ. The
subdifferential coincides with {∇γ(x0)} when γ is differentiable at x0.

Since in general, ∂γ is not a singleton, this leaves us with a necessity to select the proper
Cahn-Hoffman vector field ξ(x) ∈ ∂γ(n(x)). We note that this task is not obvious, where ∂γ is
not a singleton. This is why we use a variational principle as in [21], [22]. A similar approach
was first introduced by [13] for graph-like solutions and was developed in several ways by the
authors of [2] and [6]-[8], [4], [5].
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We impose quite natural constraints on ξ, see [21],

div Sξ ∈ L2(Si), i = R,Λ.

This implies that ξ · ν has a trace, where ν ∈ TxSi is a normal vector to Si, i = R, Λ. If we
combine it with

∂γ(nR) ∩ ∂γ(nΛ) = {p},
where nR = (0, 1), nΛ = (1, 0), then we see that ξ satisfies a boundary condition

ξ|vertex = p.

The necessity of selecting ξ implies that in order to define a solution to (1.1), we need to specify
not only a curve Γ(t) but also ξ(t, ·). After [21], we recall the notion of solution. Namely, by a
solution to (1.1) we call a family of couples (Γ(t), ξ(t)), t ∈ [0, T ), such that for some T > 0,
the following conditions are satisfied:

(a) For each t ∈ [0, T ) the curve Γ(t) is a bent rectangle and dΛ, dR are continuous functions
of its arguments, for each x, dj(·, x), j = Λ, R are Lipschitz continuous and for each t ∈ [0, T ),
functions dj(t, ·), j = Λ, R are admissible;

(b) ξ :
⋃
t∈[0,T ){t} × Γ(t) → R2 is at each time instant a Cahn-Hoffman vector. If M :=

supt∈[0,T ) max{L1(t), R1(t)}+ 1, and if for j = Λ, R, we set

ξ̃R(t, x) ∈


{(−γ(nΛ), γ(nR))} x ∈ [−M,−R1(t)],
{ξ(t, (x, dR(t, x)))} x ∈ [−R1(t), R1(t)],
{(γ(nΛ), γ(nR))} x ∈ [R1(t),M ];

ξ̃Λ(t, x) ∈


{(−γ(nΛ),−γ(nR))} x ∈ [−M,−L1(t)],
{ξ(t, (dΛ(t, x), x))} x ∈ [−L1(t), L1(t)],
{(−γ(nΛ), γ(nR))} x ∈ [L1(t),M ];

then we assume that t 7→ ξ̃j(t, ·) ∈ L∞(0, T ;L2(−M,M)), j = Λ, R;
(c) Equation (1.1) is satisfied in the L2 sense for a.e. t ≥ 0 after interpreting κγ as −div Sξ.
In principle, the Cahn-Hoffman vector depends upon time t and x = (x1, x2) ∈ Γ(t). How-

ever, we shall frequently suppress t and write ξ(x), when the meaning of the spacial argument
is clear from the context, e.g. on the sides. We also distinguished variational solutions based on
a specific way to select ξ. For this purpose, we introduce functionals,

Ej(ξ) =
1

2

∫
Sj

|σ − divS ξ|2H1, j = R,Λ. (2.4)

Their natural domains are the sets of Cahn-Hoffman vectors, satisfying all the above constraints,

DΛ = {ξ ∈ L∞(SΛ) : ξ(x) ∈ ∂γ(n(x)), div Sξ ∈ L2(SΛ), (2.6) holds},
DR = {ξ ∈ L∞(SR) : ξ(x) ∈ ∂γ(n(x)), div Sξ ∈ L2(SR), (2.6) holds}, (2.5)

where
ξ(±R1,±L1) ∈ ∂γ(±nΛ) ∩ ∂γ(±nR). (2.6)

We recall (see also [22] for a discussion of this notion) that {(Γ(t), ξ(t))}, t ∈ [0, T ), a
solution to (1.1), is called a variational solution if for each t ∈ [0, T ) ξ|Sj

(t) ∈ L2(Sj) is a
solution to

Ej(ξ) = min{Ej(ζ) : ζ ∈ Dj}, j = R,Λ. (2.7)
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2.4 Facets
Let us consider an open line segment I in the plane, i.e. I = (a, b) ≡ {x = at + b(1− t), t ∈
(0, 1)}, where a, b ∈ R2. We shall say that I ⊂ Γ, having a normal equal to nΛ or nR, is a
faceted region of Γ, also called a facet, if it is maximal (with respect to inclusion) and it satisfies

(σ − div Sξ)|I = const., (2.8)

where ξ is a solution to (2.7).
We keep in mind that, S±

Λ (t) and S±
R (t) are graphs, e.g. S+

R is the image of segment
[−R(t), R(t)] under the function

x 7→ (x, dR(t, x)) =: d̃R(t, x).

Frequently, it is more convenient to work with the inverse image of a faceted region I , i.e.
(α, β) = d̃−1(I). We stress that this definition permits S±

j (t), j = R,Λ being a line segment
which has more than one faceted region.

Let us make a few comments on the definition of solutions. As it is stated, the variational
solutions has its limitations. First of all, it does not permit handling the curved parts, when the
data are not of C1-class. We know that the methods of viscosity solutions for Hamilton-Jacobi
equations are appropriate tools, see [11]. Secondly, the position of the verteces are defined
as intersections of facets, while the vertex preservation property should be deduced from the
equations.

We solve these issues with the help of viscosity solutions introduces in Section 4. However,
there is a price: we have to restrict slightly the class of admissible initial data to such that satisfy
the geometric condition (3.3).

2.5 Existence of variational solutions
Here, we recall the main existence result, see [18]. We restrict our attention to such variational
solutions (Γ, ξ) of (1.1) that each facet Sj has exactly three faceted regions, whose pre-images
are:

(−L1,−l1), (−l0, l0), (l1, L1), (−R1,−r1), (−r0, r0), (r1, R1).

We need to recall some notations and definitions. Initial conditions for interfaces will be denoted
as follows

l0(0) = l00, l1(0) = l10, r0(0) = r00, r1(0) = r10,

R0(0) = R00, R1(0) = R10, L0(0) = L00, L1(0) = L10.

Definition 2.1. We shall say that assumptions (S) are satisfied if

(S1) (conditions on σ) The forcing term σ is of class C2 and it satisfies the symmetry
relation

σ(t, x1, x2) = σ(t,−x1, x2), σ(t, x1, x2) = σ(t, x1,−x2) for all xi ∈ R, i = 1, 2.

and Berg’s effect (2.1)
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(S2) (conditions on β) Let us denote by mi(p) =

√
1+p2

βi(p)
the mobility coefficient. The

mobility coefficients are Lipschitz continuous, convex for |p| ≤ 1, C2-class on
R \ {0} and

mi(0) ≤ mi(p), mi(p) = mi(−p), mi(p) ≤ C(1 + |p|), i = Λ, R.

(S3) (conditions on the initial curve) dΛ0 , dR0 is an admissible pair of functions, which
are of class C2 on the closure of the complement of the preimages of the facets.

Let us recall that the tangency condition is satisfied at r0(t) if ∂ξ
∂x1

(r0(t)) = 0. Moreover, we
the statement of the Theorem below needs the following two quantities, ΣR

0 introduced in [18,
formula (2.22)]

ΣR
0 :=

∫
−
r0

0

σt(0, y, L00) dy − σt(0, R00, l00)

+σ(0, r0, L00)

(∫
−
r00

0

σx2(0, y, L00) dy − σx2(0, r0, L00)

)
,

and ΣR
1 from [18, Proposition 2.3 (b)],

ΣR
1 :=

∫
−
R10

r10

σt(0, y, L10) dy − σt(0, r10, L10)

+σ(0, r10, L10)

(∫
−
R10

r10

σx2(0, y, L10) dy − σx2(0, r10, L10)

)
+

Ṙ1(0)

(R10 − r10)
(σ(t, R10, L1(0))− L̇1(0)).

These two quantities determine the evolution of the facets parallel to the x1-axis. We should
define the corresponding objects, ΣΛ

0 , ΣΛ
1 for the facets parallel to the x2-axis, but for the sake

of making the presentation concise we will not do so, but rather refer the reader to [18].
We are now ready to recall the main existence theorem.

Theorem 2.1. Let us suppose that, the standard set of assumptions (S) holds, in particular the
initial curve Γ0 is a regular bent rectangle, l00 < l10 and r00 < r10. We assume that the initial
data fulfill conditions (a) and (b) below:
(a) One of the following conditions holds at the interface r00:

(i) d0,x(r00) = 0, ΣR
0 = ΣR

0 (0, r00, L00) < 0, the tangency condition holds at r00 and

ΣR
0 (0, r00, L00) +

1

2
σx1(0, r00, L00)σ(0, r00, L00) < 0. (2.9)

(ii) L̇0(0)−σ(0, r00, L00)m(d+0,x(r00)) 6= 0, the tangency condition is violated at r00 and
d+0,x(r00) > 0.

Moreover, a respective version of (i) and (ii) holds for l00.
(b) One of the following conditions hold at interface r10:
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(iii) d0,x(r10) = 0, ΣR
1 > 0, the tangency condition holds at r10 as well as a condition

corresponding to (2.9) for r10;
(iv) L̇1(0)−σ(0, r10, L10)m(d−0,x(r10)) 6= 0, the tangency condition is violated at r10 and
d−0,x(l10) > 0.

Moreover, a respective version of (iii) and (iv) holds for l10.
Then, there exists a variational solution to the following system (see [18, (2.17), (2.18)]),

which is the localized version of (1.1) for bent rectangles,

βRL̇0 =

∫ r0

0

− σ(t, s, L0) ds+
γ(nΛ)

r0
on [0, r0],

dRt = σ(t, x1, d
R)mR(dRx ) on [r0, r1],

βRL̇1 =

∫ R1

r1

− σ(t, s, L1) ds−
2γ(nΛ)

R1 − r1
on [r1, R1], (2.10)

βΛṘ0 =

∫ l0

0

− σ(t, R0, s) ds+
γ(nR)

l0
on [0, l0],

dΛt = σ(t, dΛ, x2)m
Λ(dΛx ) on [l0, l1],

βΛṘ1 =

∫ L1

l1

− σ(t, R1, s) ds−
2γ(nR)

L1 − l1
on [l1, L1],

augmented with the following initial conditions,

l0(0) = l00, l1(0) = l10, r0(0) = r00, r1(0) = r10,

R0(0) = R00, R1(0) = R10, L0(0) = L00, L1(0) = L10, (2.11)
dR(0, x1) = dR0 (x1), dΛ(0, x2) = dΛ0 (x2).

3 Graphs over a smooth manifold
Our first task is to show that there is a class of bent rectangles, which may be written as graphs
over a smooth manifold. This will permit us to apply the theory developed in [16]. We want that
our reference manifold M have two pairs of sides parallel to the axes. We show that actually
we can construct such M for a class of bent rectangles.

Let M be a convex curve obtained by rounding off vertices of an octagon with two pairs of
sides perpendicular to the coordinate axes. For our convenience we assume that M is negatively
oriented and symmetric with respect to the axes. We assume that Φ : T1 = R/(2πLZ) → R2

is a smooth, 2πL-periodic, arclength parametrization of this manifold. Thus, in particular,
Φs(s) =: τ(s) is the unit tangent and we denote the outer normal to M at Φ(s) by ν(s).

For such a manifold M, we know that there exists an open set U ⊂ T1 × R such that

U 3 (s, v) 7→ Φ(s) + ν(s)v := Ψ(s, v) ∈ R2

is a diffeomorphism onto an open subset of R2. Moreover, convexity of M implies that

T1 × (0,∞) ⊂ U . (3.1)
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It is obvious, that when Γ is a convex curve in the image of U under Ψ, then there is a 2πL-
periodic function v such that

Γ = {(x, y) = Ψ(s, v(s)) := Φ(s) + ν(s)v(s)} . (3.2)

This follows from the definition of Ψ. Of course, v enjoys the same class of smoothness as Γ.
It is rather obvious that not for every bent rectangle we can find a reference manifold M so

that Γ may be written as in (3.2). For example, in our papers, [20], [17], [18], [22] we imposed
the following restriction on the data, |dΛ0,x|, |dR0,x| < 1. The variational solutions to (1.1) also
satisfy this bound for t < T . On the segments of M parallel to the lines y = ±x the above
condition is equivalent to |vs| < +∞. Thus, it will not be easy to lift it.

Now, we will give our rough answer to the question which bent rectangles may be rep-
resented as (3.2). It is important to have facets representable as graphs of (piecewise) linear
functions over sides of M. The reason will be explained in Theorem 3.2.

We will say that, a bent rectangle is gently bent, if it has representation (3.2), over manifold
M which is diffeomorphic to S1 and convex.

Theorem 3.1. (a) Let us suppose that Γ is a bent rectangle, symmetric with respect to both
coordinate axes, and such that |dix| < 1, where i = Λ, R. If condition (3.3), stated below,
holds, then Γ is gently bent. That is, there is a smooth reference manifold M and a function
v : M → R such that Γ is a graph of v over M.
(b) Let us suppose that {Γ(t)}t∈[0,T ) is a family of bent rectangles, with admissible functions
dΛ(·, t), dR(·, t) defining them, such that: (i) Γ(0) is gently bent, i.e. (3.3) holds; (ii) Γ(0) is
symmetric with respect to both coordinate axes, dΛ, dR ∈ C([0, T ], C(R)) and ri, li ∈ C[0, T ],
i = 0, 1. Then, there is ε > 0 such that all Γ(t), are gently bent for t ∈ [0, ε) with the same
reference manifold M.

Remarks. 1) The proof will be constructive, but by no means exhausting all possible cases. Let
us also stress that in part (b) we claim existence of the reference manifold, which is good for a
family of bent rectangles while only Γ(0) is assumed to be symmetric with respect to the axes.
2) We may explain the geometric meaning of (3.3) as follows. There are two facet adjacent to
fixed vertex. We may restrict our attention to the first quadrant. Each of the curved parts of Γ
intersecting the two facets may be put into parallelograms with one pair of sides parallel to the
axis the other pair parallel to {y = x} and the arc endpoints are verteces of the parallelograms.
Now, (3.3) means that there are lines parallel to {y = −x} intersecting the two parallelograms,
see Fig. 1.

Proof of Theorem 3.1. Part (a). Let us consider the following families of horizontal, ha,
vertical, vb, diagonal, dc, and transversal, te, lines in the plane,

ha = {(x1, a) : x1 ∈ R}, vb = {(b, x2) : x2 ∈ R},
dc = {(x1, x1 + c) : x1 ∈ R}, te = {(x1, e− x1) : x1 ∈ R},

where the parameters a, b, c, e are real numbers. If Fi is a horizontal facet (respectively, ver-
tical), then we may find a corresponding ai, (respectively, bi), such that Fi is contained in hai
(respectively, in vbi).

If Fi is a central facet then we can find dci and tei so that Fi’s endpoints lie on these lines.
In other words,

∂Fi = (dci ∪ tei) ∩ hai or ∂Fi = (dci ∪ tei) ∩ vbi .
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Actually, we can find two pairs of lines dci , tei and dc′i , te′i satisfying this condition. We choose
dci , tei so that their intersection dci ∩ tei is closer to the origin than dc′i ∩ te′i .

The following construction can be carried out for each vertex independently. For the sake
of clarity we fix our attention on vertex in the first quadrant.

Let us also suppose that facets are numbered counter clockwise and F1 is the central facet
lying in the half-plane {x2 > 0}. We notice that intersections of lines ha1 , ha12 , dc1 and dc12
determine a parallelogram, which we will call P1. Actually, by P1 we mean an open bounded
set. Similarly, the intersections of lines va10 , va11 , dc10 and dc11 determine a parallelogram, which
we will call P8. By the same token, we construct parallelograms P2 to P7. Since |dix| < 1, the
curved part of Γ joining F1 and F12 is in P1 and the curved part of Γ joining F10 and F11 is in
P8. We may now state our crucial condition, see Fig. 1,

C1 := {e ∈ R : te ∩ P1 6= ∅ and te ∩ P8 6= ∅} 6= ∅ and C1 = intC1. (3.3)

We notice that for any e ∈ C1 there is an open set Ue ⊂ (a1, a12) × (b10, b11) such that for any
a, b ∈ Ue

ha ∩ te ∈ P1 and vb ∩ te ∈ P8. (3.4)

Let us suppose that e ∈ C1 is given, then we will select a and b. We will present a procedure
for picking a while the method of choosing b is essentially the same.

For any e ∈ C1 line te intersects P1. Curve Γ∩P1 intersects te and the intersection consists of
exactly one pointA = (xA, d

R(xA)). If we had more points in dR∩P1∩te, then this would mean
that, contrary to our assumption, dR is not monotone. Let us suppose {B} = te ∩ dc12 . We take
E := 1

2
(A+B). Now, we define a to be the x2 coordinate ofE, thus, {E} = {(xE, a)} = te∩ha.

We set,

f1 :=
1

2
(xA + xE).

Now, we draw a circle S1
ρ(Q) tangent to ha at (f1, a) =: G and also tangent to te. We write

S1
ρ(Q) ∩ te = {K} = {(xK , e− xK)}.

Of course, K ∈ P1. We call by Υ the convex curve formed by ha ∩ {x1 ≤ f1}, te ∩ {x1 ≥
xK} and the arc of S1

ρ(Q) from G to K. We see that, Υ is a graph of a C1 but not a C2 function
over the x1-axis. We may modify it to get a C∞ function. In order to avoid the creation of a
redundant notation, we may assume that points G and K are joined by smooth, convex curve
meeting the lines ha and te smoothly, i.e. all derivatives agree. Let us call the curve we have
just constructed by Υ1.

A similar argument will provide us with b and such that vb∩ te ∈ P8 and a smooth curve Υ2,
whose part with non-zero curvature is contained in P8. We may assume that Υ1∩Υ2 = [K,K ′],
where K ′ = (xK′ , e− xK′) and [K,K ′] denotes a line segment with endpoints K, K ′. We take
a new curve Υ3 consisting of Υ1 ∩ {0 ≤ x1 ≤ xK}, [K,K ′] and Υ2 ∩ {0 ≤ x2 ≤ e− xK′}. Of
course, Υ3 is smooth.

We denote by Ri the reflection with respect to xi-axis, i = 1, 2. We finally, define M as
follows,

M = Υ3 ∪R1Υ3 ∪R2Υ3 ∪R1R2Υ3.

Let us suppose that Φ is an arclength parametrization of M, such that Φ(0) = (0, a), Φ(π
2
L) =

(b, 0) and M has negative orientation.

10



At this point, it is a good idea to give names to special points on M. Besides 0 < f1, defined
as the x1-coordinate of G, the common endpoint of the segment [−f1, f1] × {a} and smooth

arc
_

GK, we introduce points f l2, f
r
2 , f3 ∈ [0, π

2
L). We set f l2 to be such that Φ(f l2) = K. The

arc
_

GK meets [−f1, f1] × {a} tangentially at G, while K is the point, where
_

GK tangentially
intersects [K,K ′] at K. Parameter f3 is such that Φ(π

2
L− f3) and Φ(π

2
L+ f3] are endpoints of

the maximal segment in M contained in the half plane {x1 > 0}, parallel to the vertical axis.
Moreover, f r2 is such that Φ(f r2 ) and Φ(π

2
L − f3) are the endpoints of a smooth arc meeting

tangentially the line segments of M. By symmetry, we may divide the rest of M in a similar
way.

Fig. 1
By construction, M is smooth. It remains to check that we can find v, such that (3.2)

holds. We assume that s ∈ T1 is the arclength parameter of M and we consider this curve with
the reversed orientation. Let us recall that contrary to this choice of the orientation of M the
parallelograms Pi, i = 1, . . . , 8 are numbered in the counter clockwise manner.

Our attention will be focused on Γ ∩ P1. Let us recall that

Γ ∩ P1 = {(x1, dR(x1)) : x1 ∈ (r0, r1)},

where (r0, L0) is one endpoint of the central facet while (r1, L1) the endpoint in P1 of the facet
adjacent to the vertex. Since x1 is an arclength parameter of M on lines parallel to the x1-axis,
then

v(s) := dR(s) + (a− L0) s ∈ [0, f1].

Let us see that for parameters s > f1, corresponding to (Υ1 ∩ {0 ≤ x1 ≤ xK}) ∪ [K,K ′], the
set R+ν(s) ∩ Γ is a singleton. Thus, we can define v as follows

v(s) = dist(M∩ R+ν(s),Γ ∩ R+ν(s)).

By virtue of the Implicit Function Theorem, we see that the smoothness of v is inherited from
d.

Finally, we can perform a similar analysis on the remaining parameters.
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Part (b). We note that if Γ(t) is a family of bent rectangles, whose facet endpoints evolve
continuously in time, then all the points on the plane we constructed in part (a) depend con-
tinuously on time. Moreover, since we can study each vertex independently, Γ(t) need not be
symmetric for t > 0. Thus, for sufficiently small time t ∈ [0, ε) all Γ(t) are bent rectangles.

We notice that if Γ(0) were not symmetric with respect to the axis, then ability to perform
analysis like that in part (a) need not result in a construction of a reference manifold for geo-
metric reasons. We would need a condition like (3.3) for each vertex of Γ(0).

Fig. 2

We notice that the facets of Γ, near each vertex of Γ, are represented with the help of
piecewise linear v. This fact is very important for our analysis.

Theorem 3.2. Let us suppose that Γ(t)t∈[0,T ) is a family of gently bent rectangles, which are
graphs of functions v(·, t) over a common reference manifold M (with the arc length parameter
set [0, 2πL)) i.e. each Γ(t) satisfies (3.3) for t ∈ [0, T ). Then,
(a) for each t ∈ [0, T ), the operator

1

β
(κγ + σ) (3.5)

on Γ(t) takes the following form in variables (s, t), at points where the normal to Γ(t) is well-
defined,

a(vs, v, s)√
(1 + κv)2 + v2s

(λ(vs, s)s + σ) . (3.6)

Here, λ(p, s) is given in (3.25) while a is defined by (3.31). Coefficient a is a positive, bounded
Lipschitz continuous function, which is separated from zero.

12



(b) Let us set

W (p, s) = ϕ1(s)γΛ|p|+ ϕ2(s)(γΛ|p− 1|+ γR|p+ 1|) + ϕ3(s)γR|p|, (3.7)

where ϕi(s) : [0, 2πL) → [0, 1], i = 1, 2, 3, are chosen so that
∑3

i=1 ϕi = 1 and

ϕ1 ≡ 1 for s ∈ [0, s1], ϕ1 ≡ 0 for s ∈ [s2,
π
2
L],

ϕ2 ≡ 1 for s ∈ [s2, s3], ϕ2 ≡ 0 for s ∈ [0, s1] ∪ [s4,
π
2
L],

ϕ3 ≡ 1 for s ∈ [s4,
π
2
L), ϕ3 ≡ 0 for s ∈ [0, s3]

(3.8)

and s1, s2 are given by (3.28) and (3.29), respectively. Points, s3 and s4 are defined in analogy
to (3.28) and (3.29). Furthermore, this definition is extended by symmetry to [0, 2πL).

Let us suppose that u is the representation (3.2) of {Γ(t)}t∈[0,T ). If we assume that the facet
endpoints vary continuously in time, then (3.5) becomes

a(vs, v, s)√
(1 + κv)2 + v2s

(
∂

∂s
Wp(vs, s) + σ̃(v, s, t)

)
(3.9)

where σ̃ is defined by (3.32). If {Γ′(t)}t∈[0,T ) is another family of gently bent rectangles over
M varying continuously with t in the C0 topology with Γ(0) = Γ′(0), then (3.5) takes the form
(3.9).
(c) If V is the velocity of Γ in the normal direction, then

V =
vt(1 + κv)√
v2s + (1 + κv)2

, (3.10)

where κ is the Euclidean curvature of M.

Remarks. (1) An immediate consequence of this Theorem is that equation (1.1) takes the
following form

vt = a(vs, v, s)
(
W ′
p(vs, s)s + σ̃(v, s, t)

)
, (3.11)

where W (respectively, a) depends on s (respectively, s and v), while originally in [16] there is
no such dependence. Thus, we may not directly apply the comparison principle of [16].

(2) If (Γ, ξ) is a variational solution to (1.1), where Γ(0) is a gently bent rectangle, with
the corresponding v(·, t) appearing in (3.2), then we shall show that v satisfies (3.11) in the
viscosity sense. Obviously, not all solutions to (3.11) will yield bent rectangles by (3.2).

Before we engage in proving our statement we will present a time dependent partition of
the arclength parameter set [0, 2πL) of M corresponding to positions of facet endpoints. If we
restrict first our attention to [0, π

2
L), then these points are:

0 < kI(t) < f1 < f l2 < klIII(t) < kvIII(t) < krIII(t) < f r2 <
π

2
L− kV (t),

where kV (t) ∈ (0, f3). Since they are to correspond to facet endpoints, then by definition,

Ψ(kI(t), v(kI(t), t)) = (r0(t), L0(t)), Ψ(klIII(t), v(k
l
III(t), t)) = (r1(t), L1(t)),

Ψ(kvIII(t), v(k
v
III(t), t)) = (R1(t), L1(t)), Ψ(krIII(t), v(k

r
III(t), t)) = (R1(t), l1(t)),

Ψ(π
2
L− kV (t), v(

π
2
L− kV (t), t)) = (R0(t), l0(t)).

(3.12)
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This partition can be extended to the whole [0, 2πL). For this purpose, we also introduce,

U0
I = (−f1, f1), U0

II = (f1, f
l
2), U0

III = (f l2, f
r
2 ),

U0
IV = (f r2 ,

π
2
L− f3), U0

V = (π
2
L− f3,

π
2
L+ f3).

(3.13)

Thus, we created a partition of M in the first quarter. Furthermore, we define

U1
I = U0

I + πL, U1
V = U0

V + πL. (3.14)

In order to describe other sets we need to introduce three mappings,

Qi : [0,
π

2
L) → [i

π

2
L, (i+ 1)

π

2
L), i = 1, 2, 3,

by formulas

Q1(s) = πL− s, Q2(s) = πL+ s, Q3(s) = 2πL− s.

Then, we set,
U i
k = Qi(U

0
k ), i = 1, 2, 3, k = II, III, IV (3.15)

and
Uk =

⋃
i

U i
k, k = I, . . . ,V. (3.16)

Proof of Theorem 3.2. We have to determine n, the outer normal to Γ at time t. Since s is
the arc-length parameter on M, then due to (3.2) and Frenet formulas, we have

d

ds
(x, y) =

d

ds
Ψ =

∂

∂s
(Φ(s) + ν(s)v(s, t)) = τ(s) + νs(s)v(s, t) + ν(s)vs(s, t)

= τ(s)(1 + κv(s, t)) + ν(s)vs(s, t).

This formula is valid because in our setting (M is negatively oriented) we have νs = κτ , where
κ is the Euclidean curvature of M. We also keep in mind that this tangent vector is negatively
oriented. Hence,

n =
−vsτ + (1 + κv)ν√
v2s + (1 + κv)2

(3.17)

is the outer normal to Γ(t). Furthermore,

t = −τ(s)(1 + κv(s, t)) + ν(s)vs(s, t)√
v2s + (1 + κv)2

(3.18)

is the unit tangent to Γ(t) corresponding to the positive orientation of M.
We recall that if ξ is a vector field on S, then by definition,

div Sξ := t · ∂ξ
∂t
. (3.19)

In order to find the form of (1.1) in the local coordinates, we apply the following procedure:
(1) calculate ∇γ;

14



(2) calculate ∂
∂t
∇γ, where t is the unit normal corresponding to the positive orientation of Γ;

(3) calculate t · ∂
∂t
∇γ.

In fact we will use s 7→ Ψ(s, v(s, t), t) to parametrize Γ(t), but we have to be aware that it
is not any arclength parameter sa on Γ(t). We notice that,

∂ξ

∂t
=

dξ

dsa
=
∂ξ

∂s

ds

dsa
=
∂ξ

∂s

1

|dΨ
ds
|
. (3.20)

Let us notice that, if s ∈ (−kI(t), kI(t), then vs = 0 and due to (3.19)

div Sξ = − 1

|dΨ
ds
|
∂ξ1
∂s

. (3.21)

The minus corresponds to the fact that s sets the negative orientation. For s ∈ (−kI(t), kI(t)) it
is true that |Ψs| = 1 and the normal n to Γ(t) is (0, 1). Thus, γ takes the form, in a neighborhood
of n,

γ(p̃1, p̃2) = γΛ|p̃1|+ γRp̃2.

Hence,
∂γ(p̃1, p̃2) = γΛ∂|p̃1|e1 + γRe2,

where e1 and e2 are the unit vectors of the axes.
Taking this into account, (3.21) and the definition of κγ at least formally we arrive at

κγ = γΛ
∂

∂s
(sgn vs), s ∈ (−kI(t), kI(t)). (3.22)

In other words,
λ(p, s) = γΛsgn p for s ∈ (−kI(t), kI(t)).

Of course, we will take advantage of the fact that sgn (p) is a multivalued function.
Exactly the same argument applies for (π

2
L− kV (t),

π
2
L+ kV (t)), however there

γ(p̃1, p̃2) = γΛp̃1 + γR|p̃2|,

and as a result
∂γ(p̃1, p̃2) = γΛe1 + γR∂|p̃2|e2.

Hence,
λ(p, s) = γRsgn (p) for s ∈ (

π

2
L− kV (t),

π

2
L+ kV (t)). (3.23)

Now we consider the interval [kI(t), f1] of the parametrization of Γ(t). The normal vector is
different from (0, 1), hence γ(p̃1, p̃2) = −γΛp̃1 + γRp̃2. We conclude that

∇γ(p̃1, p̃2) = (−γΛ, γR).

The result does not depend upon p̃, hence we take λ(p, s) = const. For the sake of consistency
with (3.23) we set

λ(p, s) = γΛ.

15



Let us consider intervals s ∈ (kI(t), k
l
III(t))∪ (krIII(t),

π
2
L− kV (t)). In this case the normal to

Γ(t) at Ψ(s, v(s), t) is different from (0, 1) and (1, 0), hence γ(p̃1, p̃2) = −γΛp̃1 + γRp̃2. Thus,

∇γ(p̃1, p̃2) = (−γΛ, γR).

In other words, ξ = (−γΛ, γR), so ∂ξ
∂t

= 0, hence κγ = 0. Performing calculation similar to that
above, we conclude that for s ∈ (kI(t), k

l
III(t)) ∪ (krIII(t),

π
2
L − kV (t)) function λ(p, s) depends

only on s. Its exact value is given in (3.25).
Let us consider interval (klIII(t), k

r
III(t)). For s ∈ (klIII(t), k

v
III(t)), the normal vector to Γ(t) at

Ψ(s, v(s, t)) is (0, 1), while for s ∈ (kvIII(t), k
r
III(t)) the normal vector is (1, 0).

Taking into account the form of the normal vector at Ψ(s, v(s, t)) for s ∈ (klIII(t), k
v
III(t)), we

have to compute
∇γ(p̃1, p̃2) = ∇(γΛ|p̃1|+ γRp̃2). (3.24)

We observe that |Ψs| =
√
2 for s ∈ (klIII(t), k

r
III(t)). The normal to the graph of v for s ∈

(klIII(t), k
v
III(t)) is

n =
1√
v2s + 1

(−1, vs).

In order to proceed, we have to express the variables (p̃1, p̃2) used to compute ∇γ in the local
coordinate system, (p1, p2) related to M. We notice that

p̃1 =
p1 + p2√

2
, p̃2 =

p2 − p1√
2

.

Hence, after taking into account that |Ψs| =
√
2 for s ∈ (klIII(t), k

v
III(t)), we obtain

λ(p, s) =
1√
2
γΛsgn (p− 1).

We stress that kvIII(t), the point separating (klIII(t), k
r
III(t)) into two pieces, where vs = ±1 depends

upon time.
A similar calculation for s ∈ (kvIII(t), k

r
III(t)) lead us to the conclusion that

λ(p, s) =
1√
2
γΛsgn (p+ 1).

The argument presented above shows that in the local coordinates which we use here, the
singular directions are,

p = +1 on (klIII(t), k
v
III(t)) and p = −1 on (kvIII(t), k

r
III(t)).

What is left is region UIV, there the calculation are as for region UII.

The results obtained so far may be summarized in the following way,

λ(p, s) =



γΛsgn p s ∈ (−kI(t), kI(t)),
γΛ/|dΨds | s ∈ (kI(t), k

l
III(t)),

1√
2
γΛsgn (p− 1) s ∈ (klIII(t), k

v
III(t)),

1√
2
γRsgn (1 + p) s ∈ (kvIII(t), k

r
III(t)),

γR/|dΨds | s ∈ (krIII(t),
π
2
L− kV (t)),

γRsgn p s ∈ (π
2
L− kV (t),

π
2
L+ kV (t)),

(3.25)
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where we made a choice of λ(p, s) when ambiguity arose.
Of course, we can extend it by symmetry to the whole [0, 2πL).
This provides the main result of part (a). At this moment it is convenient to go straight to

the form of W in part (b).
It is also clear from the structure of the equations involving W that W is determined up to

an affine function. We also see that kvIII(t) looks like a free boundary. In fact it is not, because it
is the projection of the intersection of the lines containing the facets meeting at the vertex. That
is, it is sufficient to know these lines.

At this point, it is evident from (3.25) that even if we succeed in writing (3.5) as

vt = a · ( ∂
∂s
Wp(vs) + σ), (3.26)

then W = W (p, s), i.e., W will explicitly depend upon s.
We first take care of the apparent free boundary kvIII(t). We notice that if we choose W as

follows,
W (p, s) = γΛ|p− 1|+ γR|1 + p|

for s ∈ (klIII(t), k
r
III(t)), then the equation we study takes the desired form (3.26) and point kvIII(t)

is no longer explicitly mentioned. Moreover,

∂

∂s

(
∂W

∂p
(vs, s)

)
=

∂

∂s
λ(vs, s). (3.27)

Indeed, this is so, because at p0 = 1 we have

∂W

∂p
=

∂

∂p
(γΛ|p− 1|+ γR|1 + p|) = γΛsgn p0 + γR

so (3.27) follows.
It is also obvious from the form of λ(p, s), see (3.25), that we may write

W (p, s) =

{
γΛ|p|, s ∈ (−kI(t), kI(t)),
γR|p|, s ∈ (π

2
L− kV (t),

π
2
L+ kV (t)).

We would rather expect that W is sufficiently regular, as well as a and σ. The present
formula for W requires a smooth transition between the different forms. We will suggest a new
one so that we will not introduce spurious singular directions at a given solution. This remark
matters, because interval [f1, klIII(t)) corresponding to the curved part of Γ contains a set, where
vs(0, s) > 1. This is obvious, since for s close to klIII(0), we have vs(0, s) > 1. Due to the
continuity of vs, there are t1 and s1 ∈ [f1, k

l
III(0)) such that we have

vs(t, s) > 1 for s > s1, t ∈ (0, t1). (3.28)

We take again klIII defined in (3.12) and we set s2 by

s2 =
s1 + klIII

2
. (3.29)
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The same analysis applies to (krIII(t), f
r
2 ] yielding s3, s4 ∈ (krIII(t), f

r
2 ] and the same t1, where

vs(t, s) < −1.
Thus, we set

W (p, s) =


γΛ|p| for s ∈ [0, s1),
γΛ|p|ϕ1(s) +

1√
2
(γΛ|p− 1|+ γR|p+ 1|)(1− ϕ1(s)) for s ∈ (s1, s2),

γΛ|p− 1|+ γR|p+ 1| for s ∈ (s2, k
r
III),

where ϕ ∈ C∞
0 (R), such that ϕ ∈ [0, 1], ϕ ≡ 0 for s ≤ s1 and ϕ ≡ 1 for s ≥ s2.

We can perform a similar type of analysis for the endpoint (R1, l1). Summing up, we arrive
at formulae (3.7), (3.8).

This definition of W requires a change in σ, because for s ∈ (s1, s2) we have (similar
situation occurs on (s3, s4)),

∂

∂s
Wp(vs, s) =

∂

∂s
(γΛϕ1sgn vs +

1√
2
(γΛsgn (vs − 1) + γRsgn (vs + 1))(1− ϕ1))

=

(
γΛ

(
1− 1√

2

)
− γR

1√
2

)
ϕ1,s(s).

Thus, we will have to adjust the definition of σ̃.
Now, we turn our attention to a = 1/β(n). After recalling the formula (3.17) for n(s), valid

for all s ∈ T1, we come to the conclusion that

β(n(s)) = β

(
(1 + κ(s)v(s, t))ν(s)− vs(s, t)τ(s, t))√

(1 + κ(s)v(s, t))2 + v2s(s, t)

)
. (3.30)

Hence, we set

a(p, v, s) =
√
(1 + κv)2 + p2/β

(
(1 + κv)ν − pτ√
(1 + κv)2 + p2

)
. (3.31)

We note that this definition of a includes the factor appearing in the denominator of formula
(3.10), where vs is replaced by p (3.18).

We notice that, function p → a(p, v, s) is Lipschitz once we assume such a condition on β.
In addition, β is one-homogeneous, vanishing at zero. Since it is evaluated at a normal vector,
then in all regions from UI to UV we will have

a0 ≤ a ≤ a1.

Equation (3.5) contains also the term σ = σ(x1, x2, t). Since for a given t > 0, we have that

(x1, x2) = Ψ(s, v(s, t)).

In other words,

σ̃(v, s, t) = σ(ν(s)v+Φ(s))+

(
γR

2−
√
2

2
− γΛ

1√
2

)
ϕ3,s(s)−

(
γΛ

2−
√
2

2
− γR

1√
2

)
ϕ1,s(s).

(3.32)
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The properties of σ̃ will be discussed below.
(c) Let us notice that

d

dt
(x1, x2) =

d

dt
(Φ(s) + ν(s)v(s, t)) = ν(s)vt(s, t).

Since V = d
dt
(x1, x2) · n, where n is the outer normal to Γ, then taking into account (3.17)

yields the desired formula (3.10).

We will see that σ̃ inherits properties of σ implied by Berg’s effect. The most important for
us is its dependence on v.

Lemma 3.1. Let us suppose that σ satisfies Bergs’ effect. If σ̃ is defined by (3.32), then the map
v 7−→ σ̃(v, s, t) is monotone.

Proof. Let us write ν(s) = (ν1(s), ν2(s)). Then

∂

∂v
σ̃ = ν1

∂

∂e1
σ + ν2

∂

∂e2
σ.

Due to (2.1), we have ν1 ∂
∂e1
σ and ν2 ∂

∂e2
σ are positive, hence ∂

∂v
σ̃ > 0.

4 When variational solutions are viscosity solutions?
We want to show that the variational solutions we constructed in [18] are indeed viscosity
solutions in the sense of [16]. For this purpose, we recall the definition of viscosity sub-
/supersolution with a simplifying continuity assumption. We note our equation (3.11) differs
from the topic of the study in [16]. Potentially, this is a very serious problem, but in our case
we circumvent the difficulties.

It should be stressed that in our construction of variational solutions in [18], we assumed
that the verteces (±R1,±L1) move as intersections of the lines containing the outer facets. In
general, this need not be the case. So we establish here a sufficient condition for this property
to hold.

4.1 Viscosity solutions
In [16], we developed a framework of viscosity solutions to problems of the form

vt = a(vx)(
∂

∂x
Wp(vx) + σ(x, t)),

with periodic boundary conditions, where W is merely a convex, but not a C1 function. One of
the problems there was to give meaning to ∂

∂x
Wp(vx). This is done by solving a minimization

problem on an interval. Here, functions a andW depend on additional variables, however, when
restricted to facets of Γ this additional dependence disappears. This permits us to use the defi-
nition of the viscosity solutions developed in [16]. In order to avoid unnecessary technicalities,
we shall present the definitions for continuous super-/subsolutions.
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We would like to define viscosity solutions for problem (3.11), i.e.,

vt = a(vx, v, x)
(
W ′
p(vx, x)x + σ̃(v, x, t)

)
, (4.1)

with periodic boundary conditions. We assume that p 7→ W (p, x) is convex, but not necessarily
C1. For each x ∈ T1, we have a finite set

P(x) = {p1(x), . . . , p(x)k(x)},

of points of nondifferentiability of W (·, x). We shall also assume that

x 7→ W (p, x) is a smooth function,

a is Lipschitz continuous, σ ∈ C1(R2 × R+) and there is M̄ > 0 such that

∂

∂u
(aσ) ≤ M̄. (4.2)

In [16, §2], we gave a variational characterization of the quantity ΛσW , which is formally
defined by

ΛσW (u) (x) = (W ′(ux))x + σ(x). (4.3)

Here, we have to extend it to include the dependence of σ upon u and we have to explain how
to proceed, when W depends on x. However, the last question is easiest, because W restricted
to faceted regions of u is independent of x.

For the purpose of the definition, we assume that Z is a real-valued C2-function, defined in
a bounded interval I , where I = (a, b) ⊂ T1. For a given ∆ > 0, we define KZ

χlχr
to be the set

of all ξ ∈ H1(I), satisfying

Z(x)−∆/2 ≤ ξ(x) ≤ Z(x) + ∆/2 for x ∈ I (the obstacle condition) (4.4)

and
ξ(a) = Z(a)− χl∆/2, ξ(b) = Z(b) + χr∆/2 (boundary conditions). (4.5)

Here, χl and χr take values ±1 and they will be defined in (4.8), (4.9).
Let JZχlχr

be the functional on L2(I), defined by

JZχlχr
(ξ) =

{∫ b
a
|ξ′(x)|2 dx, ξ ∈ KZ

χlχr
,

∞, otherwise.

For ξ ∈ H1(I), we define the coincidence set D±(ξ) by

D± = D±(ξ) = {x ∈ I | ξ(x) = Z(x)±∆/2}.

We say that D+ is the upper coincidence set while D− is the lower coincidence set.

Definition 4.1. We say that ξ ∈ Kχlχr satisfies the concave-convex condition if ξ is concave
on each connected component of the complement of the upper coincidence set D+ and convex
on each connected component of the complement of the lower coincidence set D−, i.e., ξ′′ ≤ 0
outside D+ and ξ′′ ≥ 0 outside D−. In particular, ξ′′ = 0 outside D− ∪ D+.
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Proposition 4.1. ([16, A characterization of the minimizer, Proposition 1]) Function ξχlχr ∈
Kχlχr is the minimizer of Jχlχr if and only if ξχlχr fulfills the concave-convex condition. In
particular, ξχlχr is C1,1 in I = (a, b) and

sup
x∈I

|ξ′′χlχr
(x)| ≤ sup

x∈I
|Z ′′(x)|. (4.6)

We set

ΛZ
′

χlχr
(x, I) =

dξχlχr(x)

dx
. (4.7)

Of course, ξχlχr depends also on interval I , but we suppress this in the notation.
IfW depends only on p and we fix p0 ∈ P , I = (a, b), σ = σ(x, t), then it is easy to observe

that ΛZ′
χlχr

agrees with η0x + σ, when Z is a primitive of σ and η0 minimizes∫
I

|ηx + σ|2

over
{η ∈ H1(I) : η(x) ∈ ∂W (p0), η(a) = −χl

∆

2
, η(b) = χr

∆

2
}

It is sufficient to take ξ = η + Z. The reason we write Z ′ instead of Z is that the derivative of
ξZχlχr

depends on Z only through its derivative. Once we fix Z, we suppress Z ′ in (4.7). We
shall write Λ−+ etc. instead of writing Λ{−1},{+1}.

We recall an important result needed further in this paper.

Theorem 4.1. ([16, Comparison principle, Theorem 1]) Assume that I1 and I2 are bounded
open intervals.

(i) If I2 ⊂ I1, then

Λ−−(x, I2) ≤ Λ±±(x, I1) ≤ Λ++(x, I2) for x ∈ I2.

(ii) If a ≤ c < b ≤ d for I1 = (a, b), I2 = (c, d), then for x ∈ (c, b)

Λ±−(x, I1) ≤ Λ+±(x, I2), Λ−±(x, I2) ≤ Λ±+(x, I1). �

We recall a notion of a faceted function. Let Ω be an open interval. A function f ∈ C(Ω)
is called faceted at x0 with slope p on Ω (or p-faceted at x0) if there is a closed nontrivial finite
interval I(⊂ Ω), containing x0 such that f agrees with an affine function

`p(x) = p(x− x0) + f(x0) in I

and f(x) 6= `p(x) for all x ∈ J\I with a neighborhood J(⊂ Ω) of I . Interval I is called the
faceted region of f containing x0 and is denoted by R(f, x0). The set of continuous p-faceted
functions on Ω and with p ∈ P will be called CP (Ω).

Since our set P = P(x) depends upon the space variable, we have to modify the original
definition of the P-faceted function. We will use the fact that for all x ∈ Uj we have P(x) ≡ Pj ,
where

PI = PV = {0}, PIII = {−1, 1}, PII = PIV = {−1, 0, 1}.
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However, the solutions will avoid the singular slopes for x ∈ PII ∪ PIV.
We will say that f , a continuous function on Ω ⊂ T1 or a function from Cper(0, 2πL), is

Pj-faceted function at x0 ∈ PI∪PIII∪PV, if f restricted to a component U i
k of this set containing

x0 is p-faceted with p in Pk.

We introduce the left transition number χl = χl(f, x0) and the right transition number
χr = χr(f, x0) by

χl =

{
+1 if f ≥ `pi in {x ∈ J |x ≤ x0},
−1 if f ≤ `pi in {x ∈ J |x ≤ x0},

(4.8)

χr =

{
+1 if f ≥ `pi in {x ∈ J |x ≥ x0},
−1 if f ≤ `pi in {x ∈ J |x≥x0},

(4.9)

if f is pi-faceted at x0.

Definition 4.2. (see [16, Definition 2]) We assume that S is a real-valued Lipschitz function
on an open interval Ω = (a, b) and Z is its primitive. Moreover, W is given by (3.7) and Ω
is contained in one of the connected components of UI ∪ UIII ∪ UV. We assume that f ∈ C(Ω)
pi-faceted at x0 ∈ Ω with pi ∈ P (x0). Then, we define the nonlocal curvature ΛSW by

ΛSW (f) (x0) := ΛZ
′

χlχr
(x0, I);

the right hand side is defined by (4.7) with ∆ = W ′(pi + 0, x0) − W ′(pi − 0, x0) and I is
the faceted region R(f, x0). If f is twice differentiable at x0 and f ′(x0) /∈ P (x0), we set, as
expected,

ΛσW (f) (x0) =W ′′ (f ′(x0)) f
′′(x0) + σ(x0).

However, we have to address the situation, when σ̃ in (4.1) depends on u and possibly on
ux. For this purpose, we adjust Definition 4.2. Let us suppose that S : R3 → R is Lipschitz
continuous, f ∈ C2

P (Ω) is p-faceted at x0 ∈ Ω, p ∈ P(x0) and Ω ∩ (UII ∪ UIV) = ∅, g ∈ C(Ω̄).
We define ΛSW (f, g) by the following formula,

ΛSW (f, g)(x0) := ΛZ
′

χlχr
(x0, I),

where I = R(f, x0) is the faceted region of f and we set

Z(x) = C +

∫ x

0

S(f ′(s), g(s), s) ds.

As before, we set ∆ = Wp(p + 0, x0) −Wp(p − 0, x0). If f is twice differentiable at x0 and
f ′(x0) /∈ P(x0), then

ΛSW (f, g)(x0) := Wpp(f
′(x0))f

′′(x0) + S(f ′(x0), g(x0), x0).

We would like to state a simple observation, which will be very useful later. But first we state a
useful definition.

Since we consider facets only over parts of the reference manifold, M we introduce a new
notion reflecting that.
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Definition 4.3. We say that a continuous, real valued function h defined on T1 is a profile
function of a gently bent rectangle at time t if:

(i) h is faceted in U0
I (respectively, in U0

V) with the slope equal to zero and it is monotone
outside of the facet. Its transition numbers are +1, so that near the facet h is convex.

(ii) h is strictly increasing in U0
II (respectively, decreasing in U0

IV).

(iii) h is faceted in U0
III with slope +1 and −1 which touches each other. Outside the facets h

is monotone. The transition numbers of both facets are −1.

(iv) All upper and lower derivatives of h outside facets are away from zero.

(v) In U0
III, the absolute values of upper and lower derivatives of h outside facets are bigger

than one.

(vi) In U0
II (respectively, in U0

IV) upper and lower derivatives of h are away from the singularity
of W (p, x).

(vii) The symmetric properties hold for the other components of UII (respectively, UIII, UIV).

(viii) On the facets of h, the quantity Λσ̃(f, f) is constant (so that the facets do not break). This
concept, however, depends on time.

Lemma 4.1. Let us suppose that S : R3 → R is Lipschitz continuous and for all p, x the
function g 7→ S(p, g, x) is decreasing. We assume that f ∈ C2

P is p-faceted at x0 and g1, g2
are Lipschitz continuous profile functions and such that g1 ≤ g2. If additionally ΛSW (f, g1) is
constant over R(f, x0), then

ΛSW (f, g1) ≥ ΛSW (f, g2).

Proof. We set

Zi(x) = Ci +

∫ x

0

S(f ′(s), gi(s), s) ds, i = 1, 2.

and we assume that R(f, x0) = (a, b). We also select C1, C2 so that Z1(a) = Z2(a). The
solutions to the obstacle problem have to satisfy the boundary conditions

ξi(a) = Zi(a)− χl
1

2
∆, ξi(b) = Zi(b) + χr

1

2
∆, i = 1, 2.

We assumed that ΛSW (f, g1) is constant over (a, b). Clearly, ξ1(a) = ξ2(a) and ξ1(b) ≥ ξ2(b),
then

ξ′1 =
ξ1(b)− ξ1(a)

b− a
≥ ξ2(b)− ξ2(a)

b− a
= ξ′2.

The last equality needs justification. For this purpose, let us assume the contrary, i.e. D+(ξ2) or
D−(ξ2) is not empty. But such an event contradicts monotonicity of x 7→ S(f ′(x0), g2(x), x).

Now, we recall a natural class of test function. Let us set Q = (0, T ) × Ω, where Ω is an
open interval and T > 0. Let AP (Q) be the set of all admissible functions ψ on Q in the sense
of [14] i.e., ψ is of the form

ψ(x, t) = f(x) + g(t), f ∈ C2
P (Ω) ≡ CP (Ω) ∩ C2(Ω), g ∈ C1(0, T ).
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Definition 4.4. A continuous real-valued function u on Q is a (viscosity) subsolution of

vt = a(vx, v, x)
(
W ′
p(vx, x)x + S(vx, v, x, t)

)
, (4.10)

with periodic boundary conditions in Q, when S is Lipschitz continuous, if

ψt(t̂, x̂)− a(ψx(t̂, x̂), u(t̂, x̂), t̂, x̂)
(
Λ
S(t̂)
W (ψ(t̂), u(t̂), x̂)

)
≤ 0, (4.11)

whenever
(
ψ, (t̂, x̂)

)
∈ AP (Q)×Q fulfills

max
Q

(u− ψ) = (u− ψ) (t̂, x̂). (4.12)

Here, ψ(t̂) is a function on Ω defined by ψ(t̂) = ψ(t̂, ·). Function ψ, satisfying (4.12) is called
a test function of u at (t̂, x̂).

A (viscosity) supersolution is defined by replacing max with min in (4.12) and the inequality
(4.11) with the opposite one. If u is both a sub- and supersolution, it is called a viscosity solution
or a generalized solution. Hereafter, we avoid using the word viscosity.

By Comparison Theorem, see [16, Theorem 2.12], it is easy to see that ψ ∈ AP (Q) is a
subsolution in Q if (and only if) ψ satisfies

ψt(t, x)− a(ψx(t, x), ψ(t, x), t, x)
(
Λ
S(ψ(·),ψ(·),·,t)
W )(ψ, ψ, x)

)
≤ 0

for all (t, x) ∈ Q.

4.2 Variational solutions are viscosity solutions, when the vertex is pre-
served

We will assume in this section that Γ(t) is a family of gently bent rectangles, which is a varia-
tional solution to (1.1) and u is the corresponding profile function. We want to show that: (a) u
is a subsolution to (3.11); (b) u is a supersolution to (3.11). We shall see that this is not always
possible, because a restriction appears. This is explained below.

Theorem 4.2. Let us suppose that (Γ(t), ξ(t)) is a family of gently bent rectangles which is a
variational solution to (1.1) and u is the corresponding profile function. Then, u is a viscosity
solution in the sense of Definition 4.4 if and only if (4.16) holds.

Condition (4.16) is equivalent to the preservation of verteces of Γ(t). Its disadvantage is
that it depends of Γ itself. At the end of this section, we will present in Lemma 4.6 a simple
sufficient condition for (4.16) to hold independently of Γ.

We start with the above task (a), i.e. we will show that profile function u is a viscosity
subsolution to eq. (3.11). Thus, without the loss of generality, we may restrict our attention
to U0

I ∪ U0
II ∪ U0

III, because U0
IV (resp. U0

V) may be treated like U0
II (resp. U0

I ). For a given test
function ψ, we have to investigate various possibilities of (x̂, t̂) ∈ argmax (u− ψ):
(1) (x̂, t̂) ∈ [−kI(t̂), kI(t̂)];
(2) (x̂, t̂) ∈ (kI(t̂), k

l
III(t̂));
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(3) (x̂, t̂) ∈ [klIII(t̂), k
r
III(t̂)] \ {kvIII(t̂)};

(4) x̂ = kvIII(t̂).
The remaining cases are dealt with as those above.

We will investigate situations described in (1)–(4), one by one.

Lemma 4.2. Let us suppose that ψ is a test function satisfying maxQ(u− ψ) = (u− ψ) (t̂, x̂)
and (x̂, t̂) ∈ [−kI(t̂), kI(t̂)], then inequality (4.11) holds.

Proof. This case was in fact considered in the proof of Theorem 12 in [16, §5]. It will not
be repeated here since we will present a similar technique below anyway.

Lemma 4.3. Let us suppose that ψ is a test function satisfying maxQ(u− ψ) = (u− ψ) (t̂, x̂)
and (x̂, t̂) ∈ (kI(t̂), k

l
III(t̂)), then inequality (4.11) holds.

Proof. On interval (kI(t̂), k
l
III(t̂)), the profile function u avoids the singular slopes due to the

special construction of W . As a result, this case is classical and left to the interested reader.

Lemma 4.4. Let us suppose that ψ is a test function, satisfying maxQ(u− ψ) = (u− ψ) (t̂, x̂)
and x̂ ∈ [klIII(t̂), k

r
III(t̂)] \ {kvIII(t̂)}, then inequality (4.11) holds.

Proof, Step 1. We have two possibilities for x̂, which we will consider separately:
(a) x̂ ∈ (klIII(t̂), k

r
III(t̂)) \ {kvIII(t̂)},

(b) x̂ = klIII(t̂) or x̂ = krIII(t̂).
Case (b) has its subcases:

(α) x̂ is such that l1(t̂) = Ψ(x̂, u(x̂, t̂)) is a tangency point,
(β) x̂ is such that l1(t̂) = Ψ(x̂, u(x̂, t̂)) is a matching point.

In each of those cases we have a number of possibilities how ψ(x, t) = f(x) + g(t) touches
u at (x̂, t̂). Regardless of the position of x̂, we have the following options for ΛZW (f):
(i) Λ++(R(f, x̂)), (ii) Λ−+(R(f, x̂)), (iii) Λ+−(R(f, x̂)), (iv) Λ−−(R(f, x̂)).
In addition, the behavior of g′(t̂) will depend on the position of x̂, i.e. case (a) differs from (b).

The geometry of the problem is such that for x̂ ∈ [klIII, k
v
III(t)), for profile function u, we

have
ΛSW (u, u, x) = Λ−−([k

l
III(t̂), k

v
III(t̂)]).

However, we have to compare Λ−−([k
l
III(t̂), k

v
III(t̂)] with the definition of the variational solution.

We see that if x̂ ∈ (klIII(t̂), k
v
III(t̂)), then

Z1(x) =

∫ x

klIII(t̂)

σ(Ψ(s, s)) ds =

∫ x

klIII(t̂)

σ(
s√
2
, L1(t̂)) ds.

On the other hand, for x̂ ∈ (kvIII(t̂), k
r
III(t̂)), we have

Z2(x) =

∫ x

kvIII(t̂)

σ(Ψ(s,−s)) ds =
∫ x

kvIII(t̂)

σ(R1, L1 −
s√
2
) ds.

We notice that the minimization problem underlying the definition of the variational solution,
see (2.4) and (2.7),

min{
∫ R1

r1

|σ(t, s, L1)−ξx|2 ds : ξ ∈ H1((r1, R1)), ξ ∈ [−γΛ, γΛ], ξ(r1) = −γΛ, ξ(R1) = γΛ},
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for x̂ ∈ (klIII, k
v
III(t)), (respectively,

min{
∫ L1

l1

|σ(t, R1, s)− ξx|2 ds : ξ ∈ H1((l1, L1)), ξ ∈ [−γR, γR], ξ(l1) = −γR, ξ(L1) = γR},

for x̂ ∈ (kvIII(t), e
R
V )), coincides with the minimization leading to Λ−−([k

l
III(t̂), k

v
III(t̂)]) (respec-

tively, Λ−−([k
v
III(t̂), k

r
III(t̂)])). This statement is clear for x̂ ∈ (klIII(t̂), k

v
III(t̂)), while an additional

change of variables in the integral above is necessary for x̂ ∈ (kvIII(t̂), k
r
III(t̂)).

Step 2. We start with case (a). We immediately notice that under these circumstances ut(x̂, t̂)
exists, hence g′(t̂) = ut(x̂, t̂). Furthermore, we only know that x̂ ∈ (klIII(t̂), k

v
III(t̂))∩R(f, x̂). By

Theorem 4.1, we deduce that

Λ−−([k
l
III(t̂), k

v
III(t̂)]) ≤ Λ++(R(f, x̂)), Λ−+([k

l
III(t̂), k

v
III(t̂)]) ≤ Λ++(R(f, x̂)),

Λ+−([k
l
III(t̂), k

v
III(t̂)]) ≤ Λ++(R(f, x̂)).

Hence, these inequalities imply,

ψt(x̂, t̂)− ΛZW (ψ(x̂, t̂)) = ut(x̂, t̂)− ΛZW (u(x̂, t̂)) + ΛZW (u(x̂, t̂))− Λ++(R(f, x̂)) ≤ 0,

where Z equals Z1 or Z2 defined above, depending upon the position of x̂. The case ΛZW (f) =
Λ−−(R(f, x̂)) is possible if and only if [klIII(t̂), k

v
III(t̂)] ⊂ R(f, x̂). If this happens, then Theorem

4.1 (ii) implies that
ψt(x̂, t̂)− ΛZW (ψ(x̂, t̂)) ≤ 0

holds.
Step 3. We first consider case (α). This means the interfacial point r1(t) moves to the left,

ṙ1(t̂) < 0 and β(nR) ddtL1(t) = σ(r1(t), L1(t), t). This implies that d+t (r1(t̂), t̂) =
d
dt
L1(t) and

d−t (r1(t̂), t̂) = d−x (r1(t̂), t̂) = σ(r1(t), L1(t), t)/β(nR). As a result g′(t̂) = σ(r1(t), L1(t), t)/β(nR)
and a reasoning as in Step 2 applies leading to the conclusion that (4.11) holds.

We have to consider case (β). According to formula (2.25) in [18],

sgn ṙ1(t̂) = sgn (L̇1 − σ(t̂, r1(t̂), L1(t̂)). (4.13)

In any case, ΛZW (u) = Λ−−([k
l
III(t̂), k

v
III(t̂)]).

We notice that if ṙ1(t̂) < 0, then

u+t (x̂, t̂) = σ(t, r1(t̂), L1(t̂)/β(nR) < L̇1(t̂)/β(nR) = u−t (x̂, t̂).

Thus
g′(t̂) ∈ [σ(t, r1(t̂), L1(t̂)/β(nR), L̇1(t̂)/β(nR).

Hence,

ψt(x̂, t̂)− ΛZW (ψ)(x̂, t̂) ≤ L1(t̂)/β(nR)− ΛZW (u)(x̂, t̂) + ΛZW (u)(x̂, t̂)− ΛZW (ψ)(x̂, t̂)

= 0 + Λ−−([k
l
III(t̂), k

v
III(t̂)])− ΛZW (ψ)(x̂, t̂) ≤ 0.

The last inequality is a consequence of Theorem 4.1, because ΛZW (ψ) may be one of the follow-
ing quantities,

Λ++(R(f, x̂)), Λ−+(R(f, x̂)), Λ+−(R(f, x̂)), Λ−−(R(f, x̂)).
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If we deal with the last quantity, then R(f, x̂) ⊂ [klIII(t̂), k
v
III(t̂)].

We observe that if ṙ1(t̂) > 0, then there are no test functions.
We come to the study of the vertex of Γ in the first quadrant of the plane. It is done separately

from other cases. Here, we need additional information on the kinetic coefficient β.

Lemma 4.5. Let us suppose that ψ is a test function satisfying maxQ(u− ψ) = (u− ψ) (t̂, x̂)
and x̂ = kvIII(t̂). Then, inequality (4.11) holds if and only if (4.16) is satisfied.

Proof. We are going to show that a variational solution is a viscosity subsolution. Let us
take a test function ψ(x, t) = f(x) + g(t) such that

max(u− ψ) = (u− ψ)(kvIII(t), t) = 0. (4.14)

For the sake of consistency, we shall write (x̂, t̂) in place of (kvIII(t), t).
The profile function u takes the following form in a neighborhood of (x̂, t̂)

u(x, t) = y(t)− |x− x(t)|, (4.15)

where x̂ = x(t̂) and u(x̂, t̂) = y(t̂). The vertex of Γ(t) is determined as the intersection point
of two lines,

y = x+ A(t),

y = −x+B(t).

Thus, we can see that the intersection point has the coordinates

(x, y) =
1

2
(B − A,B + A).

Here, A′(t) is the vertical velocity of the facet with the slope p = 1, and B′(t) is the vertical
velocity of the facet with the slope p = −1. That is, we can relate them to the normal velocities
of the facets,

A′(t) =

√
2

2βR

(∫ R1

r1

− σ(t, s, L1) ds−
2γ(nΛ)

R1 − r1

)
, B′(t) =

√
2

2βΛ

(∫ L1

l1

− σ(t, R1, s) ds−
2γ(nR)

L1 − l1

)
.

We also have to determine the restrictions on the test function resulting from (4.14) and (4.15).
We notice that for x ≥ x̂ we have,

u(x, t)− ψ(x, t) = y(t) + x(t)− g(t)− f(x)− x ≤ 0

and for x ≤ x̂ we have,

u(x, t)− ψ(x, t) = y(t)− x(t)− g(t)− f(x) + x ≤ 0.

Thus, we infer that f ′(x̂) ∈ [−1, 1] and g′(t̂) is in the interval with endpoints

ẏ(t̂) + ẋ(t̂) = B′(t̂), ẏ(t̂)− ẋ(t̂) = A′(t̂).
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Keeping this in mind we consider f , which is not faceted at x̂, i.e. |f ′(x̂)| < 1. We have to
check that

ψt − a(x, t, ψ, ψx)σ(t, R1(t), L1(t)) ≤ 0

holds. Since g′(t̂) = θA′(t̂) + (1− θ)B′(t̂) for θ ∈ [0, 1], this inequality is equivalent to

θ

√
2

2βR

(∫ R1

r1

− σ(t, s, L1) ds−
2γ(nΛ)

R1 − r1

)
+ (1− θ)

√
2

2βΛ

(∫ L1

l1

− σ(t, R1, s) ds−
2γ(nR)

L1 − l1

)
≤ σ(t, R1(t), L1(t))

β(n)
, (4.16)

where θ ∈ [0, 1] and n is between nR and nΛ.
If f is faceted, then this case reduces to the situation considered Lemma 4.4.
We may sum up the the above results as follows.

Corollary 4.1. If Γ(t) is a family of gently bent rectangles which is a variational solution to
(1.1) and u is the corresponding profile function. Then, u is a viscosity subsolution if and only
if (4.16) holds.

Proof. Combining Lemmata from 4.2 to 4.5 shows that u is a subsolution.

After these preparations we will embark on the proof of Theorem 4.2. It remains to check
that u is a supersolution. It is easier, than showing that u is a subsolution, because for any test
function ψ due to the form of the profile function u, see (4.15), the minimum of u− ψ may not
occur at kvIII(t̂, t̂). Thus we have the following possibilities for (x̂, t̂) ∈ argmin (u− ψ):
(1) (x̂, t̂) ∈ [−kI(t̂), kI(t̂)];
(2) (x̂, t̂) ∈ (kI(t̂), k

l
III(t̂));

(3) (x̂, t̂) ∈ [klIII(t̂), k
r
III(t̂)] \ {kvIII(t̂)}.

Case (1) is the content of [16, Theorem 12]. Case (2) is easy and left to the reader. We
will consider (3). We first notice that due to the geometry of the graph of u there is no
test function ψ such that min(u − ψ) = (u − ψ)(klIII(t̂), t̂)). Thus, we consider (x̂, t̂) ∈
(klIII(t̂), k

r
III(t̂)) \ {kvIII(t̂)}. Immediate conclusions are that ΛZW (u) = Λ−−([k

l
III(t̂), k

v
III(t̂])), (or

ΛZW (u) = Λ−−([k
v
III(t̂), k

r
III(t̂)]), g

′(t̂) = L̇1(t̂) and ΛZW (f) = Λ−−(R(f, x̂)). Moreover, by
Theorem 4.1 (i) Λ−−([k

l
III(t̂), k

v
III(t̂]) ≤ Λ−−(R(f, x̂)). As a result (4.11) holds. The proof is

complete.

We have seen that inequality (4.16) is necessary and sufficient for variational solutions to be
viscosity solutions, but we would like to discover a simpler sufficient condition. Here one such
a result.

Lemma 4.6. Let us suppose that

1

β(n)
≥

√
2

2

(
θ

β(nR)
+

1− θ

β(nΛ)

)
for all θ ∈ [0, 1]

or

max{R1 − r1, L1 − l1} is sufficiently small,

then condition (4.16) is satisfied.
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Proof. By monotonicity of σ we obtain
√
2

4βR

(∫ R1

r1

− σ(t, s, L1) ds−
2γ(nΛ)

R1 − r1

)
+

√
2

4βΛ

(∫ L1

l1

− σ(t, R1, s) ds−
2γ(nR)

L1 − l1

)
≤ σ(t, R1(t), L1(t))

√
2

4

(
1

β(nR)
+

1

β(nΛ)

)
−

√
2

2

(
γ(nΛ)

R1 − r1
+

γ(nR)

L1 − l1

)
≤ σ(t, R1(t), L1(t))

β(n)
.

We say that R1 − r1 and L1 − l1 are sufficiently small if A′ ≤ 0 and B′ ≤ 0.

5 A comparison principle
Since equation (3.11) does not fit the framework of [16], we may not apply directly the com-
parison principle to problem (3.11). Such a comparison principle would be of an independent
interest. However, here a simpler result would do the job of proving the uniqueness of varia-
tional solutions to equations (1.1).

5.1 An adjustment of the known result
In this section, we shall establish a comparison principle for our singular diffusion equation

ut = a(x, u, ux) (Wp(ux, x)x + σ̃(u, x, t)) , (5.1)

which we derived in previous sections. A new aspect of the problem is that a and σ̃ depend on
u explicitly. This makes the problem more involved. Instead of discussing a general situation
we rather establish a comparison principle for a special function called a profile function of a
gently bent rectangle.

We recall several important properties of (5.1) which are obviously fulfilled for our singular
diffusion equations by replacing the arclength parameter s by x and v by u; σ̃ is replaced by σ.
Let 2πL be the length of the reference manifold. We consider (5.1) with a periodic boundary
condition with period 2πL. The domain of definition is divided into UI, UII, UIII, UIV, UV, see
(3.13)–(3.16). While σ̃ may always depend on u and x, we note that in UI, UIII, UV a is a positive
function depending only on ux and that W is of the form

W (p, x) = γΛ|p| in UI

W (p, x) = γΛ|p− 1|+ γR|p+ 1| in UIII

W (p, x) = γR|p| in UV.

In particular, in these regions, the equation is the same as we have studied in [16] except
that σ̃ depends on u explicitly. Our a is always smooth (and globally Lipschitz in ux and x)
and by construction ∂a/∂u is bounded independently of x, u, ux. For σ̃ we assume that it is C1

and ∂σ̃/∂u is bounded from below independent of u, x, t to avoid unnecessary complexity. We
further impose a vertex preserving condition for the mobility which reflects the condition for
a. (This is the condition that the function −|x − x0| in UIII keeps its vertex when it evolves by
ut = a(ux).)
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We rather consider a special class of functions when we consider a solution of (5.1). We start
with one connected component of UI, say U0

I and list connected components of UII, . . . , UV next
to each other clockwise and name them U0

II , . . . , U
0
V. We name connected components further

clockwise like U1
IV, U

1
III, . . . , U

1
I , U

2
II , . . . , U

2
V, U

3
IV, . . . , U

0
II , U

0
I .

Theorem 5.1 (Comparison principle). Let u and v be profile functions of a gently bent rectangle
at each t ∈ [0, T ] and u, v ∈ C(T × [0, T ]). Assume that u and v are respectively a sub- and
supersolution of (5.1) in T × (0, T ). Assume that one of u and v is C1 in time on facets and
facet ends move continuously in time. Then u ≤ v in T× [0, T ], provided that u ≤ v at t = 0.

Proof. We take a conventional strategy to attack the problem when the Hamiltonian itself de-
pends on the unknown. Let M be a number greater than 1 such that, see (4.2),

∂

∂u
(aσ) ≤ (M − 1) for all (x, t, u, p) ∈ T× (0, T ]× R× R. (5.2)

We may find such M because u and v are bounded on T× (0, T ) and by assumption σ ∈ C1.
We consider U = e−2Mtu, V = e−2Mtv. Assume that the conclusion were false, in other

words
m = max

T×[0,T ]
{U(x, t)− V (x, t)} > 0.

Since u ≤ v at t = 0, the maximum is only attained for t > 0. We set

t̂ = sup
{
tmax

∣∣ max
T

(U − V )(·, tmax) = m
}
∈ (0, T ].

We may assume that there is no tmax other than t̂ by multiplying eMt with U and V . We still
denote eMtU and eMtV by U and V respectively, i.e. U = e−Mtu, V = e−Mtv. Then U solves

Ut +MU = e−Mta(x, eMtU, eMtUx)
{
Wp

(
eMtUx, x

)
x
+ σ

(
eMtU, x, t

)}
(5.3)

since u solves (5.1) in a formal level. We may assume not only that

m = max
T×[0,T ]

(U − V ) > 0

but also
(U − V )(x, t) < m for x ∈ T, t < t̂

m = max
T

(U − V )(·, t̂).

We shall divide the situation into two cases.

Case I. m is attained at interior points of faceted regions of both functions U(·, t̂) and V (·, t̂).

Case II. m is attained only outside of the interior of faceted regions of both functions U(·, t̂) and
V (·, t̂).

30



Another seemingly existing case can not happen because of the geometry of profile functions.

We begin with Case I. Since we have assumed that motion of the facets in time in C1 and
the facet ends move continuously in time for one of U and V , the argument is very simple.
To fix attention we assume that U is this function. (The case that V is such a function can be
treated in the same way.) Assume that the maximum is attained in an interior point x̂ of facets.
Then it is either in UI, UIII, UV because of the geometry of profile functions. All cases can be
treated similarly so we only consider the case that such facets are in U0

III. Then the function a is
independent of u and x. We rearrange (5.3) in UIII to get

Ut = e−Mta(eMtUx)
{
Wp(e

MtUx)
}
x
+ e−Mta(eMtUx)σ̃(e

MtU, x, t)−MU.

By the choice of M the term e−Mtaσ −MU + U is nonincreasing in U .
We want to regard U as a test function of a supersolution V . We notice that min(V − U) =

−max(U − V ) = −m < 0. But U lacks the structure and regularity of functions in AP (Ω).
Strictly speaking, we have to find ψ ∈ AP . We set,

f̃(x) := U(x, t̂), g(t) := U(x̂, t),

Of course, f̃ + g = U on R(U, x̂) × {t̂}. Since Ut exists on R(U, x̂), we notice that min(V −
(f̃ + g)) is attained at t = t̂. But now, f̃ lacks the necessary smoothness. However, it is easy
to see that regardless of the configuration of the endpoints of R(U, x̂) and R(V, x̂) then we can
mollify f̃ to get f so that, R(f, x̂) = R(f̃ , x̂) and

ΛZW (f) = ΛZW (f̃) = ΛZW (U).

Thus, keeping this in mind we have the following inequality at x̂

V + Ut ≥ e−Mt̂a(ux)Λ
S
W (U, V, x, t̂)

at x̂,
S(f ′, g, x, t) = σ̃(etMg, x, t)− (M − 1)

g

a(f ′(x))
.

Due to a (5.2) function S is decreasing with respect to g.
Here, we invoke the assumption that the facet does not break on the profile function U , i.e.

ΛSW (U,U, x, t̂) is constant over R(U, x̂).
Since U is a subsolution and V is a supersolution, we also have

V + Ut ≤ e−Mt̂a(ux)Λ
S
W (U,U, x, t)

at x̂. These two inequalities imply that

0 > V − U ≥ e−Mt̂a
(
ux(x̂, t̂)

) (
ΛSW (U, V, x, t)− ΛSW (U,U, x, t)

)
.

Now, we recall the monotonicity property of S, stated above and Lemma 4.1, implying that the
RHS is positive, which leads to a contradiction.

It remains to prove Case II. We may assume that a maximum is attained in U0
I , U0

II and U0
III.

Let yu(s) be the right end of the faceted region of V (·, s) in U0
I and let xu(t) be the left end of
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the faceted region of U(·, t) in U0
III. The function U(·, t) is strictly increasing from the right end

of the faceted region of U(·, t) to xu and a similar monotonicity holds for V (·, s). We set

w(x, y, t, s) = U(x, t)− V (y, s).

We are interested in maximizers of w in |x − y| ≤ δ, |t − s| ≤ δ for sufficiently small δ > 0.
We may assume that there are no maximizers in the interior of faceted regions since otherwise
it can be reduced to Case I by shifting U(x + h, t + k) slightly. By the monotone property of
U(·, t), V (·, s) we may easily conclude that,

argmaxw ⊂ {y ≤ x} ∩ {x ≤ xu(t)} ∩ {y ≥ yv(s)}

in (T× [0, T ])2 for |x− y| ≤ δ, |t− s| ≤ δ. This observation shows that,

argmaxΦ ⊂ {y ≤ x} ∩ {x ≤ xu(t)} ∩ {y ≥ yv(s)}

for Φ = w − α|x − y|2 − β|t − s|2 provided that α and β is taken sufficiently large. Since we
have assumed (iv) and (vi) in Definition 4.3 about the profile functions, one can argue in the
same way as above that we need to discuss the following equation

Ut +MU = e−Mta(x, eMtU, eMtUx)σ(e
MtU, x, t)

to get a contradiction.
Indeed let (xαβ, yαβ, sαβ, rαβ) be a maximizer of Φ, i.e.

U(x, t)−V (y, s)−α|x−y|2−β|t−s|2 ≤ U(xαβ, tαβ)−V (yαβ, sαβ)−α|xαβ−yαβ|2−β|sαβ−tαβ|2.

By setting y = yαβ, s = sαβ , we immediately see that α|x − yαβ|2 + β|t − sαβ|2 is the test
function of U at (xαβ, tαβ) touching it from above. We thus observe that

2β(tαβ − sαβ) +MU(xαβ, tαβ) ≤ H (xαβ, tαβ, U(xαβ, tαβ), 2α(xαβ − yαβ))

with H(x, t, r, p) = e−Mta(x, eMtr, eMtp)σ(eMtr, x, t). Similarly, for V we have

2β(tαβ − sαβ) +MV (yαβ, sαβ) ≥ H (yαβ, sαβ, V (yαβ, sαβ), 2α(xαβ − yαβ)) .

Subtracting the second one from the first in equality yields

M (U(xαβ, tαβ)− V (yαβ, sαβ)) ≤ H (xαβ, tαβ, U(xαβ, tαβ), 2α(xαβ − yαβ))

−H (xαβ, tαβ, V (yαβ, sαβ), 2α(xαβ − yαβ))

+H (xαβ, tαβ, V (yαβ, sαβ), 2α(xαβ − yαβ))

−H (yαβ, sαβ, V (yαβ, sαβ), 2α(xαβ − yαβ)) .

By the choice of M this implies

U(xαβ, tαβ)− V (yαβ, sαβ) ≤ H (xαβ, tαβ, V (yαβ, sαβ), 2α(xαβ − yαβ))

−H (yαβ, sαβ, V (yαβ, sαβ), 2α(xαβ − yαβ)) .

After sending α → ∞, β → β and using the continuity of H with respect to x and t we get a
contradiction with m ≤ 0. This is so, because

|H(x, t, r, p)−H(y, s, r, p)| ≤ C (|x− y|+ |t− s|) (1 + |p|)

and since α|xαβ − yαβ| → 0 which follows by a standard argument.
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5.2 Uniqueness of solutions to (1.1)
Here, we address the question of uniqueness of variational solutions to (1.1).

Theorem 5.1. Let us suppose that {(Γ(t), ξ(t))}t∈[0,T ) is a variational solution to (1.1) with
Γ(0) = Γ0. If Γ0 satisfies the geometric condition (3.3), then {Γ(t)}t∈[0,T1) is a family of gently
bent rectangles. If the kinetic coefficient β(·) satisfies (4.16), then {Γ(t)}t∈[0,T ) is a unique
solution to (1.1). That is the profile function u of the family Γ(t) is the unique viscosity solution
to (3.11) with a, W and σ̃ defined in (3.31), (3.7) and (3.32).

Uniqueness means that if we are given {(Γ1(t), ξ1(t))}t∈[0,T ), another variational solution to
(1.1) with Γ1(0) = Γ0, with continuously varying facet endpoints and whose profile function
u1 is a viscosity solution to (3.11), then u = u1 and ξ = ξ1. We stress that Lemma 4.6 gives a
universal sufficient condition for u1, a profile function to be a viscosity solution to (3.11).

Proof. The assumption that Γ0 satisfies (3.3) implies existence of the reference manifold M
and the possibility of writing Γ(t) as a graph of a profile function u.

The construction of Γ(t), performed in [18], guarantees that the facet endpoints move con-
tinuously and their speed is finite. Since we assumed (4.16), then the profile function is not only
a viscosity solution to (4.1), but also the verteces are preserved. We notice that we may apply
the Comparison Principle 5.1. Thus, u is a unique solution to (4.1). Once we established that
Γ(t) = Γ1(t) for all times, we have to check that ξ(t) = ξ1, but this is an easy task, we proceed
as in [22, §4].

Acknowledgement
The work of YG was partly supported by Japan Society for the Promotion of Science through
the grants Kiban S (26220702), Kiban A (23244015) and Houga (25610025). PG and PR were
partially supported by the NCN through 2011/01/B/ST1/01197 grant. The work of YG and PR
was performed as a part of the IRSES program ,,Flux”.

References
[1] F.Almgren and L.Wang, Mathematical existence of crystal growth with Gibbs–Thomson

curvature effects, J. Geom. Anal., 10 (2000), 1-100.
[2] F.Andreu-Vaillo, V.Caselles, J.Mazon, “Parabolic quasilinear equations minimizing linear

growth functionals”, Progress in Mathematics, 223. Birkhäuser Verlag, Basel, 2004.
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