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Abstract. For a very strong diffusion equation like total variation flow it is often observed
that the solution stops at a steady state in a finite time. This phenomenon is called a finite
time stopping or a finite time extinction if the steady state is zero. Such a phenomenon is
also observed in one-harmonic map flow from an interval to a unit circle when initial data is
piecewise constant. However, if the target manifold is a unit two-dimensional sphere, the finite
time stopping may not occur. An explicit example is given in this paper.

1. Introduction

We are interested in phenomena of finite time extinction or stopping of solutions to a
singular diffusion equation. For a diffusion equation like the heat equation, the solution
tends to a steady state as time tends to infinity. However, it never reaches to a steady
state in a finite time. If the diffusion is very strong like a total variation flow

ut − div (∇u/|∇u|) = 0 in Rn × (0,∞) (1)

or p-Laplace fast diffusion flow

ut − div
(
|∇u|p−2 ∇u

)
= 0 in Rn × (0,∞)

with 1 < p < 2n/(n + 1), it is well-known that the solution tends to zero (which is a
steady solution) in finite time for a smooth initial data under some boundary conditions
like periodic or Dirichlet conditions [12], [5, Chapter VII]. This phenomenon is called
a finite time extinction or if one emphasizes that the solution does not move after the
extinction time, one calls it a finite time stopping of the solution. This phenomenon is
quite common for a singular diffusion equation where the diffusion effect is very strong for
a particular slope at least. In fact, a finite time stopping is also proved for fourth order
total variation flow [12].
In this note we consider the one-harmonic map flow with values in a unit circle S1 or

a unit sphere S2. It is formally a gradient flow of a total variation energy with value
constraints in SN−1 ⊂ RN . Its explicit form

ut − div (∇u/|∇u|)− u|∇u| = 0, (2)

where u is a mapping from a domain Ω in Rm to SN−1. As we discuss later, the notion
of a solution itself is nontrivial because of singularity at ∇u = 0. In [11] we proposed
a notion of solution when Ω is a bounded open interval I and initial data is a piecewise
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constant. In fact, it was proved in [11] that there is a unique global in time solution under
the Dirichlet condition. When the target space is S1, the solution stops in finite time [11]
so finite time stopping phenomenon is observed for one-harmonic map flow.
The goal of this note is to give an explicit counterexample for a finite stopping phe-

nomenon when the target manifold is

S2 =
{
(x1, x2, x3) | x2

1 + x2
2 + x2

3 = 1
}
.

In other words, there is a direction where the diffusion is not very strong. We consider
(2) in a bounded open interval I = (0, L) and consider a piecewise constant initial datum

u0(x) = a1(0,ℓ1) + h01(ℓ1,ℓ2) + b1(ℓ2,L) (3)

with a given division 0 < ℓ1 < ℓ2 < L of I, when 1J is the characteristic function of an
internal J , i.e. 1J(x) = 1 if x ∈ J and otherwise 1J(x) = 0. We impose the Dirichlet
boundary condition

u(0, t) = a, u(L, t) = b, t > 0 (4)

Theorem 1.1. Assume that a and b are points on the equator of S2, i.e. a,b ∈ S2 ∩
{x3 = 0} and that a and b are symmetric with respect to x1-axis and stay in the region
{x1 > 0}. Assume that h0 ∈ S2 is a point on x1x3-plane but not on the equator. Then
the solution of (2) – (4) does not stop in a finite time. More precisely, the solution u is
of the form

u(x, t) = a1(0,ℓ1) + h(t)1(ℓ1,ℓ2) + b1(ℓ2,L) (5)

and satisfies the property that h(t) converges to (1, 0, 0) as t tends to infinity but h(t)
never reaches to (1, 0, 0) in finite time.

The proof is easy because the system is reduced to a system of an ordinary differential
equation. We shall give an explicit proof in the next section.
We now discuss several well-posedness results for (2). Even for the total variation

flow (1) one cannot interpret a solution in a classical sense because the equation has a
nonlocal character at the place where∇u = 0. Fortunately, this problem can be rigorously
formulated as a gradient flow of a convex energy, which is in this case a total variation
energy; see [16] for an intuitive explanation and [1] for a thorough study of this problem.
The unique existence is guaranteed by the theory of maximal monotone operators [17], [3].
However, if one imposes the constraint |u| = 1, the problem is not viewed as a gradient
flow of a convex energy. So the theory of maximal monotone operators does not apply to
the equation (2).
In [11] we proposed a notion of solution for a piecewise constant initial data in an

interval to a sphere and established a unique global-in-time solution in a class of piecewise
constant functions. Here the jump is measured in a metric of the ambient space where
the sphere is embedded not in a geodesic distance of the sphere. See also [14], [15] for
further development.
In [10] Kashima, Yamazaki and the first author constructed a local-in-time solution

when initial energy is small and initial data is small but it is not clear whether their
solution is unique. As shown in [13] a classical solution may breakdown in a finite time
for a map from a disk to S2. Actually, bubbling phenomena occurs in rotational symmetry
[4], [9].
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More recently, a notion of BV -solution was introduced in [2] and [6] for the Neumann
problem for (2). However, as pointed out by [7], [8], their argument seems to have a
flaw at least where the solution has a real jump. The difficult issue is how to interpret
the term u|∇u| where u is in BV . A new notion of a solution is introduced in [7], [8].
When the target sphere is one-dimensional, it is shown in [7] that a global-in-time solution
exists uniquely if the target space is a semicircle and that it exists if the target space is
a circle and the initial datum has no angular jumps larger than π. Their source space
is a general multi-dimensional bounded domain and the Neumann condition is imposed.
They extended this result when the target sphere has higher dimensions.
Note that they measured the jumps in a geodesic distance of the sphere not in a metric

of the ambient space where the sphere is embedded. So, our solution in Theorem 1.1
is not their solution. However, since both metrics agree in infinitesimal sense, in other
words, the metric derivative is the same, the same initial data gives a counter example of
finite time stopping for a solution in the sense of [7], [8].
The problem (2) with the homogeneous Neumann boundary condition was proposed

as a tool to de-noise two-dimensional image or optical flow where the target sphere is
one dimensional [19]. It is also proposed to de-noise color images by smoothing the
chromaticity [18]. In their case the dimension of the target sphere is two and also the
image is restricted in an octant of the sphere.

2. Non-finite time stopping phenomenon

We shall give a proof of our main theorem. Since the solution u is of the form (5), the
total variation φ of u is of the form

φ[u] =

∫ L

0

|∇u| = |h(t)− a|+ |h(t)− b|

Thus its subdifferential (L2 sense) is of the form

∂φ (u(t)) =
1

c

(
h(t)− a

|h(t)− a|
+

h(t)− b

|h(t)− b|

)
with c = x2 − x1 so the equation (2) is reduced to

dh

dt
(t) = −Pu(t) (∂φ (u(t))) = −1

c
Pu(t)

(
h(t)− a

|h(t)− a|
+

h(t)− b

|h(t)− b|

)
(6)

where Pv is the orthogonal projection of R3 to the tangent space of S2 at v ∈ S2, i.e.
Pv(w) = w − (v · w)v.
We shall write it by coordinate. We write a = (a1, a2, 0), b = (a1,−a2, 0) with a21+a22 =

1, a1 > 0. If we write h(t) = (h1(t), h2(t), h3(t)), it is clear that h2(t) = 0 because of the
symmetry. Thus

h(t)− a = (h1(t)− a1,−a2, h3(t)) ,

h(t)− b = (h1(t)− a1, a2, h3(t)) .

Since

|h(t)− a| = |h(t)− b| =
√
2− 2a1h1(t),
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we have

h(t)− a

|h(t)− a|
+

h(t)− b

|h(t)− b|
=

√
2√

1− a1h1(t)
(h1(t)− a1, 0, h3(t)) .

Since Pv(w) = w − (v · w)v, one observes that

cPu(t) (∂φ (u(t))) =

√
2 (1− a1h1(t))

−1{(h1(t)− a1, 0, h3(t))

−
(
(h1(t), 0, h3(t)) · (h1(t)− a1, 0, h3(t))

)
(h1(t), 0, h3(t))

}
=

√
2 (1− a1h1(t))

−1((h1(t)− a1)− h1(t) (1− a1h1(t)) , 0, h3(t)− h3(t) (1− a, h1(t))
)

=

√
2 (1− a1h1(t))

−1 (a1 (h1(t)
2 − 1

)
, 0, a1h1(t)h3(t)

)
where we invoke (h1(t), 0, h3(t)) · (h1(t)− a1, 0, h3(t)) = 1 − a1h1 by h2

1 + h2
3 = 1. Thus

the equation (6) is reduced to

(ḣ1, ḣ3) = −
√
2 a1

c
√
1− a1h1(t)

(
h1(t)

2 − 1, h1(t)h3(t)
)

(7)

where ḣi = dhi/dt. We shall analyze the system (7). Since h1 ≤ 1, we observe from (7)

that ḣ1 ≥ 0. If one sets y = h1(t), the equation (7) together with the monotonicity of h1

yields

1

2
c1(1− y2) ≤ ẏ ≤ 1

2
c2(1− y2) (8)

with

c1 =
2
√
2 a1

c
√
1− a1h01

, c2 =
2
√
2 a1

c
√
1− a1

since −1 < h1(0) = h01 < 1. Divide (8) by 1− y2 and integrate over (0, t) to get

c1t ≤ log
1 + y

1− y
− log

1 + h01

1− h01

≤ c2t

or

cec1t ≤ 1 + y

1− y
≤ cec2t with c =

1 + h01

1− h01

> 0.

In other words,

cec1t − 1

cec1t + 1
≤ y = h1(t) ≤

cec2t − 1

cec2t + 1
.

Since c1, c2 > 0 this inequality implies h1(t) < 1 for all t > 0 and h1(t) → 1 as t → ∞.

Thus, ḣ1 does not equal zero in finite time by (7) so u does not stop in finite time. (Since
h2
3 = 1 − h2

1, h converges to (1, 0, 0) as t → ∞ exponentially fast but does not stop in
finite.)
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