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PREFACE

This volume is intended as the proceedings of Sapporo Symposium on Partial

Differential Equations, held on August 25 through August 27 in 2014 at Faculty of

Science, Hokkaido University.

Sapporo Symposium on PDE has been held annually to present the latest devel-

opments on PDE with a broad spectrum of interests not limited to the methods of

a particular school. Professor Taira Shirota started the symposium more than 35

years ago. Professor Kôji Kubota and late Professor Rentaro Agemi made a large

contribution to its organization for many years.

We always thank their significant contribution to the progress of the Sapporo

Symposium on PDE.

S. Ei, Y. Giga, S. Jimbo, H. Kubo, T. Ozawa, T. Sakajo

H. Takaoka, Y. Tonegawa, and K. Tsutaya
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STABILITY AND MINIMALITY FOR A NONLOCAL ISOPERIMETRIC

PROBLEM

N.FUSCO

1. The model. Properties of local minimizers

Diblock copolymers are extensively studied materials, used to engineer nanostructures thanks

to their peculiar properties and rich pattern formation. The resulting patterns depend on the

chemical bounds between the two different polymers, say A and B, and on the relative lengths

of each block. Some of the most commonly observed structures are schematized in Figure 1 and

it has been observed, see e.g. [24], that they closely approximate periodic surfaces with constant

mean curvature. A well established theory used in the modeling of microphase separation for A/B

Figure 1. From left to right spherical spots, cylinders, gyroids and lamellae.

diblock copolymer melts is based on the energy first proposed by Ohta-Kawasaki, see [16]:

Eε(u) := ε

∫
Ω

|∇u|2 dx +
1

ε

∫
Ω

(u2 − 1)2 dx+ γ0

∫
Ω

∫
Ω

G(x, y)
(
u(x)−m

)(
u(y)−m

)
dx dy , (1.1)

where u is an H1(Ω) phase parameter describing the density distribution of the components

(u = −1 stands for phase A, u = +1 for phase B), m = −
∫
Ω
u is the difference of the phases’

volume fractions and G is the Green’s function for −Δ. The parameter γ0 ≥ 0 is characteristic of

the material. Note that the first two terms in (1.1) correspond to the so called Modica-Mortola

functional and approximate the perimeter of the interface as ε tends to 0. These terms clearly

drive the system toward a raw partition in few sets of pure phases with minimal interface area,

whereas the Green’s term favors a finely intertwined distribution of the materials.

Since ε is a small parameter, from the point of view of mathematical analysis it is more

convenient to consider the variational limit of the energy (1.1), which is given by

E(u) :=
1

2
|Du|(Ω) + γ

∫
Ω

∫
Ω

G(x, y)
(
u(x)−m

)(
u(y)−m

)
dx dy ,

where now u is a function of bounded variation in Ω with values ±1, |Du|(Ω) is the total variation

of u in Ω, and γ = 3γ0/16 ≥ 0. Writing

E = {x ∈ Ω : u(x) = 1} ,

so that u = χE − χΩ\E , this energy may be rewritten in a useful geometric fashion as

J(E) = PΩ(E) + γ

∫
Ω

∫
Ω

G(x, y)
(
u(x)−m

)(
u(y)−m

)
dx dy , (1.2)
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N.FUSCO

where PΩ(E) is the perimeter of E in Ω.

A challenging mathematical problem is to prove that global minimizers of (1.2) are periodic:

this is known to be true in one dimension, see e.g. [15], but still open in higher dimensions,

where only partial results are known, see e.g. [2, 22]. A more reasonable task is to exhibit a

class of periodic solutions which are local minimizers of the approximating and limit energies (1.1)

and (1.2), rather than investigating general properties of global minimizers: this is the direction

taken, among others, by Ren and Wei and by Choksi and Sternberg. The first authors in a series

of papers [17, 18, 19, 20, 21] construct several examples of lamellar, spherical and cylindrical

critical configurations and find conditions under which they are stable, i.e., their second variation

is positive definite. The main contribution in [3] is the computation of the second variation for

general critical configurations of (1.2). However, all these papers leave open the basic question

whether the positivity of the second variation implies local minimality.

In order to discuss this question we start by considering the periodic case, where Ω = T
N is

the N-dimensional flat torus of unit volume. In this case G(x, y) is the solution of

−ΔyG(x, y) = δx − 1 in T
N ,

∫
TN

G(x, y) dy = 0 ,

where δx denotes the Dirac measure supported at x. Set uE = χE − χΩ\E , and denote by m =

−
∫
TN uE ∈ (−1, 1) the fixed volume fraction of the two phases and by vE the unique solution to

−ΔvE = uE −m in T
N

∫
TN

vE dx = 0 . (1.3)

Note that∫
TN

|∇vE |
2 dx = −

∫
TN

vEΔvE dx =

∫
TN

vE(uE −m) dx =

∫
TN

vEuE dx (1.4)

=

∫
TN

∫
TN

G(x, y)uE(x)uE(y) dxdy =

∫
TN

∫
TN

G(x, y)
(
uE(x) −m

)(
uE(y)−m

)
dx dy .

Therefore we may further rewrite the functional in (1.2) as

J(E) = PTN (E) + γ

∫
TN

|∇vE |
2 dx . (1.5)

A C2 minimizer of J(E) under a volume constraint satisfies the Euler-Lagrange equation

H∂E(x) + 4γvE(x) = λ for all x ∈ ∂E, (1.6)

where H∂E(x) denotes the sum of the principal curvatures of ∂E at x and the number λ is a

constant Lagrange multiplier associated to the volume constraint
∫
TN uE dx = m.

In the following, a C2 solution E of equation (1.6) will be called a regular critical point. Note

that when γ = 0 any periodic constant mean curvature smooth set E is a regular critical point.

In order to present the main result proved in [1] we need to introduce a suitable notion of local

minimality. Since our energy functional is invariant under translations, it is convenient to define

the distance between two subsets of TN modulo translations in the following way:

d(E,F ) := min
x

|E�(x+ F )| . (1.7)

Accordingly, we may give the following

Definition 1.1. We say that a set E ⊂ T
N of finite perimeter is a local minimizer for the functional

(1.5) if there esists δ > 0 such that

J(F ) ≥ J(E)

for all F ⊂ T
N with |E| = |F | and d(E,F ) ≤ δ.
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NONLOCAL ISOPERIMETRIC PROBLEM

Note that given any set E ⊂ T
N by standard elliptic regularity vE ∈ W 2,p(TN ) for all p ≥ 1.

Moreover it is easily checked that there exists C = C(N) > 0 such that if E, F ⊂ T
N are

measurable, then ∣∣∣∣∫
TN

|∇vE |
2 dx−

∫
TN

|∇vF |
2 dx

∣∣∣∣ ≤ C|E�F | , (1.8)

where vE and vF are defined as in (1.3).

An important tool to get the regularity of local minimizers is the following result that is

essentially proved in [6] (see also [1, Proposition 2.7]).

Proposition 1.2. Let E be a local minimizer for the functional (1.5) and let δ > 0 be as in

Definition 1.1. There exists λ > 0 such that E solves the following penalized minimization problem:

min
{
J(F ) + λ||F | − |E|| : F ⊂ T

N , d(E,F ) ≤
δ

2

}
.

As a consequence of this result and of inequality (1.8) it is then easy to show that if E is a

local minimizer of J according to Definition 1.1, then E is almost minimizer of the perimeter, i.e.,

there exist ω, r0 > 0 such that

PTN (E) ≤ PT (F ) + ωrn

for all F ⊂ T
N such that EΔF ⊂⊂ Br(x0) for some x0 ∈ T

N and 0 < r < r0. At this point, using

the regularity theory for (almost) minimizers of the perimeter it is not too hard to show that the

following result holds (see [12, Proposition 2.2.]).

Theorem 1.3. Let E be a local minimizer for (1.5). There exists a closed set Σ ⊂ ∂E such

that ∂E \ Σ is a C∞ manifold. Moreover, the Hausdorff dimension of the singular set satisfies

dimH(Σ) ≤ N − 8.

2. Second variation and local minimality

We are now going to present the main result of [1] which states that any regular critical point

of J with positive second variation is a local minimizer. To this aim, given a set E ⊂ T
N of

class C2 and a C2-vector field X : TN → T
N a C2-vector field, we consider the associated flow

Φ : TN × (−1, 1) → T
N defined by

∂Φ

∂t
= X(Φ), Φ(x, 0) = x. We define the second variation of J

at E with respect to the flow Φ to be the value

d2

dt2
J(Et)∣∣t=0

,

where Et := Φ(·, t)(E). Throughout the section, when no confusion is possible, we shall omit

the indication of E, writing v instead of vE and ν instead of νE , the exterior unit normal to the

boundary of E. Before stating the representation formula for the second variation, we fix some

notation. Given a vector X , its tangential part on ∂E is defined as Xτ := X − (X · ν)ν. In

particular, we will denote by Dτ the tangential gradient operator given by Dτϕ := (Dϕ)τ . We also

recall that the second fundamental form B∂E of ∂E is given by Dτν and that the square |B∂E |2

of its Euclidean norm coincides with the the sum of the squares of the principal curvatures of ∂E.

－3－



N.FUSCO

Theorem 2.1. If E, X, and Φ are as above, we have

d2

dt2
J(Et)∣∣t=0

=

∫
∂E

(
|Dτ (X · ν)|2 − |B∂E |

2(X · ν)2
)
dHN−1

+ 8γ

∫
∂E

∫
∂E

G(x, y)
(
(X · ν)(x)

)(
(X · ν)(y)

)
dHN−1(x) dHN−1(y)

+ 4γ

∫
∂E

∂νv(X · ν)2 dHN−1 −

∫
∂E

(4γv +H∂E) divτ
(
Xτ (X · ν)

)
dHN−1

+

∫
∂E

(4γv +H∂E)(divX)(X · ν) dHN−1 .

(2.1)

In the case of a critical set E the computation of the second variation was carried out in [3].

The novelty here is that the above result, proved in [1, Theorem 3.1], deals with a general regular

set. This explains the presence of the last two terms in the formula.

Remark 2.2. Notice that if E is also critical, from (1.6) it follows that∫
∂E

(4γv +H∂E) divτ
(
Xτ (X · ν)

)
dHN−1 = 0 .

Moreover, if in addition

|Φ(·, t)(E)| = |E| for all t ∈ [0, 1], (2.2)

then it can be shown (see [3, (2.30)]) that

0 =
d2

dt2
|Et|∣∣t=0

=

∫
∂E

(divX)(X · ν) dHN−1 .

Hence, again from (1.6), we have

d2

dt2
J(Et)∣∣t=0

=

∫
∂E

(
|Dτ (X · ν)|2 − |B∂E |

2(X · ν)2
)
dHN−1

+ 8γ

∫
∂E

∫
∂E

G(x, y)
(
(X · ν)(x)

)(
(X · ν)(y)

)
dHN−1(x) dHN−1(y)

+ 4γ

∫
∂E

∂νv(X · ν)2 dHN−1 .

Note that this formula coincides exactly with the one given in [3, (2.20)], where it was obtained

using a particular family of asymptotically volume preserving diffeomorphisms.

The previous remark motivates the following definition. Given a C2 open set E ⊂ T
N we

denote by H̃1(∂E) the set of all functions ϕ ∈ H1(∂E) such that
∫
∂E

ϕdHN−1 = 0, endowed with

the norm ‖∇ϕ‖L2(∂E). To E we then associate the quadratic form ∂2J(E) : H̃1(∂E) → R defined

as

∂2J(E)[ϕ] =

∫
∂E

(
|Dτϕ|

2 − |B∂E |
2ϕ2

)
dHN−1

+ 8γ

∫
∂E

∫
∂E

G(x, y)ϕ(x)ϕ(y)dHN−1(x) dHN−1(y) + 4γ

∫
∂E

∂νvϕ
2 dHN−1 .

(2.3)

If E is a regular critical set and the flow Φ satisfies (2.2), then

d|Et|

dt

∣∣∣
t=0

=

∫
∂E

X · ν dHN−1 = 0 .

Hence, ∂2J(E)[X · ν] coincides with the second variation of J at E with respect to Φ.

Notice that, setting μ := ϕHN−1
∂E, the nonlocal term∫
∂E

∫
∂E

G(x, y)ϕ(x)ϕ(y)dHN−1(x) dHN−1(y)

－4－



NONLOCAL ISOPERIMETRIC PROBLEM

can be rewritten as ∫
TN

∫
TN

G(x, y)dμ(x) dμ(y) =

∫
TN

|∇z|2 dx , (2.4)

where z ∈ H1(TN ) is a weak solution to the equation

−Δz = μ in T
N .

Thus the nonlocal term (2.4) is equivalent to the square of the H−1-norm of the measure μ.

The following corollary is a simple consequence of the definition of local minimality.

Corollary 2.3. Let E be a regular local minimizer of J according to Definition 1.1.Then

∂2J(E)[ϕ] ≥ 0 for all ϕ ∈ H̃1(∂E).

Before stating our main result, a further important remark is in order. If E ⊂ T
N is of class

C2 and Φ(x, t) = x + tηei for some η ∈ R and some element ei of the canonical basis in R
N , we

clearly have J
(
Φ(·, t)(E)

)
= J(E), by the translation invariance of J . Hence,

d2

dt2
J(Et)∣∣t=0

= ∂2J(E)[ηνi] = 0 .

In view of this it is convenient to introduce the subspace T (∂E) ⊂ H̃1(∂E) generated by the

functions νi, i = 1, . . . , N . Note that we can then write

H̃1(∂E) = T⊥(∂E)⊗ T (∂E) , (2.5)

where

T⊥(∂E) :=
{
ϕ ∈ H̃1(∂E) :

∫
∂E

ϕνi dH
N−1 = 0 , i = 1, . . . , N

}
is the orthogonal set, in the L2-sense, to the space of infinitesimal translations T (∂E).

In view of this remark it is then natural to give the following definition.

Definition 2.4. In the following we say that the functional J has positive second variation at the

critical set E if

∂2J(E)[ϕ] > 0 for all ϕ ∈ H̃1(∂E) \ T (∂E)

or, equivalently, for all ϕ ∈ T⊥(∂E) \ {0}.

The first step in proving that a regular critical point with positive second variation is a local

minimizer is to consider the simpler situation when the boundary of the competing set F can be

written as a graph of a W 2,p function over the boundary of E with a sufficiently small norm. The

precise statement is given by the next theorem.

Theorem 2.5. Let p > max{2, N−1} and let E be a regular critical set for J with positive second

variation. There exist δ > 0, C0 > 0 such that

J(F ) ≥ J(E) + C0

(
d(E,F )

)2
,

whenever F ⊂ T
N satisifes |F | = |E| and ∂F = {x+ψ(x)ν(x) : x ∈ ∂E} for some ‖ψ‖W 2,p(∂E) ≤ δ.

We now briefly describe the strategy of the proof of this theorem. The idea is to construct

suitable volume-preserving flows connecting the critical set E to a given close competitor F and

to analyze carefully the continuity properties of the quadratic form ∂2J along the flow (see The-

orem 2.6). A technical difficulty in this analysis comes from the translation invariance, since we

have to avoid the degenerate directions at all times. This issue is dealt with in Lemma 2.7, where

it is shown that given any set F sufficiently W 2,p-close to E, one can always find a translation of

F such that the function describing the boundary of the new set has small component in T⊥(∂E).

－5－
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Theorem 2.6. Let E ⊂ T
N be a set of class C3 and let p > N − 1. For all ε > 0 there exist

a tubular neighborhood N (∂E) and two positive constants δ, C with the following properties. If

ψ ∈ C2(∂E) and ‖ψ‖W 2,p(∂E) ≤ δ then there exists a field X ∈ C2 with divX = 0 in N (∂E) such

that

‖X − ψν‖L2(∂E) ≤ ε‖ψ‖L2(∂E) .

Moreover, the associated flow

Φ(x, 0) = x ,
∂Φ

∂t
= X(Φ)

satisfies ∂E1 = {x+ ψ(x)ν :∈ ∂E}, and for every t ∈ [0, 1]

‖Φ(·, t)− Id‖W 2,p(∂E) ≤ C‖ψ‖W 2,p(∂E) ,

where Id denotes the identity map. If in addition E1 has the same volume as E, then for every t

we have |Et| = |E| and ∫
∂Et

X · νEt dHN−1 = 0 .

Next lemma says that when considering a sufficiently close competitor F we may assume that

its translational component is as small as we wish. This property is crucial to ensure that the

flow connecting E to F provided by Theorem 2.6 has the additional property that Et has a small

translational component for all t ∈ (0, 1).

Lemma 2.7. Let E ⊂ T
N be of class C3 and let p > N − 1. For any δ > 0 there exist η0,

C > 0 such that if F ⊂ T
N satisfies ∂F = {x + ψ(x)ν(x) : x ∈ ∂E} for some ψ ∈ C2(∂E) with

‖ψ‖W 2,p(∂E) ≤ η0, then there exist σ ∈ R
N and ϕ ∈ W 2,p(∂E) with the properties that

|σ| ≤ C‖ψ‖W 2,p(∂E), ‖ϕ‖W 2,p(∂E) ≤ C‖ψ‖W 2,p(∂E)

and

∂F − σ = {x+ ϕ(x)ν(x) : x ∈ ∂E},
∣∣∣∫

∂E

ϕν dHN−1
∣∣∣ ≤ δ‖ϕ‖L2(∂E) .

With Theorem 2.5 at hands the next step is to show that any W 2,p-local minimizer is in fact

an L1-local minimizer. This is done by a contradiction argument: we assume that there exists a

sequence Eh of sets such that |Eh| = |E|, and Eh → E in L1, but inequality (2.6) fails along the

sequence. Then, following an idea used in [9] for a two dimensional problem related to epitaxial

growth, we replace the sequence Eh with a new sequence Fh of minimizers of suitable penalized

problems, tailored in such a way that (2.6) still fails. Using regularity techniques we then show

that in fact the sets Fh have uniformly bounded curvatures and converge to E strongly in W 2,p,

thus contradicting the W 2,p-local minimality of E. A penalization approach via regularity has

been recently used also in [4] to prove the quantitative isoperimetric inequality in the Euclidean

case. However, our method is quite different and seems more suited to deal with local minimizers.

Note also that in the proof of the result below, the positivity of the second variation is only needed

to say that E is a W 2,p-local minimizer and no use of second variation whatsoever is made in the

proof. The local minimality result proved in [1] then reads as follows.

Theorem 2.8. Let E ⊂ T
N be a regular critical set of J such that

∂2J(E)[ϕ] > 0 for all ϕ ∈ T⊥(∂E) \ {0}.

Then, there exist δ, C > 0 such that

J(F ) ≥ J(E) + C(d(E,F ))2 (2.6)

for all F ⊂ T
N , with |F | = |E| and α(E,F ) < δ.
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It is important to remark that Theorem 2.8, besides proving strict local minimality, contains

a quantitative estimate of the deviation from minimality for sets close to E in L1. This can be

viewed as a quantitative isoperimetric inequality for the nonlocal perimeter (1.2), in the spirit of

the recent results proved in [8], see also [7, 4]. Indeed, since our result holds also when γ = 0, we

cover the important case of local minimizers of the area functional under periodicity conditions.

Corollary 2.9. Let E ⊂ T
N be a regular set whose boundary has constant mean curvature and

such that ∫
∂E

(
|Dτϕ|

2 − |B∂E |
2ϕ2

)
dHN−1 > 0 for all ϕ ∈ T⊥(∂E) \ {0}.

Then, there exist δ, C > 0 such that

PTN (F ) ≥ PTN (E) + C(α(E,F ))2

for all F ⊂ T
N , with |F | = |E| and α(E,F ) < δ.

Previous related investigations were carried out by B. White [25], who proved that the strict

positivity of the second variation implies local minimality with respect to small L∞-perturbations.

His result was recently extended by F. Morgan and A. Ros in [13], where they show that strictly

stable constant mean curvature hypersurfaces are area minimizing with respect to small L1-

perturbations, up to dimension N = 7. Our corollary removes the restriction N ≤ 7 and improves

their result in a quantitative fashion.

Note that Corollary 2.9 applied to the unit ball E and with T
N replaced by cTN for c > 0

sufficiently large, yields the quantitative isoperimetric inequality in the standard Euclidean case

for bounded open sets F with small asymmetry index d(E,F ). This fact, in view of Lemma 5.1

in [8], implies the quantitative isoperimetric inequality for all sets, thus leading to an alternative

proof based on the second variation.

3. Applications of the local minimality criterion and further developments

A first application of Theorem 2.8 deals with lamellar configurations. To this aim, for a given

volume fraction m ∈ (−1, 1) we denote by uL the one-strip lamellar configuration corresponding

to the set L := T
N−1 × [0, m+1

2 ] and by Lm the collection of all sets which may be obtained from

L by translations and relabeling of coordinates.

Theorem 3.1. Assume that L is the unique, up to translations and relabeling of coordinates,

global minimizer of the periodic isoperimetric problem. Then the same set is also the unique global

minimizer of the non local functional (1.5), provided γ is sufficiently small.

In the two-dimensional case it has been proved in [11] that if |m| < 1 − 2
π
, then the lamellar

sets of Lm are the unique global minimizers of the periodic isoperimetric problem in T
2. Therefore,

from the above theorem one immediately gets the following result, first proved in [23].

Corollary 3.2. Let N = 2. Fix any m such that |m| < 1− 2
π
. Then for small γ > 0, any solution

of

min

{
PT2(E) + γ

∫
T2

|∇vE |
2 dx : E ⊂ T

2, |E| =
m+ 1

2

}
belongs to Lm, that is, it is lamellar.

The corollary above holds only for N = 2, where the minimality range of lamellar sets is

completely determined. For N = 3, to the best of our knowledge the global (with uniqueness)

minimality of Lm is known only in the case m = 0 (see [10]). In the following result we show the

result still holds for m sufficiently close to 0.
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Theorem 3.3. There exists ε > 0 such that if m ∈ (−ε, ε) the lamellar sets in Lm are the unique

solutions to the corresponding periodic isoperimetric problem in T
3.

As before we have the following corollary.

Corollary 3.4. Let N = 3. There exists m0 > 0 and γ0 such that for |m| < m0 such that any

solution of

min

{
PT3(E) + γ

∫
T3

|∇vE |
2 dx : E ⊂ T

3, |E| =
m+ 1

2

}
belongs to Lm, provided that γ ≤ γ0.

We also mention as a consequence of Theorem 2.8 that in any dimension and for any γ > 0

lamellar configurations are local minimizers, provided that the number of strips is sufficiently large.

To this aim, given m ∈ (−1, 1) and an integer k > 1, we set Lk := T
N−1 × ∪k

i=1[
i−1
k
, i−1

k
+ m+1

2k ]

and denote by Lm,k the collection of all sets which may be obtained from Lk by translations and

relabeling of coordinates.

Proposition 3.5. Fix m ∈ (−1, 1) and γ > 0. Then there exists an integer k0 such that for k ≥ k0
all sets in Lm,k are isolated local minimizers of (1.5), according to Definition 1.1.

We now state a result that links Theorem 2.8 with the existence of local minimizers for the

Ohta-Kawasaki energy (1.1). Fix m ∈ (−1, 1). We say that a function u ∈ H1(TN ) is an isolated

local minimizer for the functional Eε with prescribed volume m, if
∫
TN u dx = m and there exists

δ > 0 such that

Eε(u) < Eε(w) for all w ∈ H1(TN ) with

∫
TN

w dx = m, 0 < min
τ

‖u− w(· + τ)‖L1(TN ) ≤ δ .

Since it is well-known that the functionals Eε only Γ-converge in L1 to the sharp interface energy

J , the L1-local minimality result proved in Theorem 2.8 allows to show:

Theorem 3.6. Let E be a regular critical set for the functional J with positive second variation

and u = χE − χTN\E. Then there exist ε0 > 0 and a family {uε}ε<ε0 of isolated local minimizers

of Eε with prescribed volume m =
∫
TN u dx such that uε → u in L1(TN ) as ε → 0.

Note that it can be also shown that the radius δ in the local minimality condition is uniform

throughout the family {uε}ε<ε0 and depends only on the local minimality radius of the set E

appearing in Definition 1.1.

A variant of our result, which is important in the applications, is the Neumann problem. As

before we consider the functional

JN (E) := PΩ(E) + γ

∫
Ω

|∇vE |
2 dx (3.1)

and the function

uE = χE − χΩ\E , m = −

∫
Ω

uE dx ,

but the condition on vE is now⎧⎨⎩−ΔvE = uE −m in Ω∫
Ω

vE dx = 0 ,
∂vE
∂ν

= 0 , on ∂Ω .
(3.2)

As in (1.4) we have ∫
Ω

|∇vE |
2 dx =

∫
Ω

∫
Ω

G(x, y)uE(x)uE(y) dxdy ,
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where G is the solution of⎧⎨⎩−ΔyG(x, y) = δx − 1
|Ω| in Ω∫

Ω

G(x, y) dy = 0 , ∇yG(x, y) · ν(y) = 0 , if y ∈ ∂Ω .

As in the periodic case, if E is a sufficiently smooth (local) minimizer of the functional (3.1),

then it satisfies the Euler-Lagrange equation

H∂E(x) + 4γvE(x) = λ for all x ∈ ∂E ∩ Ω,

and moreover ∂E must meet ∂Ω ortoghonally (if at all), see [3, Remark 2.8].

Note that, unlike in the periodic case, the functional JN is not translation invariant, therefore

we don’t need to consider the distance d defined in (1.7). Provided that ∂E does not meet ∂Ω,

the formula (2.1) for the second variation and the regularity result stated in Theorem 1.3 for the

periodic case still holds in the Neumann case, without any change in the proof (see [1, Section 6]).

If ∂E ∩ ∂Ω �= ∅, the situation is more delicate. First, one has to ensure that the flow Φ

associated to the vector field X : Ω → Ω does not leave Ω, secondly the formula for the second

variation is more complicate since it contains an extra integral on ∂E ∩ ∂Ω. On the other hand,

since the problem is not translation invariant, the spaces T (∂E), T⊥(∂E), and the decomposition

(2.5) are no longer needed. Therefore, we say that JN has positive second variation at the critical

set E if

∂2JN (E)[ϕ] > 0 for all ϕ ∈ H̃1(∂E) \ {0},

where ∂2JN is given in [12, Proposition 4.1]. The following result is contained in [12, Theorem 1.1].

Theorem 3.7. Let E ⊂ Ω be a regular critical set with positive second variation. Then there exist

C, δ > 0 such that

JN (F ) ≥ JN (E) + C|E�F |2 ,

for all F ⊂ Ω, with |F | = |E| and |E�F | < δ.

We conclude by mentioning two interesting global minimality results. The first one is proved

in [14], and deals with thin rectangles Ωε = (0, ε)× (0, 1). Fix the mass constraint m = 0 and an

integer k and denote by Ek ⊂ Ωε the lamellar configuration corresponding to k horizontal stripes

of equal length (see the precise definition given in [14, (3.5) and (3.6)]. Then, if

12k2(k − 1)2

2k − 1
< γ <

12k2(k + 1)2

2k + 1
,

for all sufficiently large integer j the lamellar configuration Ek is the unique global minimizer of

JN in Ωεj , with εj = 1/j.

The second result is proved in [5] where the authors consider the minimum problem

min
{
P (E) + γ

∫
Ω

|∇vE |
2 dx : E ⊂ Ω, |E| = |Br|

}
, (3.3)

where Ω is a bounded open set in R
N of class C2, vE is defined as in (3.2) and r > 0 is fixed.

Roughly speaking, they show that if the fixed mass is sufficiently small then the unique minimizer

of (3.3) is an almost spherical single droplet. Here we state some of the results proved therein.

Theorem 3.8. Let Ω be a bounded open set with C2 boundary. There exist δ0, r0 > 0 such that

the following holds. Assume r ≤ r0 and

γr3| log r| < δ0 if N = 2 or γr3 < δ0 if N ≥ 3 .

Then, every minimizer Er of the problem (3.3) satisfies the following properties:
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(i) Er is a convex set and there exists xr ∈ Ω and ϕr : SN−1 → R such that ‖ϕ‖C1 � γrN+3 and

∂Er = {xr + (r + ϕ(y))y : y ∈ S
N−1};

(ii) Er is an exact ball if and only if the domain Ω is itself a ball, i.e., up to translations Ω = BR

for some R > 0, in which case Er = Br is the unique minimizer.
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A coupled surface-bulk convection-diffusion

equations with an application to drop dynamics

with soluble surfactant

Kuan-Yu Chen∗ Ming-Chih Lai†

1 Introduction

Many problems in biological, physical and material sciences involve solving
partial differential equations in complex domains or deformable interfaces.
In particular, the underlying material quantities in the bulk domain may
couple with the one in the interface through adsorption and desorption pro-
cesses. Meanwhile, the concentration of surface quantities might change
the physical behavior of the interface through the modifications of inter-
facial forces. For instance, surfactant molecules typically consisting of a
hydrophilic head and a hydrophobic tail may adsorb and desorb between
bulk fluids and the interface so that the interfacial tension can be reduced.
Meanwhile, this non-uniform distribution of surfactant molecules produce
extra force (Marangoni force) along the tangential direction to affect the
dynamics. In practice, the surfactant may be soluble only to some portion
of bulk domain enclosed by the interface where the interface and the soluble
region are evolving simultaneously. In order to simulate this problem, we
have to introduce two surfactant concentrations in the system; namely, the
surface concentration along the interface, and the volume concentration in
the bulk region. Thus, one need to solve a coupled system of surface-bulk
convection-diffusion equations [7, 12, 10].

Another example comes from cell biology applications where proteins
inside the cell can diffuse and bind to the membrane whereas membrane-
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bound proteins can dissociate and diffuse to the inner cytoplasm [8]. To
simulate this problem, one need to solve a coupled system of surface-volume
reaction-diffusion equations. Many other examples in physical and biolog-
ical systems that have the similar adsorption or desorption mechanisms in
the dynamics can be found in the reference [10]. In [4], we have successfully
developed a mass conservative scheme for convection-diffusion equation on
moving interface and applied to simulate the interfacial flows with insoluble
surfactant [4, 5, 6]. A recent work of Khatri and Tornberg [3] used segment
projection method to represent the interface and solve the surfactant equa-
tion. More up-to-dated numerical methods for solving Navier-Stokes flows
with insoluble surfactant can be found in [3] as well.

In this paper, we summarize our previous work to soluble surfactant case
published in [1]. However, as a very first step, we need to develop a numer-
ical scheme for solving coupled surface-bulk convection-diffusion equations.
There are at least three major numerical issues from our point of view. (1)
How to handle the adsorption and desorption between the interface and the
bulk accurately? (2) How to maintain the total surfactant mass conserved
during the evolution? (3) Since the surfactant might be soluble to only one
of buck fluid, how to avoid the surfactant being present in other bulk regions
via either convection or diffusion mechanism? Here, we formulate the cou-
pled surface-bulk convection-diffusion equations in the immersed boundary
framework so that the adsorption and desorption processes can be termed
as a singular source in the bulk equation. Moreover, by using the indica-
tor function, we can embed the bulk equation into the whole computational
domain so that regular Eulerian finite difference scheme can be applied with-
out handling the complicated moving irregular domain. We develop a new
conservative scheme for solving the coupled bulk-surface concentration equa-
tions which the total surfactant mass can be conserved exactly in discrete
sense. By introducing the indicator function and solving the bulk equation in
the regular computational domain, one can avoid evaluating the surfactant
flux across the interface due to adsorption and desorption processes.

2 A coupled surface-bulk concentration model

As in [10], we consider the same coupled bulk-surface material (or surfactant)
concentration model in which the adsorption and desorption can be occurred
on the moving deformable interface. Consider a domain Ω in R2 and there
is an interface Σ, which is a simple closed curve immersed in Ω. The interior
of the interface is Ω0, and the exterior is Ω1 so that Ω = Ω0 ∪ Ω1, see the
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illustration of these domains in Figure 1. The interface is represented by a
Lagrangian form X(α, t), 0 ≤ α ≤ Lb, where α is the Lagrangian material
coordinate attached to the interface which is not necessarily to be the arc-
length parameter. The unit tangent vector of the interface can be written

as τ = ∂X
∂α /

∣∣∣∂X∂α ∣∣∣; thus, the unit outward normal vector n pointing into

Ω1 can be defined accordingly. In addition, the interface Σ is moving with
a given velocity field u = (u, v) in Ω; that is,

∂X(α, t)

∂t
= U(α, t) =

∫
Ω
u(x, t)δ(x−X(α, t)) dx, (1)

where δ(x) = δ(x) δ(y) is the two-dimensional Dirac delta function. We
use the above usual delta function formulation in the immersed boundary
method [9] to represent the interpolation of the velocity field into the in-
terface. Here we assume the velocity field is incompressible (∇ · u = 0) in
Ω and no flow boundary condition (u · n1 = 0) is imposed on ∂Ω = ∂Ω1.
Notice that, in later section, the velocity field can be obtained by solving
the Navier-Stokes equations.

Figure 1: Illustration of domains.

It is assumed that the surfactant exists on the interface as a monolayer
and is adsorbed from or desorbed into the bulk fluid in Ω1; that is, the
surfactant is soluble in the exterior bulk Ω1 but not in the interior one
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Ω0. Therefore, we have to introduce two surfactant concentrations in the
system; namely, the surface concentration Γ(α, t) along the interface Σ, and
the bulk concentration C(x, y, t) in the region Ω1. By taking the adsorption
and desorption of bulk surfactant into account, the dimensionless surface
concentration equation can be modified as

∂Γ

∂t
+ (∇s · u) Γ =

1

Pes
∇2

sΓ + (Sa/λ)Cs(1− Γ)− SdΓ, (2)

where ∇s = (I − n ⊗ n)∇ and ∇2
s = ∇s · ∇s are the surface gradient and

surface Laplacian operators, respectively. The dimensionless number Pes
is the surface Peclet number, Sa and Sd are the absorption and desorption
Stanton number, respectively, and λ is the dimensionless adsorption depth.
Those parameters are defined as

Pes = U∞R/Ds, Sa = ka/U∞, Sd = kdR/U∞, λ = Γ∞/(C∞R)

where R,U∞,Γ∞, C∞ are the reference values for the length, flow veloc-
ity, the surface and bulk concentration, and ka, kd are the absorption and
desorption coefficients. Cs is the bulk surfactant concentration adjacent to
the interface which can be defined later. The above non-dimensionalization
process can be found in [12, 7, 4]. Notice that, as in [4], the interface is
tracked in Lagrangian manner and the surface concentration is defined at
the material point, so the time derivative in Eq. (2) has the meaning of the
material derivative naturally.

The dimensionless bulk concentration in the exterior region Ω1 [7, 10,
11, 12] can be written as

∂C

∂t
+ u · ∇C =

1

Pe
∇2C (3)

1

λPe

∂C

∂n
|Σ = (Sa/λ)Cs(1− Γ)− SdΓ

∂C

∂n1
|∂Ω1

= 0, (4)

where Pe is the Peclet number, n is the unit normal vector on Σ pointing
into Ω1 and n1 is the unit outward normal to the boundary ∂Ω1 = ∂Ω.

Eqs. (2)-(4) describe the present coupled surface-bulk concentration equa-
tions. Since the fluid is incompressible and no flow velocity boundary con-
dition is imposed on ∂Ω1, one can conclude that the total surfactant mass
(the surfactant mass on the interface Σ and the mass in the bulk region
Ω1) must be conserved. The conservation property can be proved easily as
follows.
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3 Navier-Stokes flow with soluble surfactant

Consider an incompressible flow problem consisting of two-phase fluids in
a fixed two-dimensional square domain Ω = Ω0 ∪ Ω1 where an interface Σ
separates Ω0 from Ω1 as illustrated in Figure 1. As in previous section, it
is assumed that the surfactant exists on the interface as a monolayer and is
adsorbed from or desorbed to the bulk fluid in Ω1; that is, the surfactant
is soluble in the exterior bulk but not in the interior one. The interface is
contaminated by the surfactant so that the distribution of the surfactant
changes the surface tension accordingly. In order to formulate the problem
using the immersed boundary approach, we simply treat the interface as
an immersed boundary that exerts force to the fluids and moves with local
fluid velocity. For simplicity, we assume equal viscosity and density for both
fluids, and neglect the gravity. Certainly, the present Navier-Stokes solver
can be replaced by the one with different density and viscosity ratios.

As in [4], the non-dimensional Navier-Stokes flow in the usual immersed
boundary formulation can be written as

∂u

∂t
+ (u · ∇)u+∇p =

1

Re
∇2u+

f

Re Ca
, (5)

∇ · u = 0, (6)

f(x, t) =

∫
Σ
F (α, t) δ(x−X(α, t)) dα, (7)

∂X(α, t)

∂t
= U(α, t) =

∫
Ω
u(x, t) δ(x−X(α, t))dx, (8)

F (α, t) =
∂

∂α
(σ(α, t)τ (α, t)), (9)

where u is the fluid velocity and p is the pressure. The dimensionless num-
bers are the Reynolds number (Re = ρU∞R/μ) describing the ratio be-
tween the inertial force and the viscous force, and the Capillary number
(Ca = μU∞/σ∞) describing the strength of the surface tension. The pres-
ence of surfactant will reduce the surface tension of the interface by the
Langmuir equation of state

σ = 1 + El ln(1− Γ), (10)

where σ is the surface tension, and El is the elasticity number measuring
the sensitivity of the surface tension to the surfactant concentration. Since
the surfactant is soluble in Ω1, we need to solve the coupled surface-bulk
concentration equations (2)-(4) to close the system.
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4 Numerical method

In the following, we describe how to march one time step for the solutions.
At the beginning of each time step, the interface position, the fluid velocity,
the surface and bulk concentrations must be given. The numerical algorithm
is as follows.

1. Compute the surface tension and unit tangent on the interface.

2. Distribute the interfacial force from the Lagrangian markers into the
fluid.

3. Solve the Navier-Stokes equations by the projection method.

4. Interpolate the new velocity on the fluid lattice points onto the marker
points and move the marker points to new positions.

5. Compute the indicator function.

6. Compute the surface surfactant concentration using the scheme in [4].

7. Compute the bulk surfactant concentration using the scheme in [1].

Note that, the detailed numerical implementation of first four steps is quite
standard in immersed boundary method and can be found in any related
literature. Here, we just use the same solver as in our previous work [4].
The last four steps are exactly the same four steps shown in [1].

5 Numerical result: A drop under shear flow

Figure 2 shows the evolutionary interface positions of clean (denoted by
dash-dotted line) and soluble surfactant (denoted by solid line) cases for a
drop under shear flow based on the results of grid number N = 256. The
clean drop bears no surfactant along the interface throughout the evolution
so no bulk and surface surfactant equations are needed to be solved and the
surface tension remains to be a constant σ = 1. (Note that, we use the clean
drop as a comparison simply because of zero initial surface concentration is
chosen in present setting.) Due to shear stresses, both drops will be elon-
gated and gradually aligned with the flow directions. For the soluble case,
the interface will start to absorb the bulk surfactant so the bulk concentra-
tion decreases while the surface concentration increases in the beginning, see
Figure 3 in detail. Later, both absorption and desorption processes become
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more balanced so the bulk and surface concentrations become quite steady.
As expected, the largest surface concentration appears to occur at the drop
tips after the drop aligned with the flow. The drop with soluble surfactant
has smaller surface tension than the clean drop so the deformation tends to
be larger. One can see from Figure 2 that the clean drop approaches to a
steady state shape after T = 9.0 while the soluble surfactant drop continues
to deform slightly afterwards. Our numerical results are physically reason-
able and qualitatively consistent with those obtained in other literature such
as in [11].
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On the 2 phase problem including the phase transition

Yoshihiro Shibata ∗

Main topic of my talk is a local well-posedness of the compressible and incompressible phase transition
problem with nearly flat interface in the maximal Lp-Lq framework. The plan of my talk is the following.
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1 Modeling

Following the J. Pruess idea in [5], we discuss the modeling of two phase problem. Let Ω be a domain
in the N dimensional Euclidean space R

N (N ≥ 2) with boundary Γ0. Let Ω− be a subdomain of Ω
with boundary Γ. We assume that Γ = ∂Ω− ⊂ Ω and that Γ0 ∩ Γ = ∅. Set Ω+ = Ω − Ω−. Let
ϕ = ϕ(ξ, t) = (ϕ1(ξ, t), . . . , ϕN (ξ, t)) be a function defined on the closure of Ω for each time variable
t ∈ (0, T ), ξ = (ξ1, . . . , ξN ) being the reference coordinate system. We assume that the map ξ → ϕ(ξ, t)
is one to one for each t ∈ (0, T ) †. Set (∂tϕ)(ξ, t) = v(x, t) with x = ϕ(ξ, t). Set

Ω±(t) = {x = ϕ(ξ, t) | ξ ∈ Ω±}, Γ(t) = {x = ϕ(ξ, t) | ξ ∈ Γ}, Γ0(t) = {x = ϕ(ξ, t) | ξ ∈ Γ0}

and Ω̇(t) = Ω−(t) ∪ Ω+(t). Let nΓ(t) be the unit outer normal to Γ(t) pointed from Ω−(t) to Ω+(t) and
let nΓ0(t) the unit outer normal to Γ0(t). Set

[[v]] = v− − v+ (the jump of v accross Γ(t))

for any v defined on Ω̇(t). Here and hereafter, we write v± = v|Ω±(t). Moreover, given v± defined on
Ω±(t), we define v by v(x) = v±(x) for x ∈ Ω±(t). Let HΓ = −div ΓnΓ be the mean curvature of Γ(t).

Remark 1. Let Σ be a hypersurface in R
N defined by x = ψ(θ) with θ ∈ Θ ⊂ R

N−1. The Laplace
Beltrami operator ΔΣ on Σ is defined by

ΔΣf =
1√
g
∂i(

√
ggij∂jf)

∗Department of Mathematics and Research Institute of Science and Engineering, Waseda University
Ohkubo 3-4-1 Shinjuku-ku, Tokyo 169-8555, Japan.
e-mail address: yshibata@waseda.jp
Partially supported by JST CREST and JSPS Grant-in-aid for Scientific Research (S) # 24224004
†Since this chapter is concerned with the modeling, we do not care the regularity of boundary and the map ϕ. Moreover,

we do not mention any integrability of functions regorously. These are formulated mathematically in sections 2 and 3.
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Here, f is a function defined on Σ and ∂if = ∂i(f ◦ ψ). Moreover, τi = ∂iψ, gij = τi · τj , G = (gij),
g = detG, and G−1 = (gij). Let nΣ be the unit outer normal to Σ. We know that

1√
g
∂i(

√
ggijτj) = HΣnΣ, (1.1)

ΔΣψ = HΣnΣ. (1.2)

In our modeling, the following well-known formula plays a fundamental role.

Reynolds transport theorem

d

dt

∫
Ω̇(t)

f dx =

∫
Ω̇(t)

∂tf dx+

∫
Γ(t)

[[f ]]v · nΓ(t) dσ +

∫
Γ0(t)

fv · nΓ0(t) dσ,

where dσ means the surface elements not only of Γ(t) but also of Γ0(t).
In fact, let J(ξ, t) be the Jacobian of the transformation: x = ϕ(ξ, t). We have ∂tJ(ξ, t) =

(div xv)J(ξ, t), so that

d

dt

∫
Ω−(t)

f dx =
d

dt

∫
Ω−
f(ϕ(ξ, t), t)J(ξ, t) dξ =

∫
Ω−

(∂tf + v · ∇xf + (div xv)f)J(ξ, t) dξ

=

∫
Ω−(t)

{∂tf + div x(vf)} dx =

∫
Ω−(t)

∂tf dx+

∫
Γ(t)

f(v · nΓ(t)) dσ.

Analogously,

d

dt

∫
Ω+(t)

f dx =
d

dt

∫
Ω+

f(ϕ(ξ, t), t)J(ξ, t) dξ =

∫
Ω+

(∂tf + v · ∇xf + (div xv)f)J(ξ, t) dξ

=

∫
Ω+(t)

{∂tf + div x(vf)} dx =

∫
Ω+(t)

∂tf dx−
∫
Γ(t)

f(v · nΓ(t)) dσ +

∫
Γ0(t)

f(v · nΓ0(t)) dσ.

Combining these formulas, we have the Reynolds transport theorem.
In this orientation, we have

d

dt
|Γ(t)| = −

∫
Γ(t)

HΓv · nΓ dσ (1.3)

In fact,

∂t detG = (detG)tr(ĠG−1) = 2(detG)gij τ̇iτj = 2(detG)gij∂iψ̇τj .

Thus, recalling (1.1), we have

d

dt
|Γ(t)| = d

dt

∫
Θ

√
g dθ =

∫
Θ

1

2
√
g
∂t detGdθ =

∫
Θ

1

2
√
g
2(detG)gij∂iψ̇τj dσ

= −
∫
Θ

∂i(
√
ggijτj)ψ̇ dθ = −

∫
Θ

1√
g
∂i(

√
ggijτj)ψ̇

√
g dθ = −

∫
Γ(t)

HΓv · nΓ dσ.

In the following, we use the following notation:

• ρ : Ω̇(t) → R+ = [0,∞) is the mass field,

• u : Ω̇(t) → R
N the velocity field,

• π : Ω̇(t) → R the pressure field,

• T : Ω̇(t) → {A ∈ GLN (R) | TA = A} the stress tensor field,

• D = 1
2 (

T∇u+∇u) : Ω̇(t) → {A ∈ GLN (R) | TA = A} the strain tensor field,
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• θ : Ω̇(t) → R+ the thermal field,

• e : Ω̇(t) → R+ the internal energy,

• q : Ω̇(t) → R
N the heat flux,

• f : Ω̇(t) → R
N the external force,

• r : Ω → R the heat supply.

For our modeling, we use the following Navier-Stokes-Fourier system of equations: for x ∈ Ω̇(t)

∂tρ+ div (ρu) = 0 conservation of mass; (1.4)

∂t(ρu) + div (ρu⊗ u)− divT = ρf conservation of momentum;
(1.5)

∂t(
ρ

2
|u|2 + ρe) + div ((

ρ

2
|u|2 + ρe)u)− div (Tu− q) = ρf · u+ ρr conservation of energy. (1.6)

Here, for any u = (u1, . . . , uN ), u⊗ u is the N ×N matrix whose (i, j) component is uiuj , and for any
w = (w1, . . . , wN ) and N × N matrix valued function S = (Sij) their divergence divw and divS are
defined by

divw =

N∑
j=1

∂jwj , divS = (

N∑
j=1

∂jS1j , . . . ,

N∑
j=1

∂jSNj).

From now on, we are concerend with the jump condition on Γ(t) and boundary condition on Γ0(t).
In the following we assume that v �= u on Γ(t), but v = u on Γ0(t).

First, we consider the mass conservation:

d

dt

∫
Ω̇(t)

ρ dx = 0. (1.7)

By (1.4) and the Reynolds transport theorem, we have

d

dt

∫
Ω̇(t)

ρ dx =

∫
Ω̇(t)

∂tρ dx+

∫
Γ(t)

[[ρ]]v · nΓ(t) dσ +

∫
Γ0(t)

ρu · nΓ0(t) dσ

= −
∫
Ω̇(t)

div (ρu) dx+

∫
Γ(t)

[[ρ]]v · nΓ(t) dσ +

∫
Γ0(t)

ρu · nΓ0(t) dσ

= −
∫
Γ(t)

[[ρ(u− v)]] · nΓ(t) dσ.

Thus, to obtain (1.7), it is sufficient to assume that

[[ρ(u− v)]] · nΓ(t) = 0 on Γ(t). (1.8)

In this case, ρ2(u2 − v) · nΓ(t) = ρ1(u1 − v) · nΓ(t) on Γ(t), so that the phase flux j is defined by

j = ρ2(u2 − v) · nΓ(t) = ρ1(u1 − v) · nΓ(t). (1.9)

• When j = 0, u2 · nΓ = u1 · nΓ, namely [[u]] · nΓ = 0. This case is called without phase transition.

• When j �= 0, [[ρ]] �= 0, j
ρ2

= u2 · nΓ(t) − v · nΓ(t),
j
ρ1

= u1 · nΓ(t) − v · nΓ(t), so that

j =
[[u]] · nΓ(t)

[[1/ρ]]
. (1.10)

• When j �= 0 and [[ρ]] = 0, j can not be decided by the velocity field u.
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The case j �= 0 is called with phase transition.
Next, we consider the conservation of momentum:

d

dt

∫
Ω̇(t)

ρu dx =

∫
Ω̇(t)

ρf dx. (1.11)

By (1.5) and the Reynolds transport theorem, we have

d

dt

∫
Ω̇(t)

ρu dx =

∫
Ω̇(t)

∂t(ρu) dx+

∫
Γ(t)

[[ρu]]v · nΓ(t) dσ +

∫
Γ0(t)

(ρu)u · nΓ0(t) dσ

=

∫
Ω̇(t)

ρf dx−
∫
Ω̇(t)

div (ρu⊗ u) dx+

∫
Ω̇(t)

divT dx+

∫
Γ(t)

[[ρu]]v · nΓ(t) dσ +

∫
Γ0(t)

(ρu)u · nΓ0(t) dσ

=

∫
Ω̇(t)

ρf dx−
∫
Γ(t)

([[ρu⊗ (u− v)− [[T]])nΓ(t) dσ +

∫
Γ0(t)

TnΓ0(t) dσ.

Thus, in order that d
dt

∫
Ω̇(t)

ρu dx = 0 holds, it is sufficient to assume that

[[ρu⊗ (u− v)−T]]nΓ(t) = div ΓTΓ on Γ(t),

TnΓ0(t) = 0 on Γ0(t)
(1.12)

Here, TΓ and TΓ0
are stress tensor fields on Γ(t) and Γ0(t), respectively. We assume that div Γ0

TΓ0
= 0

on Γ0(t) and that div ΓTΓ = −σHΓnΓ(t), where σ is a non-negative constant describing the coefficient
of surface tension.

We represent the interface condition (1.12) with the help of the phase flux as follows:

[[ρu(u− v)]]nΓ(t) = ρ1u1(u1 − v) · nΓ(t) − ρ2u2(u2 − v) · nΓ(t) = j[[u]].

Moreover, by (1.4) we rewrite (1.5) as follows:

∂t(ρu) + div (ρu⊗ u) = u(∂tρ+ div (ρu)) + ρ(∂tu+ u · ∇u) = ρ(∂tu+ u · ∇u).

Finally, we have

ρ(∂tu+ u · ∇u)− divT = ρf in Ω̇(t),

j[[u]]− [[TnΓ(t)]] = −σHΓnΓ(t) on Γ(t),

TnΓ0(t) = 0 on Γ0(t).

(1.13)

Here and in the following, for any N-vector valued functions w = (w1, . . . , wN ), z = (z1, . . . , zN ) and

scalor function f , we set w ·∇f =
∑N

j=1 wj∂jf and w ·∇z is the N vector function whose i th component
is w · ∇zi.

Next, we consider the balance of energy. We look for a sufficient condition to obtain the conservation
of energy:

d

dt
(

∫
Ω̇(t)

(
ρ

2
|u|2 + ρe) dx+ σ|Γ(t)|) =

∫
Ω̇(t)

(ρf · u+ ρr) dx. (1.14)

By (1.6) and the Reynolds transport theorem, we have

d

dt

∫
Ω̇(t)

(
ρ

2
|u|2 + ρe) dx

=

∫
Ω̇(t)

∂t(
ρ

2
|u|2 + ρe) dx+

∫
Γ(t)

[[
ρ

2
|u|2 + ρe]]v · nΓ(t) dσ +

∫
Γ0(t)

(
ρ

2
|u|2 + ρe)u · nΓ0(t) dσ

=

∫
Ω̇(t)

(ρf · u+ ρr) dx−
∫
Ω̇(t)

div (
ρ

2
|u|2 + ρe)u) dx+

∫
Ω̇(t)

div (Tu− q) dx

+

∫
Γ(t)

[[
ρ

2
|u|2 + ρe]]v · nΓ(t) dσ +

∫
Γ0(t)

(
ρ

2
|u|2 + ρe)u · nΓ0(t) dσ

=

∫
Ω̇(t)

(ρf · u+ ρr) dx−
∫
Γ(t)

[[(
ρ

2
|u|2 + ρe)(u− v)− (Tu− q)]] · nΓ(t) dσ +

∫
Γ0(t)

(Tu− q) · nΓ0(t) dσ.
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On the other hand, by (1.3) we have

d

dt
(

∫
Ω̇(t)

(
ρ

2
|u|2 + ρe) dx+ σ|Γ(t)|)−

∫
Ω̇(t)

(ρf · u+ ρr) dx

= −
∫
Γ(t)

([[(
ρ

2
|u|2 + ρe)(u− v)− (Tu− q)]] · nΓ(t) +HΓv · nΓ(t)) dσ +

∫
Γ0(t)

(Tu− q) · nΓ0(t) dσ.

Thus, in order to obtain (1.14), it is sufficient to assume that

[[(
ρ

2
|u|2 + ρe)(u− v)− (Tu− q)]] · nΓ(t) + σHΓv · nΓ(t) = 0 on Γ(t),

(Tu− q) · nΓ0(t) = 0 on Γ0(t).
(1.15)

Since TnΓ0(t) = 0 on Γ0(t), we assume that q · nΓ0(t) = 0 on Γ0(t). Using (1.9) and (1.13), we have

[[
ρ

2
|u|2(u− v)]] · nΓ(t) =

ρ1
2
|u1|2(u1 − v) · nΓ(t) −

ρ2
2
|u2|2(u2 − v) · nΓ(t)

=
j

2
|u1 − v + v|2 − |u2 − v + v|2) = j

2
(|u1 − v|2 + 2u1 · v − |u2 − v|2 − 2u2 · v)

=
j

2
([[|u− v|2]]− 2[[u]] · v) = j

2
[[|u− v|2]] + j[[u]] · v

=
j

2
[[|u− v|2]] + [[TnΓ(t)]] · v − σHΓv · nΓ(t)

Since [[ρe(u− v)]] · nΓ(t) = j[[e]], the first equation of (1.15) becomes:

− σHΓv · nΓ(t) =
j

2
[[|u− v|2]] + [[Tv]] · nΓ(t) − σHΓv · nΓ(t) + j[[e]]− [[Tu]] · nΓ(t) + [[q]] · nΓ(t)

Thus, we have

j

2
[[|u− v|2]] + j[[e]]− [[T(u− v)]] · nΓ(t) + [[q]] · nΓ(t) = 0.

Moreover, using (1.4) and (1.5), we rewrite (1.6) as follows:

∂t(
ρ

2
|u|2 + ρe) + div ((

ρ

2
|u|2 + ρe)u)− div (Tu− q)

= (
1

2
|u|2 + e)∂tρ+ ρ(u · ∂tu+ ∂te) + (

1

2
|u|2 + e)div (ρu) + ρu · (u · ∇u+∇e)

− (divT) · u−T : ∇u+ div q

= (
1

2
|u|2 + e)(∂tρ+ div (ρu)) + u · (ρ(∂tu+ u · ∇u)− divT) + ρ(∂te+ u · ∇u)−T : ∇u+ div q.

Here, we have set T : ∇u =
∑N

i,j=1 Tij∂iuj . Thus, we have

ρ(∂te+ u · ∇e) + divq−T : ∇u = ρr.

Summing up, we have obtained

ρ(∂te+ u · ∇e) + divq−T : ∇u = ρr in Ω̇(t),
j

2
[[|u− v|2]] + j[[e]]− [[T(u− v)]] · nΓ(t) + [[q]] · nΓ(t) = 0 on Γ(t),

q · nΓ0(t) = 0 on Γ0(t).

(1.16)

The interface condition is still not enough. To find one more condition, we consider the entropy. For
this purpose, we introduce

Constitutive Laws in the Phases
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• Newton’s law: The stress tensor T is given by

T = 2μ(ρ, θ)D(u) + (λ(ρ, θ)− μ(ρ, θ))divuI− πI

Here, I is the N × N identity matrix, μ and λ are in general C∞ functions with respect to
(ρ, θ) ∈ (0,∞)× (0,∞) and we assume that

μ > 0, λ ≥ N − 2

N
μ. (1.17)

But, to prove local well-posedness, it suffices to assume that μ > 0 and λ > 0.

• Fourier’s law: The heat flux q is given by

q = −d(ρ, θ)∇θ. (1.18)

Here, d(ρ, θ) is a positive C∞ function with respect to (ρ, θ) ∈ (0,∞)× (0,∞).

• the first law of thermodynamics: For the internal energy e and the entropy η for the unit mass,

de = θdη +
π

ρ2
dρ (1.19)

• If we define the free energy ψ for the unit mass by

ψ = e− θη, (1.20)

then, we have

dψ = de− θdη − ηdθ = −ηdθ + π

ρ2
dρ.

Thus,

η = −∂ψ
∂θ
,

π

ρ2
=
∂ψ

∂ρ
(1.21)

• specific heat: κv = ∂e
∂θ is obtained by

κv =
∂e

∂θ
=
∂

∂θ
(ψ + θη) =

∂ψ

∂θ
+ η + θ

∂η

∂θ
= −θ∂

2ψ

∂θ2
. (1.22)

We assume that e = e(ρ, θ) and η(ρ, θ) are C∞ functions with respect to (ρ, θ) ∈ (0,∞) × (0,∞)
and that κv is a positive C∞ function with respect to (ρ, θ) ∈ (0,∞)× (0,∞).

Next, we consider the law of entropy increase:

dΦ

dt
≥ 0 (1.23)

with entropy: Φ =
∫
Ω̇(t)

ρη dx. By the first law of thermodynamics (1.19) and (1.4), we have

∂te+ u · ∇e = ∂e

∂η
(∂tη + u · ∇η) + ∂e

∂ρ
(∂tρ+ u · ∇ρ)

= θ(∂tη + u · ∇η)− π

ρ2
ρdivu = θ(∂tη + u · ∇η)− π

ρ
divu

In addition, since
T : ∇u = 2μ|D(u)|2 + (λ− μ)(divu)2 − πdivu

by the first equation of (1.16) we have

ρθ(∂tη + u · ∇η)− div (d∇θ)− (2μ|D(u)|2 + (λ− μ)(divu)2) = ρr.
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On the other hand, we have

∂t(ρη) + div (ρηu) = η(∂tρ+ div (ρu)) + ρ(∂tη + u · ∇η) = ρ(∂tη + u · ∇η).

In the following, we assume that θ > 0. Combining these two equations, we have

∂t(ρη) + div (ρηu) =
1

θ
{div (d∇θ) + 2μ|D(u)|2 + (λ− μ)(divu)2 + ρr}. (1.24)

When r = 0, we look for a sufficient condition to obtain (1.23). By the Reynolds transport theorem,
(1.24) and the divergence theorem of Gauss, we have

d

dt
Φ =

d

dt

∫
Ω̇(t)

ρη dx =

∫
Ω̇(t)

∂t(ρη) dx+

∫
Γ(t)

[[ρη]]v · nΓ(t) dσ +

∫
Γ0(t)

ρηu · nΓ0(t) dσ

= −
∫
Ω̇(t)

div (ρηu) dx+

∫
Ω̇(t)

1

θ
div (d∇θ) dx+

∫
Ω̇(t)

(2μ|D(u)|2 + (λ− μ)(divu)2) dx

+

∫
Γ(t)

[[ρη]]v · nΓ(t) dσ +

∫
Γ0(t)

ρηu · nΓ0(t) dσ

= −
∫
Γ(t)

[[(ρη)(u− v)]] · nΓ(t) dσ +

∫
Γ(t)

[[
d

θ
∇θ]] · nΓ(t) dσ +

∫
Γ0(t)

1

θ
(d∇θ · nΓ0(t)) dσ

+

∫
Ω̇(t)

{d|∇θ|
2

θ2
+ 2μ|D(u)|2 + (λ− μ)(divu)2} dx.

Thus, to obtain (1.23), first we have the following sufficient conditions:

[[(ρη)(u− v)− d

θ
∇θ]] · nΓ(t) = 0 on Γ(t),

d∇θ · nΓ0(t) = 0 on Γ0(t).
(1.25)

Moreover,

(divu)2 =
( N∑
j=1

∂iui)
)2

=
N∑

i,j=1

(∂iui)(∂juj) ≤ N
N∑
j=1

(∂juj)
2 = N

N∑
i=1

Djj(u) ≤ N |D(u)|2. (1.26)

Since λ− N−2
N μ ≥ 0 as follows from (1.17), we have

2μ|D(u)|2 + (λ− μ)(divu)2 ≥ (
2

N
μ+ λ− μ)(divu)2 = (λ− N − 2

N
μ)(divu)2 ≥ 0,

which is the reason why we need to assume that λ ≥ N−2
N μ in (1.17).

Next, assuming that [[θ]] = 0 and using (1.9), we rewrite the first condition of (1.25). We observe
that

0 = [[(ρη)(u− v)− d

θ
∇θ]] · nΓ(t)

= (ρ1η1)(u1 − v) · nΓ(t) − (ρ2η2)(u2 − v) · nΓ(t) −
(d1∇θ1 − d2∇θ2) · nΓ(t)

θ

=
j(η1 − η2)θ − (d1∇θ1 − d2∇θ2) · nΓ(t)

θ
=

1

θ
(j[[θη]]− [[d∇θ]] · nΓ(t))

Thus, we have
[[θ]] = 0, j[[θη]]− [[d∇θ]] · nΓ(t) = 0 on Γ(t) (1.27)

the second formula of which is called the Stefan law. In particular, when j = 0, this is the usual jump
condition [[d∇θ]] · nΓ(t) = 0 on Γ(t).
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Finally, assuming that j �= 0 and [[ρ]] �= 0, and using (1.27), we rewrite (1.16). Let τi (i = 1, . . . , N−1)

be the tangent vectors of Γ(t), and therefore we write u−v = ((u−v) ·nΓ(t))nΓ(t)+
∑N−1

i=1 ((u−v) ·τi)τi.
Using the orthogonality of {τ1, . . . , τN−1,nΓ(t)}, we have

|u− v|2 = |(u− v) · nΓ(t)|2 +
N−1∑
i=1

|(u− v) · τi|2.

We assume that
[[u · τi]] = [[(u− v) · τi]] = 0. (1.28)

Then, by (1.9) we have

[[
1

2
|u− v|2]] = 1

2
[[|(u− v) · nΓ(t)|2]] =

1

2
(|(u1 − v) · nΓ(t)|2 − |(u2 − v) · nΓ(t)|2)

=
1

2
((

j

ρ1
)2 − (

j

ρ2
)2) =

j2

2
[[
1

ρ2
]],

which implies that
j

2
|u− v|2]] = j3[[

1

2ρ
]].

Since e = ψ + θη, we have [[e]] = [[ψ]] + [[θη]]. Thus, using the Stefan law (1.27), we rewrite the jump
condition in (1.16) as follows:

0 =
j

2
[[|u− v|2]]− [[u− v)TnΓ(t)]] + j[[e]]− [[d∇θ]] · nΓ(t)

= j3[[
1

2ρ2
]]− [[(u− v)TnΓ(t)]] + j[[ψ]] + j[[θη]]− j[[θη]]

= j3[[
1

2ρ2
]]− [[(u− v)TnΓ(t)]] + j[[ψ]].

Moreover, the second term is rewritten as follows:

[[(u− v)TnΓ(t)]] = [[(u− v) · nΓ(t))nΓ(t)TnΓ(t)]] +
N−1∑
i=1

[[((u− v) · τi)τiTnΓ(t)]]

= ((u1 − v) · nΓ(t))nΓ(t)T1nΓ(t) − ((u2 − v) · nΓ(t))nΓ(t)T2nΓ(t)

+
N−1∑
i=1

((u1 − v) · τi)τiT1nΓ(t) − ((u2 − v) · τi)τiT2nΓ(t)

By (1.9) we have

((u1 − v) · nΓ(t))nΓ(t)T1nΓ(t) − ((u2 − v) · nΓ(t))nΓ(t)T2nΓ(t) = j(
nΓ(t)T1nΓ(t)

ρ1
− nΓ(t)T2nΓ(t)

ρ2
)

= j[[
1

ρ
nΓ(t)TnΓ(t)]].

On the other hand, by (1.13) and (1.28), we have

((u1 − v) · τi)τiT1nΓ(t) − ((u2 − v) · τi)τiT2nΓ(t) = (u1 − v) · τi)τi · [[TnΓ(t)]]

= (u1 − v) · τi)(jτi · [[u]]− σHΓ(τi · nΓ(t))) = 0.

Here, we have used the formula [[u]] = [[u · nΓ(t)]]nΓ(t) which follows from (1.28).
Summing up, we have obtained

0 = j([[ψ]] + j2[[
1

2ρ2
]]− [[

1

ρ
nΓ(t)TnΓ(t)]]).
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Since j �= 0, finally we arrive at the condition:

[[ψ]] + j2[[
1

2ρ2
]]− [[

1

ρ
nΓ(t)TnΓ(t)]] = 0 on Γ(t). (1.29)

This is called the generalized Gibbs-Thomson law.
Next, we calculate VΓ := v · nΓ(t). By (1.9) we have v · nΓ(t) = u1 · nΓ(t) − j

ρ1

. When j = 0, we have

[[u]] = 0, so that v · nΓ(t) = u · n.
When j �= 0 and [[ρ]] �= 0 by (1.10) we have j =

[[u]]·nΓ(t)

[[1/ρ]] , so that

v · nΓ(t) = u1 · nΓ(t) −
j

ρ1

= u1 · nΓ(t) −
1

ρ1

u1 · nΓ(t) − u2 · nΓ(t)

1/ρ1 − 1/ρ2
= u1 · nΓ(t) −

ρ2(u1 · nΓ(t) − u2 · nΓ(t))

ρ2 − ρ1
=
ρ2u1 · nΓ(t) − ρ1u1 · nΓ(t) − ρ2u1 · nΓ(t) + ρ2u2 · nΓ(t)

ρ2 − ρ1

=
[[ρu]] · nΓ(t)

[[ρ]]
.

Summing up, we have obtained

VΓ := v · nΓ(t) = u · nΓ(t) (j = 0),

VΓ := v · nΓ(t) =
[[ρu]] · nΓ(t)

[[ρ]]
(j �= 0 and [[ρ]] �= 0).

(1.30)

Next, we consider the case where j �= 0 and [[ρ]] = 0. In this case, [[u]] · nΓ(t) = 0, which combined
with (1.28) furnishes that [[u]] = 0, so that (1.13) is written as follows:

[[TnΓ(t)]] = σHΓnΓ(t) on Γ(t).

To derive (1.29), we assume that [[ρ]] �= 0, so that we reconsider the second condition of (1.16). By
[[u]] = 0, [[|u − v|2]] = 0. By the Stefan law (1.27), we have j[[e]] + [[q]] · nΓ(t) = j[[ψ]]. By (1.13) we
have [[TnΓ(t)]] = σHΓnΓ(t), so that

[[(u− v)TnΓ(t)]] = (u1 − v) ·T1nΓ(t) − (u2 − v) ·T1nΓ(t) = (u1 − v) · [[TnΓ(t)]] = (u1 − v) · σHΓnΓ(t)

= j
σ

ρ1
HΓ.

Dividing the above formula by j �= 0 and using (1.16), we have

[[ψ]]− σ

ρ1
HΓ = 0. on Γ(t). (1.31)

Finally, using the facts ∂e
∂θ = κv and ∂tρ+ u · ∇ρ = −ρdivu we rewrite (1.6) as follows:

ρr + (2μ|D(u)|2 + (λ− μ)(divu)2)− πdivu+ div (d∇θ) = ρ(∂te+ u · ∇e)

= ρ(
∂e

∂θ
∂tθ +

∂e

∂ρ
∂tρ+

∂e

∂θ
u · ∇θ + ∂e

∂ρ
u · ∇ρ)

= ρκ(∂tθ + u · ∇θ)− ρ2 ∂e
∂ρ

divu.

Thus, we have

ρκv(∂tθ + u · ∇θ)− div (d∇θ)− (2μ|D(u)|2 + (λ− μ)(divu)2) + (π − ρ2 ∂e
∂ρ

)divu = ρr. (1.32)

Summing up, we have the following Model equations:
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Equations in Ω̇(t)

∂tρ+ div (ρu) = 0,

ρ(∂tu+ u · ∇u)− divT = ρf, (1.33)

ρκv(∂tθ + u · ∇θ)− div (d∇θ)− (2μ|D(u)|2 + (λ− μ)(divu)2) + (π − ρ2 ∂e
∂ρ

)divu = ρr.

Boudary condition on Γ0(t)

TnΓ0(t) = 0, d∇θ · nΓ0(t) = 0 on Γ0(t). (1.34)

Interface condition on Γ(t).

• When j = 0,

[[u]] = 0, [[TnΓ(t)]] = σHΓnΓ(t),

[[θ]] = 0, [[d∇θ · nΓ(t)]] = 0,

VΓ := v · nΓ(t) = u · nΓ(t).

(1.35)

• When j �= 0 and [[ρ]] �= 0,

TnΓ(t)
[[u]] = 0, j[[u]]− [[TnΓ]] = −σHΓnΓ(t), [[ψ]] + j2[[

1

2ρ2
]]− [[

1

ρ
nΓ(t)TnΓ(t)]] = 0,

[[θ]] = 0, j[[θη]]− [[d∇θ · nΓ(t)]] = 0,

VΓ := v · nΓ(t) =
[[ρu]] · nΓ(t)

[[ρ]]
,

j =
[[u]] · nΓ(t)

[[1/ρ]]
.

(1.36)

Here, TnΓ(t)
w = w− (w ·nΓ(t))nΓ(t) for any N vector w = (w1, . . . , wN ) (the tangential component

of w along nΓ(t)).

• When j �= 0 and ρ = ρ1 = ρ2 (constants),

[[u]] = 0, [[TnΓ]] = σHΓnΓ(t),

[[θ]] = 0, j[[θη]]− [[d∇θ · nΓ(t)]] = 0, ρ[[ψ]]− σHΓ = 0,

VΓ := v · nΓ(t) = u · nΓ(t) − j/ρ.
(1.37)

Remark 2. Assuming that Ω− = Ω and Ω+ = ∅, we have the one phase problem. In this case, as
boundary conditions on Γ0(t), we have

TnΓ0(t) = σHΓ0
nΓ(t), d∇θ · nΓ0(t) = 0 on Γ0(t).

2 Problem

In this talk, we consider the compressible-incompressible phase transition problem in R
N with nearly

flat interface. Let h0(x
′) be a function with respect to x′ = (x1, . . . , xN−1) and we set

Ω± = {x = (x1, . . . , xN ) ∈ R
N | ±xN > h0(x′) for x′ ∈ R

N−1},
Γ = {x ∈ R

N | xN = h(x′) for x′ ∈ R
N−1}.

In this case, Ω = R
N and Γ0 = ∅. Let h(x′, t) be a unknown function and the time evolution of domains

Ω± and the surface Γ is given by

Ω±(t) = {x = (x1, . . . , xN ) ∈ R
N | ±(xN − h(x′, t)) > 0 for x′ ∈ R

N−1},
Γ(t) = {x ∈ R

N | xN = h(x′, t) for x′ ∈ R
N−1}.

(2.1)
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In this case, nΓ(t) = (−∇′h, 1)/
√
1 + |∇′h|2.

We consider the following problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρ+(∂tu+ + u+ · ∇u+)−DivT+ = 0, ∂tρ+ + div (ρ+u+) = 0 in Ω+(t),

ρ+κ+(∂tθ+ + u+ · ∇θ+)− div (d+∇θ+)−T+ : ∇u+ − ρ2 ∂e+
∂ρ divu+ = 0 in Ω+(t),

ρ∗−(∂tu− + u− · ∇u−)−DivT− = 0, divu− = 0 in Ω−(t),

ρ∗−κ−(∂tθ− + u− · ∇θ−)− div (d−∇θ−)−T− : ∇u− = 0 in Ω−(t),

(2.2)

subject to the jump conditions: for x ∈ Γ(t) and t > 0,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[[
1

ρ
]]j2nΓ − [[TnΓ]] = −σHΓnΓ, TnΓ(t)

[[u]] = 0,

j[[θη]]− [[d
∂θ

∂nΓ
]] = 0, [[θ]] = 0,

[[ψ]] + [[
1

2ρ2
]]j2 − [[ 1ρnΓ ·TnΓ]] = 0, ∂th =

[[ρu]] · (−∇′h, 1)
[[ρ]]

,

j =
[[ρu]]nΓ(t)

[[ρ]]
,

(2.3)

and the initial conditions:

ρ+|t=0 = ρ∗+ + ρ0+ in Ω+, (u±, θ±)|t=0 = (u0±, θ∗ + θ0±) in Ω±, h|t=0 = h0 on R
N−1. (2.4)

Here, ρ∗± are positive constants describing the reference mass densities of Ω±, θ∗ is a positive constant,
σ is a positive constant describing the coefficient of the surface tension, T± = S± − π±I with

S+ = S+(u+, ρ+, θ+)) = μ+D(u+) + (λ+ − μ+)divuI, S− = S−(u,θ−) = μ−D(u−),

and μ+ = μ+(ρ+, θ+), λ+ = λ+(ρ+, θ+) and μ− = μ−(θ−) are viscosity coefficient. Several quantities
are derived from the specific free energy ψ+ = ψ+(ρ, θ) and ψ− = ψ−(θ) as follows:

• e± = ψ± + θη± the internal energy,

• η± = −∂ψ±
∂θ

the entropy,

• κ± = −θ∂
2ψ±
∂θ2

the heat capacity.

Here, ψ+(θ, ρ) is a real valued C∞ function with respect to (ρ, θ) ∈ (0,∞) × (0,∞) and ψ−(θ) a real
valued C∞ function with respect to θ ∈ (0,∞). We assume that

κ+(ρ, θ) > 0 for any (ρ, θ) ∈ (0,∞)× (0,∞), κ−(θ) > 0 for any θ ∈ (0,∞).

We also assume that π+ is given by π+ = P+(ρ, θ), where P+ is some C∞ function with respect to

(ρ, θ) ∈ (0,∞) × (0,∞) such that
∂P+

∂ρ
> 0 for any (ρ, θ) ∈ (0,∞) × (0,∞). Finally, d+ = d+(ρ, θ),

μ+ = μ+(ρ, θ), λ+ = λ+(ρ, θ) are positive C∞ functions with respect to (ρ, θ) ∈ (0,∞) × (0,∞), and
d− = d−(θ) and μ− = μ−(θ) are positive C∞ functions with respect to θ ∈ (0,∞).

I will talk about the local wellposedness of problem problem (2.2), (2.3) and (2.4). To state our main
result, we transform Γ(t) to the flat interface. Set

R
N
± = {x = (x1, . . . , xN ) ∈ R

N | ±xN > 0}, R
N
0 = {x ∈ R

N | xN = 0}.

We transfer the problem given in domains Ω±(t) to that in Ṙ
N = R

N
+ ∪RN

− with interface RN
0 . Let h(x′, t)

be a function appearing in the definition of Γ(t) in (2.1). Let H(x, t) be a solution to the equations:
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(1−Δ)H = 0 in R
N with H|xN=0 = h(x′, t), where ΔH =

∑N
j=1 ∂

2
jH. To prove the local well-posedness,

we assume that h0 is small enough, so that we may assume that

1 +
∂

∂xN
H(x, t) ≥ 1

2
for any x ∈ R

N and t ∈ (0, T ). (2.5)

If we consider the transformation:

yN = xN +H(x, t), yj = xj (j = 1, . . . , N − 1), (2.6)

then by (2.5) Ω±(t) and Γ(t) are transformed to R
N
± and R

N
0 , respectively, because yN = h(y′, t) when

xN = 0 and ∂yN

∂xN
= 1 + ( ∂H

∂xN
)(x, t) ≥ 1

2 . Let u±, ρ+, π− and θ± satisfy problem (2.2), (2.3) and (2.4).
Set

û±(x, t) = u±(x′, xN +H(x, t), t), ρ̂+(x, t) = ρ+(x
′, xN +H(x, t), t)− ρ∗+,

π̂−(x, t) = π−(x′, xN +H(x, t), t)− π∗−, θ̂±(x, t) = θ±(x′, xN +H(x, t), t)− θ∗,
μ∗+ = μ+(ρ∗+, θ∗), λ∗+ = λ+(ρ∗+, θ∗), μ∗− = μ−(θ∗),
κ∗+ = κ+(ρ∗+, θ∗), κ∗− = κ−(θ∗), d∗+ = d+(ρ∗+, θ∗), d∗− = d−(θ∗),

μ̂+ = μ+(ρ̂+ + ρ∗+, θ̂+ + θ∗)− μ+(ρ∗+, θ∗), μ̂− = μ−(θ̂− + θ∗)− μ−(θ∗),
λ̂+ = λ+(ρ̂+ + ρ∗+, θ̂+ + θ∗)− λ+(ρ∗+, θ∗),
κ̂+ = κ+(ρ̂+ + ρ∗+, θ̂+ + θ∗)− κ+(ρ∗+, θ∗), κ̂− = κ−(θ̂− + θ∗)− κ−(θ∗),
d̂+ = d+(ρ̂+ + ρ∗+, θ̂+ + θ∗)− d+(ρ∗+, θ∗), d̂− = d−(θ̂− + θ∗)− d−(θ∗).

Setting H0 = ∂tH, Hj = ∂jH (j = 1, . . . , N), we have

(∂tf)(x
′, xN +H(x, t), t) = ∂tf̂(x, t)−

H0

1 +HN
∂N f̂(x, t),

(∂jf)(x
′, xN +H(x, t), t) = ∂j f̂(x, t)−

Hj

1 +HN
∂N f̂(x, t) (j = 1, . . . , N).

(2.7)

In the following, we set

Kj =
Hj

1 +HN
(j = 0, 1, . . . , N), K = (K1, . . . ,KN ), K0 = (K0,K).

By (2.7) we have

∇π− = Q∇π̂− =

⎛⎜⎜⎜⎝
1 0 · · · 0 K1

...
...

...
0 0 · · · 1 KN−1

0 0 · · · 0 1
1+HN

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
∂1π̂−
...

∂N π̂−

⎞⎟⎟⎟⎠ ,
and Q−1 is given by

Q−1 =

⎛⎜⎜⎜⎝
1 0 · · · 0 −H1

...
...

...
0 0 · · · 1 −HN−1

0 0 · · · 0 1 +HN

⎞⎟⎟⎟⎠ = I+Q1 with Q1 =

⎛⎜⎜⎜⎝
0 · · · 0 −H1

...
. . .

...
...

0 · · · 0 −HN−1

0 · · · 0 HN

⎞⎟⎟⎟⎠ .
By (2.7) we have

divu± = div û± + Vdiv (û±, H)

=
1

1 +HN

{
div û± − f−(û±, H)

}
=

1

1 +HN

{
div û± − div f−(û±, H)

} (2.8)
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with

Vdiv (û±, H) = −
N∑
j=1

Kj∂N û±j , f−(û±, H) =

N−1∑
j=1

(HN∂j û±j −Hj∂N û±j),

f−(û±, H) = −(HN û±1, . . . , HN û±N−1,−
N−1∑
j=1

Hj û±j).

For any N ×N matrix of functions G = (g1, . . . ,gN ), by (2.8) we have

DivG = Div Ĝ+VDiv (Ĝ, H) (2.9)

with VDiv (Ĝ, H) = (Vdiv (ĝ1, H), . . . , Vdiv (ĝN , H)). Moreover, we set

Dij(u±) = Dij(û±) + VDij (û±, H), D(u±) = D(û±) +VD(û±, H), (2.10)

where VDij (û±, H) = −(Ki∂N û±j+Kj∂N û±i) andD(û±, H) is the N×N matrix whose (i, j) component
is VDij

(û±, H).
Under these preparations, we see easily that problem (2.2), (2.3) and (2.4) is transformed to the

following problem:⎧⎪⎨⎪⎩
∂tρ̂+ + v+ · ∇ρ̂+ + ρ̂+(div û+ + Vdiv (û+, H)) = 0

ρ∗+∂tû+ −DivS∗+(û+) = F+

ρ∗+κ∗+∂tθ̂+ − d∗+Δθ̂+ = Fθ+

in R
N
+ × (0, T ),

⎧⎪⎨⎪⎩
ρ∗−∂tû− −DivS∗−(û−) +∇π̂− = F−
div û− = f− = div f−

ρ∗−κ∗−∂tθ̂− − d∗−Δθ̂− = Fθ−

in R
N
− × (0, T ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ∗−DiN (û−)|− − μ∗+DiN (û+)|+ = Gi (i = 1, . . . , N − 1)

(μ∗−DNN (û−)− π̂−)|− − (μ∗+DNN (û+) + (λ∗+ − μ∗+)div û+)|+ − σΔ′H = GN

(μ∗−DNN (û−)− π̂−)|−
ρ∗−

− μ∗+DNN (û+) + (λ∗+ − μ∗+)div û+)|+
ρ∗+

= GN+1

û−i|− − û+i|+ = Ki (i = 1, . . . , N − 1)

θ̂−|− − θ̂+|+ = 0, d∗+∂N θ̂−|− − d∗+∂N θ̂|+ = Gθ

∂tH −
( ρ∗−
ρ∗− − ρ∗+

û−N |− − ρ∗+
ρ∗− − ρ∗+

û+N |+
)
= Gh

on R
N
0 × (0, T ),

ρ̂+|t=0 = ρ̂+0 in R
N
+ , (û±, θ̂±)|t=0 = (û0±, θ̂0±) in R

N
± , H|t=0 = H0 on R

N
0 (2.11)

with

v+ = (û+1, . . . , û+N−1, û+N −K0 −
N∑
j=1

Kj û+j),

S∗+(u) = μ∗+D(u) + (λ∗+ − μ∗+)divuI, S∗−(u) = μ∗−D(u),

ρ̂0+(x) = ρ0+(x
′, xN +H0(x)), û0±(x) = u0±(x′, xN +H0(x)), θ̂0±(x) = θ0±(x′, xN +H0(x)).

(2.12)

Here, f |±(x0) = lim x→x0

x∈Ω±(t)
f(x) for x0 ∈ R

N
0 . Moreover, the right-hand sides in (2.11) are defined by

the following formulas:

F+ = F+(ρ̂+, û+, H)

= −ρ̂+{∂tû+ −K0∂N û+ + û+ · ∇û+ − (û+ ·K)∂N û+}
+ ρ∗+{K0∂N û+ − û+ · ∇û+ + (û+ ·K)∂N û+}
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+Div {μ̂+(D(û+) +VD(û+, H)) + (λ̂+ − μ̂+)(div û+ + Vdiv (û+, H))I}
+VDiv ((μ̂+ + μ∗+)(D(û+) +VD(û+, H)) + (λ̂+ + λ∗+ − (μ̂+ + μ∗+))(div û+ + Vdiv (û+, H))I)

+ μ∗+DivVD(û+, H) + (λ∗+ − μ∗+)∇Vdiv (û+, H)} −Q∇P+(ρ̂+ + ρ∗+, θ̂+ + θ∗),

Fθ+ = Fθ+(ρ̂+, û+, θ̂+, H)

= −((ρ̂+ + ρ∗+)(κ̂+ + κ∗+)− ρ∗+κ∗+)(∂tθ̂+ −K0∂N θ̂+ + û+ · ∇θ̂+ − (û+ ·K)∂N θ̂+)

+ ρ∗+κ∗+(K0∂N θ̂+ − û+ · ∇θ̂+ + (û+ ·K)∂N θ̂+) +
N∑
j=1

∂j(d̂+(∂j θ̂+ −Kj∂N θ̂+))

− d∗+
N∑
j=1

∂j(Kj∂N θ̂+) +
N∑
j=1

Kj∂N ((d̂+ + d∗+)(∂j θ̂+ −Kj∂N θ̂+))

+ 2(μ̂+ + μ∗+)|(D(û+) +VD(û+, H)|2 + (λ̂+ + λ∗+ − (μ̂+ + μ∗+))(div û+ + Vdiv (û+, H))2

+ (P+(ρ̂+ + ρ∗+, θ̂+ + θ∗)− (ρ̂+ + ρ∗+)2
∂e+
∂ρ

(ρ̂+ + ρ∗+, θ̂+ + θ∗))(div û+ + Vdiv (û+, H)),

F− = F−(û−, H)

= −ρ∗−Q1(∂tû− − μ∗−DivD(û−))− (I +Q1)((K0∂N û− − û− · ∇û− + (û− ·K)∂N û−)
+ (I +Q1){Div (μ̂−(D(û−) +VD(û−, H)) +VDiv ((μ̂− + μ∗−)(DivD(û−) +VD(û−, H)))},

f=f−(û−, H) =

N−1∑
j=1

{HN∂j û−j −Hj∂N û−j),

f− = f−(û−, H) = −(HN û−1, . . . , HN û−N−1,−
N−1∑
j=1

Hj û−j),

Fθ− = Fθ−(û−, θ̂−, H)

= −ρ∗−κ̂−(∂tθ̂− −K0∂N θ̂− + û− · ∇θ̂− − (û− ·K)∂N θ̂−)

+ ρ∗−κ∗−(K0∂N θ̂− − û− · ∇θ̂− + (û− ·K)∂N θ̂−) +
N∑
j=1

∂j(d̂+(∂j θ̂− −Kj∂N θ̂−))

− d∗−
N∑
j=1

∂j(Kj∂N θ̂−) +
N∑
j=1

Kj∂N ((d̂− + d∗−)(∂j θ̂− −Kj∂N θ̂−))

+ 2(μ̂− + μ∗−)|(D(û−) +VD(û−, H)|2,
Gi = Gi(ρ̂+, û±, H)

= −{μ̂−(DiN (û−) + VDiN
(û−, H))|− − μ̂+(DiN (û+) + VDiN

(û+, H))|+}
− (μ∗−VDiN (û−, H)|− − μ∗+VDiN (û+, H)|+)

+
N−1∑
j=1

(∂jH){(μ̂− + μ∗−)(Dij(û−) + VDij
(û−, H))|− − (μ̂+ + μ∗+)(Dij(û+) + VDij

(û+, H))|+}

−
N−1∑
j=1

(∂iH)(∂jH){(μ̂− + μ∗−)(Dij(û−) + VDij (û−))|− − (μ̂+ + μ∗+)(Dij(û+) + VDij (û+))|+},

GN = GN (ρ̂+, û±, H)

= −{μ̂−(DNN (û−) + VDNN (û−, H))|− − μ̂+(DNN (û+) + VDNN (û+, H))|+}
− (μ∗−VDNN (û−)|− − μ∗+VDNN (û+, H)|+)− (λ̂+ − μ̂+)(div û+ + Vdiv (û+, H))|+
+ (λ∗+ − μ∗+)Vdiv (û+, H)|+ − (P+(ρ̂+ + ρ∗+, θ̂+ + θ∗ − P+(ρ∗+, θ∗))|+
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+
N−1∑
j=1

(∂jH)((μ̂− + μ∗−)(DNj(û−) + VDNj
(û−, H))|− − (μ̂+ + μ∗+)(DNj(û+) + VDNj

(û+, H))|+

+ σ
( 1√

1 + |∇′H|2
− 1

)
Δ′H − σ

N−1∑
j,k=1

∂jH∂kH

(1 + |∇′H|2)3/2

+
( 1

ρ∗−
− 1

ρ̂+|+ + ρ∗+

)−1

(u−N |− − u+N |+)2(1 + |∇′H|2),

GN+1 = GN+1(ρ̂+, û±, θ̂±, H)

= − 1

ρ∗−
(μ̂−DNN (û−) + VDNN (û−, H))|− − 1

ρ∗+
μ∗−VDNN (û−, H)|−

+
1

ρ̂+ + ρ∗+
[μ̂+(DNN (û+) + VDNN (û+, H)) + (λ̂+ − μ̂+)(div û+ + Vdiv (û+, H))]|+

+
1

ρ̂+ + ρ∗+
(μ∗+VDNN

(û+, H) + (λ∗+ − μ∗+)div û+)|+

+
( 1

ρ̂+ + ρ∗+
− 1

ρ∗+

)
(μ∗+DNN (û+) + (λ∗+ − μ∗+)div û+)|+

−
( 1

ρ̂+ + ρ∗+
P+(ρ̂+ + ρ∗+, θ̂+ + θ∗)−

1

ρ∗+
P+(ρ∗+, θ∗)

)
|+

−
N−1∑
i,j=1

(∂iH)(∂jH)
( 1

ρ∗−
(μ̂− + μ∗−)(Dij(û−) + VDij (û−, H)

)
|− + |∇′H|2(π̂− + π∗−)

+

N−1∑
i,j=1

(∂iH)(∂jH)
( 1

ρ̂+ + ρ∗+
{(μ̂+ + μ∗+)(Dij(û+) + VDij (û+, H))|+

+ |∇′H|2{(λ̂+ + λ∗+ − (μ̂+ + μ∗+))(div û+ + Vdiv (û+, H))|+ − P (ρ̂+ + ρ∗+, θ̂+ + θ∗)|+}

+
N−1∑
i=1

(∂iH)
[ 2

ρ∗−
(μ̂− + μ∗−)(DiN (û−) + VDiN

(û−, H))|−

− 2

ρ̂+ + ρ∗+
(μ̂+ + μ∗+)(DiN (û+) + VDiN (û−, H))|+

]
+ (ψ−(θ̂− + θ∗)− ψ−(θ∗))|− − (ψ+(ρ̂+ + ρ∗+, θ̂+ + θ∗)− ψ+(ρ∗+, θ∗))|+
+ |∇′H|2(ψ−(θ̂− + θ∗)|− − ψ+(ρ̂+ + ρ∗+, θ̂+ + θ∗)|+)

+ (1 + |∇′H|2)2 1
2

( 1

ρ∗−
+

1

ρ̂+ + ρ∗+

)( 1

ρ∗−
− 1

ρ̂+ + ρ∗+

)−1

(û−N |− − û+N |+)2,

Ki = Ki(û±, H) = −(∂iH)(û−N |− − û+N |+),
Gθ = Gθ(ρ̂+, û±, θ̂±, H)

= (1 + |∇′H|2)(û−N |− − û+N |+)
( 1

ρ∗−
− 1

ρ̂+|+ + ρ∗+

)−1

×

((θ̂− + θ∗)η−(θ̂− + θ∗)|− − (θ̂+ + θ∗)η+(ρ̂+ + ρ∗+, θ̂+ + θ∗)|+)
− (d̂−(∇θ̂− −K∂N θ̂−)|− − d̂+(∇θ̂+ −K∂N θ̂+)|+) · (−∇′H, 1)
+ (d∗−∇′θ̂−|− − d∗+∇′θ̂+|+) · ∇′H + (d∗−∂N θ̂−|− − d∗+∂N θ̂+|+)K · (−∇′H, 1),

Gh = Gh(ρ̂+, û±, H)

= ρ−∗
( 1

ρ̂+|+ + ρ∗+ − ρ∗−
− ρ∗+
ρ∗− − ρ∗+

)
û−N |− −

( ρ̂+ + ρ∗+
ρ̂+ + ρ∗+ − ρ∗−

− ρ∗+
ρ∗+ − ρ∗−

)
û+N |+

− ρ̂+ + ρ∗+
ρ̂+ + ρ∗+ − ρ∗+

N−1∑
j=1

(∂jH)û+j |+ +
ρ∗−

ρ̂+|+ + ρ∗+ − ρ∗−

N−1∑
j=1

(∂jH)û−j |−.
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The phase flux j is eliminated by using the formula:

j = (û−N |− − û+N |+)
( 1

ρ∗−
− 1

ρ̂+|+ + ρ∗+

)−1√
1 + |∇′H|2 on R

N
0 × (0, T ).

Moreover, we use the formula:

HΓnΓ(t) =
{
div ′

( ∇′H
1 + |∇′H|2

)}
(−∇′H, 1)/

√
1 + |∇′H|2 on R

N
0 × (0, T )

where ∇′H = (∂1H, . . . , ∂N−1H) and div ′v′ =
∑N−1

j=1 ∂jvj for v′ = (v1, . . . , vN−1).
The following theorem is my main result concerning the local well-posedness of problem (2.11).

Theorem 1. Let 1 < p, q <∞ with 2/p+N/q < 1. Assume that ρ∗± and θ∗ satisfy the condition (??).
Then, given any positive time T , there exists an ε > 0 such that problem (2.11) admits unique solutions

ρ̂+, û± and θ̂± with

ρ̂+ ∈W 1
p ((0, T ), Lq(R

N
+ )) ∩ Lp((0, T ),W

1
q (R

N
+ )),

(û±, θ̂±) ∈W 1
p ((0, T ), Lq(R

N
± )) ∩ Lp((0, T ),W

2
q (R

N
± )),

H ∈W 1
p ((0, T ),W

2
q (R

N )) ∩ Lp((0, T ),W
3
q (R

N ))

provided that the smallness condition:

‖ρ̂+‖W 1
q (R

N
+
) +

∑
�=±

‖(û�, θ̂�)‖B2(1−1/p)
q,p (RN

� )
+ ‖H0‖B3−1/p

q,p (RN )
≤ ε

and compatibility condition:

div û−0 = f−(û−0, H0) = div f−(û−0, H0) in R
N
− ,

μ∗−DiN (û−0)|− − μ∗+DiN (û+0)|+ = Gi(ρ̂0+, û0±, H0) (i = 1, . . . , N − 1) on R
N
0 ,

û−i|− − û+i|+ = Ki(û±, H0) (i = 1, . . . , N − 1) on R
N
0 ,

θ̂0−|− − θ̂0+|+ = 0 on R
N
0 ,

d∗+∂N θ̂0−|− − d∗+∂N θ̂0+|+ = Gθ(ρ̂0+, û0±, θ̂0±, H0) on R
N
0 ,( 1

ρ∗−
− 1

ρ∗+

)
(μ∗+DNN (û0+) + (λ∗+ − μ∗+)div û0+)|+ = GN+1 −

1

ρ∗−
GN − σ

ρ∗−
Δ′H0 on R

N
0 .

Remark 3. (1) The mathematical study of the compressible and incompressible two phase problem
is quite few as far as the author knows. First Denisova [2] studied the evolution of the compressible
and incompressible two phase flow with sharp interface without phase transition under some restriction
on the viscosity coefficients. Recently, Kubo, Shibata and Soga [4] studied the same problem as in [2]
without any restriction on viscosity coefficients in case of without surface tension and without phase
transition. This abstract is the first manuscript to treat the compressible and incompressible two phase
problem with phase transition. The incompressible and incompressible two phase problem with phase
transition was studied by J. Pruess, Y. Shibata, S. Shimizu and G. Simonett [5, 6].

3 Maximal Lp-Lq regularity

In the following, we assume that N < q < ∞ in view of the Sobolev imbedding theorem: ‖v‖L∞(Ω) ≤
C‖v‖W 1

q (Ω) with Ω = R
N
± and Ω = R

N . To solve problem (2.11), we use the maximal Lp-Lq regualrity
for the parabolic equations. From this point of view, we represent ρ̂+ by the integration along the
characteristic curve generated by v+

‡.
‡Tani [12] represented the mass density with the help of the velocity field to prove the local well-posedness of the

Navier-Stokes equations describing the compressible viscous fluid flow (cf. also [11, 13]). It was also suggested by J. Prüss
to the author to represnt ρ̂+ by û+ and H with the help of the equation of balance of mass when the author visited Halle
university in the early of April, 2014.
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Let ŵ+ = (ŵ+1, . . . , ŵ+N ) be the Lions extension to R
N defined by

ŵ+(x, t) =

{
û+(x, t) for xN > 0,

3û+(x
′,−xN , t)− 2û+(x

′,−2xN , t) for xN < 0,
(3.1)

and in view of (2.12) we define v by v = (ŵ+1, . . . , ŵ+N−1, ŵ+N −K0−
∑N

j=1Kjŵ+j). Note that v = v+

on R
N
+ . We assume that ∫ T

0

‖∇v(·, t)‖L∞(RN ) dt ≤ ε1 (3.2)

with some small positive constant ε1 > 0. We use the usual fixed point argument to solve the nonlinear
problem and in this argument we keep the situation where û+ and H satisfy (3.2).

Let ξ̂ be the solution to the Cauchy problem:

d

dt
ξ̂(η, t) = v(ξ̂(η, t), t), ξ̂(η, 0) = η ∈ R

N .

According to Strömer [10], we choose ε1 > 0 so small that the map: η �→ ξ is bijective on R
N for any

t ∈ [0, T ]. We denote its inverse map by η̂ = η̂(ξ, t). Setting J(η, t) = det( ∂ξ̂∂η ), we have ∂tJ(η, t) =

(divv)(ξ̂(η, t), t)J(η, t). We look for ρ̂+ satisfying the equation:

∂tρ̂+ + v · ∇ρ̂+ + ρ̂+(div ŵ+ + Vdiv (ŵ+, H)) = 0 in R
N × (0, T ).

Since

d

dt
(ρ̂+(ξ̂(η, t), t)J(η, t)) = (∂tρ̂+ + div (ρ̂+v̂))(ξ̂(η, t), t)J(η, t) = g(ξ̂(η, t), t)ρ+(ξ̂(η, t), t)J(η, t),

with g = divv − div ŵ+ − Vdiv (ŵ+, H), we define ρ̂+(ξ, t) by

ρ̂+(ξ, t) = (ρ∗+ + ρ̃0+(η))J(η, t)
−1e

∫ t
0
g(ξ̂(η,s),s) ds (3.3)

with η = η̂(ξ, t), where ρ̃0+(η) is the same Lions extension of ρ̂0+(ξ) to R
N as in (3.1). Moreover, since

J satisfies the equation: ∂tJ(η, t) = (div v)(ξ̂(η, t), t)J(η, t) with J(η, 0) = 1, we have

J(η, t) = e
∫ t
0
(div v)(ξ̂(η,s),s) ds,

which is inserted into the formula of ρ̂+ in (3.3) furnishes finally that

ρ̂+(ξ, t) = (ρ∗+ + ρ̃0+(η))e
− ∫ t

0
(div ŵ++Vdiv (ŵ+,H))(ξ̂(η,s),s) ds (3.4)

with η = η̂(ξ, t).
Inserting the formula of ρ̂+ given in (3.4) into the right-hand sides: F+ = F+(ρ̂+, û±, H), Fθ+ =

Fθ+(ρ̂+, û±, θ̂+, H), Gj = Gj(ρ̂+,u±, H) (j = 1, . . . , N + 1) and Gθ = Gθ(ρ̂+, û±, θ̂±, H) in (2.11), we
have the interface problem for the parabolic equations. As the linearized problem, we have the decoupled
two systems. One is the Stokes equation with interface condition:

ρ∗+∂tu+ −DivS∗+(u+) = f+ in R
N
+ × (0, T )

ρ∗−∂tu− −DivS∗−(u−) +∇π− = f−, divu− = fdiv = div fdiv in R
N
− × (0, T ) (3.5)

subject to the interface condition: for x ∈ R
N
0 and t ∈ (0, T )

μ∗−DiN (u−)|− − μ∗+DiN (u+)|+ = gi (i = 1, . . . , N − 1),

(μ∗−DNN (u−)− π−)|− − (μ∗+DNN (u+) + (λ∗+ − μ∗+)divu+)|+ − σΔ′H = gN ,

1

ρ∗−
(μ∗−DNN (u−)− π−)|− − 1

ρ∗+
(μ∗+DNN (u+) + (λ∗+ − μ∗+)divu+)|+ = gN+1,

u−i|− − u+i|+ = hi (i = 1, . . . , N − 1),

∂tH −
( ρ∗−
ρ∗− − ρ∗+

u−N − ρ∗+
ρ∗− − ρ∗+

u+N

)
= d

(3.6)
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and the initial condition:

u±|t=0 = u0± in R
N
± , H|t=0 = H0 in R

N . (3.7)

Another is the heat equations with interface condition:

ρ∗+κ∗+∂tθ+ − d∗+Δθ+ = f̃+ in R
N
+ × (0, T )

ρ∗−κ∗−∂tθ− − d∗−Δθ− = f̃− in R
N
− × (0, T )

(3.8)

subject to the interface condition: for x ∈ R N0 and t ∈ (0, T )

θ−|− − θ+|+ = 0, d∗+∂Nθ−|− − d∗+∂Nθ+|+ = g̃ (3.9)

and the initial condition:
θ±|t=0 = θ0± on R

N
± . (3.10)

Note that the interface condition (3.6) is equivalent to the following interface condition:

μ∗−DiN (u−)|− − μ∗+DiN (u+)|+ = gi (i = 1, . . . , N − 1),

(μ∗−DNN (u−)− π−)|− =
ρ∗−

ρ∗− − ρ∗+
(σΔ′H + gN − ρ∗+gN+1),

(μ∗+DNN (u+) + (λ∗+ − μ∗+)divu+)|+ =
ρ∗+

ρ∗− − ρ∗+
(σΔ′H + gN − ρ∗−gN+1),

u−i|− − u+i|+ = hi (i = 1, . . . , N − 1),

∂tH −
( ρ∗−
ρ∗− − ρ∗+

u−N − ρ∗+
ρ∗− − ρ∗+

u+N

)
= d.

(3.11)

We have the following theorem about the maximal Lp-Lq regularity for problem (3.5), (3.6), (3.7).

Theorem 2. Let 1 < p, q <∞ and 0 < T <∞. Assume that ρ∗− �= ρ∗+. Then, given right-hand sides
of (3.5) and (3.6)

f± ∈ Lp((0, T ), Lq(R
N
± )), fdiv ∈ Lp((0, T ),W

1
q (R

N
− )), fdiv ∈W 1

p ((0, T ), Lq(R
N
− ))

gi ∈ Lp((0, T ),W
1
q (R

N )) ∩W 1
p ((0, T ),W

−1
q (RN )) (i = 1, . . . , N + 1),

hj ∈ Lp((0, T ),W
2
q (R

N )) ∩W 1
p ((0, T ), Lp(R

N )) (j = 1, . . . , N − 1), d ∈ Lp((0, T ),W
2
q (R

N )),

and initial data u0± ∈ B2(1−1/p)
q,p (RN

± ) and H0 ∈ B3−1/p
q,p (RN ) satisfying the compatibility conditions:

divu0− = f−|t=0 = div fdiv |t=0 in R
N
− ,

μ∗−DiN (u0−)|− − μ∗+DiN (u0+)|+ = gi|t=0 (i = 1, . . . , N − 1) on R
N
0 ,

(μ∗+DNN (û0+) + (λ∗+ − μ∗+)div û0+)|+
=

ρ∗+
ρ∗− − ρ∗+

(σΔ′H0 + gN |t=0 − ρ∗−gN+1|t=0) on R
N
0 ,

u0−i|− − u0+i|+ = hi|t=0 (i = 1, . . . , N − 1) on R
N
0 .

then, problem (3.5), (3.6), (3.7) admits unique solutions u± and H with

u± ∈ Lp((0, T ),W
2
q (R

N
± )) ∩W 1

p ((0, T ), Lq(R
N
± )),

H ∈ Lp((0, T ),W
3
q (R

N )) ∩W 1
p ((0, T ),W

2
q (R

N ))

possessing the estimates:∑
�=±

{‖u�‖Lp((0,t),W 2
q (R

N
� )) + ‖∂tu�‖Lp((0,t),Lq(RN

� ))}+ ‖∂tH‖Lp((0,t),W 2
q (R

N )) + ‖H‖Lp((0,t),W 3
q (R

N ))
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≤ Cγt{
∑
�=±

(‖u0�‖B2(1−1/p)
q,p (RN

� )
+ ‖f�‖Lp((0,t),Lq(RN

� ))) + ‖fdiv ‖Lp((0,t),W 1
q (R

N
− )

+ ‖fdiv ‖Lp((0,T ),Lq(RN
− )) +

N+1∑
i=1

(‖gi‖Lp((0,t),W 1
q (R

N )) + ‖∂tgi‖Lp((0,t),W
−1

q (RN )))

+

N−1∑
j=1

(‖hj‖Lp((0,t),W 2
q (R

N )) + ‖∂thj‖Lp((0,t),Lq(RN ))) + ‖d‖Lp((0,t),W 2
q (R

N ))}

for any t ∈ (0, T ) with some positive constants C and γ independent of t and T .

And also, we have the following theorem about the maximal Lp-Lq regularity for problem (3.8), (3.9),
(3.10).

Theorem 3. Let 1 < p, q <∞ and 0 < T <∞. Then, given right-hand sides of (3.8) and (3.9):

f̃± ∈ Lp((0, T ), Lq(R
N
± )), g̃ ∈ Lp((0, T ),W

1
q (R

N )) ∩W 1
p ((0, T ),W

−1
q (RN ))

and initial data θ0± for (3.8) satisfying the compatibility condition:

[[θ0]] = 0, d∗−∂Nθ0−|− − d∗−∂Nθ0+|+ = g̃|t=0 on R
N
0 ,

problem (3.8) and (3.9) admits unique solutions θ± with

θ± ∈ Lp((0, T ),W
2
q (R

N
± )) ∩W 1

p ((0, T ), Lq(R
N
± ))

satisfying the estimate:∑
�=±

{‖θ�‖Lp((0,t),W 2
q (R

N
� )) + ‖∂tθ�‖Lp((0,t),Lq(RN

� ))}

≤ Cγt{
∑
�=±

(‖θ0�‖B2(1−1/p)
q,p (RN

� )
+ ‖f̃�‖Lp((0,t),Lq(RN

� ))) + ‖g̃‖Lp((0,t),W 1
q (R

N )) + ‖∂tg̃‖Lp((0,t),W
−1

q (RN )))}

for any t ∈ (0, T ) with some positive constants C and γ independent of t and T .

Remark 4. The proof of Theorem 3 is found in [3], but we can prove it by using the same argument as
in the proof of Theorem 2.

4 R-bounded solution operators

To prove Theorem 2, we consider the following generalized resolvent problem:

ρ∗+λu+ −DivS∗+(u+) = f+ in R
N
+

ρ∗−λu− −DivS∗−(u−) +∇π− = f−, divu− = fdiv = div fdiv in R
N
− (4.1)

subject to the interface condition: for x ∈ R
N
0

μ∗−DiN (u−)|− − μ∗+DiN (u+)|+ = gi (i = 1, . . . , N − 1),

(μ∗−DNN (u−)− π−)|− − (μ∗+DNN (u+) + (λ∗+ − μ∗+)divu+)|+ − σΔ′H = gN ,

1

ρ∗−
(μ∗−DNN (u−)− π−)|− − 1

ρ∗+
(μ∗+DNN (u+) + (λ∗+ − μ∗+)divu+)|+ = gN+1,

u−i|− − u+i|+ = hi (i = 1, . . . , N − 1),

λH −
( ρ∗−
ρ∗− − ρ∗+

u−N − ρ∗+
ρ∗− − ρ∗+

u+N

)
= d,

(4.2)

which is corresponding to the time dependent problem (3.5), (3.6), (3.7).
Before stating the main result of this section, we first introduce the definition of R-boundedness and

the operator valued Fourier multiplier theorem due to Weis [14].
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Definition 4.1. A family of operators T ⊂ L(X,Y ) is called R-bounded on L(X,Y ), if there exist
constants C > 0 and p ∈ [1,∞) such that for any n ∈ N, {Tj}nj=1 ⊂ T , {fj}nj=1 ⊂ X and sequences
{rj(u)}nj=1 of independent, symmetric, {−1, 1}-valued random variables on [0, 1] there holds the inequal-
ity: {∫ 1

0

‖
n∑

j=1

rj(u)Tjfj‖pY du
} 1

p ≤ C
{∫ 1

0

‖
n∑

j=1

rj(u)fj‖pX du
} 1

p

.

The smallest such C is called R-bound of T , which is denoted by RL(X,Y )(T ). Here and in the following,
L(X,Y ) denotes the set of all bounded linear operators from X into Y .

Let D(R, X) and S(R, X) be the set of all X valued C∞ functions having compact supports and the
Schwartz space of rapidly decreasing X valued functions, respectively, while S ′(R, X) = L(S(R,C), X).
Given M ∈ L1,loc(R \ {0}, X), we define the operator TM : F−1D(R, X) → S ′(R, Y ) by

TMφ = F−1[MF [φ]], (F [φ] ∈ D(R, X)), (4.3)

The following theorem is obtained by Weis [14].

Theorem 4. Let X and Y be two UMD Banach spaces and 1 < p < ∞. Let M be a function in
C1(R \ {0},L(X,Y )) such that

RL(X,Y )({(τ
d

dτ
)�M(τ) | τ ∈ R \ {0}) ≤ κ <∞ (� = 0, 1)

with some constant κ. Then, the operator TM defined in (4.3) is extended to a bounded linear operator
from Lp(R, X) into Lp(R, Y ). Moreover, denoting this extension by TM , we have

‖TM‖L(Lp(R,X),Lp(R,Y )) ≤ Cκ

for some positive constant C depending on p, X and Y .

Remark 5. For the definition of UMD space, we refer to a book due to Amann [1]. For 1 < q < ∞,
Lebesgue space Lq(Ω) and Sobolev space Wm

q (Ω) are both UMD spaces.

Theorem 5. Let 1 < q <∞ and 0 < ε < π/2. Set

Σε = {λ = γ + iτ ∈ C \ {0} | | arg λ| ≤ π − ε}, Σε,λ0
= {λ ∈ Σε | |λ| ≥ λ0} (λ0 > 0),

Xq = {(f+, f−, fdiv , fdiv ,g,h, d) | f+ ∈ Lq(R
N
+ ), f−, fdiv ∈ Lq(R

N
− ), fdiv ∈W 1

q (R
N ),

g = (g1, . . . , gN+1) ∈W 1
q (R

N ), h = (h1, . . . , hN−1) ∈W 2
q (R

N ), d ∈W 2
q (R

N )},
Xq = {F = (F+1, F−1, F−2, F−3., F−4, F1, F2, F3, F4, F5, F6) | F±1 ∈ Lq(R

N
± ),

F−2, F−3, F−4 ∈ Lq(R
N
− ), F1, F2, F3, F4, F5 ∈ Lq(R

N ), F6 ∈W 2
q (R

N )}.

Then, there exist a constant λ0 > 0 and operator families A±(λ) ∈ Hol (Σε,λ0
,L(Xq,W

2
q (R

N
± ))), P− ∈

Hol (Σε,λ0
,L(Xq, Ŵ

1
q (R

N
− ))), H(λ) ∈ Hol (Σε,λ0

,L(Xq,W
3
q (R

N ))) such that for any λ ∈ Σε,λ0
and F =

(f+, f−, fdiv , fdiv ,g,h, d) ∈ Xq, u± = A±(λ)Fλ, π− = P−(λ)Fλ and H = H(λ)Fλ are unique solutions
of problem (4.1) and (4.2) and we have

RL(Xq,Lq(RN
± ))({(τ∂τ )�G1

λA±(λ) | λ ∈ Σε,λ0
}) ≤ c (� = 0, 1),

RL(Xq,Lq(RN
± ))({(τ∂τ )�∇P−(λ) | λ ∈ Σε,λ0

}) ≤ c (� = 0, 1),

RL(Xq,W 2
q (R

N
± ))({(τ∂τ )�G2

λH(λ) | λ ∈ Σε,λ0
}) ≤ c (� = 0, 1)

with some constant c. Here, G1
λA±(λ) = (λA±(λ), λ1/2∇A±(λ),∇2A±(λ)), G2

λH(λ) = (λH(λ),∇H(λ)),

Fλ = (F+, F−, λ1/2fdiv ,∇fdiv , λfdiv , λ1/2g,∇g, λh, λ1/2∇h,∇2h, d), Ŵ 1
q (R

N ) = {π− ∈ Lq,loc(R
N ) |

∇π− ∈ Lq(R
N )}, and Hol (U,X) denotes the set of all holomorphic functions defined on U with their

values in X.
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5 Sketch of proof of Theorem 2 with the help of R bounded
solution operators

In this section, we consider problem (3.5), (3.6) and (3.7). First, we construct v± and h such that

• v± ∈W 1
p ((0,∞), Lq(R

N
± ))∩Lp((0,∞),W 2

q (R
N
± )), h ∈W 1

p ((0,∞),W 2
q (R

N ))∩Lp((0,∞),W 3
q (R

N ));

• v±|t=0 = u0± in R
N
± , h|t=0 = H0 in R

N ;

• ‖v±‖Lp((0,∞),W 2
q (R

N
± )) + ‖∂tv±‖Lp((0,∞),Lq(RN

± )) ≤ C‖u0±‖B2(1−1/p)
q,p (RN

± )
,

‖h‖Lp((0,∞),W 3
q (R

N )) + ‖∂th‖Lp((0,∞),W 2
q (R

N )) ≤ C‖H0±‖B3−1/p
q,p (RN

± )
.

Using v± and h, we transfer problem (3.5), (3.6) and (3.7) to the case where u0± = 0 and H0 = 0.
Moreover, by the compatibility condition, we may assume that fdiv |t=0 = 0, gi|t=0 = 0 (i = 1, . . . , N+1),
hi|t=0 = 0 (i = 1, . . . , N − 1) and σΔ′H0 + gN |t=0 − ρ∗−gN+1|t=0 = 0.

Let L and L−1 be the Laplace transform with respect to t and its inverse transform. The operator

Λ
1/2
γ is defined by

Λ1/2
γ f = L−1[λ1/2L[f ]] with λ = γ + iτ .

Second, we consider the zero initial data case. The right members: f±, fdiv , fdiv , gi, hi and d are
extended by 0 with respect to t to (−∞, 0) and we denote such zero extension by f±0, fdiv 0, fdiv 0,
g0 = (g10, . . . , gN+10), h0 = (h10, . . . , hN−10) and d0. Applying the Laplace transform, we have

ρ∗+λû+ −DivS∗+(û+) = f̂+0 in R
N
+

ρ∗−λû− −DivS∗−(û−) +∇π̂− = f̂−0, div û− = f̂div 0 = div f̂div 0 in R
N
− (5.1)

subject to the interface condition: for x ∈ R
N
0

μ∗−DiN (û−)|− − μ∗+DiN (û+)|+ = ĝi0 (i = 1, . . . , N − 1),

(μ∗−DNN (û−)− π̂−)|− − (μ∗+DNN (û+) + (λ∗+ − μ∗+)div û+)|+ − σΔ′Ĥ = ĝN0,

1

ρ∗−
(μ∗−DNN (û−)− π̂−)|− − 1

ρ∗+
(μ∗+DNN (û+) + (λ∗+ − μ∗+)div û+)|+ = ĝN+10,

û−i|− − û+i|+ = ĥi0 (i = 1, . . . , N − 1),

λĤ −
( ρ∗−
ρ∗− − ρ∗+

û−N − ρ∗+
ρ∗− − ρ∗+

û+N

)
= d̂0.

(5.2)

By Theorem 5, we have û±(λ) = A±(λ)F0
λ, π−(λ) = P−(λ)F0

λ and Ĥ(λ) = H(λ)F0
λ, where

F0
λ = (f̂+0, f̂0−, λ1/2f̂div 0,∇f̂div 0, λf̂div 0, λ

1/2ĝ0,∇ĝ0, λĥ0, λ
1/2∇ĥ0,∇2ĥ0, d̂0).

We set u±(·, t) = L−1[û±(·, λ)](t), π−(·, t) = L−1[π̂−(·, λ)] and H(·, t) = L−1[Ĥ(·, λ)](t). Note that

(∂t,Λ
1/2
γ ∇,∇2)u± = L−1[G1

λû±(·, λ)](t), ∇π− = L−1[∇π̂−(·, λ)](t) and (∂t,∇)H = L−1[G2
λĤ(·, λ)](t).

By Theorem 5 and Theorem 4, we have∑
�=±

‖eγt(∂tu�,Λ
1/2
γ ∇u�,∇2u�)‖Lp(R,Lq(RN

� )) + ‖eγt∇π−‖Lp(R,Lq(RN
− )) + ‖eγt(∂tH,∇H)‖Lp(R,W 2

q (R
N ))

≤ C{‖eγtf+0‖Lp(R,Lq(RN
+
)) + ‖eγtf−0‖Lp(R,Lq(RN

− )) + ‖eγt(Λ1/2
γ fdiv 0,∇fdiv 0)‖Lp(R,Lq(RN

− ))

+ ‖eγt∂tfdiv 0‖Lp(R,Lq(RN
− )) +

N+1∑
j=1

‖eγt(Λ1/2
γ gj0,∇gj0)‖Lp(R,Lq(RN ))

+
N−1∑
j=1

‖eγt(∂thj0,Λ1/2∇hj0,∇2hj0)‖Lp(R,Lq(RN )) + ‖eγtd0‖Lp(R,W 2
q (R

N ))}.
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for any γ ≥ γ0 with some constants γ0 > 0 and C > 0. And, f±0, fdiv 0, fdiv 0, gj0, hj0 and d0 vanish for
t < 0, so that we can show that u±, π− and H also vanish for t < 0. Moreover, we use the following
facts:

C1‖eγt(∂tf,Λ1/2
γ ∇f,∇2f)‖Lp(R,Lq(Ω)) ≤ ‖eγt∂tf‖Lp(R,Lq(Ω)) + ‖eγtf‖Lp(R,W 2

q (Ω))

≤ C2‖eγt(∂tf,Λ1/2
γ ∇f,∇2f)‖Lp(R,Lq(Ω)),

‖eγtΛ1/2
γ f‖Lp(R,Lq(RN )) ≤ C{‖eγt∂tf‖Lp(R,W

−1

q (RN )) + ‖eγtf‖Lp(R,W 1
q (R

N ))}.

with some positive constants C1, C2 and C, where Ω = R
N
± and Ω = R

N . In this way, we can prove
Theorem 2 for T = ∞. When T is finite, we use the cut-off procedure with respect to time variable.

The detailed proof concerning the incompressible one phase problem is found in Shibata [7, 8, 9].
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Abstract

In this talk, I will present results obtained in collaboration with Régis
Monneau in [3]. They are concerned with Hamilton-Jacobi equations on
networks. The Hamiltonians are quasi-convex with respect to the gradient
variable and can be discontinuous with respect to the space variable at
vertices of the network. We explain how general jonction conditions re-
duce, in this setting, to jonction conditions of optimal control type and we
prove a general comparison principle between sub-linear sub- and super-
solutions.

Keywords: Hamilton-Jacobi equations, networks, quasi-convex Hamiltoni-
ans, discontinuous Hamiltonians, flux-limited solutions, comparison principle,
vertex test function, optimal control, discontinuous running cost.

1 The simplest network: a junction

The simplest network is made of one vertex and a finite number of infinite edges;
it is referred to as a junction. For the sake of clarity, Hamiltonians are assumed
to be constant with respect to the space variable on each edge.

A junction can be viewed as the set of N distinct copies (N ≥ 1) of the half-
line which are glued at the origin. For i = 1, ..., N , each branch Ji is assumed
to be isometric to [0,+∞) and

J =
⋃

i=1,...,N

Ji with Ji ∩ Jj = {0} for i �= j (1.1)

∗CNRS, UMR 7580, Université Paris-Est Créteil, 61 avenue du Général de Gaulle, 94 010
Créteil cedex, France

†Université Paris-Est, CERMICS (ENPC), 6-8 Avenue Blaise Pascal, Cité Descartes,
Champs-sur-Marne, F-77455 Marne-la-Vallée Cedex 2, France
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where the origin 0 is called the junction point. For points x, y ∈ J , d(x, y)
denotes the geodesic distance on J defined as

d(x, y) =

{
|x− y| if x, y belong to the same branch,

|x|+ |y| if x, y belong to different branches.

For a smooth real-valued function u defined on J , ∂iu(x) denotes the (spatial)
derivative of u at x ∈ Ji and the “gradient” of u is defined as follows,

ux(x) :=

{
∂iu(x) if x ∈ J∗i := Ji \ {0},
(∂1u(0), ..., ∂Nu(0)) if x = 0.

(1.2)

With such a notation in hand, we consider the following Hamilton-Jacobi equa-
tion on the junction J{

ut +Hi(ux) = 0 for t ∈ (0,+∞) and x ∈ J∗i ,
ut + F (ux) = 0 for t ∈ (0,+∞) and x = 0

(1.3)

subject to the initial condition

u(0, x) = u0(x) for x ∈ J. (1.4)

Structure condition on the Hamiltonians: there exist numbers p0i ∈ R such
that for each i = 1, ..., N ,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(Continuity) Hi ∈ C(R)

(Quasi-convexity)

{
Hi nonincreasing in (−∞, p0i ]
Hi nondecreasing in [p0i ,+∞)

(Coercivity) lim|q|→+∞Hi(q) = +∞.

(1.5)

Condition on the junction function F : RN → R:

F is continuous and non-increasing with respect to all variables. (1.6)

2 Relevant junction conditions

Given a flux limiter A ∈ R ∪ {−∞}, the A-limited flux through the junction
point is defined for p = (p1, . . . , pN ) as

FA(p) = max

(
A, max

i=1,...,N
H−

i (pi)

)
(2.1)

for some given A ∈ R∪{−∞} where H−
i is the nonincreasing part of Hi defined

by

H−
i (q) =

{
Hi(q) if q ≤ p0i ,

Hi(p
0
i ) if q > p0i .

We now consider the following important special case of (1.3),{
ut +Hi(ux) = 0 for t ∈ (0,+∞) and x ∈ J∗i ,
ut + FA(ux) = 0 for t ∈ (0,+∞) and x = 0.

(2.2)
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3 Main results

Theorem 3.1 (Comparison principle on a junction). Assume that the Hamil-
tonians satisfy (1.5), the junction function satisfies (1.6) and that the initial
datum u0 is uniformly continuous. Then for all (relaxed) sub-solution u and
(relaxed) super-solution v of (1.3)-(1.4) satisfying for some T > 0 and CT > 0
that for all (t, x) ∈ [0, T )× J ,

u(t, x) ≤ CT (1 + d(0, x)), v(t, x) ≥ −CT (1 + d(0, x)),

we have
u ≤ v in [0, T )× J.

Theorem 3.2 (General junction conditions reduce to flux-limited ones). As-
sume that the Hamiltonians satisfy (1.5) and that the junction function satisfies
(1.6) and that the initial datum u0 is uniformly continuous. Then there exists
AF ∈ R such that any relaxed viscosity solution of (1.3) is in fact a viscosity
solution of (2.2) with A = AF .

Theorem 3.3 (Existence and uniqueness on a junction). Assume that the
Hamiltonians satisfy (1.5), that F satisfies (1.6) and that the initial datum u0

is uniformly continuous. Then there exists a unique (relaxed) viscosity solution
u of (1.3), (1.4) such that for every T > 0, there exists a constant CT > 0 such
that

|u(t, x)− u0(x)| ≤ CT for all (t, x) ∈ [0, T )× J.

4 Related works and perspectives

The general theory developed in [3] opens many perspectives and will be further
developed in forthcoming works.

For example, with such a comparison principle at our disposal, it is now
possible to get various homogenization results. A first one is described in [3]
about a periodic equation posed on a network generated by εZd. A second one
was obtained even more recently in [2]. An example of applications of this result
is the case where a periodic Hamiltonian H(x, p) is perturbed by a compactly
supported function of the space variable f(x), say. Such a situation is considered
in lectures by Lions at Collège de France [4] Rescaling the solution, the expected
effective Hamilton-Jacobi equation is supplemented with a junction condition
which keeps memory of the compact perturbation.

We would also like to mention that the extension of our results to a higher
dimensional setting (in the spirit of [1]) is now reachable for quasi-convex Hamil-
tonians and will be achieved soon in a future work.

－45－



References

[1] Guy Barles, Ariela Briani, and Emmanuel Chasseigne. A Bellman approach
for regional optimal control problems in R

N . HAL preprint (hal-00825778),
May 2013.

[2] Giulio Galise, Cyril Imbert, and Régis Monneau. A junction condi-
tion by specified homogenization. HAL hal-01010512, oai:hal.archives-
ouvertes.fr:hal-01010512, 2014.

[3] Cyril Imbert and Régis Monneau. Flux-limited solutions for quasi-
convex hamilton-jacobi equations on networks. HAL oai:hal.archives-
ouvertes.fr:hal-00832545, 2014.

[4] Pierre-Louis Lions. Lectures at Collège de France, 2013-2014.
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1. Introduction

The talk is based on the results in [14] of the recent collaboration with Hung V. Tran.
We consider the Dirichlet problem for the weakly coupled systems of the infinity Laplace
equations: ⎧⎪⎨⎪⎩−Δ∞ui +

m∑
j=1

cij(ui − uj) = 0 in U for i = 1, . . . , m

ui = gi on ∂U for i = 1, . . . , m,

(1.1)

where U is a bounded domain with a smooth boundary in R
n, and (cij)

m
i,j=1 is a given

constant matrix which describes the generator of an irreducible continuous-time Markov
chain with m states satisfying

cij > 0 for i �= j, and
m∑

j=1

cij = 0,

and gi ∈ C(∂U) are given functions for i = 1, . . . , m. Here ui are unknown functions and
the operator Δ∞ is the so-called game infinity Laplacian, i.e., for a smooth function f ,

Δ∞f :=
tr
(
Df ⊗DfD2f

)
|Df |2 =

∑n
i,j=1 fxi

fxj
fxixj

|Df |2 .

The study of the infinity Laplacian began with pioneer works by Aronsson [2, 3] to un-
derstand a so-called absolutely minimizing Lipschitz function. More precisely, the equa-
tion arises in the L∞ calculus of variations as the Euler–Lagrange equation for properly
interpreted minimizers of all of energy functionals u �→ ‖Du‖L∞(V ) for all open sets
V ⊆ U . Aronsson achieved existence results and pointed out that we cannot expect the
classical solutions in general. However, he could not prove uniqueness and stability re-
sults. It turned out that the theory of viscosity solution is an appropriate instrument for
the study of infinity Laplacian. Jensen [11] gave fundamental results on the comparison
principle and hence uniqueness of the single infinity Laplace equation in the viscosity
solution sense, and generated considerable interest in the theory. Nowadays, there are a
great number of works related to the infinity Laplace equation.

In the talk, I present (i) Derivation, (ii) Characterization of solutions by comparison
with “generalized cones” for systems. If time permitted, I want to discuss the application
of comparison with “generalized cones”, which is a property of blow up limits.
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2. Derivation

Peres, Schramm, Sheffield, and Wilson [15] showed that the infinity Laplace equation
arises in the study of certain two-player, zero-sum stochastic games. They introduced a
random-turn game called ε-tug-of-war, in which two players try to move a token in an
open set U toward a favorable spot on the boundary ∂U corresponding to a given payoff
function g on ∂U . Inspired by this work, we derive the system of the infinity Laplace
equation (1.1).

Let U ⊂ R
n be a bounded domain with smooth boundary, which is the place where the

game is played by two persons, player I and player II. Suppose that there are m modes:
mode 1, . . . , mode m, and m corresponding the number of given functions gi ∈ C(∂U)
for i = 1, . . . , m. We call gi the payoff function on the boundary of U corresponding to
mode i for 1 ≤ i ≤ m. We consider the following two-player, zero-sum game.

Fix a number ε > 0, a token x0 := x ∈ U , and a mode m0 := i ∈ {1, . . . , m}.
Suppose that both players start the game at position x0 = x and mode m0 = i, and
have the same position and mode all the time. At each time step tk := ε2k for k ∈ N,
the players toss a fair coin and the winner of the toss is allowed to choose a next token
xk ∈ B(xk−1, ε) ∩ U , and the mode is switched from mk−1 to mode mk = j for any j ∈
{1, . . . , m} with the probability which is determined by a piecewise-deterministic Markov
process introduced by Davis [8]. The change from modes to modes with the starting point
m0 = i is determined by a continuous-time Markov chain on [0,∞): ν(0) = i, and for
Δs > 0,

P
(
ν(s + Δs) = j | ν(s) = i

)
=

cij

2
Δs + o(Δs) as Δs → 0 for i �= j, (2.1)

where o : [0,∞) → [0,∞) is a function satisfying o(r)/r → 0 as r → 0. After k steps,
if xk ∈ U then the game moves to step k + 1. Otherwise, if xk ∈ ∂U then the game
ends and player II pays the payoff gmk

(xk) to player I as they are at mode mk = ν(tk).
Notice that the change of modes is determined solely by the Markov chain (2.1), and is
not determined by the two players. In particular, ν(tk) can take any value in {1, . . . ,m}
with probability determined by (2.1). The expected payoff is

Ei

[
gν(tk)(xk)

]
.

A strategy for a player is a way of choosing the players’ next move as a function of
all previous information (played moves, all known coin tosses and known states.) It is a
map from the set of partially played games to moves (or in the case of a random strategy,
a probability distribution on moves.) Usually, one would think of a good strategy as
being Markovian, i.e., as a map from the current state to the next move. However, in
some settings, it is also useful to allow more general strategies that take into account the
history.

We consider the value which the players get. Of course player I wants to maximize the
expected payoff, while player II wants to minimize it in this tug-of-war game. Let SI and
SII be the strategies of player I and player II, respectively, and then we define the cost
functions by

Jε
i (SI , SII)(x) :=

{
ESI ,SII

Ei

[
gν(tk)(xk)

]
if the game terminates with probability one,

−∞ otherwise,

where x and i are the starting point and mode of the game. The value of the game for
player I is then defined as

uε,I
i (x) := sup

SI

inf
SII

Jε
i (SI , SII)(x).

－48－



In the talk, I show that the limit of uε,I
i as ε → 0 satisfies the system (1.1).

3. Characterization of solutions

Henceforth we only consider the simple system with two equations and we assume
c12 = c12 = 1, c11 = c22 = −1.

For the single infinite Laplace equation

−Δ∞u = 0 in U, (3.1)

Crandall, Evans and Gariepy [7] realized that comparison with cones characterizes subso-
lutions and supersolutions of (3.1), and nowadays it is well-known that this plays impor-
tant roles in the establishment of regularity results of solutions of (3.1). See [16, 9, 10].
In this section, we derive “generalized cones” for systems and establish comparison with
“generalized cones”.

We first present one way to find the class of particular solutions of (3.1), and that
cones are solutions of (3.1) everywhere except the vertices. Let us find radially symmetric
solution u of (3.1), i.e.

u(x) = η(|x|),
where η : [0,∞) → R is some smooth function. We calculate, for x �= 0,

Du(x) = η′(|x|) · x

|x| ,

D2u(x) = η′′(|x|) · x⊗ x

|x|2 + η′(|x|) ·
(
I − x⊗ x

|x|2
) 1

|x|2 .

Plug these into (3.1) to get that
−η′′(r) = 0,

which implies that η(r) = ar + b for any a, b ∈ R. From these calculations, we establish
that the cones

u(x) = a|x− x0|+ b for any x0 ∈ R
n, and a, b ∈ R (3.2)

are solutions of (3.1) in U \ {x0}.
Following the idea above, we first find particular solutions of (1.1) in the form of cones’

like. We consider ui radially symmetric of the form

ui(x) = ηi(|x|),
where ηi : [0,∞) → R are smooth functions for i = 1, 2. Assume that (u1, u2) is a solution
of (1.1) in R

n \ {0}. Then (η1, η2) satisfies{
−η′′

1 + η1 − η2 = 0 in (0,∞),

−η′′
2 + η2 − η1 = 0 in (0,∞).

(3.3)

Solving this system of ordinary differential equations with arbitrary initial data at 0, we
get that, for s > 0, {

η1(s) = C1e
√

2s + C2e
−√

2s + as + b,

η2(s) = −C1e
√

2s − C2e
−√

2s + as + b,

where C1, C2, a, b are arbitrary constants.
We can then easily check that the pair (ψ1, ψ2) defined by{

ψ1(x) := C1e
√

2|x−x0| + C2e
−√

2|x−x0| + a|x− x0|+ b,

ψ2(x) := −C1e
√

2|x−x0| − C2e
−√

2|x−x0| + a|x− x0|+ b,
(3.4)
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is a solution of (1.1) in R
n \ {x0} for any x0 ∈ R

n, C1, C2, a, b ∈ R. We call (ψ1, ψ2) a pair
of “generalized cones”.

We introduce the notion of comparison with “generalized cones” following the single
case.

Definition 1 (Comparison with “Generalized Cones”). (i) A pair (u1, u2) ∈ C(U)2 enjoys
comparison with “generalized cones” from above in U if (u1, u2) satisfies that for any
x0 ∈ U and r > 0 such that B(x0, r) ⊂ U ,

if ui ≤ ψi on ∂B(x0, r) ∪ {x0} for i = 1, 2, then ui ≤ ψi on B(x0, r) for i = 1, 2,

for any choices of C1, C2, a, b ∈ R.
(ii) A pair (u1, u2) ∈ C(U)2 enjoys comparison with “generalized cones” from below in U
if (u1, u2) satisfies that for any x0 ∈ U and r > 0 such that B(x0, r) ⊂ U ,

if ui ≥ ψi on ∂B(x0, r) ∪ {x0} for i = 1, 2, then ui ≥ ψi on B(x0, r) for i = 1, 2,

for any choices of C1, C2, a, b ∈ R.

In the case of the single equation (3.1), to characterize subsolutions by using comparison
with cone, one could choose in (3.2)

a :=
max|y−x0|=r u(y)− u(x0)

r
, b := u(x0).

For comparison with “generalized cones” for systems, we need to appropriately choose
C1, C2, a, b in (3.4). In order to do so, we introduce the following notations. For x0 ∈ U ,
r > 0 such that B(x0, r) ⊂ U , we set

Mi(x0, r) := max
|y−x0|=r

ui(y),

C1(x0, r) :=
−(u1(x0)− u2(x0))e

−√
2r

2(e
√

2r − e−
√

2r)
+

M1(x0, r)−M2(x0, r)

2(e
√

2r − e−
√

2r)
,

C2(x0, r) :=
(u1(x0)− u2(x0))e

√
2r

2(e
√

2r − e−
√

2r)
− M1(x0, r)−M2(x0, r)

2(e
√

2r − e−
√

2r)
,

a(x0, r) :=
M1(x0, r) + M2(x0, r)− (u1(x0) + u2(x0))

2r
,

b(x0) :=
u1(x0) + u2(x0)

2
.

Here is one of the main theorems of [14]:

Theorem 3.1 (Characterization of Subsolutions and Supersolution of (1.1)).
Let (u1, u2) ∈ C(U)2. The pair (u1, u2) is a viscosity subsolution (resp., supersolution)
of (1.1) if and only if (u1, u2) satisfies comparison with “generalized cones” from above
(resp., below).

4. Linearity of blow-up limits

Take x0 ∈ U and R > 0 such that B(x0, R) ⊂ U . For each r > 0 sufficiently small, set

vr
i (x) =

ui(x0 + rx)− ui(x0)

r
, for |x| ≤ R

r
, i = 1, 2.

Clearly {vr
i } is precompact in C(B(0, R)). Thus for any sequence {rj}j∈N with rj → 0 as

j → ∞, we can pass to a subsequence if necessary and get v
rj

i → vi ∈ Lip (Rn) locally
uniformly in R

n as j → ∞. We call vi a blow-up limit of ui. We now prove that all of
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blow-up limits vi are affine. Notice that (v1, v2) here really depends on the subsequence
we take. In general, a pair (v1, v2) of blow-up limits depends on the choice of subsequences
and it might not be unique.

Let us recall the literature on regularity results for the single infinity Laplace equation
here. Note first that in all of these papers, the result on affine blow-up limits [7] plays
an important role. Savin [16] showed that this blow-up limit is unique and achieved C1

regularity for solutions in case n = 2. Evans and Savin [9] then established C1,α regularity
for solutions in this setting. The proofs in [16, 9] depend highly on the geometry of the
2-dimensional space and cannot be extended to the case with n ≥ 3. Recently, Evans and
Smart [10] used the nonlinear adjoint method to prove that this blow-up limit is unique,
which yields the differentiability everywhere of solutions for all n ≥ 2. The questions on
C1 and C1,α regularity, however, are still open for n ≥ 3.

Here is another main result of [14].

Theorem 4.1. All of blow up limits of ui are affine for i = 1, 2.
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Sharp well-posedness for the Chern-Simons-Dirac
system in one dimension

Mamoru Okamoto ∗

1 Introduction

This talk is based on a joint work with Professor Shuji Machihara (Saitama University).
We consider the Cauchy problem for the Chern-Simons-Dirac system in one spatial

dimension: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
iγ0(∂t − iA0)ψ + iγ1(∂x − iA1)ψ = mψ, (t, x) ∈ R

1+1,

∂tA1 − ∂xA0 = ψ†γ0ψ, (t, x) ∈ R
1+1,

∂tA0 − ∂xA1 = 0, (t, x) ∈ R
1+1,

ψ(0, x) = ψ0(x), A(0, x) = A0(x), x ∈ R,

(1.1)

where the spinor ψ =
(
ψ1

ψ2

)
is a C

2-valued unknown function, the gauge components A0

and A1 of the gauge A =
(
A0
A1

)
are real valued unknown functions, and ψ0 =

( ψ0,1

ψ0,2

)
,

A0 =
( A0,0

A0,1

)
are given C

2 and R
2 valued functions, respectively, and m ≥ 0 is a constant.

We use ψ† to denote the conjugate transpose of ψ. The Dirac matrices are definded as
follows:

γ0 =

(
1 0
0 −1

)
, γ1 =

(
0 1
−1 0

)
.

The Chern-Simons action was proposed as an alternative gauge field theory to the stan-
dard Maxwell theory of electrodynamics on Minkowski space R1+2 ([5]). This R1+1 model
system (1.1) was introduced by Huh [6].

We state two important mathematical properties for the Chern-Simons-Dirac system.
Firstly, the solutions to the Chern-Simons-Dirac system satisfy the conservation of charge,
i.e., we have ‖ψ(t)‖L2 = ‖ψ0‖L2 for any t > 0. Secondly, the Chern-Simons-Dirac system
with m = 0 is invariant under the scale transformation

ψ(t, x) → λψ(λt, λx), A(t, x) → λA(λt, λx) (1.2)

for any λ > 0. We study the well-posedness for the solution in the standard inhomoge-
neous Sobolev spaces

(ψ(t),A(t)) ∈ Hs(R)×Hr(R) (1.3)

∗Institute of Engineering, Academic Assembly, Shinshu University, e-mail:m okamoto@shinshu-u.ac.jp
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with some indices (s, r) ∈ R
2. This scaling test implies the homogeneous Sobolev space

Ḣ−1/2(R)× Ḣ−1/2(R) is the scale invariant space, and we call s = r = −1/2 in (1.3) the
critical regularity for the problem (1.1). In many cases of other problems, it is difficult to
obtain the well-posedness in spaces below the critical regularities of the each problems.

We introduce some known results on this problem. Huh [6] showed local in time well-
posedness of the Cauchy problem (1.1) in L2(R)×L2(R) and global in time well-posedness
inH1(R)×H1(R). Huh observed the null structure of the Chern-Simons-Dirac system and
used the charge conservation law to extend the local solution to global one. Bournaveas,
Candy, and Machihara [1] showed local in time well-posedness in Hs(R) × Hr(R) with
−1/2 < r ≤ s ≤ r + 1. It is an almost critical result since r and s can be close to
−1/2. They also showed global in time well-posedness under the additional condition
s ≥ 0. However, they did not put any answer on the problem with the critical regularity
s = r = −1/2. With regards to this point, we remark that Machihara and Ogawa [8]
obtained global in time well-posedness in L1(R)×L1(R) which is also invariant under the
scale transformation (1.2).

The following is our well-posed result.

Theorem 1. Let (s, r) satisfy

(−1/2 < s < 1/2 and r = −1/2) or (s = 0 and − 1 ≤ r ≤ −1/2), (1.4)

then the Cauchy problem (1.1) is time locally well-posed in Hs(R)×Hr(R).

Remark 1. Theorem 1 says that the well-posedness holds in the scale critical regularity for
A±. Furthermore, the Sobolev regularity for A± crosses over the scale critical regularity
if the spinor belongs to the charge class L2(R).

In order to obtain well-posedness of (1.1) with such low regularities, we extract the
worst part of nonlinearity, which appears in the massless case m = 0. The worst part
and remaining parts can be handled separately and estimates of remaining parts similar
to the argument in [1].

We remark that Theorem 1 does not follow from a standard iteration argument from
the following fact:

Theorem 2. Let s ∈ R and r ≤ −1/2. Then the flow map (ψ0,A0) → (ψ,A): Hs(R)×
Hr(R) → C([−T, T ];Hs(R)×Hr(R)) of the Cauchy problem (1.1) is not locally uniformly
continuous.

However Theorem 2 does not imply the ill-posedness, it precludes proofs of the well-
posedness by the contraction argument. If the contraction argument would work, the
flow map would be C∞ and so locally uniformly continuous.

Thanks to the charge conservation law and the Delgado-Candy trick as in [1], we can
extend the local solution to global.

Corollary 3. Let (s, r) satisfy (1.4) and s ≥ 0. Then the Cauchy problem (1.1) is time
globally well-posed in Hs(R)×Hr(R).

We may say that Theorem 1 (combined with the result of [1]) is sharp. Namely, the
Cauchy problem is ill-posed with (s, r) in the remaining regions. We give the ill-posed
result.

－53－



Theorem 4 ([9]). The Cauchy problem (1.1) is ill-posed in Hs(R)×Hr(R) if one of the
followings holds:

(a) r > s,

(b) s > 0 and r < s− 1,

(c) s �= 0 and r < −1/2,

(d) (s, r) = (1/2,−1/2),

(e) (s, r) = (−1/2,−1/2),

(f) s = 0 and r < −1.

Note that (e) is the scale critical regularity. We thus have ill-posedness in H−1/2(R)×
H−1/2(R) although well-posedness holds in the scale critical Lebesgue space L1(R)×L1(R)
[8].

All the ill-posedness results in Theorem 4 come from the observing that the flow map
is discontinuous. Furthermore, the discontinuity of the flow map is caused by the norm
inflation expect for (f). Here, the norm inflation means that for any ε > 0 there exist a
solution (ψ,A) of (1.1) and t > 0 such that (ψ0,A0) ∈ S(R)× S(R),

‖ψ0‖Hs + ‖A0‖Hr < ε, 0 < t < ε, ‖ψ(t, ·)‖Hs + ‖A(t, ·)‖Hr > ε−1.

Because the charge conservation ‖ψ(t, ·)‖L2 = ‖ψ0‖L2 and discontinuity of the flow map is
ascribed to the nonlinear part of the Dirac equation, we never expect the norm inflation
in the case (f).

Here we also emphasize that we can deal with either massless case m = 0 and massive
case m > 0 for the ill-posedness. As we see below, we need an extra technique to estimate
the mass term for giving the norm inflation.

2 Reduction of the problem under some conditions

In the same way with the previous works [1], [6], we diagonalize (1.1) by setting u± =
ψ1 ± ψ2, A± = A0 ∓ A1, u±,0 = ψ0,1 ± ψ0,2, and a± = A0,0 ∓ A0,1 to have⎧⎪⎨⎪⎩

(∂t ± ∂x)u± = −imu∓ + iA∓u±,

(∂t ± ∂x)A± = ∓�(u+u−),
u±(0, x) = u±,0(x), A±(0, x) = a±(x).

(2.1)

We see in the left hand side that u+ and u− are the solutions for the transport equations
which move to the positive and negative direction respectively when t increases. The
functions A+ and A− are also in the same manner. In the right hand side, the two
nonlinear terms A∓u± and u+ū− consist of the two functions which have different signs
to each others. This is called null form. We will make use of this form very well to
estimate the bilinear terms.
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Here we introduce the reduction of the problem by taking the special conditions which
we assumed in the previous paper [9]. We set m = 0. Then, (2.1) is equivalent to the
following system of integral equations:

u±(t, x) = u±,0(x∓ t) exp

(
i

∫ t

0

A∓(t′, x∓ (t− t′))dt′
)
,

A±(t, x) = a±(x∓ t)∓
∫ t

0

�(u+u−)(t′, x∓ (t− t′))dt′.

(2.2)

If we take u−,0 = 0, which implies that �(u+u−) = �(u+,0u−,0) = 0, (2.2) then becomes

u+(t, x) = u+,0(x− t) exp

(
i

2

∫ x+t

x−t
a−(t′)dt′

)
,

u−(t, x) = 0, A±(t, x) = a±(x∓ t).

Similar observations with this can be found in the papers by Chadam and Glassey [3]
and Ozawa and Yamauchi [10] for the Dirac-Klein-Gordon system with Yukawa coupling.

Let K be a mapping from Hs(R)×H
r(R) to Hs(R) defined by

K(f, g) := feig, (2.3)

where H
r(R) denotes the space which consists of the real-valued functions in Hr(R).

Hence, under the special conditions, Theorem 1 is reduced to prove the mapping K is
continuous if (s, r) satisfies (1.4). Theorem 4 (except for (a)) follows from observing that
the mapping K is not continuous.

We remark, finally, we can remove these special conditions for the both Theorem 1
and Theorem 4.

3 Ill-posedness

For the proof of Theorem 4, we use the explicit representation of a solution of (1.1).
Suppose m = 0 which is the simplest case. We need some argument more for m > 0.

We here recall the one dimensional Sobolev product estimate.

Proposition 5. Let s0, s1, and s2 be real numbers. Then,

‖fg‖H−s0 ≤ C‖f‖Hs1‖g‖Hs1

holds if and only if

s0 + s1 + s2 ≥ 1/2, s0 + s1 + s2 ≥ max(s0, s1, s2)

and that the two inequalities are not both equalities.

The ill-posedness in the cases (b), (c) with s > 0, and (d) essentially follows from
Proposition 5. The mapping K in (2.3) is not well-defined, of cause not continuous, in
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these cases. For the proof of ill-posedness for (e), we employ the duality argument and
the ill-posedness in (d).

In the case (c) with s < 0, we expand the solution as follows:

u+,0(x− t) exp

(
i

2

∫ x+t

x−t
a−(t′)dt′

)
= u+,0(x− t)

∞∑
n=0

1

n!

(
i

2

∫ x+t

x−t
a−(t′)dt′

)n
,

which coincides with the series obtained by the successive approximation. Thanks to
well-posedness result obtained in [1], this expansion makes sense if −1/2 < r ≤ s ≤ r+1.
However, the convergence of the series is not assured if s < 0, r < −1/2. Using the
modulation space M0

2,1(R) as in the paper [7] by Iwabuchi and Ogawa, we prove the
ill-posedness. Since M0

2,1(R) is a Banach algebra, the well-posedness in M0
2,1(R) is easily

obtained and the series converges in C([−T, T ];M0
2,1(R)). We choose the initial data

u+,0 ∈ Hs(R) and a0 ∈ Hr(R) such that the second iterate u(2) is unbounded and the
remaining iterates u(n) (n �= 2) are bounded. We have to estimate the each iterate
u(n), n = 1, 2, 3, . . ..

More precisely, we choose a sequence of the initial data {(u±,0,k, a±,k)}k∈N ⊂ S(R) ×
S(R) satisfying the following five conditions: (i) u−,0,k = 0, (ii) the sequence of the initial
data {(u+,0,k, a±,k)}k∈N goes to zero in Hs(R) × Hr(R) and is unbounded in M0

2,1(R) ×
M0

2,1(R), (iii) the existence time Tk which comes from the well-posedness in M0
2,1(R) ×

M0
2,1(R) tends to zero as k goes to infinity, (iv) the sequence of the C([−Tk, Tk];Hs(R))

norm of the second iterate {‖u(2)±,k‖L∞([−Tk,Tk];Hs)}k∈N is unbounded, (v) the sum of the se-

quences of the C([−Tk, Tk];Hs(R)) norm of the remaining iterate {‖u(n)±,k‖L∞([−Tk,Tk];Hs)}k∈N

(n �= 2) are bounded. In this case, the expansion

u+,k(t, x) =
∞∑
n=1

u
(n)
+,k, u

(n)
+,k := u+,0,k(x− t)

1

n!

(
i

2

∫ x+t

x−t
a−,k(t′)dt′

)n
holds in C([−Tk, Tk];M0

2,1(R)). From the triangle inequality and conditions (iv) and (v),
we obtain

‖u+,k(Tk)‖Hs ≥ ‖u(2)+,k(Tk)‖Hs − ‖u(1)+,k(Tk)‖Hs −
∞∑
n=3

‖u(n)+,k(Tk)‖Hs ≥ 1

2
‖u(2)+,k(Tk)‖Hs ,

which implies the norm inflation. In the case (a), we apply a similar argument to consider
the series obtained by the successive approximation for A±.

4 Well-posedness

We rewrite the solution (u±, A±) → (u′±, A
′
±) from the idea based on the observation in

the section 2. We put

u′±(t, x) := u±(t, x) exp
(
−i
∫ x+t

x−t

a∓(t′)
2

dt′
)
, A′

±(t, x) := A±(t, x)− a±(x∓ t),

Γ(t, x) :=

∫ x+t

x−t

a+(t
′)− a−(t′)
2

dt′.
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Then, (2.1) is reduced to the following:⎧⎪⎨⎪⎩
(∂t ± ∂x)u

′
± = −imu′∓e±iΓ + iA′

∓u
′
±,

(∂t ± ∂x)A
′
± = ∓�(u′+u′−e−iΓ),

u′±(0, x) = u±,0(x), A′
±(0, x) = 0.

(4.1)

Since the initial data for A′
± are zero and Γ has regularity because of integration,

we can prove the existence of a solution of the Cauchy problem for the modified Chern-
Simons-Dirac system (4.1).

Lemma 6. Let s and r satisfy s− 1 ≤ r ≤ s and r > −s− 1. For (u±,0, a±) ∈ Hs(R)×
Hr(R), there exists T > 0 and a solution (u′±, A

′
±) ∈ C([−T, T ];Hs(R)×H−1/2+ε(R)) to

(4.1) for some ε > 0. Moreover, the map from (u±,0, a±) to (u′±, A
′
±) is continuous from

Hs(R)×Hr(R) to C([−T, T ];Hs(R)×H−1/2+ε(R)).

Using the Fourier restriction norm space (or the wave Sobolev space) and the contrac-
tion argument, we prove the existence part of this Lemma. Here, the norm of its space
is defined as follows (see, for example, [1]):

‖u‖Zs,b
±

:= ‖〈τ ∓ ξ〉s〈τ ± ξ〉bũ‖L2
τ,ξ
, ‖u‖Y s,b

±
:= ‖〈ξ〉s〈τ ± ξ〉bũ‖L2

ξL
1
τ
.

The weight τ±ξ corresponds to the linear part of (4.1). The Zs,b
± space enough to control

the nonlinear parts in (4.1). However, it is not sufficient to obtain Lemma 6 because Zs,b
±

is not contained inside C(R;Hs(R)) if s close to −1/2. Thus we use the auxiliary space
Y s,b
± to control the L∞Hs norm.
Thanks to the charge conservation law and the Delgado-Candy trick as in [1], we can

extend the local solution to global. The Delgado-Candy trick is a technique to decompose
u± into the “massless” part uL± and the “massive” part uN± ([4], [2]):⎧⎪⎨⎪⎩

(∂t ± ∂x)u
L
± = iA∓uL±,

(∂t ± ∂x)u
N
± = −imu∓ + iA∓uN± ,

uL±(0, x) = u±,0(x), uN± (0, x) = 0.

(4.2)

The “massless” part has a representation like (2.2) and the “massive” part is essentially
bounded:

sup
|t|≤T

‖uL±(t)‖L2 ≤ ‖u±,0‖L2 , sup
|t|≤T

‖uN± (t)‖L2∩L∞ ≤ m(emT + T − 1)(‖u+,0‖L2 + ‖u−,0‖L2).

We hence obtain a priori bound for A′
±:

sup
|t|≤T

‖A′(t)‖H−1/2+ε ≤ C(emT + T )2(‖u+,0‖L2 + ‖u−,0‖L2)2,

which yields the global existence.

Corollary 7. Assume that s ≥ 0 in Lemma 6. Then the local solution can be extended
to a global solution (u′±, A

′
±) ∈ C(R;Hs(R)×H−1/2+ε(R)).
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We remark Lemma 6 covers the almost all exponents in Theorem 1. But, the point
(s, r) = (0,−1) is excluded in the condition of Lemma 6. To treat this point, we employ
the similar argument in [8].

Lemma 8. Let −1 ≤ r ≤ 0. For (u±,0, a±) ∈ L2(R) × Hr(R), there exists a solution
(u′±, A

′
±) ∈ C(R;L2(R)×L2(R)) to (4.1). Moreover, the map from (u±,0, a±) to (u′±, A

′
±)

is continuous from L2(R)×Hr(R) to C(R;L2(R)× L2(R)).

Machihara and Ogawa [8] used the contraction argument in the L∞
t L

p
x ∩Lpt,x space to

obtain well-posedness. In the Lebesgue space, the function eiΓ is harmless because Γ is a
real valued function. We can therefore apply the similar argument in [8] to (4.1).

Remark 2. Lemmas 6 and 8 show that the Duhamel part for A± is more regular than
the initial data. More precisely, A′(t) belongs to H−1/2+ε(R) even if the initial data
a± ∈ Hr(R) with r ≤ −1/2.

From Lemmas 6 and 8, it suffices to prove that the mapping u′± → u± is continuous
in C([−T, T ];Hs(R)).

Lemma 9. Let (|s| < 1/2 and r = −1/2) or (s = 0 and r ≥ −1). Then, K : Hs(R) ×
H
r+1(R) → Hs(R) is continuous.

Here the range |s| < 1/2 is sharp. We can get the solution (u′±, A
′
±) of the modified

Chern-Simons-Dirac system in the wider range than (1.4). However, in order to obtain
well-posedness, especially to have countinuous dependence of initail data, we have to
restrict the range to (1.4) from the sharpness of Lemma 9.

References

[1] N. Bournaveas, T. Candy, and S. Machihara, Local and global well-posedness for the
Chern-Simons-Dirac system in one dimension, Differential and Integral Equations
25 (2012), no. 7-8, 699-718.

[2] T. Candy, Global existence for an L2 critical nonlinear Dirac equation in one dimen-
sion, Adv. Differential Equations 16 (2011), no. 7-8, 643-666.

[3] J. Chadam and R. Glassey, On certain global solutions of the Cauchy problem for the
(classical) coupled Klein-Gordon-Dirac equations in one and three space dimensions,
Arch. Rational Mech. Anal 54 (1974), 223-237.

[4] V. Delgado, Global solutions of the Cauchy problem for the (classical) coupled
Maxwell-Dirac and other nonlinear Dirac equations in one space dimension, Proc.
Amer. Math. Soc. 69 (1978), no. 2, 289-296.

[5] S. Deser, R. Jackiw, and S. Templeton, Three-dimensional massive gauge theories,
Phys. Rev. Lett. 48 (1982), no. 15, 975-978.

[6] H. Huh, Global solutions and asymptotic behaviors of the Chern-Simons-Dirac equa-
tions in R

1+1, J. Math. Anal. Appl. 366 (2010), no. 2, 706-713.

－58－



[7] T. Iwabuchi and T. Ogawa, Ill-posedness for nonlinear Schrödinger equation with
quadratic non-linearity in low dimensions, Trans. Amer. Math. Soc., in press.

[8] S. Machihara and T. Ogawa, Global well-posedness for one dimensional Chern-
Simons-Dirac system in Lp, preprint.

[9] S. Machihara and M. Okamoto, Ill-posedness of the Cauchy problem for the Chern-
Simons-Dirac system in one dimension, preprint.

[10] T. Ozawa and K. Yamauchi, Structure of Dirac matrices and invariants for nonlinear
Dirac equations, Differential Integral Equations 17 (2004), no. 9-10, 971-982.

－59－



THE DYNAMICS OF VORTEX FILAMENTS WITH CORNERS

LUIS VEGA

1. Introduction

In these pages I shall sketch some recent work about the evolution of vortex filaments
that follow the geometric law of the binormal: a point of the filament moves in the
direction of the binormal with a speed that is proportional to the curvature. First I
shall consider the case of a curve (filament) that is regular except at a point where it
has a corner (joint work with V. Banica). Then, I shall look at the case of a regular
polygon (joint work with F. de la Hoz).

Therefore at some point we will have to answer the simple question: What is the
velocity of the corner?

The motivation of this geometric flow comes from fluid dynamics. In particular the well
known smoke rings as those seen in figure 1. What we see in the picture are “vortex
tubes” that propagate in a self-similar way. These vortex tubes have two distinguished
parts. A first one which looks very much as a horseshoe, and a second one with a
helicoidal shape. In figure 2 we see some vortices above an inclined triangular wing.
Again self-similarity is evident together with the pair of symmetrical helices winding
around two lines.

Figure 1.

Partially supported by the grants MTM2011-24054, UFI11/52 and IT-305-07.
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Figure 2.

A first simplification to describe mathematically what we see in the above two figures is
to forget viscosity effects and consider that the fluids satisfy Euler equations. Therefore
we have to give u the velocity field or as an alternative the vorticity

ω = curlu = ∇ ∧ u.

In our case the vorticity is a singular vector measure that has the support on a curve X
in R

3

ω = ΓTds T = Xs.

Above Γ is the circulation that is a constant. Together with the inviscid condition

div u = 0,

we can use the so-called Biot-Savart law

(1) u(P ) =
Γ

4π

∫ ∞

−∞
X(s)−P

|X(s)−P|3 ∧ T(s)ds,

to obtain the velocity at any point P that is not in the curve X(s, t). Particular
examples are the straight lines and vortex rings. Straight lines do not move and
are mathematical idealizations of bathtub vortices. Vortex rings do not change their
shape and move perpendicularly to the plane where they are contained and in a direc-
tion that is determined by the sign of Γ. We encourage the reader to see the movie
http://news.uchicago.edu/multimedia/vortex-tied-knots where the evolution of
different vortex filaments can be seen and in particular the case of one ring. Finally
particular solutions of Euler equations with X with a helicoidal shape are known since
the work of Hardin [14].

In order to compute the velocity of the curve we should be able to compute (1) for
a point of the curve, say X(s0, t). A simple look at the Biot-Savart integral tells us
that this is not an easy task unless some simplifications are done. The simplest one is
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to consider that just local effects are relevant and to make a Taylor expansion around
s = s0 to capture them. The first term is determined by the tangent at that point. If
this term is the only one considered it is like changing the curve for the tangent line at
that point and therefore the overall contribution to the velocity field is zero. As can be
expected the next relevant term has a singularity that depends logarithmically with the
distance of P to X(s0, t). The usual procedure, that goes back to Da Rios in 1906 [7]
(see also [16] for the details and the limitations of this approach) is to renormalize the
time variable to avoid this singularity. After this renormalization and making all the
relevant constants equal to unity we are lead to the equation

(2) Xt = Xs ∧ Xss.

Calling

c = c(s, t) curvature

τ = τ(s, t) torsion

n = n(s, t) ∈ R
3

b = b(s, t) binormal,

we get from Frenet equations

(3)
Ts = cn
ns = −cT + τb
bs = −τn

that (2) can be rewritten as

(4) Xt = cb.

Particular examples are the straight line, the circle, that are obvious, and the helix. The
helix is easily obtained solving the equation that the tangent vector T satisfies. In fact,
differentiating with respect to the spatial variable in (2) we get

(5) Tt = T ∧ Tss.

If we look for traveling wave solutions T(s, t) = R(s− bt) we get from (5)

−aR′ = R ∧ R′′.

From (3) we obtain

−b cn = R ∧ (
c′n− c2R+ cτb

)
.

As a consequence c′ = 0. Hence c = a and τ = b, and therefore we have a helix.

Several remarks about (2) are in order

Remark 1.
• |T |2 = constant. This follows immediately form (5);

• Equation (2) is time reversible: If X is a solution, so is X̃(s, t) = X(−s,−t).
In other words, a reorientation of the curves is equivalent to change the direction
of time,

• The equation is rotation invariant.
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2. Self-similar Solutions

It seems very natural after looking at the figures 1 and 2 to look for self-similar solutions
of (1). That is to say, solutions X that can be written as

(6) X(s, t) =
√
tG

(
s/
√
t
)

for some G. If we call Gs = R and take T(s, t) = R
(
s/
√
t
)
we get from (3) that

−s

2
R′ = R ∧ Rss.

Using again Frenet equations (2) we obtain this time

−s

2
cn = R ∧ (

c′n− c2R+ cτb
)
.

Hence c′ = 0 so that c = a and τ = s/2 (see [?]). In figure 3 we see a self-similar solution
(6) for some choice of G.

Figure 3.

The self-similar solutions and its characterizations were studied in [12]. In particular a
characterization of them in terms of the parameter a is obtained. It is also proved that
at time zero they have the shape of two half lines joined together at s = 0 with an angle
θ. The curve G tends asymptotically to these two lines. Also precise expressions of θ
and the angle ϕ in terms of a are given. Finally observe that the right hand side of
figure 2 indicates that the corner moves in a very precise way: the speed is a/

√
t and

the direction is determined by the angle ϕ. In figure 4 we compare the dynamics of
self-similar solutions with the vortices above an inclined triangular wing given in figure
2. The similitude at the qualitative level is quite appealing.

3. Schrödinger Equation

An important step in the understanding of (1) was given by Hasimoto in [13]. He
introduces the transformation

(7) ψ(s, t) = c(s, t)ei
∫ s
0 τ(s

′,t)ds′ .
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Figure 4.

After some calculations he proves that if X solves (1) then ψ solves

(8) ∂tψ(s, t) = i

(
∂2
sψ +

1

2
(|ψ|2 +A(t)

)
ψ

)
for some A(t) ∈ R.

Therefore it is straightforward that for regular solutions of (8)

(9)

∫ ∞

−∞
|ψ(s, t)|2ds =

∫ ∞

−∞
|ψ(s, 0)|2ds =

∫ ∞

−∞
c2(s, 0)ds.

In fact to solve (8) under the condition that (9) is finite is nowadays quite standard.
However in our case:

ψ(s, t) =
a√
t
ei

s2

4t ,

∫ ∞

−∞
|ψ|2ds = +∞.

Our next step is to extend the self-similar solutions for negative times. Formally this
can be easily done using remark 1. As we said to change the direction of time is enough
to change the orientation of the curve at time zero. In our case this can be done using
a rotation ρ that interchanges the two lines that generate the initial curve. Then, it is
enough to apply this rotation ρ to the curve

√
tG(s/

√
t) as done in figure 5. We have

the following result.

Theorem 3.1. The self-similar solutions exhibited in figure 5 are stable. In particular,
the creation/annihilation of a corner is a stable procedure.

The proof of this result is a consequence of several papers done in collaboration with V.
Banica (see [1], [2], [3], and [4]). We also refer the reader to [4] for a precise statement
of the above theorem. The proof follows the following steps:

• A pseudo-conformal transformation of ψ is done. This implies to change the
variable t into 1/t so that the initial value problem for (9) becomes a scattering
problem. Therefore the existence of wave operator and its asymptotic complete-
ness have to be settled.
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Figure 5.

• For dealing with the scattering problem the right space of functions has to be
found.

• Extra difficulties come from the fact that the non-linear potential is a long range
potential. This has an important consequence: cubic NLS equation (9) with the
Dirac–delta as initial condition is ill–posed. Observe that the Dirac-delta is the

initial condition of (9) with A(t) = a2

t associated to a self-similar solution.
• As a consequence, for describing the formation of a corner at time t = 0 one can
not work just with (9). It is also necessary to work with (1) and (3). The recipe
to go beyond t = 0 is to use a blow–up argument to “capture” the appropriate
selfsimilar solution.

• For the last step the characterization of the self-similar solutions obtained in [12]
plays a fundamental role.

4. A Regular Polygon

Our next step is to consider solutions of (1) that at time t = 0 are given by a regular
polygon. In terms of the Hasimoto function (7) a planar regular polygon with M sides
is described as

(10) ψ(s, 0) =
2π

M

∞∑
k=−∞

δ

(
s− 2πk

M

)
.

Let us recall the so-called galilean transformations: if ψ(s, t) is a solution of (9) then

ψ̃(s, t) ≡ eiks−ik
2tψ(s− 2kt, t), ∀ k, t ∈ R,

－65－



L. VEGA THE DYNAMICS OF VORTEX FILAMENTS WITH CORNERS

is also solution of (9). Observe that for ψ(s, 0) as in (10) then

e2πijMsψ(s, 0) = ψ(s, 0) ∀ j ∈ Z.

Therefore if there were uniqueness for the initial value problem (9) with initial condition
(10) then

ψ̃k = ψ ∀ k ∈ Z.

This has very strong consequences because if we define

ψ̂(j, t) =
M

2π

∫ 2π/M

0
e−iMjsψ(s, t)ds

then

ψ̂(j, t) =
M

2π

∫ 2π/M

0
e−iMjsψ(s, t)ds

=
M

2π

∫ 2π/M

0
e−iMjs

[
eiMks−i(Mk)2tψ(s− 2Mkt, t)

]
ds

=
Me−i(Mk)2t

2π

∫ 2π/M

0
e−iM(j−k)sψ(s− 2Mkt, t)ds

=
Me−i(Mk)2t

2π

∫ 2π/M

0
e−iM(j−k)(s+2Mkt)ψ(s, t)ds

=
Me−i(Mk)2t−iM(j−k)(2Mkt)

2π

∫ 2π/M

0
e−iM(j−k)sψ(s, t)ds

= e−i(Mk)2t−iM(j−k)(2Mkt)ψ̂(j − k, t).

Therefore

ψ̂(j, t) = e−i(Mj)2tψ̂(0, t) for all j.

Now for “rational times”

tpq = 2πp/(M2q)

we get

ψ (s, tpq) = ψ̂ (0, tpq)
∞∑

k=−∞
e−i(Mk)22πp/(M2q)+iMks

= ψ̂ (0, tpq)
∞∑

k=−∞
e−2πi(p/q)k2+iMks

= ψ̂ (0, tpq)

q−1∑
l=0

∞∑
k=−∞

e−2πi(p/q)(qk+l)2+iM(qk+l)s

= ψ̂ (0, tpq)

q−1∑
l=0

e−2πi(p/q)l2+iMl)s
∞∑

k=−∞
eiMqks.

This is the so-called Talbot effect – see [5] and [8]. Observe that in our case this Talbot
effect is understood geometrically by observing that at time tpq a new polygon with Mq
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sides is generated. This polygon is determined by the generalized quadratic Gauss sums
that are defined by

|c|−1∑
l=0

e2πi(al
2+bl)/c,

for given integers a, b, c, with c �= 0.

It is well known that

(11) G(−p,m, q) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
qeiθm, if q is odd,

√
2qeiθm, if q is even and q/2 ≡ m mod 2,

0, if q is even and q/2 �≡ m mod 2,

for a certain angle θm that depends on m, p, and q.

Gathering all the information we get

ψ (s, tpq) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q−1∑
m=0

(αm + iβm) δ

(
s− 2πm

Mq

)
, if q is odd,

q/2−1∑
m=0

(α2m+1 + iβ2m+1) δ

(
s− 4πm+ 2π

Mq

)
, if q/2 is odd,

q/2−1∑
m=0

(α2m + iβ2m) δ

(
s− 4πm

Mq

)
, if q/2 is even,

where

|αm + iβm| =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2π

M
√
q
ψ̂ (0, tpq) , if q is odd,

2π

M
√

q
2

ψ̂ (0, tpq) , if q is even and q/2 ≡ m mod 2,

0, if q is even and q/2 �≡ m mod 2,

so we conclude that the angle ρ between two adjacent sides is constant. Furthermore,
writing

αm + iβm = ρeiθm

we see that the structure of the polygon is given by the angles θm.

Bearing in mind that ψ is given as a sum of δ-functions it is more appropriate to use
the so-called parallel frame than the Frenet frame,

⎛⎝ T
e1
e2

⎞⎠
s

=

⎛⎝ 0 α β
−α 0 0
−β 0 0

⎞⎠ ·
⎛⎝ T

e1
e2

⎞⎠ .
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Hence we have to solve systems of the type⎛⎝ T
e1
e2

⎞⎠
s

=

⎛⎝ 0 aδ bδ
−aδ 0 0
−bδ 0 0

⎞⎠ ·
⎛⎝ T

e1
e2

⎞⎠ .

It is immediate to obtain⎛⎜⎜⎜⎜⎝
u1(0

+)

u2(0
+)

u3(0
+)

⎞⎟⎟⎟⎟⎠ = exp

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝

0 a b

−a 0 0

−b 0 0

⎞⎟⎟⎟⎟⎠
∫ 0+

0−
δ(s′)ds′

⎤⎥⎥⎥⎥⎦ ·

⎛⎜⎜⎜⎜⎝
u1(0

−)

u2(0
−)

u3(0
−)

⎞⎟⎟⎟⎟⎠

= exp

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝

0 a b

−a 0 0

−b 0 0

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ ·

⎛⎜⎜⎜⎜⎝
u1(0

−)

u2(0
−)

u3(0
−)

⎞⎟⎟⎟⎟⎠
We still have to determined ψ̂(0, t). We will do it by imposing that the polygon has to
be closed. Observe that to compute the k-side we have to write⎛⎜⎜⎜⎜⎝

T
(
2πk
Mq

+
)T

e1

(
2πk
Mq

+
)T

e2

(
2πk
Mq

+
)T

⎞⎟⎟⎟⎟⎠ = Mk ·Mk−1 · . . . ·M1 ·M0 ·

⎛⎜⎝ T (0−)T

e1 (0−)T

e2 (0−)T

⎞⎟⎠ .

Hence in order the polygon to be closed it is necessary that

MMq−1 ·MMq−2 · . . . ·M1 ·M0 ≡ I.

Let us define:
M = Mq−1 ·Mq−2 · . . . ·M1 ·M0.

Hence M is an M–th root of the identity matrix and also a rotation matrix that induces
a rotation of 2π/M degrees around a certain rotation axis. Hence

Tr (M) = 1 + 2 cos

(
2π

M

)
,

σ(M) =
{
1, e2πi/M , e−2πi/M

}
.

From this fact and some strong numerical evidence we conjecture that

cos(ρ) =

⎧⎨⎩ 2 cos2/q (π/M)− 1, if q is odd,

2 cos4/q (π/M)− 1, if q is even.

Hence we have all the necessary information to compute T at t = tpq. Except the
trajectory of one point. This is obtained using the symmetries of the M−polygon as it
is explained in [15].
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In figure 6 we compare the numerical solution with the theoretical solution, the con-
struction of which we have just sketched. We see that there is a remarkable agreement
between the two.

Figure 6. Tnum versus Talg, for M = 3, at T1,3 =
2π

27
. T1 appears in

blue, T2 in green, T3 in red. In Tnum, the Gibbs phenomenon is clearly
visible. The black circles denote the points chosen for the comparisons.

It is interesting to observe the trajectory of one of the corners as for example X(0, t).
Using again the symmetries of the M -polygon is easy to see that this trajectory falls in
a plane. In figures 7 and 8 we can see the particular cases of the equilateral triangle and
the square.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6
M = 3

Figure 7. Figure 8.

These pictures are quite reminiscent of the so-called Riemann’s non-differentiable func-
tion

(12) φ(t) =
∑
k 	=0

e−2πitk2

k2
.
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Observe that φ(1) = φ(0). Renormalizing X(0, t) accordingly we see in figures 9, 10 and
11 that at the qualitative level there is a big similitude between them. This similitude
becomes stronger the bigger the M . This is numerically proved in [15]. In [9] it is proved
that the graph given by φ in (12) is a fractal that satisfies the so-called Frisch-Parisi
conjecture –see [10] and [11].

I want to finish with a few remarks about the behavior of real fluids. The results in
[15], some of which have been sketched in this note, suggest that at half of a period
the starting regular polygon with M sides becomes the same polygon but with the axis
switched with an angle equal to π/M . Observe that at those times, and due to the fact
that q = 2, the Gauss sum is zero for half of the cases in (11), so that the polygon has M
sides instead of 2M . Then, the the axis switching phenomena follows from the analysis
of which are the precise values of m in (11) that make the Gauss sum trivial. It turns out
that this phenomena has been observed in real fluids, in particular for non-circular jets,
and it is well documented. We refer the reader to [15] for the appropriate references. In
figure 12 the reader will find some pictures of a domestic experiment. A smoke cannon
made with a cardboard box that has a hole with the shape of an equilateral triangle
is used. After introducing some smoke through the hole the box is suddenly hit at the
back. A camera in front of the box is located. The first three pictures clearly illustrate
the flip-flop of the triangle as a consequence of the switching of the axis by a π/6-angle.
Or course the corners are smoothed out due to the effects of the viscosity. Our analysis
also implies that skew polygons with six sides should appear as a consequence of the
Talbot effect mentioned above. The last picture in figure 12 is not conclusive and further
evidence in this direction is needed.

Figure 9. Figure 10. Figure 11.
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ON A FRACTIONAL YAMABE PROBLEM

YANNICK SIRE

Abstract. We investigate the prescription of constant curvature
on manifolds, where the curvature is related to conformally covari-
ant operators of fractional order.

1. Introduction

Let (M, ḡ) be a compact smooth connected n-dimensional Riemann-
ian manifold, n ≥ 3. The ‘standard’ regular Yamabe problem concerns
the existence and geometric properties of conformal metrics of the form

g = u
4

n−2 ḡ with constant scalar curvature. This corresponds to solving
the partial differential equation

Δḡu+
n− 2

4(n− 1)
Rḡu =

n− 2

4(n− 1)
Rg u

n+2
n−2 , u > 0, (1.1)

where the scalar curvature Rg is constant. In the previous equation,
the operator

Lḡ = Δḡu+
n− 2

4(n− 1)
Rḡ

is the so-called conformal laplacian on M . It satisfies the conformality

property: if f is any (smooth) function and g = u
4

n−2 ḡ for some u > 0,
then

Lḡ(uf) = u
n+2
n−2Lg(f). (1.2)

On the other hand, the ”standard” singular Yamabe problem con-
cerns the existence and geometric properties of complete metrics of

the form g = u
4

n−2 ḡ with constant scalar curvature on M\Λ, where
Λ ⊂M is a closed set. It boils down to solving the equation (1.1) with
a ‘boundary condition’ that u → ∞ sufficiently quickly at Λ so that g
is complete.

The purpose of this note is to introduce a notion of curvature on com-
pact manifolds interpolating between already known curvatures and
their associated regular and singular Yamabe metrics.

Setting f ≡ 1 in (1.2) yields the familiar relationship (1.1) between
the scalar curvatures Rḡ and Rg. Lḡ is the first in a sequence of con-

formally covariant elliptic operators, P g
k , which exist for all k ∈ N if
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n is odd, but only for k ∈ {1, . . . , n/2} if k is even. The first con-
struction of these operators, by Graham-Jenne-Mason-Sparling [8] (for
which reason they are known as the GJMS operators), proceeded by
trying to find lower order geometric correction terms to Δk in order
to obtain nice transformation properties under conformal changes of
metric. Beyond the case k = 1 which we have already discussed, the
operator

P g
2 = Δ2

g + δ
(
anRg + bnRic

)
d+ n−4

2
Qn,

called the Paneitz operator, had also been discovered much earlier than
the operators P g

k with k > 2. The natural question is then to consider
conformally covariant operators P ḡ

γ of fractional order γ and their cur-
vature given by

Qg
γ = P g

γ (1).

We focus here only on the operators P ḡ
γ when γ ∈ R, |γ| ≤ n/2.

These have the following properties: first, P ḡ
0 = Id, and more generally,

P ḡ
k is the kth GJMS operator, k = 1, . . . , n/2; next, P ḡ

γ is elliptic of

order 2γ with principal symbol σ2γ(P
ḡ
γ ) = |ξ|2γḡ , hence (since M is

compact), P ḡ
γ is Fredholm on L2 when γ > 0; if P ḡ

γ is invertible, then

P ḡ
−γ = (P ḡ

γ )
−1; finally,

if g = u
4

n−2γ ḡ, then P ḡ
γ (uf) = u

n+2γ
n−2γP g

γ (f) (1.3)

for any smooth function f .

2. Fractional laplacians and fractional curvature

We now provide a more careful description of the construction of the
family of conformally covariant operators P ḡ

γ .
Graham and Zworski [9] discovered a beautiful connection between

the scattering theory of the Laplacian on an asymptotically hyperbolic
Einstein manifold and the GJMS operators on its conformal infinity.
Let (M, g) be a compact n-dimensional Riemannian manifold. Suppose
that X is a smooth compact manifold with boundary, with ∂X = M ,
and denote by x a defining function for the boundary, i.e. x ≥ 0 on
X, x = 0 precisely on ∂X and dx �= 0 there. A metric G on the
interior of X is called conformally compact if x2G = G extends as a
smooth nondegenerate metric on the closed manifold with boundary.
It is not hard to check that G is complete and, provided that |dx|G = 1
at ∂X, the sectional curvatures of G all tend to −1 at ‘infinity’. The
metric G is called Poincaré-Einstein if it is conformally compact and
also satisfies the Einstein equation RicG = −nG. It is only necessary to
consider asymptotically Poincaré-Einstein metrics; by definition, these
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are conformally compact metrics which satisfy RicG = −nG + O(xN)
for some suitably large N (typically, N > n is sufficient).

The conformal infinity of G is the conformal class of G
∣∣
T∂X

; only the
conformal class is well defined since the defining function x is defined
up to a positive smooth multiple. If g is any representative of this
conformal class, then there is a unique defining function x for M such
that G = x−2(dx2 + g(x)) where g(x) is a family of metrics on M (or
rather, the level sets of x), with g(0) the given initial metric.
We now define the scattering operator S(s) for (X,G). Fix any

f0 ∈ C∞(M); then for all but a discrete set of values s ∈ C, there
exists a unique generalized eigenfunction u of the Laplace operator on
X with eigenvalue s(n− s). In other words, u satisfies{

(ΔG − s(n− s))u = 0

u = fxn−s + f̃xs, for some f, f̃ ∈ C∞(X) with f |x=0 = f0.

(2.1)

By definition, S(s)f0 = f̃ |x=0. This is an elliptic pseudodifferential
operator of order 2s − n which depends meromorphically on s; it is
known to always have simple poles at the values s = n/2, n/2+1, n/2+
2, . . .. These locations are independent of (X,G), hence are called the
trivial poles of the scattering operator. Letting s = n/2 + γ, we now
define

P g
γ = 22γ

Γ(γ)

Γ(−γ)S
(n
2
+ γ

)
; (2.2)

because of these prefactors, one has

σ2γ(P
g
γ ) = |η|2γg . (2.3)

The scattering operator satisfies a functional equation, S(s)S(n− s) =
Id, which implies that

P g
γ ◦ P g

−γ = Id. (2.4)

Finally, it is proved in [9] that the operators P g
γ satisfy the conformal

covariance equation (1.3).
This definition of the operators P g

γ depends crucially on the choice
of the Poincaré-Einstein filling (X,G). Graham and Zworski point out
that it is only necessary that the metric G satisfy the Einstein equation
to sufficiently high order as x → 0 in order that the properties of the
P g
γ listed above be true (for γ in a finite range which depends on the

order to which G satisfies the Einstein equation). As we have discussed
in the introduction, it is always possible to find such metrics, and we
suppose that one has been fixed.
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Remark 2.1. In the flat metric, the operator P g
γ is the fractional lapla-

cian (−Δ)γ, a Fourier multiplier of symbol |ξ|2γ.

3. Results on the singular fractional Yamabe problem

In view of the previous discussion, one can formulate the following
fractional Yamabe problem: given a metric ḡ on a compact manifold
M , find u > 0 so that if g = u4/(n−2γ)ḡ, then Qg

γ is constant. This
amounts to solving

P ḡ
γ u = Qg

γu
n+2γ
n−2γ , u > 0, (3.1)

for Qg
γ = const. Following the seminal works [1], [14], [6], Qing and

Gonzalez were able to solve the problem in most of the cases [12].
The only remaining part is the Schoen result using the Positive mass
[14, 15], which is not known for these operators.

The singular fractional Yamabe problem is much less understood. In
the local case γ = 1, it is known that solutions with Rg < 0 exist quite
generally if Λ is large in a capacitary sense [10], whereas for Rg > 0
existence is only known when Λ is a smooth submanifold (possibly with
boundary) of dimension k < (n− 2)/2, see [11]. On the geometric side
is a well-known theorem by Schoen and Yau [13] stating that if (M,h) is
a compact manifold with a locally conformally flat metric h of positive
scalar curvature, then the developing map D from the universal cover

M̃ to Sn, which by definition is conformal, is injective, and moreover,

Λ := Sn\D(M̃) has Hausdorff dimension less than or equal to (n−2)/2.

Regarding the lifted metric h̃ on M̃ as a metric on Ω, this provides an
interesting class of solutions of the singular Yamabe problem which are
periodic with respect to a Kleinian group, and for which the singular
set Λ is typically nonrectifiable. More generally, that paper also shows

that if ḡ is the standard round metric on the sphere and if g = u
4

n−2 ḡ
is a complete metric with positive scalar curvature and bounded Ricci
curvature on a domain Ω = Sn \ Λ, then dimΛ ≤ (n− 2)/2.

A first approach to generalize the Schoen-Yau theory is the following
result (see [7])

Theorem 3.1. Suppose that (Mn, ḡ) is compact and g = u
4

n−2γ ḡ is a
complete metric on Ω = M \ Λ, where Λ is a smooth k-dimensional
submanifold. Assume furthermore that u is polyhomogeneous along Λ
with leading exponent −n/2+γ. If 0 < γ ≤ n

2
, and if Qg

γ > 0 everywhere
for any choice of asymptotically Poincaré-Einstein extension (X,G)
which defines P ḡ

γ and hence Qg
γ, then n, k and γ are restricted by the
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inequality

Γ
(n
4
− k

2
+
γ

2

)/
Γ
(n
4
− k

2
− γ

2

)
> 0, (3.2)

where Γ is the ordinary Gamma function. This inequality holds in
particular when k < (n − 2γ)/2, and in this case there is a unique
extension of u to a distribution on all of M which solves the same
equation, or in other words, u extends uniquely to a weak solution of
(3.1) on all of M .

Remark 3.2. Recall that u is said to be polyhomogeneous along Λ
if in terms of any cylindrical coordinate system (r, θ, y) in a tubular
neighbourhood of Λ, where r and θ are polar coordinates in disks in
the normal bundle and y is a local coordinate along Λ, u admits an
asymptotic expansion

u ∼
∑

ajk(y, θ)r
μj(log r)k

where μj is a sequence of complex numbers with real part tending to
infinity, for each j, ajk is nonzero for only finitely many nonnegative
integers k, and such that every coefficient ajk ∈ C∞. The number μ0

is called the leading exponent �(μj) > �(μ0) for all j �= 0.

Inequality (3.2) is satisfied whenever k < (n − 2γ)/2, and in fact is
equivalent to this simpler inequality when γ = 1. When γ = 2, i.e. for
the standard Q−curvature, this result is already known: it is shown
in [5] that complete metrics with Q > 0 and positive scalar curvature
must have singular set with dimension less than (n−4)/2, which again
agrees with (3.2). The previous estimate provides an insight on the
solvability of the singular fractional Yamabe problem.

The simplest case of a singular set one can imagine is an isolated
singularity. Consider the equation

(−Δ)γu = u
n+2γ
n−2γ in B1 \ {0} ⊂ R

n (3.3)

By means of the Caffarelli-Silvestre extension [3], one can reformulate
equation (3.3) in terms of the following boundary problem⎧⎨⎩ div(t1−2γ∇U) = 0 in B+

1 ⊂ R
n+1
+ ,

∂U

∂νγ
(x, 0) = U

n+2γ
n−2γ (x, 0) on ∂B+

1 \ {0}, (3.4)

In the case of conformally flat manifolds, one then has [2]

Theorem 3.3. Suppose that U is a nonnegative solution of (3.4).
Then either u can be extended as a continuous function near 0, or

－76－



YANNICK SIRE

there exist two positive constants c1 and c2 such that

c1|x|−
n−2γ

2 ≤ u(x) ≤ c2|x|−
n−2γ

2 . (3.5)

and

Theorem 3.4. If U is a nonnegative solution of (3.4), then

u(x) = ū(|x|)(1 +O(|x|)) as x→ 0,

where ū(|x|) = 1
|Sn|

∫
Sn
u(|x|θ) dθ is the spherical average of u.

The previous theorems are a nonlocal version of famous results by
Caffarelli, Gidas and Spruck [4].
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Abstract 
 In the paper we will consider elements of the theory of inverse and ill-posed problems including 

the quasisolutions method and the method of extending compacts. We will show how these methods can 

be applied for solving inverse problems for PDE. 

 

1. Well-posed and ill-posed problems 

Let us consider an operator equation: 

uAz � , 

where A  is a linear operator acting from a normed space Z into a normed space U. It is required to find a 

solution of the operator equation z corresponding to a given inhomogeneity (or right-hand side) u. 

 This equation is a typical mathematical model for many physical so called inverse problems if it is 

supposed that unknown physical characteristics z cannot be measured directly. As results of experiments, 

it is possible to obtain only data u connected with z with help of an operator A.  

French mathematician J. Hadamard formulated the following conditions of well-posedness of 

mathematical problems.  Let us consider these conditions for the operator equation above. The problem of 

solving the operator equation is called to be well-posed (according to Hadamard) if the following three 

conditions are fulfilled: 

1) the solution exists  Uu�� ; 

2) the solution is unique; 

3) if uun � , nn uAz � , uAz � , then zzn � . 

The condition 2) can be realized then and only then the operator A is one-to-one (injective). The 

conditions 1) and 2) imply that an inverse operator 1�A  exists, and its domain D( 1�A ) (or the range of the 

operator A R(A)) coincides with U. It is equivalent to that the operator A is bijective. The condition 3) 

means that the inverse operator 1�A  is continuous, i.e., to “small” perturbations of the right-hand side u 

“small” changes of the solution z correspond. Moreover, J. Hadamard believed that well-posed problems 

only can be considered while solving practical problems. However, there are well known a lot of 

examples of ill-posed problems that should be numerically solved when practical problems are 

investigated. It should be noted that stability or instability of solutions depends on definition of the space 
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of solutions Z. Usually, a choice of the space of solutions (including a choice of the norm) is determined 

by requirements of an applied problem. A mathematical problem can be ill-posed or well-posed 

depending on a choice of a norm in a functional space.   

Numerous inverse (including ill-posed) problems can be found in different branches of physics.  

E.g., an astrophysicist has no possibility to influent actively on processes in remote stars and galaxies. He 

is induced to make conclusions about physical characteristics of very remote objects using their indirect 

manifestations measured on the Earth surface or near the Earth on space stations. Excellent examples of 

ill-posed problems are in medicine. Firstly, let us point out computerized tomography. A lot of 

applications of ill-posed problems are in geophysics. Indeed, it is easier and cheaper to judge about what 

is going under the Earth surface solving inverse problems than drilling deep boreholes. Other examples 

are in radio astronomy, spectroscopy, nuclear physics, plasma diagnostics, etc., etc.  

 A completely continuous operator acting in infinite dimensional Banach spaces has an inverse 

operator that is not continuous (not bounded). Moreover, a range of a completely continuous operator 

acting between infinite dimensional Banach spaces is not closed. Therefore, in any neighborhood of the 

right-hand side )(xu  such that the equation has a solution there exists infinite number of right-hand sides 

such that the equation is not solvable. 

 A mathematical problem can be ill-posed in connection also with errors in an operator.  The 

simplest example gives the problem to find a normal pseudosolution of a system of linear algebraic 

equations. Instability of this problem is determined by errors in a matrix.  
 

2. Definition of the regularizing algorithm 

Let us given an operator equation: 

uAz � , 

where A  is an operator acting between normed spaces Z and U. In 1963 A.N. Tikhonov formulated a 

famous definition of the regularizing algorithm (RA) that is a basic conception in the modern theory of 

ill-posed problems. 

Definition. Regularizing algorithm (regularizing operator) )(),( ���� uRuR �  is called an operator 

possessing two properties: 

1) )( �� uR  is defined for any 0	� , Uu �� ,  and is mapping U
�� ),0(  into Z; 

2) For any Zz�  and for any Uu ��  such that uAz � , 0, 	� ���uu ,  
0

)(
�
��
���� zuRz .  

A problem of solving an operator equation is called to be regularizable if there exists at least one 

regularizing algorithm. Directly from the definition it follows that if there exists one regularizing 

algorithm then number of them is infinite.  

At the present time, all mathematical problems can be divided into following classes: 

1) well-posed problems; 
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2) ill-posed regularizable problems; 

3) ill-posed nonregularizable problems. 

All well-posed problems are regularizable as it can be taken 1)( �� AuR �� . Let us note that 

knowledge of 0	�  is not obligatory in this case. 

Not all ill-posed problems are regularizable, and it depends on a choice of spaces Z, U. Russian 

mathematician L.D. Menikhes constructed an example of an integral operator with a continuous closed 

kernel acting from C[0,1] into L2[0,1] such that an inverse problem (that is, solving a Fredholm integral 

equation of the 1st kind) is nonregularizable. It depends on properties of the space C[0,1]. If Z  is the 

Hilbert space, and an operator A is bounded and injective, then the problem of solving of the operator 

equation is regularizable. This result is valid for some Banach spaces, not for all (for reflexive Banach 

spaces only). In particular, the space C[0,1] does not belong to such spaces. 

An equivalent definition of the regularizing algorithm is following. Let be given an operator 

(mapping) )( �� uR  defined for any 0	� , Uu �� , and reflecting U
�� ),0(  into Z. An accuracy of 

solving an operator equation in a point Zz�  using an operator )( �� uR  under condition that the right-

hand side defined with an error 0	�  is defined as ||||sup),,(
,||:||

zuRzR
uAzuuUu

���
���

��
�

�
��

� . An operator 

)( �� uR  is called a regularizing algorithm (operator) if for any Zz�  
0
0),,(

�
��
�� � zR . This definition is 

equivalent to the definition above. 

Similarly, a definition of the regularizing algorithm can be formulated for a problem of calculating 

values of an operator (see the end of the previous section), that is for a problem of calculating values of 

mapping G : XGDYGD �� )(,)( under condition that an argument of G  is specified with an error (X, 

Y are metric or normed spaces). Of course, if A is an injective operator then a problem of solving an 

operator equation can be considered as a problem of calculating values of A-1.  

It is very important to get an answer to the following question: is it possible to solve an ill-posed 

problem (i.e., to construct a regularizing algorithm) without knowledge of an error level � ? 

Evidently, if a problem is well-posed then a stable method of its solution can be constructed 

without knowledge of an error � . E.g., if an operator equation is under consideration then it can be taken 

uAzuAz 11 �� ��� ��  as 0�� . It is impossible if a problem is ill-posed. A.B. Bakushinsky proved 

the following theorem for a problem of calculating values of an operator. An analogous theorem is valid 

for a problem of solving operator equations. 

Theorem. If there exists a regularizing algorithm for calculating values of an operator G  on a set 

XGD �)( , and the regularizing algorithm does not depend on �  (explicitly), then an extension of 

G from XGD �)(  to X  exists, and this extension is continuous on XGD �)( . 

So, construction of regularizing algorithms not depending on errors explicitly is feasible only for 

well-posed on its domains problems. 
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The next very important property of ill-posed problems is impossibility of error estimation for a 

solution even if an error of a right-hand side of an operator equation or an error of an argument in a 

problem of calculating values of an operator is known. This basic result was also obtained by A.B. 

Bakushinsky for solving operator equations.  

Theorem. Let 
0,||:||
0)(||||sup),,(

����
����
���

�
� ���

��

zuRzR
uAzuuUu

  for any 

ZDz �� . Then a contraction of the inverse operator on the set AD : 
UAD

A
�

�1 is continuous on AD .  

So, a uniform on z error estimation of an operator equation on a set ZD �  exists then and only 

then if the inverse operator is continuous on AD . The theorem is valid also for nonlinear operator 

equations, in metric spaces at that.  

From the definition of the regularizing algorithm it follows immediately if one exists then there is 

infinite number of them. While solving ill-posed problems, it is impossible to choose a regularizing 

algorithm that finds an approximate solution with the minimal error. It is impossible also to compare 

different regularizing algorithms according to errors of approximate solutions. Only including a priori 

information in a statement of the problem can give such a possibility, but in this case a reformulated 

problem is well-posed in fact. We will consider examples below. 

Regularizing algorithms for operator equations in infinite dimensional Banach spaces  could not 

be compared also according to convergence rates of approximate solutions to an exact solution as errors 

of input data tend to zero. The author of this principal result is V.A. Vinokurov. 

 In conclusion of the section let formulate a definition of the regularizing algorithm in the case 

when an operator can also contain an error, i.e., instead of an operator A it is given a bounded linear 

operator hA : UZAh �: , such that 0, �� hhAAh . Briefly, let us note a pair of errors �, h as 

�=(�, h). 

      Definition. Regularizing algorithm (regularizing operator) ),(),,( hh AuRAuR ���� �  is called an 

operator possessing two properties:  

        1) ),( hAuR ��  is defined for any 0	� , 0�h , Uu �� , ),( UZLAh � , and is mapping 

),(),0[),0( UZLU 

��
��  into Z; 

        2) for any Zz� , for any Uu ��  such that uAz � , 0, 	� ���uu and for any 

),( UZLAh �  such that 0, �� hhAAh , 
0

),(
�
��
���� zAuRz h .  

 Here ),( UZL  is a space of linear bounded operators acting from Z into U  with the usual operator 

norm. 

 Similarly, it possible to define what is it a regularizing algorithm if an operator equation is 

considered on a set ZD � , i.e., a priori information that an exact solution ZDz ��  is available. 
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 For ill-posed SLAE A.N. Tikhonov was the first who proved impossibility to construct a 

regularizing algorithm that does not depend explicitly on h.  
 

3. Ill-posed problems on compact sets 

Let us consider an operator equation:  

                                                              uAz � , 

A is a linear injective operator acting between normed spaces Z and U. Let z  be an exact solution of an 

operator equation, uzA � , �u is an exact right-hand side, and it is given an approximate right-hand side 

such that 0, 	� ���uu . 

A set }:{ ����� �� uAzzZ  is a set of approximate solutions of the operator equation.  For 

linear ill-posed problems ����� },||:sup{|| 2121 �� ZzzzzZdiam for any 0	�  since the inverse 

operator 1�A  is not bounded. 

The question is that: is it possible to use a priori information in order to restrict a set of 

approximate solutions or (it is better) to reformulate a problem to be well-posed. A.N. Tikhonov proposed 

a following idea: if it is known the set of solutions is a compact then a problem of solving an operator 

equation is well-posed under condition that an approximate right-hand side belongs to the image of  the 

compact. A.N. Tikhonov proved this assertion using as basis the following theorem. 

Theorm. Let an injective continuous operator A be mapping: UADZD ��� , where UZ , are 

normed spaces, D is a compact. Then the inverse operator 1�A  is continuous on AD . 

The theorem is true for nonlinear operators also. So, a problem of solving an operator equation is 

well-posed under condition that an approximate right-hand side belongs to AD . This idea made possible 

to M.M. Lavrentiev to introduce a conception of a well-posed according to A.N. Tikhonov mathematical 

problem (it is supposed that a set of well-posedness exists), and to V.K. Ivanov to define a quasisolution 

of an ill-posed problem. 

 The theorem above is not valid if )(ARu �� . So, it should be generalized. 

Definition. An element Dz �� such that �� uAzz
Dz

��
�
minarg  is called a quasisolution of an 

operator equation on a compact D ( �� uAzz
Dz

��
�
minarg  means that 

}:min{ DzuzAuzA ���� ��� ). 

A quasisolution exists but maybe is nonunique. Though, any quasisolution tends to an exact 

solution: zz ��  as 0�� . In this case, knowledge of an error �  is not obligatory. If δ is known then:  

1) any element Dz ��  satisfying an inequality : ��� �uAz , can be chosen as an approximate 

solution with the same property of convergence to an exact solution  (δ-quasisolution); 
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2) it is possible to find an error of an approximate solution solving an extreme problem: 

find max||z-zδ|| maximizing on all Dz �  satisfying an inequality: �� � uAz  (it is obviously that an 

exact solution satisfying the inequality). 

Thus, the problem of quasisolving an operator equation does not differ strongly from a well-posed 

problem. A condition of uniqueness only maybe does not satisfy. 

If an operator A is specified with an error then the definition of a quasisolution can be modified 

changing an operator A to an operator Ah.  

Definition. An element Dz �� such that �� uzAz h
Dz

��
�
minarg  is called a quasisolution of an 

operator equation on a compact D. 

Any element Dz ��  satisfying an inequality: |||| ��� � zhuAz ��  can be chosen as an 

approximate solution (η-quasisolution). 

If Z and U are Hilbert spaces then many numerical methods of finding quasisolutions of linear 

operator equations are based on convexity and differentiability of the discrepancy functional 
2

�uAz � . 

If D is a convex compact then finding a quasisolution is a problem of convex programming. The 

inequalities written above and defining approximate solutions can be used as stopping rules for 

minimizing the discrepancy procedures. The problem of calculating errors of an approximate solution is a 

nonstandard problem of convex programming because it is necessary to maximize (not to minimize) a 

convex functional. 

Some sets of correctness are very well known in applied sciences. First of all, if  an exact solution 

belongs to a family of functions depending on finite number of bounded parameters then the problem of 

finding parameters can be well-posed. The same problem without such a priori information can be ill- 

posed.  

If an unknown function z(s), s�[a, b], is monotonic and bounded then it is sufficient to define a 

compact set in the space L2[a, b]. After finite-dimensional approximation the problem of finding a 

quasisolution is a quadratic programming problem. For numerical solving, known methods such a method 

of projections of conjugate gradients or a method of conditional gradient can be applied. Similar approach 

can be used also when the solution is monotonic and bounded, or monotonic and convex, or has given 

number of maxima and minima. In these cases, an error of an approximate solution can be calculated.  

 

4. Ill-posed problems with sourcewise represented solutions 

Let an operator A  be linear injective continuous and mapping UZ � ; UZ ,  are normed spaces. 

Let the following a priori information be valid: it is known that an exact solution z  for an equation 

zAu �  is represented in the form zvB � , Vv� ; ZVB �: ; B  is an injective completely continuous 
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operator; V is a Hilbert space. Let suppose that an approximate right-hand side �u  such that �� � uu , 

and its error 0	�  is known. Such a priori information is typical for many physical problems.   

V.K. Ivanov and I.N. Dombrovskaya proposed an idea of a method of extending compacts. Let 

describe a version of this method below investigated by A.G. Yagola and K.Yu. Dorofeev.  

Let preset an iteration number n=1, and define a closed ball in the space V: }:{)0( nvvSn � . 

Its image )0(nn SBZ �  is a compact since B is a completely continuous operator and V is a Hilbert space. 

After that let us find 
))0((

min
nSBz

uAz
�

� � , where �u  is given approximate right-hand side 0, 	� ���uu . 

Existence of the minimum is guaranteed by compactness of nZ  and continuity of A. If 
))0((

min
nSBz

uAz
�

� � � , 

then the iteration process should be stopped, and the number nn �)(�  defined. An approximate solution 

of the operator equation can be chosen as any element ))0((: )()()( ��� nnn SBzz �  satisfying 

��� � |||| )( uAzn . If �� 	�
� ))0((

min
nSBz

uAz  then the compact should be extended. For this purpose n  changes 

to n +1, and the process repeats. 

Theorem. The process described above converges: ���)(�n . There exists 00 	�  (generally 

speaking, depending on z ) such that )()( 0�� nn �  ],0( 0�� �� . Approximate solutions )(�nz  strongly 

converge to the exact solution z  as 0�� . 

It is clear why the method is referred to as “an extending compacts method”. It appears that using 

this method so called an a posteriori error estimate can be defined. It means that there exists a function 

),( �� �u  such that 0),( ��� �u  as 0�� , and ||||),( )( zzu n �� �� ��  at least for sufficiently small 

0	� . As an a posteriori error estimate }||||,||:max{||),( )()( ��� ���� ���� uAzZzzzu nn  can be 

taken. 

An a posteriori error estimate is not an error estimate in a general sense, error estimates cannot be 

constructed for ill-posed problems. However, for sufficiently small 0	�  (notably ],0( 0�� �� )   an a 

posteriori error estimate is an error estimate for a solution of an ill-posed problem if an a priori 

information about sourcewise representability is available. 

 This approach was generalized to cases when both operators A and B are specified with errors, 

also to nonlinear ill-posed problems under condition of sourcewise representation of an exact solution. 

Numerical methods for solving linear ill-posed problems under condition of sourcewise 

representation were constructed, including methods for an a posteriori error estimation. To use a sequence 

of natural numbers as radii of balls in the space V is not obligatory. Any unbounded monotonically 

increasing sequence of positive numbers can be taken. 
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5. Applications to PDE 

Many inverse and ill-posed problems for PDE can be formulated as operator equations. In this case, 

regularizing algorithms for solving ill-posed problems can be applied. If it is available a priori 

information that an unknown solution is an element of a given compact then Ivanov’s quasisolution 

method can be used for constructing an approximate solution [1]. Moreover, an error of this solution can 

be calculated [2]. Sometimes, there exists a priori information that an unknown solution is sourcewise 

represented with a completely continuous operator. Then the method of extended compacts can be 

applied, and so called a posteriori error estimate can be calculated [2-3]. 

As examples of applications we considered: 

1) Inverse problems of heat conductivity [4]. 

2) Cauchy problems for Laplace equation  [5]. 

3) The Black-Scholes option pricing model  [6]. 

Some results of calculations are below. 

On the picture it is upper error estimation for a concave nonnegative initial temperature. It is a 

result of numerical solution of an inverse problem for 2D heat conductivity equation on a compact set 

of nonnegative functions concave along coordinate lines.  

 
In the paper [4] it was shown how to apply the method of extending compacts for restoration and 

error estimation for the temperature at t>0 if the temperature is measured at T (if 0<t<T).  

Results of solution and error estimation for Cauchy problem in the cartesian frame under condition 

that the exact solution is a concave nonnegative function are below. On the picture, there are the 

unknown function on the upper boundary of the Cartesian frame, its upper and lower error estimation 

so as its normal derivative with errors. 
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In our joint paper [6] we considered an inverse problem of parameter identification for a parabolic 

equation. The underlying practical example is the reconstruction of the unknown drift in the extended 

Black–Scholes option pricing model. Using a priori information about the unknown solution (i.e. its 

Lipschitz constant), we provide a solution to this nonlinear ill-posed problem, as well as an error estimate. 

Other types of a priori information may be used (for example, monotonicity and/or convexity of the 

unknown solution). 

The following figure is from the paper [6]. It is an approximate solution and its upper and lower error 

estimations for given error of input data. 
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1 Introduction

In this talk, we consider the existence or non-existence of λ for which the fol-
lowing equation has a non-trivial (mainly, positive) solution:

(GEV ;λ, μ)

{ −Δpu− μΔqu = λ(mp(x)|u|p−2u+ μmq(x)|u|q−2u) in Ω,
u = 0 on ∂Ω,

where Ω ⊂ R
N is a bounded domain with C2 boundary ∂Ω, λ ∈ R, 1 < q <

p < ∞, μ ≥ 0, and the weights mp, mq ∈ L∞(Ω) are such that the Lebesgue
measure of {x ∈ Ω ; ,mr(x) > 0}, with r = p, q, is positive. Here Δr stands for
the usual r-Laplacian, i.e., Δru = div (|∇u|r−2∇u) with r ∈ (1,+∞).

We say that u ∈W 1,p
0 (Ω) is a solution of (GEV ;λ, μ) if it holds∫

Ω
|∇u|p−2∇u∇ϕdx+ μ

∫
Ω
|∇u|q−2∇u∇ϕdx

= λ
∫
Ω
(mp|u|p−2u+ μmq|u|q−2u)ϕdx

for all ϕ ∈W 1,p
0 (Ω).

Letting μ → +0, our equation (GEV ;λ, μ) turns into the following (p − 1)-
homogeneous equation known as the usual weighted eigenvalue problem for the
p-Laplacian:

(EV ; p, λ)

{ −Δpu = λmp(x)|u|p−2u in Ω,
u = 0 on ∂Ω.

Moreover, after multiplying our equation by 1/μ and then letting μ → +∞,
(GEV ;λ, μ) becomes the equation:

(EV ; q, λ)

{ −Δqu = λmq(x)|u|q−2u in Ω,
u = 0 on ∂Ω.

Thus, we can understand that there is a close relationship between our equation
(GEV ;λ, μ) and the usual weighted eigenvalue problems for the p-Laplacian and
q-Laplacian, i.e., problems (EV ; p, λ) and (EV ; q, λ).

∗This talk is based on the results in [9], [12] and [13]
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We briefly discuss the motivation for the given formulation of the eigenvalue
problem (GEV ;λ, μ). Let us observe that setting Ar(t) := |t|r−2, with any
1 < r < +∞, the basic eigenvalue problem (EV ; r, λ) can be written as

−div (Ar(|∇u|)∇u) = λmr(x)Ar(u)u in Ω, u = 0 on ∂Ω.

Now in line with this, if m := mp ≡ mq and μ = 1, then setting Ap,q(t) :=
Ap(t) +Aq(t) there corresponds the equation

−div (Ap,q(|∇u|)∇u) = λm(x)Ap,q(u)u in Ω, u = 0 on ∂Ω.

We have thus exactly arrived at the statement of problem (GEV ;λ, μ) encom-
passing the natural formulation for the generalization of the eigenvalue problem
for the (p, q)-Laplace operator.

Nonlinear eigenvalue problems for elliptic equations have been thoroughly
studied (see [10] for a comprehensive survey of different developments). Recently,
many authors have studied (p, q)-Laplace equations (see [4], [7], [11], [14], [15]).
Also, see Section 3 for the special cases.

2 Homogeneous eigenvalue problems

For later use, we review a few facts related to the limiting cases when μ = 0 or
μ = +∞ in (GEV ;λ, μ). We recall that λ is an eigenvalue of −Δr (r ∈ (1,+∞))
with weight function mr if problem (EV ; r, λ) has a non-trivial solution. We
denote the set of all eigenvalues of −Δr with weight function mr by σ(−Δr,mr).
In particular, in the case of mr ≡ 1, we write σ(−Δr) instead of σ(−Δr, 1). It
is well known that the first positive eigenvalue λ1(r,mr) of −Δr with weight
function mr is obtained by minimizing the Rayleigh quotient:

λ1(r,mr) := inf

{ ∫
Ω
|∇u|r dx∫

Ω
mr|u|r dx ; u ∈W 1,r

0 (Ω),

∫
Ω

mr|u|r dx > 0

}
.

Since there exist no non-negative eigenvalues provided mr ≤ 0, we set

λ1(r,−mr) = +∞ if mr ≥ 0. (1)

It is also worth mentioning that λ1(r,mr) has positive eigenfunctions ϕ1(r,mr) ∈
C1,αr

0 (Ω) with some αr ∈ (0, 1). Furthermore, the first positive eigenvalue is
simple and isolated. Moreover, (EV ; r, λ) has no constant sign solutions (other
than the trivial solution) provided ±λ �= λ1(r,±mr).

Finally, we recall the second (positive) eigenvalue λ2(r,mr) of −Δr with
weight function mr. It is defined by

λ2(r,mr) = min{λ > λ1(r,mr) ; λ ∈ σ(−Δr,mr) }.

We note that by the definition of λ2(r,mr), if λ1(r,±mr) < ±λ < λ2(r,±mr),
then (EV ; r, λ) has no non-trivial solutions.
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3 Special cases of mp ≡ 0 or mq ≡ 0

Benouhiba and Belyacine ([1], [2]) showed the existence of the principal eigen-
value and of a continuous family of eigenvalues for the equation

−Δpu−Δqu = λg(x)|u|p−2u in R
N

In [3, Theorem 4.2], Cingolani and Degiovanni proved the existence of a non-
trivial solution for the equation

−Δpu− μΔu = λ|u|p−2u+ g(u) in Ω, u = 0 on ∂Ω

in the case where p > 2(= q), g ∈ C1 and λ �∈ σ(−Δp). Under the Neumann
boundary condition, Mihăilescu [8] determined the set of eigenvalues for the
equation −Δpu−Δu = λu in Ω, where p > 2(= q).

Note that all results above are the special case where mp or mq disappears
from our equation (GEV ;λ, μ). In this section, we consider the following equa-
tion as the special case of our equation (GEV ;λ, μ):

(GEV ; r, λ, μ)

{ −Δru− μΔr∗u = λmr(x)|u|r−2u in Ω,
u = 0 on ∂Ω,

where 1 < r �= r∗ < ∞. Recall that letting μ → +0, equation (GEV ; r, λ, μ)
above turns into the homogeneous equation (EV ; r, λ).

Throughout this section, we put p = max{r, r∗}. We define the functional
Φ(r,r∗,μ) on W 1,p

0 (Ω) as follows:

Φ(r,r∗,μ)(u) := ‖∇u‖rr +
μr

r∗
‖∇u‖r∗r∗ (2)

for u ∈ W 1,p
0 (Ω). The following proposition is the result on Rayleigh quotient

to solve our problems (GEV ; r, λ, μ).

Proposition 1 ([12, Proposition 4]) For μ > 0, we set

λ(r, r∗, μ,mr) := inf

{
Φ(r,r∗,μ)(u)∫
Ω
mr|u|r dx ; u ∈W 1,p

0 (Ω),

∫
Ω

mr|u|r dx > 0

}
, (3)

where Φ(r,r∗,μ) is the functional defined in (2). Then,

λ(r, r∗, μ,mr) = λ1(r,mr)

holds for every μ > 0. In addition, for every μ > 0, the infimum in (3) is not
attained.

According to the standard argument using Rayleigh quotient, it is proved
that if −λ1(r,−mr) < λ < λ1(r,mr) holds, then (EV ; r, λ) has no non-trivial
solutions. Similarly, by using Proposition 1, we obtain the following theorem.

Theorem 2 ([12, Theorem 1]) If −λ1(r,−mr) ≤ λ ≤ λ1(r,mr) holds, then for
any μ > 0, (GEV ; r, λ, μ) has no non-trivial solutions.
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It is also known that the homogeneous equation (EV ; r, λ) has no positive (or
negative) solutions provided ±λ �= λ1(r,±mr) (refer to [5, Section 6.2]). On the
contrary, our equation (GEV ; r, λ, μ) has a positive solution in the other cases
other than that treated in Theorem 2.

Theorem 3 ([12, Theorem 2] and [13, Theorem 1]) If λ > λ1(r,mr) or λ <
−λ1(r,−mr) holds, then for any μ > 0, (GEV ; r, λ, μ) has at least one positive
solution. In particular, in the case of r < r∗, for any μ > 0, (GEV ; r, λ, μ) has
a unique positive solution uμ, that is, uμ = μ1/(r−r∗)u1.

Due to Theorem 2 and Theorem 3, we know that (GEV ; r, λ, μ) has at least
one positive solution if and only if

λ ∈
{
(λ1(r,mr),+∞) if mr ≥ 0,

(−∞,−λ1(r,−mr)) ∪ (λ1(r,mr),+∞) otherwise.

By the definition of the second (positive) eigenvalue λ2(r,mr), if λ1(r,±mr) <
±λ < λ2(r,±mr), then (EV ; r, λ) has no non-trivial solutions. This asser-
tion is generalized to a non-existence of a sign-changing solution for our non-
homogeneous equation as follows.

Theorem 4 ([12, Theorem 3]) If λ1(r,mr) < λ ≤ λ2(r,mr) holds, then for any
μ > 0, (GEV ; r, λ, μ) has no sign-changing solutions.

Theorem 5 ([13, Theorem 2]) Assume r < r∗. If ±λ > λ2(r,±mr) holds
respectively, then for any μ > 0, (GEV ; r, λ, μ) has at least one sing-changing
solution.

4 Positive solution for (GEV ;λ, μ)

An essential part in our approach is that problem (GEV ;λ, μ) is equivalent to
another eigenvalue problem (GEV ;λ) where we have only one parameter in the
case of μ = 1, that is,

(GEV ;λ)

{ −Δpu−Δqu = λ(mp(x)|u|p−2u+mq(x)|u|q−2u) in Ω,
u = 0 on ∂Ω.

In fact, if u is a solution of (GEV ;λ, μ), multiplying (GEV ;λ, μ) by sp−1 (s > 0),
then v = su is a solution of

−Δpv−sp−qμΔqv = λ(mp(x)|v|p−2v+sp−qμmq(x)|v|q−2v) in Ω, v = 0 on ∂Ω.

So, choosing s0 such that sp−q
0 μ = 1, we see that s0u is a solution of (GEV ;λ).

Conversely, if u is a solution of (GEV ;λ), by the same argument above, then we
easily see that v = su with s = μ1/(p−q) is a solution of (GEV ;λ, μ).

As stated in (1), we recall that we defined

λ1(r, 0) =∞.

Then, we see the results developed from Theorem 2 and Theorem 3.
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Theorem 6 ([9, Theorem 1]) If it holds

−min{λ1(p,−mp), λ1(q,−mq)} < λ < min{λ1(p,mp), λ1(q,mq)},
then (GEV ;λ) has no non-trivial solutions.

Moreover, if the following (H;±mp,±mq) holds, then problem (GEV ;λ) with
λ = ±min{λ1(p,±mp), λ1(q,±mq)} (respectively), has no non-trivial solutions:

(H;±mp,±mq) : the following (i) or (ii) holds:

(i) λ1(p,±mp) �= λ1(q,±mq);

(ii) ϕ1(p,±mp) �= tϕ1(q,±mq) for all t > 0,

where ϕ1(p,±mp) and ϕ1(q,±mq) are positive eigenfunctions corresponding to
λ1(p,±mp) and λ1(q,±mq), respectively (see Section 2).

Remark 7 If (H;mp,mq) does not hold, that is, λ1(p,mp) = λ1(q,mq) and
ϕ1(p,mp) = tϕ1(q,mq) for some t > 0, then ϕ1(q,mq) and ϕ1(p,mp) are positive
solutions of (GEV ;λ) with λ = λ1(p,mp) = λ1(q,mq). Indeed, since ϕ1(p,mp)
is a positive solution of (EV ; p,mp), which is a (p − 1)-homogeneous equation,
then ϕq = ϕ1(q,mq) solves the equation −Δpϕq = λmpϕ

p−1
q in Ω. On the

other hand, because ϕq is a positive solution of (EV ; q,mq), ϕq satisfies also
the equation −Δqϕq = λmqϕ

q−1
q in Ω. Therefore, ϕq is a positive solution of

(GEV ;λ) for λ = λ1(p,mp) = λ1(q,mq).

Theorem 6 can be proved by using the following result on the Rayleigh quo-
tient:

Proposition 8 ([9, Proposition 7 and 8]) Let

λ := inf

{
Φ(u)

Ψ(u)
; u ∈W 1,p

0 (Ω), Ψ(u) > 0

}
, (4)

where

Φ(u) :=
1

p
‖∇u‖pp +

1

q
‖∇u‖qq,

Ψ(u) :=
1

p

∫
Ω

mp|u|p dx+
1

q

∫
Ω

mq|u|q dx

for all u ∈ W 1,p
0 (Ω). Then it holds λ = min{λ1(p,mp), λ1(q,mq)}. Moreover,

(H;mp,mq) as in Theorem 6 holds, Then the infimum in (4) is not attained.

The following theorem is our main existence result on (GEV ;λ) (or (GEV ;λ, μ))
in the non-resonant case.

Theorem 9 ([9, Theorem 3]) Assume that there holds λ1(p,mp) �= λ1(q,mq)
(resp. λ1(p,−mp) �= λ1(q,−mq)). If

min{λ1(p,mp), λ1(q,mq)} < λ < max{λ1(p,mp), λ1(q,mq)}
(resp. −max{λ1(p,−mp), λ1(q,−mq)} < λ < −min{λ1(p,−mp), λ1(q,−mq)}),
then (GEV ;λ) has at least one positive solution.
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Finally, we state our existence results for problem (GEV ;λ) in the (second)
resonant case λ = ±max{λ1(p,±mp), λ1(q,±mq)}.

Theorem 10 ([9, Theorem 4 and 5]) Let r = p or q, and set p∗ = q and q∗ = p.
Assume that

±λ = λ1(r,±mr) > λ1(r
∗,±mr∗) (5)

and ∫
Ω

|∇ϕ1(r,±mr)|r∗ dx− λ

∫
Ω

mr∗ϕ1(r,±mr)
r∗ dx > 0, (6)

respectively. Then (GEV ;λ) has at least one positive solution.

Remark 11 We can easily produce examples where the hypotheses of the for-
mulated results are fulfilled. For instance, let us take: N = 1, Ω = (0, π),
1 < q = 2 < p, mq ≡ 1 and mp,n(x) = 1 − h(x)/n with 0 ≤ h ∈ L∞(Ω) and
h �≡ 0. Then it is clear that λ1(2,m2) = 1 and ϕ1 = ϕ1(2,m2) = sinx. By easy
computation, we have∫ π

0

|ϕ′1|p dx−
∫ π

0

mp,nϕ
p
1 dx =

1

n

∫ π

0

h(x) sinp x dx > 0

for every n ∈ N, so (6) (with r = q = 2, r∗ = p, mr ≡ 1) holds true. On the
other hand, we see that

λ1(p, 1) <

∫ π

0
|ϕ′1|p dx∫ π

0
ϕp
1 dx

= 1

by the definition of λ1(p, 1) and the facts that ϕ1(2, 1) �= tϕ1(p, 1) for any t > 0
and λ1(p, 1) is simple. By the continuity of λ1(p,mp) with respect to mp, it
follows that for a sufficiently large n we have λ1(p,mp,n) < 1, so (5) is valid,
too.

Comment 1: In the case mp ≥ 0 and mq ≥ 0 (non-negative weights), it is
possible to prove that there exists λ∗ satisfying

max{λ1(p,mp), λ1(q,mq)} ≤ λ∗ ≤ ∞
such that (GEV ;λ) has at least one or no positive solutions provided

min{λ1(p,mp), λ1(q,mq)} < λ < λ∗ or λ∗ < λ,

respectively. Moreover, if ∞ > λ∗ > max{λ1(p,mp), λ1(q,mq)}, then (GEV ;λ)
has at least one positive solution in the case of λ = λ∗ also. However, as far as
the author knows, there are no information about λ∗ except one dimension case
with no weight functions (see the next comment).

Comment 2: In the remaining case, that is, ±λ > max{λ1(p,mp), λ1(q,mq)},
we do not know that our equation has a positive solution or not. Concern-
ing this question, we can refer to [6] for the special case N = 1, mp ≡ 1
and mq ≡ 1. According to the results in [6], λ∗ < ∞ holds and both cases
λ∗ > max{λ1(p, 1), λ1(q, 1)} and λ∗ = max{λ1(p, 1), λ1(q, 1)} occur (it depends
on the relation between p, q and the length of the interval). The results in [6]
are shown by using the bifurcation method and time map.
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1 Introduction
This is a joint work with Shinichi Doi in Osaka University. In this talk we consider
our new model based on the Black-Scholes Model and formulated a new math-
ematical approach for an inverse problem in financial markets. Financial deriva-
tives are contracts wherein payment is derived from an underlying asset such as
a stock, bond, commodity, interest, or exchange rate. An underlying asset St at
time t is modeled by the following stochastic differential equation:

dSt = μ(t, St)Stdt+ σ(t, St)StdWt, (1.1)

where the processWt is the Brownian motion. The parameters μ(t, S) and σ(t, S)
are called the real drift and the local volatility of the underlying asset, respectively.

Black and Sholes first found how to construct a dynamic portfolio Πt of the
derivative security and the underlying asset [1]. Their approach is developed in
probability theory, and the hedging and pricing theory of the derivative security is
established as mathematical finance. By Ito’s lemma, the stochastic behavior of
the derivative security u(t, S) is governed by the following stochastic differential
equation:

du =

(
∂u

∂t
+ μ(t, S)S

∂u

∂S
+

1

2
σ(t, S)2

∂2u

∂S2

)
dt+ σ(t, S)S

∂u

∂S
dW. (1.2)

In the absence of arbitrage opportunities, the instantaneous return of this portfolio
must be equal to the interest rate r, the return on a riskless asset, such as a bank
deposit. Therefore, this equality takes the form of the following partial differential
equation:

∂u

∂t
+

1

2
σ(t, S)2S2 ∂

2u

∂S2
+ (r − δ)S

∂u

∂S
− ru = 0, (1.3)

where r and the divided rate δ are the known constants.

2000 Mathematics Subject Classifications: Primary 35R30; Secondary 35K08.
Keywords and Phrases: Inverse problem; Microlocal Analysis; FBI transform.
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Their approach provides us a useful, simple method of pricing with financial
derivatives, risk premium, and default probability estimation under the assumption
that the risky asset is log-normally distributed. However, theoretical prices of
options with different strike prices calculated by the Black-Scholes model differ
from real market prices. Specifically, when we apply the Black-Scholes model
to default probability estimation, we must be careful of the deviation between
the expected and observed values. Merton has formulated a default probability
estimation using a model based on [1] by considering the value of the firm instead
of the stock, the firm’s debt instead of strike price, and its equity instead of option
price [8]. However, as shown in deriving the Black-Scholes model (see [1]), under
the no arbitrage property of the financial market, the real drift μ does not enter
equation (1.3). In [9], taking this into account, we have derived the following new
model, by using At instead of St:

∂u

∂t
+

1

2
σ(t, A)2A2 ∂

2u

∂A2
+ μ(t, A)A

∂u

∂A
− ru = 0. (1.4)

Moreover, in [9] we have established an inverse problem to the reconstruction of
the real drift from the observable data, but only an binary option case.

In this talk, we prove a uniqueness for the solution of an inverse problem
with respect to the real drift by using an application for microlocal analysis. To
give a brief description of our problem, we see the method in [4]. In [4], they
used the standard linearization method to an option pricing inverse problem and
derived a partial differential equation for a principal part V . Since, after a change
of variables, this equation is reduced to the heat equation with the right-hand side
linear with respect to f , they wrote the well known integral representation for the
solution V as follows:

V (τ, x) =

∫
R

∫ τ∗

0

1√
2π(τ ∗ − θ)σ2

0

e
− |x−y|2

2σ2
0(τ

∗−θ)w(θ, y)f(y)dθdy, (1.5)

where w(τ, y) is represented by

w(τ, y) =
s∗√
2πτσ2

0

e
− |y|2

2σ2
0τ . (1.6)

For the above equation they applied the Laplace transform to exactly evaluate an
integral with respect to the time. As a result, they derived the integral equation for
f of the following form

V (τ, x) =

∫
R
B(x, y; τ)f(y)dy (1.7)

with the kernel
B(x, y; τ) =

s∗

σ2
0

√
π

∫ ∞

|x−y|+|y|
σ0

√
2τ

e−θ2dθ (1.8)
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Linearized Inverse Problem of the real Drift

given by the error function and proved the uniqueness for the linearized inverse
problem. In our case, since the linearized solution Ṽ is the following form:

Ṽ (τ, x) =

∫
R

∫ τ

0

1√
4π(τ − s)σ2

0

e
− |y−x|2

4(τ−θ)σ2
0
−μ0+σ2

0
2σ0

y
w̃(θ, y)f(y)dθdy, (1.9)

where w̃(θ, y) is the following form

w̃(τ, y) =

∫ ∞

0

1√
4πτσ2

0

e
− |x−y|2

4τσ2
0

−μ0+σ2
0

2σ0
y
dx. (1.10)

Therefore we can’t derive an integral equation by Laplace transform as (1.7) that
is, in our case w̃(τ, y) is not Gauss function as w(τ, y) but Error function. In the
present paper, taking this into account, we shall prove a uniqueness in the inverse
problem of the real trend by applying FBI transform to (1.9).

2 Inverse problem of the real drift
As we have seen in Section1, we have derived the new arbitrage model and for-
mulated an inverse option pricing problem for a reconstruction of a real trend in
the binary option case. In this section we explain how we can formulate an inverse
problem of our new arbitrage model and reconstruct the real drift.

Here, we consider the following problem that the local volatility function
σ(t, A) is a positive constant σ0 > 0 and the real drift function μ(t, A) is a space-
dependentin our new equation (1.4) with a suitable condition,

u(t, A)|t=T = max{A−D, 0} (2.1)

where D is a price of the firm’s debt at the maturity date T .
By the following changes of variables and substitutions

y = log
A

D
, τ = T − t,

(2.2)
μ(y) = μ(Dey), U(τ, y) = u(T − τ,Dey)/D,

one can transform the equation (1.4) and the initial data into the following inverse
problem of the real drift :⎧⎪⎪⎨⎪⎪⎩

∂U

∂τ
=

1

2
σ2
0

∂2U

∂y2
−
(1
2
σ2
0 − μ(y)

)∂U
∂y
− rU (y, τ) ∈ R× (0, τ ∗),

U(τ, y)|τ=0 = max{ey − 1, 0} y ∈ R,

(2.3)
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U(τ ∗, y) = U∗(y) y ∈ ω ⊆ R, (2.4)

where τ ∗ = T − t∗ > 0, t∗ is the current time and ω is an interval of R.
Here, we define that the inverse problem of the real drift (2.3) and (2.4) seeks

μ(y) from given U∗(y). However, since this inverse problem is a nonlinear, there
are difficulties with uniqueness and existence of the solution to one. Therefore,
we will formulate the inverse problem of the real drift by means of the method of
a linearization in [3] and [4].

To linearize around the constant coefficient μ0, we assume that

μ(y) = μ0 + f(y),

where f(y) denotes a small perturbation. Thus, we observe

U = U0 + V + ν,

where U0 solves the Cauchy problem (2.3) with μ(y) ≡ μ0, ν is quadratically
small with respect to f , and V is the principal part of the perturbed solution U .
Substituting this into the expression for u and neglecting terms of high order with
respect to f , we reach the linearized inverse problem of the real drift.

Linearized Inverse Problem of the real Drift (LIPD). The parameters τ ∗, μ0,
σ0, and r are given. From the option price V ∗(y) = {U∗(y)− U0(τ

∗, y)}, identify
the perturbation f(y) satisfying⎧⎪⎪⎨⎪⎪⎩

∂V

∂τ
− 1

2
σ2
0

∂2V

∂y2
+

(
1

2
σ2
0 − μ0

)
∂V

∂y
+ rV =

∂u0
∂y

f(y),

V (τ, y)|τ=0 = 0,

(2.5)

V (τ ∗, y) = V ∗(y). (2.6)

3 Main results
In this section we shall prove the uniqueness of the solution to LIPD by using
the method of microlocal analysis. Before describing the main theorem, we shall
transform the equation of (2.4) into simple form and derive an integral equation
of Fredholm type.

We set

a0 =
σ2
0 − 2μ0

2σ2
0

, b0 = r +
1

2
σ2
0a

2
0

Ha = −
(
∂

∂y
− a

)2

(a = a0 − 1)
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then (2.5) can be rewritten as⎧⎪⎪⎨⎪⎪⎩
(
∂

∂τ
+

1

2
σ2
0Ha

)
v(τ, y) = f(y)

(
e−y+b0τ

∂U0

∂y

)
(y, τ) ∈ R× (0, τ ∗),

v(τ, y)|τ=0 = 0 y ∈ R,

(3.1)

where, v(τ, y) = e−y+b0τV (τ, y). From the well-known representation of the so-
lution to the Cauchy problem (3.1), we have the following an integral equation of
Fredholm type:

v(τ ∗, x) =
∫ τ∗

0

Ua(τ
∗ − s)[w(s, ·)f(·)](y)ds. (3.2)

Here

(Ua(τ)ϕ)(y) =

∫
R

Ka(τ, y − x)ϕ(x)dx,

where

Ka(τ, y) =
1√
4πτ

e−
|y|2
4τ

+ay

and w(τ, x) is represented the following form:

w(τ, x) :=(Ua(τ)H+)(x)

=

∫ ∞

0

1√
4πτ

e−
|x−y|2

4τ
+a(x−y)dx

=
1√
π
eτa

2

∫ x−2τa√
4τ

−∞
e−θ2dθ, (3.3)

where H+(x) = 1[0,∞](x).
We will describe results about LIPD in the following theorem.

Theorem 3.1. Let τ ∗ > 0 and f(y) ∈ L2(R). Assume that suppf ⊂ [−L,∞)
with some L ≥ 0. Then a solution f(y) to the integral equation (3.2) and hence, to
the inverse problem of the real drift (2.5) and (2.6) is unique.

Proof. To prove the claim of Theorem 3.1 it suffices to prove f = 0 assuming that
the left-hand side of (3.2) is zero.

We assume that v(τ ∗, y) is zero, that is,∫ τ∗

0

Ua(τ
∗ − s)[w(s, ·)f(·)](y)ds = 0. (3.4)
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To prove that f is zero, we apply the Fourier-Bros-Iagolnitzer (for short, FBI)
transform of (3.4) and we prove that the FBI transform of f is exponentially
small(see Definition 4.1.1 in [7]).

We first write the integral equation (3.4) as the some of two parts as follows:∫ τ∗

0

Ua(τ
∗ − s)[w(s, ·)f(·)](y)ds

=

∫ τ∗0

0

Ua(τ
∗ − s)[w(s, ·)f(·)](y)ds+

∫ τ∗

τ∗0

Ua(τ
∗ − s)[w(s, ·)f(·)](y)ds.

≡ I1(y) + I2(y), (3.5)

where τ ∗0 is a positive constant such that 0 < τ ∗0 < τ ∗. In the remaining part of
this proof, to derive exponentially small of Tf , we shall consider the L2 estimate
of (3.5) with Ha, and we assume that L0 = L + 1. Then we can show that
THaI1(x, ξ;h) is exponentially small by several lemmas.

Next, to consider the L2 estimate of THaI2(x, ξ;h), we regard Ha as a pseu-
dodifferential operator acting on f (see [7] for details), that is,

HaI2(y) =

∫ τ∗

τ∗0

HaUa(τ
∗ − s)[w(s, ·)f(·)](y)ds

= Op1
h(p)f (y),

where the symbol of the above pseudodifferential operator is the following form

p(y, ξ) = (ξ + ia)2
∫ τ∗

τ∗0

e−(τ∗−s)(ξ+ia)2w(s, y)ds

=

∫ τ∗

τ∗0

∂

∂s
(e−(τ∗−s)(ξ+ia)2)w(s, y)ds

= w(τ ∗, y)− e−(τ∗−τ∗0 )(ξ+ia)2w(τ ∗0 , y)−
∫ τ∗

τ∗0

e−(τ∗−s)(ξ+ia)2 ∂w
∂s

(s, y)ds.

(3.6)

Here, let χ1(ξ) ∈ C∞
0 (R) be such that χ1 = 0 if ξ < 1

4
, χ1 = 1 if ξ > 1

2
and we

set
pj(x, ξ;h) = p(x,

ξ

h
)χj(ξ) (j = 1, 2), (3.7)

where χ2 = 1 − χ1(ξ). Moreover, let the real-valued function ψ ∈ C∞
0 (R) be

such that ψ = 0 if ξ < 1, ψ = 1 if ξ > 2 and we set

T εu( · , · ;h) = eεψ(ξ)/hTu( · , · ;h). (3.8)
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Now we apply Corollary 3.5.5 (in [7]) with T = T ε, f = 1 and ψ = εψ, where
ε > 0 will be taken small enough later. we obtain

||T εOp1
h(p1)f ||2L2

≥ ||p1(y − iε∂ξψ(ξ), ξ − ε∂ξψ(ξ);h)T
εf ||2L2 − Ch||T εf ||2L2 . (3.9)

By using Taylor’s formula, we can estimate the right hand side of (3.9) as follows:

≥ ||p1(y, ξ;h)T εf ||2L2 − C1(ε+ h)||T εf ||2L2

≥ ||w(τ ∗, y)χ1(ξ)T
εf ||2L2 − C2(ε+ h)||T εf ||2L2

Here, by χ1(ξ) = 1− χ2(ξ), (3.8) ans several lemmas we have

≥
{
C2

0

2
− C2(ε+ h)

}
||T εf ||2L2([−L0,∞)×R)

− C2||Tf ||2L2 − C2(ε+ h)||T εf ||2L2((−∞,−L0)×R)

where we used that ψ(ξ) = 0 if ξ ≤ 1.
On the other hand, since we can rewrite the left-hand side of (3.9),

T ε[Op1
h(p1)f ] = T ε[−HaI1(y)−Op1

h(p2)f ]

= −T εHaI1(y)− T ε[Op1
h(p2)f ],

by using the follows

||T εI1||2L2(R×{|ξ|≤1}) = ||TI1||2L2(R×{|ξ|≤1}) ≤ C3||Tf ||2L2

and

||T εOp1
h(p2)f ||L2(R×{|ξ|≤1}) = ||TOp1

h(p2)f ||L2(R×{|ξ|≤1}) ≤ C4||Tf ||2L2 ,

we have the following estimates applying several lemmas,

||T εOp1
h(p1)f ||2L2

≤ ||T εHaI1||2L2(R×{|ξ|≤1}) + ||T εHaI1||2L2(R×{|ξ|>1})
+ ||T εOp1

h(p2)f ]||2L2(R×{|ξ|≤1}) + ||T εOp1
h(p2)f ]||2L2(R×{|ξ|>1})

≤ 2C5||Tf ||2L2

+ 2
(
||T εHaI1||2L2(R×{|ξ|>1}) + ||T εOp1

h(p2)f ]||2L2(R×{|ξ|>1})
)
.

(3.10)
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Then, the estimates gives{
C2

0

2
− C2(ε+ h)

}
||T εf ||2L2([−L0,∞)×R)

−C2||Tf ||2L2 − C2(ε+ h)||T εf ||2L2((−∞,−L0)×R)

≤ C5||Tf ||2L2 + 2
(
||T εHaI1||2L2(R×{|ξ|>1}) + ||T εOp1

h(p2)f ]||2L2(R×{|ξ|>1})
)
.

Since we can get the following

||T εf ||2L2((−∞,−L0)×R) = ||eε
ψ(ξ)
h Tf ||2L2((−∞,−L0)×R) = O(e

2ε−δ
h )||Tf ||2L2 ,

||T εHaI1||2L2(R×|ξ|>1) = ||eε
ψ(ξ)
h HaI1||2L2(R×{|ξ|>1}) = O(e

2ε−δ
h )||Tf ||2L2

and

||T εOp1
h(p2)f ]||2R×L2(|ξ|>1) = ||eε

ψ(ξ)
h Op1

h(p2)f ]||2L2(R×{|ξ|>1}) = O(e
2ε−δ

h )||Tf ||2L2 ,

for δ > 0 if ε is chosen small enough, we have

||eεψ(ξ)
h Tf ||2L2([−L0,∞)×R) = O(1)||Tf ||2L2 .

In paticular, since ψ(ξ) = 0 if |ξ| ≥ 2, therefore we obtain

||Tf ||2L2([−L0,∞)×{|ξ|≥2}) = O(e−
δ
h ). (3.11)

In particular, we deduce form (3.11) that

[−L0,∞)× {|ξ| ≥ 2} ∩WFa(f) = ∅,

where WFa is called analytic wave front set of f (see [7] for details), hence we
obtain that f is real analytic in (−L0,∞).

Since f = 0 in (−L0,−L) by the assumption, then we conclude that f is
identically zero on R.

The proof is complete.
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Type II blow-up mechanisms in
semilinear parabolic equations

Yukihiro Seki ∗

1 Introduction

In this talk we discuss blow-up mechanisms for semilinear parabolic equations whose
typical form is:

ut = Δu+ |u|p−1u, x ∈ RN , t > 0, (1.1a)

u(x, 0) = u0, x ∈ RN , (1.1b)

where Δ denotes the Laplace operator in the Euclidean space RN with N ≥ 1, p > 1
is a constant and u0 is a bounded function in RN . Local-in-time existence of a unique
classical solution of (1.1a)-(1.1b) is well known. As usual, we say that the solution u of
(1.1a)-(1.1b) blows up in a finite time T if the solution stays bounded for 0 < t < T and

lim sup
t→T

‖u(·, t)‖L∞(RN ) = +∞. (1.2)

Various criteria on given data for blow-up in finite time are known. For example, if
u0 ∈ H1 ∩ Lp+1(RN) and

1

2

∫
R

N

|∇u0|2dx− 1

p+ 1

∫
R

N

|u0|p+1dx < 0, (1.3)

then the solution of (1.1a)-(1.1b) blows up in finite time (cf. [8, 15]).
The main focus of this talk is to describe singularity mechanisms for blow-up solutions.

More precisely, we are interested in the blow-up rate of ‖u(·, t)‖L∞(RN ) as t approaches
the blow-up time.

1.1 Known results on blow-up rates

The following definition is due to [10].

∗Department of Mathematical Sciences, Faculty of Mathematics, Kyushu University 744 Motooka
Nishi-ku, Fukuoka, 819-0395, JAPAN.
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Definition 1.1. Let u be a solution of (1.1a)-(1.1b) that blows up in a finite time T . The
blow-up is called of type I if there exists a positive constant K such that

‖u(·, t)‖L∞(RN ) ≤ K(T − t)−1/(p−1); (1.4)

whereas the blow-up is called of type II otherwise, i.e.,

lim sup
t↗T

(T − t)1/(p−1)‖u(·, t)‖L∞(RN ) = +∞. (1.5)

When a solution blows up in finite time and the blow-up is of type II, we call the
solution type II blow-up solution.

We just review some known results on blow-up rates.

1. Sobolev subcritical case: N = 1, 2 or p < (N + 2)/(N − 2) =: pS.

Giga, Matsui, and Sasayama [3] proved that blow-ups of all the solutions of (1.1a)
are of type I for all subcritical range of p, thus improving considerably the result of
an earlier work by Giga and Kohn [2].

2. Sobolev critical case: N ≥ 3 and p = pS.

Nonexistence of type II blow-up was proven for positive radial solutions by Matano
and Merle [10], whereas sign-changing type II blow-up solutions exist when 3 ≤
N ≤ 6 according to a formal matched asymptotic method in Filippas, Herrero, and
Velázquez [1]. It has recently proven by Schweyer [16] that type II blow-up does
occur for N = 4 in the radial case.

3. Sobolev supercritical case: N ≥ 3 and pS < p.

In this case another exponent pJL defined by

pJL :=

⎧⎨⎩
+∞, N ≤ 10,
N − 2

√
N − 1

N − 4− 2
√
N − 1

, N ≥ 11.

plays an essential role. The importance of this exponent was first shown in [6].

(a) Joseph-Lundgren subcritical case: N ≥ 3 and pS < p < pJL.

Matano and Merle [10, 11] and Mizoguchi [13] proved that type II blow-up
cannot occur for radial solutions under some mild assumptions on initial data.

(b) Joseph-Lundgren supercritical case: N ≥ 11 and pJL < p.

Type II blow-up may actually occur as was shown in Herrero, and Velázquez
[4, 5]. A matched asymptotic method plays a crucial role in constructing type
II blow-up solutions in these articles. The result is described in detail in §3.
Based upon these specific solutions constructed in [4, 5], further progress has
been established in Matano [9] and Mizoguchi [14].

As for positive radial solutions, we may understand that Joseph-Lundgren exponent
divides the range of p into two parts in terms of existence/nonexistence of type II blow-up.
It should be noticed that this fact has already been conjectured in [4].
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2 Main result

A natural question that arises from these results is whether or not type II blow-up would
occur in the Joseph-Lundgren critical case: p = pJL. As far as the speaker knows, no
conjecture has circulated for this open question. The aim of this talk is to give a formal
result, based on a matched asymptotic method, that suggests the existence of type II
blow-up solutions. The main result may be formally stated as follows:

Main result. Let N ≥ 11 and p = pJL. Then there exist radial solutions that blow up
in finite time and the blow-ups are of type II.

The blow-up mechanisms of these solutions are different from those of any type II blow-up
solutions having been found for p > pJL. Further details will be presented in the talk.

3 Herrero–Velázquez’ solutions

We shall recall the result of [4, 5] in detail. Throughout this talk we use the following
notation:

β =
1

p− 1
; (3.1a)

γ =
N − 2−√16β2 − 4(N − 2)β + (N − 2)(N − 10)

2
. (3.1b)

Notice that γ > 0 is a real root of the quadratic equation:

γ2 − (N − 2)γ + 2(N − 2β − 2)(β + 1) = 0 (3.2)

if and only if N ≥ 11 and p ≥ pJL. Quadratic equation (3.2) is related to the asymptotic
expansions as |x| → ∞ of stationary solutions Uη(|x|) to be given in §§4.2 below.

Proposition 3.1. (Herrero and Velázquez [5, Theorem 1]). Assume that N ≥ 11 and
p > pJL and let T > 0 be any constant. Then for every positive integer � such that
λ� := �−γ/2+1/(p−1) > 0, there exists a radial solution u� of (1.1a)-(1.1b) which blows
up at t = T , x = 0, and satisfies (1.5).

Moreover, the solution satisfies ‖u(·, t)‖∞ = u(0, t) and:

C1 (T − t)−β−2βω
 ≤ u�(0, t) ≤ C2 (T − t)−β−2βω
 (3.3a)

with ω� :=
λ�

γ − 2β
> 0 (3.3b)

for some positive constants C1 and C2 depending only on p,N and �.

We shall call the solutions Herrero–Velázquez’ solutions or HV solutions for short.
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4 Preliminary results

Let us considr the radial stationary version of equation (1.1a):

d2U

dr2
+
N − 1

r

dU

dr
+ Up = 0 for r > 0. (4.1)

Structures of solutions of (4.1) play important roles in the study of existence/nonexistence
of type II blow-ups. Up to now, many important properties on those solutions are avail-
able. We just review some of them.

4.1 Singular stationary solutions

Proposition 4.1. Assume that N ≥ 3 and p > N/(N − 2). Then there exists a singular
stationary solution U∞ of (4.1) given by

U∞(r) = cp,Nr
−2β, cp−1

p,N = 2β (N − 2− 2β) . (4.2)

Moreover, function x �→ U∞ (|x|) belongs to H1
loc

(
RN

)
when p > pS.

4.2 Regular stationary solutions

We just recall some properties on regular solutions of (4.1). Given a constant α > 0, we
investigate regular solutions Uα of (4.1) satisfying

U(0) = α, U ′(0) = 0. (4.3)

Proposition 4.2. (Infinitely many intersection / ordered structure) Assume that p > pS.
Then for every α > 0 there exists a unique solution Uα of (4.1) satisfying (4.3). The
solutions Uα(r) are monotone decreasing in r and

Uα(r)→ U∞(r) (4.4)

as r →∞ and also as α→∞. Moreover,

1. If pS < p < pJL, then the graphs of Uα(r) and U∞(r) intersect infinitely many times:

Z(0,∞) (Uα − U∞) = +∞, (4.5)

where Z(0,∞)(F ) denotes the number of zeros of function F in the interval (0,∞).

2. If N ≥ 11 and p ≥ pJL, the solutions are ordered according to their values at r = 0.
Namely, if 0 < α1 < α2, it follows that

Uα1(r) < Uα2(r) < U∞(r) for all r > 0. (4.6)
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The fact of (4.5) is a key property to prove nonexistence of type II blow-up for pS <
p < pJL [10, 11, 13]. On the other hand, for N ≥ 11 and p > pJL, the ordered structure
(4.6) and the asymptotic formula (4.7a) below were essentially used to construct type II
blow-up solutions in [5]. As for the asymptotic expansions, a logarithmic factor appears
in the first corrective term (cf. (4.7b) below) when p = pJL, which violates the argument
of [5]. This fact gives an essential difficulty in the critical case.

Proposition 4.3. (Asymptotic expansions) For every α > 0, the following asymptotic
expansions as r →∞ hold:

p > pJL =⇒ Uα(r) = U∞(r)− h(α)r−γ + o(r−γ); (4.7a)

p = pJL =⇒ Uα(r) = U∞(r)− h1(α)r
−γ log r + h2(α)r

−γ + o(r−γ) (4.7b)

where γ(> 2β) is the real number given in (3.1b), and where h(α), h1(α) and h(α) are
positive constants depending only on p,N and α.

Proposition 4.3 was proven in [7, Lemma 4.3–4.4], where more precise formulas were
obtained.
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α-GAUSS CURVATURE FLOWS WITH FLAT SIDES

LAMI KIM ∗

We consider α-Gauss curvature flow with flat sides, which is given by the flow

∂X
∂t

(x, t) = −Kα(x, t) ν(x, t)

X(x, 0) = X0(x)
(1)

where ν denotes the unit outward normal vector and 1/2 < α ≤ 1. This flow is
related to the deformation of 2-dimensional compact convex surfaces inR3 moving
with collision from any random angle.

Let Σ0 be a compact convex initial surface and α > 0. Then there exists viscosity
solution Σt which has uniform Lipschitz bound for 0 < t < T0, [2]. For 1

2 < α ≤ 1, Σt

has a uniform C1,1-estimate for 0 < t < T0, [2, 12]. The C∞δ -regularity of the strictly
convex part of the surface and the smoothness of the interface between the strictly
convex part and flat side have been studied for α = 1 in [10]. For n-dimensional
compact convex hypersurfaces andα ≤ 1

n , it becomes more singular and the solution
gets regular instantaneously. On the other hand, if α > 1

n , it becomes degenerate
and the flat side of the hypersurface persists for a moment, [2, 4].

We assume that the initial surface Σ0 has only one flat side, namely that at t we
have Σt = Σ

1
t ∪ Σ2

t where Σ1
t is the flat side and Σ2

t is strictly convex part of Σt. The
intersection between two regions is the free boundary Γt = Σ

1
t ∩Σ2

t . Then the lower
part of the surface Σ0 can be written as a graph z = f (x) and we can also write the
lower part of Σt as z = f (x, t) for x ∈ Ω ⊂ R2 where Ω is an open subset of R2.

In this talk, we prove that there exists smooth solution ifΣ0 is smooth and strictly
convex and that there is C1,1-viscosity solution before the collapsing time if Σ0 is
only convex. Furthermore, we show that Σ1

t will stay for a while. We also discuss
Γt remains smooth on 0 < t < T0 under the following conditions for the function f ,
where T0 is the vanishing time of Σ1

t .

Condition 1. Set Λ( f ) = { f = 0} and Γ( f ) = ∂Λ( f ).

∗ Department of Mathematics, Hokkaido University.
This talk is based on joint work with Ki-ahm Lee and Eunjai Rhee.
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(I) (Nondegeneracy Condition)
The function f vanishes of the order dist(X,Λ( f ))

3α−1
2α−1 and the interface Γ( f ) is strictly

convex so that Γ( f ) moves with finite nondegenerate speed. Setting g = (β f )
1
β , we

assume that at time t = 0 the function g satisfies the following nondegeneracy
condition: at t = 0,

0 < λ < |Dg(X)| < 1
λ

and 0 < λ2 < D2
ττg(X) <

1
λ2 (2)

for all X ∈ Γ0 and some positive number λ > 0, where D2
ττ denotes the second order

tangential derivative at Γ. Then the initial speed of free boundary has the speed, at
t = 0,

0 < λ4α−1 < |γt| < 1
λ4α−1

. (3)

(II) (Before Focusing of Flat Side)
Let T be any number on 0 < T < T0, so that Σ1

t is non-zero. Since the area is
non-zero, Σ1

t contains a disc Dρ0 for some ρ0 > 0. We assume that

Dρ0 =
{
X ∈ R2 : |X| ≤ ρ0

}
⊂ Σ1

t for 0 ≤ t ≤ T0. (4)

(III) (Graph on a Neighborhood of the Flat Side)
Without loss of generality, we assume that

max
x∈Ω(t)

f (·, t) ≥ 2, 0 ≤ t ≤ T0 (5)

where Ω(t) = {X = (x, y) ∈ R2 : |D f |(X, t) < ∞}. Set

ΩP(t) =
{
x ∈ R2 : f (x, y, t) ≤ f (P)

}
. (6)

The following is the first our main result. Let us assume 1
2 < α ≤ 1.

Theorem 2. For a compact convex initial surface Σ0, any viscosity solution Σt of (1) is
C1,1 for 0 < t < T0. Furthermore, Σ2

t is smooth for 0 < t < T0.

In [8], authors proved the following short time existence of C∞s -solution with
a flat side. From the conditions (2), our linearized equation is in the same class
of operators considered in [8]. Hence their Schauder theory can apply to our
linearized equation and then we get the short time existence by the application of
implicit function theorem as in [8].
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Theorem 3. [Short Time Regularity] [8] Let us assume that g = (β f )
1
β is of class C2+γ

up to the interface z = 0 at time t = 0, for some 0 < γ < 1, and satisfies Conditions 1
for f . Then there exists a time T > 0 such that the equation (1) admits a solution Σ(t)

on 0 ≤ t ≤ T. Moreover, the function g = (β f )
1
β is smooth up to the interface z = 0 on

0 < t ≤ T. In particular, the interface Γ(t) will be a smooth curve for all t in 0 < t ≤ T.

Then we have the long time regularity of the solution.

Theorem 4. [Long Time Regularity] Under the assumptions of Theorem 3, g = (β f )
1
β

remains smooth up to the interface z = 0 on 0 < t < T for all T < T0. In addition, the
interface Γt will be smooth curve for all t in 0 < t < T0.
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Singular perturbation problems

for

nonlinear elliptic equations in degenerate settings
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0. Introduction

Singular perturbation problems for nonlinear elliptic equations has been studied by many

mathematicians. Especially the following singularly perturbed nonlinear Schrödinger equa-

tions is well studied since the pioneering work of Floer-Weinstein [FW]:⎧⎪⎪⎨⎪⎪⎩
−ε2Δu+ V (x)u = g(u) in R

N ,

u > 0 in R
N ,

u ∈ H1(R
N ),

(0.1)ε

Here N ≥ 1, g(s) ∈ C(R,R) is a function with a subcritical growth, V (x) ∈ C(RN ,R)

is a positive function and 0 < ε � 1. Among solutions of (0.1)ε, we are interested in

concentrating families (uε) of solutions, which have the following behavior:

(i) uε(x) has a local maximum at xε ∈ RN and xε converges to some x0 ∈ RN as

ε→ 0.

(ii) rescaled function vε(y) = uε(εy + xε) converges as ε → 0 to a solution ω(y) ∈
H1(RN ) of the limit equation:

−Δω + V (x0)ω = g(ω), ω > 0 in R
N , ω ∈ H1(R

N ). (0.2)

The limit equation (0.2) plays important roles in the study of (0.1)ε. When solutions

of (0.2) are unique up to translation and non-degenerate, we can use Lyapunov-Schmidt

reduction method and we can reduce (0.1)ε to a finite dimensional problem and interesting

family of solutions with multiple concentrating points are constructed. See [ABC, DKW,

KW, O1, O2, W] and references therein. However, uniqueness and non-degeneray of

solutions of (0.2) is verified only restricted classes of nonlinearities including g(u) = up

(1 < p < N+2
N−2 ).

－115－



There are a lot of efforts to relax the non-degenerate condition using variational meth-

ods, especially for general nonlinearities. See [BJ, BT2, BT3, DPR, DF1, DF2, DF3,

G, JT] and references therein.

In this talk, I would like to talk about another class of a singular perturbation problem,

in which a domain depends on singular perturbation parameter ε ∈ (0, 1):{−Δu = up, u > 0 in Ωε,

u = 0 on ∂Ωε.
(∗)ε

Here 1 < p < N+2
N−2 (N ≥ 3), 1 < p < ∞ (N = 2) and Ωε ⊂ Rk ×R� (N = k + 
) is given

by

Ωε = {(x, y) ∈ R
k ×R

�; (εx, y) ∈ Ω1}
⎛⎝=

⋃
x∈Rk

({x} ×Dεx)

⎞⎠ .

Here

Ω1 =
⋃

z∈Rk

({z} ×Dz)

and Dz ⊂ R� be a family of bounded smooth domains which depends on z ∈ Rk smoothly.

Such a problem naturally appeared when we studied a problem in an expanding tubu-

lar type domain in [BT4] (c.f. [DY, ACP]). We would like to give a partial answer to the

following questions:

(i) Where the peaks appears?

(ii) What happens if the section depends on the location z ∈M .

This talk is based on my joint works with Jaeyoung Byeon, KAIST, Korea.

1. Setting of our problem

1.1. Domain Ωε

First we give a precise definition of the domain Ωε. We assume that Ω1 satisfies the

following conditions.

(Ω1) D ⊂ R� is a bounded domain with a smooth boundary ∂D.

(Ω2) ϕ(z, y) : Rk ×D → R� is a smooth map such that

(i) For z ∈ Rk, set Dz = ϕ(z,D). Then

ϕ(z, ·) : D → Dz is a diffeomorphism for each z ∈ Rk.

(ii) All derivatives of ϕ(z, y) is bounded in Rk ×D and there exists C0 > 0 such that

det
[
∂ϕ
∂y (z, y)

]
≥ C0 on Rk ×D.
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(Ω3) We set

Ω1 =
⋃

z∈Rk

({z} ×Dz),

Ωε =
⋃

x∈Rk

({x} ×Dεx) = {(x, ϕ(εx, y)); (x, y) ∈ Ω1} for ε ∈ (0, 1].

1.2. Variational formulation

We consider {−Δu = up, u > 0 in Ωε,

u = 0 on ∂Ωε.
(∗)ε

This problem is reduced to a problem finding a critical point of

u �→
∫
Ωε

1

2
|∇u|2 − 1

p+ 1
up+1
+ dxdy; H1

0 (Ωε)→ R .

Using a transformation appeared in (Ω1)–(Ω3), it can be written as a functional:

Iε(u) =

∫
Rk ×D

Fε(εx, y,∇u, u) dxdy ∈ C1(H1
0 (R

k ×D),R),

Fε(z, y,∇u, u) =
(1
2
|∇xu+ εB(z, y)∇yu|2 + 1

2
|A(z, y)∇yu|2

− 1

p+ 1
up+1
+

)
det

[
∂ϕ

∂y
(z, y)

]
,

where A(z, y), B(z, y) are matrices defined using ϕ(z, y). We also set the limit functional

at z ∈ Rk by

L(z, u) =

∫
Rk ×D

F0(z, y,∇u, u) dxdy ∈ C1(H1
0 (R

k ×D),R).

Here F0(z, y,∇, u) is defined by setting ε = 0 in the definition of Fε(z, y,∇u, u).

We note that L(z, v) plays a role of the limit functional of Iε(u). In fact, for u(x, y) ∈
C∞0 (Rk ×D) and z ∈ Rk, we have

Iε(u(x− z

ε
, y))→ L(z, u) as ε→ 0.

We also note that L(z, u) is corresponding to the following limit problem:{−Δu = up, u > 0 in R
k ×Dz,

u = 0 on R
k ×∂Dz.

(∗∗)z
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1.3. Properties of the limit problem

It is known that the limit problem has the following properties:

1◦ Solutions of (∗∗) has symmetry u(x, y) = u(|x|, y) after a suitable shift in x and set

of solutions

Sz = {ω(|x|, y); ω �= 0, DuL(z, ω) = 0}
is compact in H1

0,s(R
k ×D).

2◦ For each z, (∗∗)z has a least energy solution; we denote the least energy level by m(z):

m(z) = inf{L(z, ω); ω ∈ Sz}.

Moreover m(z) : Rk → R is continuous.

In general, least energy solutions are not unique.

3◦ m(z) has a property:

Dz ⊂ Dz′ =⇒ m(z′) ≤ m(z).

We refer to Gidas-Ni-Nirenberg [GNN] and Byeon [B] for the symmetry of solutions.

We also refer to Esteban [E] and Byeon-Tanaka [BT1] for the existence of least energy

solutions. We also note that the natural space to deal with L(z, u) is the following space

H1
0,s(R

k ×D) = {u(x, y) ∈ H1
0 (R

k ×D); u(x, y) = u(|x|, y)}

by the property 1◦. In what follows, we regard L(z, u) is a functional defined on

Rk ×H1
0,s(R

k ×D).

2. Our results

First we recall a non-existence result due to Esteban-Lions [EL]. In the following theorem

we denote the outward normal vector of Ωε at (x, y) ∈ ∂Ωε by N(x, y) ∈ RN .

Theorem 1 (Esteban-Lions [EL]). If Ω1 is monotone in one direction, that is, there is

a vector T ∈ RN satisfying

(N(x, y), T ) > 0 for all (x, y) ∈ ∂Ωε,

then (∗)ε does not have non-trivial solutions.

From this result, we cannot expect the existence of concentrating solution in monotone

parts of Ω1.

2.1. Concentration at a thick part

First we deal with thick parts of Ω1. By the property 3◦, we have the property (2.1) in

the following theorem at a thick part O of Ω1.
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Theorem 2. Suppose that a bounded open set O ⊂ Rk satisfies

inf
z∈O

m(z) < inf
z∈∂O

m(z). (2.1)

Then for ε > 0 small, (∗)ε has a positive solution uε(x, y) concentrating in O. More

precisely, any sequence (εn) with εn → 0 has a subsequence (εnj ), (xnj ) ⊂ Rk and

(z0, ω0) ∈ O ×H1
0,s(R

k ×D) such that

uεnj
(x− xnj , y)→ ω0(x, y) in H1

0 (R
k ×D), εnjxnj → z0 ∈ O.

Here (z0, ω0) is a critical point of L(z, u), i.e., Dz,uL(z0, ω0) = 0, satisfying

L(z0, ω0) = m(z0) = inf
z∈O

m(z).

.

2.2. Concentration at a thin part

Next we consider thin parts of Ω1. Thin parts correspond to high energy solutions and we

need more assumptions.

Condition (E). For a bounded open set O ⊂ Rk, we say that O satisfies (E) if and only

if (
∂ϕ

∂z
(z, y)n(z),

∂ϕ

∂y
(z, y)ν(y)

)
> 0 for all z ∈ ∂O and y ∈ ∂D.

Here n(z) ∈ Rk (ν(y) ∈ R� resp.) is a unit outward normal vector of O (D resp.) at

z ∈ ∂O (y ∈ ∂D resp.).

Remark. If O ⊂ Rk satisfies (E), then we have for some δ0 > 0

Dz ⊂ Dz+tn(z) for z ∈ ∂O and t ∈ [0, δ0].

Under (E) we have the following existence result.

Theorem 3. Assume that O ⊂ Rk satisfies (E). Then for ε > 0 small, (∗)ε has a positive

solution uε(x, y) concentrating in O. More precisely, any sequence (εn) with εn → 0 has a

subsequence (εnj ), (xnj ) ⊂ Rk and (z0, ω0) ∈ O ×H1
0,s(R

k ×D) such that

uεnj
(x− xnj , y)→ ω0(x, y) in H1

0 (R
k ×D), εnjxnj → z0 ∈ O.

Here (z0, ω0) is a critical point of L(z, u).
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Remark. In Theorem 3, we only have

L(z0, ω0) ≥ max
z∈O

m(z).

We conjecture that the equality does not hold in general and ω0 is not a least energy

solution of the limit problem. In contrast, for a singular perturbation problem for NLS,

we have

L(z0, ω0) = max
z∈O

m(z).

3. Our approach

To show our Theorems 2–3, we take the following approach:

Step 1: Analysis of the limit problem.

We introduce a minimax method to the limit functional L(z, u) ∈ C1(H1
0,s(R

k ×D),R):

b = inf
γ∈Γ

max
(s,z)∈[0,1]×O

L(γ(s, z)).

We show

Kb = {(z, ω) ∈ O ×H1
0,s(R

k ×D); L(z, ω) = b, DL(z, ω) = 0}

is non-empty and compact in O ×H1
0,s(R

k ×D).

Here we use a deformation argument in a manifold with a boundary, which is due to Majer

[M]. We note that the condition (E) gives us a useful property of L(z, u):

DL(z, u) �= −λ(n(z), 0) for (z, u) ∈ ∂O ×H1
0,s(R

k ×D), λ ≥ 0.

Step 2: Construction of a critical point uε ∈ H1
0 (R

k ×D) of Iε(u) related to Kk.

We try to find a family (uε) of critical points of Iε(u) such that for some (z0, ω0) ∈ Kb

εX(uε)→ z0,

uε(x−X(uε), y)→ ω0,

Here X(u) : H1
0 (R

k ×D) → Rk is a center of mass of u ∈ H1
0 (R

k ×D). To find such a

family, we develop a new local deformation argument in a neighborhood of

A
(ε)
b = {ω(x− z

ε
, y); (z, ω) ∈ Kb},

which is an extension of the arguments in [BT2, BT3].
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Heat equation with a nonlinear boundary condition and
uniformly local Lr spaces

Kazuhiro Ishige
Mathematical Institute, Tohoku University, Japan

This is joint work with my student Ryuichi Sato (Tohoku University) and it is con-
cerned with the heat equation with a nonlinear boundary condition,⎧⎪⎨⎪⎩

∂tu = Δu, x ∈ Ω, t > 0,

∇u · ν(x) = |u|p−1u, x ∈ ∂Ω, t > 0,

u(x, 0) = ϕ(x), x ∈ Ω,

(1)

where N ≥ 1, p > 1, Ω is a smooth domain in RN , ∂t = ∂/∂t and ν = ν(x) is the outer
unit normal vector to ∂Ω. For any ϕ ∈ BUC(Ω), problem (1) has a unique solution

u ∈ C2,1(Ω × (0, T ]) ∩ C1,0(Ω × (0, T ]) ∩ BUC(Ω × [0, T ])

for some T > 0 and the maximal existence time T (ϕ) of the solution can be defined. If
T (ϕ) < ∞, then

lim sup
t→T (ϕ)

‖u(t)‖L∞(Ω) = ∞

and we call T (ϕ) the blow-up time of the solution u.
Problem (1) has been studied in many papers from various points of view (see e.g.

[1]–[5], [7]–[11], [12]–[17], [18], [19], [20] and references therein) while there are few results
related to the dependence of the blow-up time on the initial function even in the case
Ω = RN

+ . We remark that the blow-up time for problem (1) cannot be chosen uniform for
all initial functions lying in a bounded set of Lr(RN

+ ) with 1 ≤ r ≤ N(p − 1).

For 1 ≤ r < ∞ and ρ > 0, let Lr
uloc,ρ(Ω) be the uniformly local Lr space in Ω equipped

with the norm

||f ||r,ρ := sup
x∈Ω

(∫
Ω∩B(x,ρ)

|f(y)|rdy

)1/r

.

We denote by Lr
uloc,ρ(Ω) the completion of bounded uniformly continuous functions in Ω

with respect to the norm ‖ · ‖r,ρ, that is,

Lr
uloc,ρ(Ω) := BUC(Ω)

‖ · ‖r,ρ
.

We set L∞uloc,ρ(Ω) = L∞(Ω) and L∞uloc,ρ(Ω) = BUC(Ω).
In this talk we prove the local existence and the uniqueness of the solutions of prob-

lem (1) with initial functions in Lr
uloc,ρ(Ω), and study the dependence of the blow-up time

on the initial functions. As an application of the main results of this paper, we study the
asymptotic behavior of the blow-up time T (ϕ) with ϕ = λψ as λ → 0 or λ → ∞ and show
the validity of our arguments. Furthermore, we obtain a lower estimate of the blow-up
rate of the solutions.
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Throughout this talk we assume that Ω ⊂ RN is a uniformly regular domain of class
C1. For any x ∈ RN and ρ > 0, define

B(x, ρ) := {y ∈ RN : |x − y| < ρ}, Ω(x, ρ) := Ω ∩ B(x, ρ), ∂Ω(x, ρ) := ∂Ω ∩ B(x, ρ).

By the trace inequality for W 1,1(Ω)-functions and the Gagliardo-Nirenberg inequality we
can find ρ∗ ∈ (0,∞] with the following properties.

• There exists a positive constant c1 such that∫
∂Ω(x,ρ)

|v| dσ ≤ c1

∫
Ω(x,ρ)

|∇v| dy (2)

for all v ∈ C1
0 (B(x, ρ)), x ∈ Ω and 0 < ρ < ρ∗.

• Let 1 ≤ α, β ≤ ∞ and σ ∈ [0, 1] be such that

1
α

= σ

(
1
2
− 1

N

)
+ (1 − σ)

1
β

. (3)

Assume, if N ≥ 2, that α �= ∞ or N �= 2. Then there exists a constant c2 such that

‖v‖Lα(Ω(x,ρ)) ≤ c2‖v‖1−σ
Lβ(Ω(x,ρ))

‖∇v‖σ
L2(Ω(x,ρ)) (4)

for all v ∈ C1
0 (B(x, ρ)), x ∈ Ω and 0 < ρ < ρ∗.

We remark that, in the case

Ω = {(x′, xN ) ∈ RN : xN > Φ(x′)},
where N ≥ 2 and Φ ∈ C1(RN−1) with ‖∇Φ‖L∞(RN−1) < ∞, (2) and (4) hold with ρ∗ = ∞.
Inequalities (2) and (4) are used to treat the nonlinear boundary condition.

Next we state the definition of the solution of (1).

Definition 1 Let 0 < T ≤ ∞ and 1 ≤ r < ∞. Let u be a continuous function in Ω×(0, T ].
We say that u is a Lr

uloc(Ω)-solution of (1) in Ω × [0, T ] if

• u ∈ L∞(τ, T : L∞(Ω)) ∩ L2(τ, T : W 1,2(Ω ∩ B(0, R))) for any τ ∈ (0, T ) and R > 0,

• u ∈ C([0, T ) : Lr
uloc,ρ(Ω)) with lim

t→0
‖u(t) − ϕ‖r,ρ = 0 for some ρ > 0,

• u satisfies ∫ T

0

∫
Ω
{−u∂tφ + ∇u · ∇φ} dyds =

∫ T

0

∫
∂Ω

|u|p−1uφ dσds (5)

for all φ ∈ C∞0 (RN × (0, T )).

Here dσ is the surface measure on ∂Ω. Furthermore, for any continuous function u in
Ω×(0, T ), we say that u is a Lr

uloc(Ω)-solution of (1) in Ω×[0, T ) if u is a Lr
uloc(Ω)-solution

of (1) in Ω × [0, η] for any η ∈ (0, T ).
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Now we are ready to state the main results of this talk. Let p∗ = 1 + 1/N .

Theorem 1 Let N ≥ 1 and Ω ⊂ RN be a uniformly regular domain of class C1. Let ρ∗
satisfy (2) and (4). Then, for any 1 ≤ r < ∞ with⎧⎪⎨⎪⎩

r ≥ N(p − 1) if p > p∗,
r > 1 if p = p∗,
r ≥ 1 if 1 < p < p∗,

(6)

there exists a positive constant γ1 such that, for any ϕ ∈ Lr
uloc,ρ(Ω) with

ρ
1

p−1
−N

r ‖ϕ‖r,ρ ≤ γ1 (7)

for some ρ ∈ (0, ρ∗/2), problem (1) possesses a Lr
uloc(Ω)-solution u of (1) in Ω × [0, μρ2]

satisfying

sup
0<t<μρ2

‖u(t)‖r,ρ ≤ C‖ϕ‖r,ρ, (8)

sup
0<t<μρ2

t
N
2r ‖u(t)‖L∞(Ω) ≤ C‖ϕ‖r,ρ. (9)

Here C and μ are constants depending only on N , Ω, p and r.

Theorem 2 Assume the same conditions as in Theorem 1. Let v and w be Lr
uloc(Ω)-

solutions in Ω × [0, T ) such that v(x, 0) ≤ w(x, 0) for almost all x ∈ Ω, where T > 0 and
r is as in (6). Assume, if r = 1, that

lim sup
t→+0

t
1

2(p−1)
[‖v(t)‖L∞(Ω) + ‖w(t)‖L∞(Ω)

]
< ∞. (10)

Then there exists a positive constant γ2 such that, if

ρ
1

p−1
−N

r [‖v(0)‖r,ρ + ‖w(0)‖r,ρ] ≤ γ2 (11)

for some ρ ∈ (0, ρ∗/2), then

v(x, t) ≤ w(x, t) in Ω × (0, T ).

We give some comments related to Theorems 1 and 2.

(i) Let u be a Lr
uloc(Ω)-solution of (1) in Ω × [0, T ). It follows from Definition 1 that

u ∈ L∞(τ, σ : L∞(Ω)) for any 0 < τ < σ < T . This together with Theorem 6.2 of [5]
implies that u(t) ∈ BUC(Ω) for any t ∈ (0, T ). This means that u(0) ∈ Lr

uloc,ρ(Ω)
for any ρ > 0.

(iii) Let 1 ≤ r < ∞. If, either

(a) f ∈ Lr
uloc,1(Ω), r > N(p − 1) or (b) f ∈ Lr(Ω), r ≥ N(p − 1),

then, for any γ > 0, we can find a constant ρ > 0 such that ρ
1

p−1
−N

r ‖f‖r,ρ ≤ γ.
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As a corollary of Theorem 1, we have:

Corollary 1 Assume the same conditions as in Theorem 1 and p > p∗.

(i) For any ϕ ∈ LN(p−1)(Ω), problem (1) has a unique L
N(p−1)
uloc (Ω)-solution in Ω× [0, T ]

for some T > 0.

(ii) Assume ρ∗ = ∞. Then there exists a constant γ such that, if

‖ϕ‖LN(p−1)(Ω) ≤ γ, (12)

then problem (1) has a unique L
N(p−1)
uloc (Ω)-solution u such that

sup
0<t<∞

‖u(t)‖LN(p−1)(Ω) + sup
0<t<∞

t
1

2(p−1) ‖u(t)‖L∞(Ω) < ∞.

Furthermore, as an application of our theorems, we give a lower blow-up estimate of the
solution u of (1).

Corollary 2 Let N ≥ 1 and Ω ⊂ RN be a uniformly regular domain of class C1. Let u
be a solution of (1) blowing up at t = T < ∞. Then

lim inf
t→T

(T − t)
1

2(p−1)
−N

2r ‖u(t)‖Lr(Ω) > 0, (13)

where ⎧⎪⎨⎪⎩
N(p − 1) ≤ r ≤ ∞ if p > 1 + 1/N,

1 < r ≤ ∞ if p = 1 + 1/N,

1 ≤ r ≤ ∞ if 1 < p < 1 + 1/N.

(14)
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FLOW MONOTONICITY AND STRICHARTZ INEQUALITIES

NEAL BEZ
(SAITAMA UNIVERSITY)

This talk is largely based on joint work [5] with Jonathan Bennett and Marina
Iliopoulou.

Background

A number of important inequalities from geometric analysis may be understood
via the monotonicity of an appropriate functional, often referred to as a Lyapunov
functional, as the input evolves under a well-chosen flow. For instance, consider
the sharp Young convolution inequality on euclidean space, due to Beckner [1] and
Brascamp–Lieb [8], which states that whenever d ≥ 1 and p1, p2, p ≥ 1 satisfy the
scaling hypothesis 1 + 1

p = 1
p1

+ 1
p2
, then

(1) ‖f1 ∗ f2‖Lp(Rd) ≤ C(p1, p2)‖f1‖Lp1 (Rd)‖f2‖Lp2 (Rd)

for each f1 ∈ Lp1(Rd) and f2 ∈ Lp2(Rd). Here, the constant C(p1, p2) is given by

C(p1, p2) = ‖H1/p1
σ1

∗H1/p2
σ2

‖Lp(Rd)

where the parameters (σ1, σ2) ∈ (0,∞)2 satisfy p1p
′
1σ1 = p2p

′
2σ2, and Ht is the

heat kernel on R
d given by

Ht(x) =
1

(4πt)d/2
e−

|x|2
4t .

Written in this way, the constant C(p1, p2) is easily seen to be best possible by
taking

(f1, f2) = (H1/p1
σ1

, H1/p2
σ2

)

and using the fact that the heat kernel has unit mass for each time. The left-hand
side of (1) with

(f1, f2) → ((eσ1tΔfp1

1 )1/p1 , (eσ2tΔfp2

2 )1/p2)

gives rise to the quantity

Q(t) = ‖(eσ1tΔfp1

1 )1/p1 ∗ (eσ2tΔfp2

2 )1/p2‖Lp(Rd)

which generates the sharp inequality (1). In particular, for (sufficiently nice) non-
negative f1 and f2, we have

lim
t→0+

Q(t) = ‖f1 ∗ f2‖Lp(Rd), lim
t→∞Q(t) = C(p1, p2)‖f1‖Lp1 (Rd)‖f2‖Lp2 (Rd),

and it was shown in [2] that Q is nondecreasing.

This is an example of an inequality with certain gaussian input functions as ex-
tremisers. In fact, it can be shown that all extremisers must be gaussian, and thus
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the above example indicates that when the objective is to establish an inequality
in sharp form, the choice of flow is constrained by the class of extremisers.

We also note that under the above assumptions on (p1, p2, σ1, σ2), except now
0 < p1, p2 ≤ 1, the Lyapunov functional Q is nonincreasing for (sufficiently nice)
f1 ∈ Lp1(Rd) and f2 ∈ Lp2(Rd) (see [2]). This monotonicity yields the sharp reverse
form of the Young convolution inequality

‖f1 ∗ f2‖Lp(Rd) ≥ C(p1, p2)‖f1‖Lp1 (Rd)‖f2‖Lp2 (Rd)

for each nonnegative f1 ∈ Lp1(Rd) and f2 ∈ Lp2(Rd). With the best constant (in
this case, the largest), this inequality was first established by Brascamp–Lieb [8]
who also observed a fundamental link with geometry by showing that the Prékopa–
Leindler inequality follows in the limiting case as p tends to zero. The Prékopa–
Leindler inequality is a functional form of the Brunn–Minkowski inequality, a core
inequality in geometric analysis which, for example, quickly implies the classical
isoperimetric inequality.

Lieb [18] also observed that the sharp (forward) Young convolution inequality im-
plies the Shannon entropy power inequality from information theory, which states
that

e2H(X+Y ) ≥ e2H(X) + e2H(Y )

for independent random variables X and Y in R, with equality when X and Y are
gaussian random variables. Here, for a random variable X in R with appropriate
probability density function f , H(X) is the entropy of X and is given by

H(X) = −
∫
R

f log f.

An early proof of the entropy power inequality was given by Stam [21] (and Blach-
man [7], including higher dimensions) using heat-flow monotonicity. Crucially, the
time derivative of the entropy functionalH along heat-flow coincides with the Fisher
information I along heat-flow (de Bruijn’s identity), the latter being of quadratic
nature and thus more accessible. Interestingly, the Blachman–Stam inequality, a
certain subadditivity of the Fisher information, is a crucial ingredient in the heat-
flow monotonicity approach to the entropy power inequality, and a stronger version
of this inequality is key in establishing the monotonicity of the above functional Q
for the Young convolution inequalities (see Toscani [22] for this observation).

Switching focus, we turn our attention to the main purpose of the talk which is to
discuss monotonicity phenomena in the context of Strichartz inequalities for various
evolution equations.

The Schrödinger equation

It is natural to begin with the free Schrödinger propagator whose classical Strichartz
estimates

(2) ‖eisΔf‖
L

2 d+2
d

s,x (R×Rd)
� ‖f‖L2(Rd)
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are conjectured to have gaussian extremisers for each d ≥ 1; see Foschi [15] and
also Hundertmark–Zharnitsky [16], where the conjecture is stated and established
for d = 1, 2.

It was proved in [3] that a monotonicity phenomenon exists in this context, where
the initial data evolves under the quadratic heat-flow

f → (etΔ|f |2)1/2.
Theorem 1. ([3]) Let d = 1, 2 and f ∈ L2(Rd). Then

Q(t) = ‖eisΔ(etΔ|f |2)1/2‖
L

2 d+2
d

s,x (R×Rd)

is nondecreasing for each t > 0.

Underpinning this is the monotonicity of the Cauchy–Schwarz functional∫
Rd

f1f2

under such quadratic heat-flow; see work of Bennett–Carbery–Christ–Tao [6] and
Carlen–Lieb–Loss [10].

A limitation of Theorem 1 is that it appears to be rather rigid and does not seem
to extend in several desirable directions, including higher dimensions, and to a
broader class of Sobolev–Strichartz inequalities for other dispersive or wave-like
propagators, including initial data measured in the scale of classical Sobolev spaces.
Here, we shall see that we can achieve this, to some extent, by considering linear
flows rather than quadratic. Additionally, in Theorems 2, 3, 5 and 6, stated in
terms of a Lyapunov functional Q(t), the monotonicity may be strengthened to
complete monotonicity in the sense that the kth derivative of Q has sign (−1)k for
every k ∈ N0.

To begin to describe these results, we state a linear heat-flow counterpart to The-
orem 1.

Theorem 2. ([5]) Suppose f ∈ L2(Rd). Then, for d = 1,

Q(t) =
1

2
√
3
‖etΔf‖6L2(R) − ‖eisΔetΔf‖6L6

s,x(R×R)

is nonincreasing for t > 0, and for d = 2,

Q(t) =
1

4
‖etΔf‖4L2(R2) − ‖eisΔetΔf‖4L4

s,x(R×R2)

is nonincreasing for t > 0.

Theorems 1 and 2 both recover the sharp Strichartz inequalities in [15] and [16] by
comparing Q(t) as t → 0+ and t → ∞. In the former case, this is analogous to the
earlier recovery of the Young convolution inequalities, with limt→0+ Q(t) giving the
left-hand side of (2) and limt→∞Q(t) giving the sharp form of the right-hand side of
(2). In the latter case, the quantities Q(t) in Theorem 2 tend to zero as t → ∞ and
the sharp form of (2) is equivalent to the nonnegativity of limt→0+ Q(t). The idea
of flowing the difference of two sides of an inequality (first raised to an appropriate
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power) is not new, and can be seen, for example, in work of Carlen–Carrillo–Loss
[9] in the context of the sharp Hardy–Littlewood–Sobolev inequality.

Theorem 2 is, in fact, a special case of a result which holds in all spatial dimensions.
If we write

I(f) =

∫
(Rd)m

|f̂ ⊗ · · · ⊗ f̂(ξ)|2
( ∑

1≤i<j≤m

|ξi − ξj |2
) 1

2 (d(m−1)−2)

dξ

then whenever d ≥ 1, m ≥ 3, or d ≥ 2, m ≥ 2, and whenever I(f) < ∞, the
quantity

Q(t) =
|S(m−1)d−1|

2m
dm−2

2 (2π)(2m−1)d−1
I(etΔf)− ‖eisΔetΔf‖2mL2m

s,x(R×Rd)

is nonincreasing for each t > 0. To help ground this, by looking at the case m = 2,
we see that the implied inequality, by comparing initial and eternal times t, is
simply

‖eisΔf‖4L4
s,x(R×Rd) ≤

|Sd−1|
2d(2π)3d−1

∫
(Rd)2

|f̂(ξ1)|2|f̂(ξ2)|2|ξ1 − ξ2|d−2 dξ.

This sharp estimate is due to Carneiro [11], holds for each d ≥ 2, and has gaussian
extremisers. One may view this sharp inequality as a relative of

(3) ‖eisΔf‖L4
s,x(R×Rd) � ‖f‖

Ḣ
d−2
4 (Rd)

,

which is a classical Sobolev–Strichartz estimate.

Ozawa–Tsutsumi [19] also proved a sharp relative of (3) where no additional regu-
larity on the initial data beyond square-integrability is assumed, and this is com-
pensated for by measuring the modulus square of the solution in a classical homo-
geneous Sobolev space with nonpositive order; specifically

(4) ‖(−Δ)
2−d
4 |eisΔf |2‖2L2

s,x(R×Rd) ≤
|Sd−1|

4(2π)d−1
‖f‖4L2(Rd)

for each f ∈ L2(Rd). This inequality is valid for each d ≥ 2 and the given con-
stant is sharp with gaussian extremisers (when d = 1, (4) is in fact an identity).
Furthermore, it may be seen as a consequence of the following monotonicity.

Theorem 3. ([5]) Let d ≥ 2 and f ∈ L2(Rd). Then

Q(t) =
|Sd−1|

4(2π)d−1
‖etΔf‖4L2(Rd) − ‖(−Δ)

2−d
4 |eisΔetΔf |2‖2L2

s,x(R×Rd)

is nonincreasing for each t > 0.

Our proofs of Theorems 2 and 3 proceed via Fourier analysis. The linear nature
of the flows in these theorems allows such a approach, in stark contrast to the
quadratic flow in Theorem 1. A significant advantage of using Fourier analysis
is that Strichartz inequalities for other dispersive and wave-like equations may be
handled in a similar manner; see the forthcoming section.
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Up to now, we have stated various monotonicity phenomena, each of which gener-
ates the sharp constant in the underlying inequality. These results are, however,
restricted to inequalities where the Lebesgue space exponent on the solution is
an even integer. Our next result demonstrates that if one is willing to sacrifice
the sharpness of the constant, then the monotonicity phenomenon in Theorem 2
may be extended to the full range of admissible exponents, including the mixed
space-time norm regime.

Theorem 4. ([5]) Suppose (p, q, d) �= (2,∞, 2) is such that 2 ≤ p, q ≤ ∞ and

2

p
+

d

q
=

d

2
.

Then there exists a constant Cp,q such that

Q(t) = Cp,q‖etΔf‖pL2(Rd)
− ‖eisΔetΔf‖p

Lp
sL

q
x(R×Rd)

is nonincreasing for each t > 0.

In the above generality, a Fourier analytic approach appears to be difficult to im-
plement, and we prove Theorem 4 using PDE methods.

The wave and Klein–Gordon equations

Using the Fourier analytic approach, we may prove the following analogous results
to Theorem 2 for the one-sided wave and Klein–Gordon propagators.

Theorem 5. ([5]) Suppose f ∈ Ḣ
1
2 (Rd). Then for d = 2,

Q(t) =
1

2π
‖e−t

√−Δf‖6
Ḣ

1
2 (R2)

− ‖eis
√−Δe−t

√−Δf‖6L6
s,x(R×R2)

is nonincreasing for each t > 0, and for d = 3,

Q(t) =
1

2π
‖e−t

√−Δf‖4
Ḣ

1
2 (R3)

− ‖eis
√−Δe−t

√−Δf‖4L4
s,x(R×R3)

is nonincreasing for each t > 0.

Regarding notation, Ḣ
1
2 (Rd) denotes the homogeneous Sobolev space on R

d of
order 1

2 . The extremisers for the inequalities generated by the monotone quantities
in Theorem 5 were found by Foschi [15] and include initial data f such that

f̂(ξ) =
e−|ξ|

|ξ| ,

from which we see the relevance of the flow e−t
√−Δ.

For the Klein–Gordon equation, we obtain the following monotonicity phenomena

under the flow e−t
√
1−Δf .

Theorem 6. ([5]) Suppose f ∈ H
1
2 (Rd). Then for d = 2,

Q(t) =
1

2
‖e−t

√
1−Δf‖4

H
1
2 (R2)

− ‖eis
√
1−Δe−t

√
1−Δf‖4L4

s,x(R×R2)
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is decreasing for each t > 0, and for d = 3,

Q(t) =
1

2π
‖e−t

√
1−Δf‖4

H
1
2 (R3)

− ‖eis
√
1−Δe−t

√
1−Δf‖4L4

s,x(R×R3)

is decreasing for each t > 0.

Here, H
1
2 (Rd) denotes the inhomogeneous Sobolev space of order 1

2 . The Strichartz
inequalities generated by the strict monotonicity of Q in Theorem 6 do not have
extremisers. However, if we write

f̂a(ξ) =
e−a

√
1+|ξ|2√

1 + |ξ|2
then (fa) is an extremising sequence as a → ∞ for d = 2, and a → 0+ for d = 3
(Quilodrán [20] first established the underlying sharp inequalities, the lack of ex-
tremisers and identified such extremising sequences). Despite the lack of extremis-

ers, we see the relevance of the flow e−t
√
1−Δf .

The kinetic transport equation

We conclude with some observations regarding flow monotonicity in the context of
the kinetic transport equation

∂su(s, x, v) + v · ∇xu(s, x, v) = 0, u(0, x, v) = f(x, v)

for (s, x, v) ∈ R×R
d×R

d. The Strichartz estimates for the solution of this equation
are of the form

(5) ‖ρ(f)‖Lq
sL

p
x(R×Rd) � ‖f‖La

x,v(R
d×Rd),

where the velocity averaging operator ρ, often called the macroscopic density, is
given by

ρ(f)(s, x) =

∫
Rd

f(x− vs, v) dv.

Based on results in [12], [17] and [4], it is now known that (5) holds if and only if
(a, p, q) satisfies

q > a, p ≥ a,
2

q
= d

(
1− 1

p

)
,

1

a
=

1

2

(
1 +

1

p

)
.

Given Theorem 1 for the Schrödinger equation, it is natural to look formonotonicity
in the context of (5) in the particular case

(6) ‖ρ(f)‖
L

d+2
d

s,x (R×Rd)
� ‖f‖

L
d+2
d+1
x,v (Rd×Rd)

corresponding to (a, p, q) = (d+2
d+1 ,

d+2
d , d+2

d ). The dual estimate to (6) is

(7) ‖ρ∗(g)‖Ld+2
x,v (Rd×Rd) � ‖g‖

L
d+2
2

s,x (R×Rd)

where the operator ρ∗ is given by

ρ∗(g)(x, v) =
∫
R

g(s, x+ vs) ds.
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The sharp constant in the space-time X-ray transform estimate (7) was identified
by Drouot [13], who observed that the function

g(s, x) =
1

1 + s2 + |x|2
is amongst the class of extremisers. Thanks to work of Flock [14], it is known that,
modulo symmetries of the inequality, all extremisers are of this type and thus rules
out a heat-flow monotonicity phenomena in this context.

We conclude by presenting some evidence in the form of the following result (for
the 2-plane transform rather than the X-ray type transform above) to suggest that
it is reasonable to expect monotonicity under certain fast diffusion flows.

Theorem 7. ([5]) Suppose d ≥ 2, m = d+1
d+3 and let g ∈ L2 d+1

d+3 (Rd+1) be nonnegative

and of compact support. If u : [0,∞)× R
d+1 → [0,∞) satisfies

(8) ∂tu = Δ(um); u(0, ·) = g,

then
Q(t) = C2

d‖u(t, ·)‖2
L

2 d+1
d+3 (Rd+1)

− ‖T2,d+1(u(t, ·))‖2L2(M2,d+1)

is nonincreasing for each t > 0.

Here, T2,d+1 denotes the classical 2-plane transform on R
d+1 and M2,d+1 the Grass-

mann manifold of all affine 2-planes in R
d+1. The constant Cd is the sharp constant

in the inequality

‖T2,d+1(g)‖L2(M2,d+1) ≤ Cd‖g‖
L

2 d+1
d+3 (Rd+1)

whose extremisers include the function

g(s, x) =
1

(1 + s2 + |x|2) d+3
2

.

This explains the appearance of the fast diffusion flow in (8) whose asymptotic pro-
files (Barenblatt profiles) take this shape for the given value ofm. Theorem 7 is sim-
ply proved by combining an identity of Drury which connects ‖T2,d+1(g)‖L2(M2,d+1)

with the diagonal Hardy–Littlewood–Sobolev functional, and the recent observa-
tion of Carlen–Carrillo–Loss [9] that certain cases of the sharp Hardy–Littlewood–
Sobolev inequality may be established via fast diffusion monotonicity. It is rea-
sonable to hope that other versions of Drury’s identity may lead to monotonicity
phenomena under fast diffusion in the context of the kinetic transport equation for
the Strichartz inequalities (6) and (7).
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1 Tomoro Asai (The University of Tokyo

On self-similar solutions to the surface diffusion flow equations with contact

angle boundary conditions

2 Takashi Kagaya (Hokkaido University)

Motion by curvature flow with constant driving force term for free boundary

problem

3 Yoichi Miyazaki (Nihon University)

Hölder regularity theorem for elliptic equations in a non-smooth domain

4 Fumio Nakajima (Iwate University)

Is a smooth part of the surface of Mt. Fuji harmonic ?

5 Atsushi Nakayasu (The University of Tokyo)

On metric viscosity solutions for Hamilton-Jacobi equations of evolution type

6 Tokinaga Namba (The University of Tokyo)

On cell problems for Hamilton-Jacobi equations with non-coercive Hamiltonians

and its application to homogenization problems

7 Takahiro Okabe (Hirosaki University)

Space-time asymptotics of the 2D Navier-Stokes flow in the whole plane

8 Takuya Suzuki (The University of Tokyo)

Analyticity of semigroups generated by higher order elliptic operators in spaces

of bounded functions on C1 domains

9 Igor Trushin (Tohoku University)

Inverse Scattering on Graphs

10 Kota Uriya (Tohoku University)
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