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1. Introduction

In this paper we consider stability of stationary solutions to an eikonal-
curvature flow equation

(1.1) V = C + K on Γt

for evolving interface Γt in a domain Ω ⊂ RN with a level set method, where
V , K =

∑N
j=1 κj and κj is the normal velocity, mean and principal curvature

of Γt defined with the outer continuous unit normal vector field n ∈ SN−1

of Γt (we call n the orientation of the evolution), respectively. Note that
“interface” means the boundary of an open set called “interior” so that K is
not positive for smooth boundary of a convex open set. When Ω has smooth
boundary ∂Ω, we add the right angle condition

Γt ⊥ ∂Ω(1.2)

between Γt and ∂Ω to (1.1).
Level set method, which is introduced by Osher and Sethian [28] in the

numerical analysis on evolving interfaces, describes the evolving interfaces
Γt by

(1.3) Γt = {x ∈ Ω; u(t, x) = c}
with an auxiliary function u : [0,∞) × Ω → R and a constant c ∈ R. The
orientation of the evolution is given as

n = − ∇u
|∇u|

by setting an interior of Γt as the superlevel set {x ∈ Ω; u(t, x) > c}, where
∇ = (∂/∂x1, . . . , ∂/∂xN ). Then we obtain the level set equation of (1.1) as

(1.4) ut − |∇u|
{

div
∇u
|∇u|

+ C

}
= 0 in (0, T ) × Ω,

where

divP (x) =
N∑

j=1

∂pj

∂xj
(x)
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for P (x) = (p1(x), . . . , pN (x)) ∈ RN . The right angle condition (1.2) is
represented as the Neumann boundary condition of u;

(1.5) 〈~ν,∇u〉 = 0 in (0, T ) × ∂Ω,

where ~ν ∈ SN−1 is the outer unit normal vector field of ∂Ω. The equation
(1.4)–(1.5) includes an important extension of (1.1)–(1.2); (1.4)–(1.5) means
that all the level set of u evolve with (1.1)–(1.2) although (1.1)–(1.2) holds
only on Γt. See [16] for details.

Level set method is powerful to study the evolution of Γt including singu-
larities, i.e., vanishing of Γt in finite time, or collision with each other. It is
well known that the evolving planer closed simple curve by (1.1) with C = 0
becomes convex in finite time and converges to a single point; see [13, 19].
Although the first behavior does not hold for closed compact hypersurface
in R3 (see [20]), the vanishing property is easily extended to the evolving
closed compact hypersurface in RN by a level set method. The author, Y.-H.
R. Tsai and Y. Giga [27] extend the idea of the level set method to spiral
curves on the plane. One can find in [27], moreover, their formulation works
well even if the topological change of the curves occurs during the evolution
of spirals.

However, this method also has difficulties caused by the implicit repre-
sentation of interfaces, which is the main topic of this paper. In this paper
we consider the existence and stability of stationary solutions to (1.1) with
the level set formulation. One can easily find some stationary interfaces of
(1.1) as the hypersurface with the constant mean curvature. We first prove
that there exist discontinuous (so that weak) stationary solutions to (1.4)
describing an interface with a constant mean curvature which is a boundary
of N -dimensional submanifold. We next prove that there are no continuous
stationary solutions describing just a sphere in RN provided C 6= 0, or a
hyperplane contacting to ∂Ω of a sandglass-type domain Ω ⊂ RN at its neck
with the right angle provided that C = 0. By the proof of the above we also
derive that the first stationary solution is unstable, and the second one is
asymptotically stable with set-theoretic approach.

The stationary solution to (1.1) provided that C 6= 0 means an interface
with a constant mean curvature. In this paper we treat only sphere or cylin-
drical surface, however there exist various hypersurfaces with constant mean
curvature; see [31, 24, 25]. A compact hypersurface with a constant mean
curvature is characterized as a stable solution to the variational problem
minimizing surface area provided that the measure of the domain enclosed
by the surface is a constant. The result of this paper means that a boundary
of a domain with a constant mean curvature is unstable from a view point of
eikonal-curvature flow (1.1) even if the domain and boundary are compact.

From a view point of stability of stationary solution to an evolution equa-
tion, Ei and Yanagida [10, 11] or Ei, Sato and Yanagida [9] investigate the
stability or instability of stationary solutions to (1.1) with contact angle con-
dition. Their method is extended to a surface diffusion flow by [14]. As in
these papers we often consider a linearization of problems around a station-
ary solution: see [2] or [26] for details of linearization of nonlinear ordinary
or partial differential equations, respectively. In particular, the existence of
solutions to (1.1) in [9] is guaranteed with aid of level set method. Our result
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means that the stationary solution as in [9] which is a center of linearization
is given by unstationary continuous or discontinuous stationary viscosity so-
lution. Moreover, our result points out that there may be no suitable center
of linearization around a stationary solution if we consider the stability or
instability of stationary interface only with a level set method. We also
refer [17] for the result of convergence to stationary solution in cylindrical
domain by strong maximum principle of a stationary problem to (1.4)–(1.5)
with C = 0.

We also mention on a discontinuous solution from a positive view point.
The discontinuous stationary solutions we find is based on characteristic
function of an open set, and then they are examples of set-theoretic solution
which is introduced in [16]. There is a pioneering work on set-theoretic
approach to (1.1) including anisotropic evolution by Soner [30], which is
based on the signed distance function. The definition by [16] corresponds to
some approximation algorithms to (1.1): see [5, 1, 4, 6, 12]. One can find
a lot of characterization of set-theoretic solution in [16]. We calculate weak
derivatives of characteristic function in viscosity solution sense in this paper.
Moreover, we observe that discontinuous solutions to (1.4) plays important
role to describe stationary interfaces to (1.1).

This paper is organized as follows. We first summarize the definition and
some properties of viscosity solutions in §2. We also give some properties of
the characteristic functions for an open set from the view point of viscosity
solutions. We next consider the stationary ball solution to (1.1) with C 6= 0
in Ω = RN in §3. We finally consider the stationary hyperplane to (1.1)
with C = 0 in the axis-symmetric domain in §4.

2. Viscosity solutions

In this section we summarize the theory of viscosity solutions to the de-
generate parabolic equation, and show some fundamental properties which
is used to the following sections.

2.1. Definitions. Let Ω ⊂ RN be a domain and T > 0. We consider a
geometric degenerate parabolic equation of the form

(2.1) ut + F (∇u,∇2u) = 0 in (0, T ) × Ω

including (1.1). We also consider the Neumann boundary condition

(2.2) 〈~ν,∇u〉 = 0 in (0, T ) × ∂Ω

if ∂Ω 6= ∅. The equation (3.1) is represented with

(2.3) F (p,X) = F0(p,X) − C|p|
with

(2.4) F0(p,X) = −trace
{(

IN − p⊗ p

|p|2

)
X

}
for p ∈ RN \{0} and X ∈ SN , where SN is the space of real N×N symmetric
matrices, and p⊗ q = (piqj)1≤i,j≤N for p = (p1, . . . , pN ), q = (q1, . . . , qN ) ∈
RN .

Remark that the equation (2.1) for (1.1) is not defined where ∇u = 0
though such a situation may occur. In the theory of viscosity solutions
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we often extend equations or solutions with upper or lower semicontinuous
envelope to overcome such a difficulty. For f : Rd ⊃ D → R define f∗ : D →
R ∪ {∞} or f∗ : D → R ∪ {−∞} as

f∗(x) = lim
r→0

sup{f(y); |y − x| < r}, f∗(x) = lim
r→0

inf{f(y); |y − x| < r},

respectively. We call f∗ or f∗ upper or lower semicontinuous envelope, re-
spectively. Note that f∗ ≤ f ≤ f∗ in D, and f is upper (resp. lower)
semicontinuous if and only if f∗ = f (resp. f∗ = f).

We now list the assumptions for F .
(F1) F : J := (RN \ {0}) × SN → R is continuous.
(F2) −∞ < F∗(0, O) = F ∗(0, O) < +∞, where O is the zero matrix.
(F3) F is degenerate elliptic, i.e.,

F (p,X + Y ) ≤ F (p,X)

for (p,X) ∈ J , Y ∈ SN provided that Y ≥ 0,

(F4) F is geometric, i.e.,

F (λp, λX + µp⊗ p) = λF (p,X) for (p,X) ∈ J , λ > 0, µ ∈ R,

(F5) There exist positive constants K1,K2,K3,K4 such that, if X,Y ∈
SN and nonnegative constants γ1, γ2, γ3 satisfying

〈Xξ, ξ〉 + 〈Y η, η〉
≤ γ1|ξ − η|2 + γ2(|ξ|2 + |η|2) + γ3|ξ − η|(|ξ| + |η|)

for ξ, η ∈ RN , then

F (p,X) − F (q,−Y )

≥ −K1γ1|p̄− q̄|2 −K2γ2 −K3γ3|p̄− q̄| −K4|p− q|

for p, q ∈ RN \ {0}, where p̄ = p/|p|,
Note that (2.4) and then (2.3) satisfy (F1)–(F5). Moreover, note that F∗, F

∗

also satisfies (F3) or (F4) if F is so, respectively.
We now recall the definition of viscosity solutions, which is a weak solu-

tion to a degenerate parabolic or elliptic equation based on the maximum
principle of C2 function.

Definition 2.1. We say u : (0, T ) × Ω → R is viscosity sub- (resp. super-)
solution to (2.1) if the followings hold;

(S1) u∗ <∞ (resp. u∗ > −∞) in [0, T ] × Ω.
(S2) for each (t̂, x̂) ∈ (0, T ) × Ω and ϕ ∈ C2((0, T ) × Ω) satisfying

u∗(t, x) − ϕ(t, x) ≤ u∗(t̂, x̂) − ϕ(t̂, x̂)

(resp. u∗(t, x) − ϕ(t, x) ≥ u∗(t̂, x̂) − ϕ(t̂, x̂))

for (t, x) ∈ (0, T ) × Ω,

ϕt(t̂, x̂) + F∗(∇ϕ(t̂, x̂),∇2ϕ(t̂, x̂)) ≤ 0(2.5)

(resp. ϕt(t̂, x̂) + F ∗(∇ϕ(t̂, x̂),∇2ϕ(t̂, x̂)) ≥ 0)(2.6)

holds.
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We say u is viscosity sub- (resp. super-) solution to (2.1)–(2.2) if u satisfies
(S1) and the following (S2)’ instead of (S2) hold;

(S2)’ for each (t̂, x̂) ∈ (0, T ) × Ω and ϕ ∈ C2((0, T ) × Ω) satisfying

u∗(t, x) − ϕ(t, x) ≤ u∗(t̂, x̂) − ϕ(t̂, x̂)

(resp. u∗(t, x) − ϕ(t, x) ≥ u∗(t̂, x̂) − ϕ(t̂, x̂))

for (t, x) ∈ (0, T ) × Ω,
(a) (2.5) (resp. (2.6)) holds if x̂ ∈ Ω,
(b) either (2.5) (resp. (2.6)) or

〈~ν,∇ϕ(t̂, x̂)〉 ≤ 0 (resp. 〈~ν,∇ϕ(t̂, x̂)〉 ≥ 0)

holds if x̂ ∈ ∂Ω.

We say u is a viscosity solution if u is viscosity sub- and supersolution.

See [8] for details of viscosity solutions, or [7] for theory of viscosity solutions
to degenerate parabolic equations. Note that C2 classical sub- or supersolu-
tion to (2.1) is viscosity sub- or supersolution if (F3) holds. These theory is
extended to the Neumann boundary value problem in a bounded domain of
geometric and degenerate parabolic equation; see [18] or [29]. In this paper
we consider all solutions in viscosity solution sense so that we omit the word
of “viscosity” here and hereafter.

It is convenient to introduce an equivalent definition to the conditions of
(S2) by [23].

Lemma 2.2 ([3]). Assume that (F3) hold. Then, the condition (S2) is
equivalent to Then, it is equivalent to the following conditions.

(i) If |∇ϕ(t̂, x̂)| 6= 0, then

ϕt + F (∇ϕ,∇2ϕ) ≤ 0 (resp. ϕt + F (∇ϕ,∇2ϕ) ≥ 0) at (t̂, x̂).

(ii) If |∇ϕ(t̂, x̂)| = 0, then

ϕt + F∗(0, O) ≤ 0 (resp. ϕt + F ∗(0, O) ≥ 0) at (t̂, x̂)

provided that ∇ϕ(t̂, x̂) = 0 and ∇2ϕ(t̂, x̂) = O.

Note that [3] derive the above for a geometric evolution equation and then
the condition (ii) is

ϕt(t̂, x̂) ≤ 0 (resp. ϕt(t̂, x̂) ≥ 0)

provided that ∇ϕ(t̂, x̂) = 0 and ∇2ϕ(t̂, x̂) = O; in fact F ∗(0, O) = F∗(0, O) =
0. However, we can prove this lemma without the assumption (F4) by re-
vising the conclusion of the case (ii) as the above. Since the proof is same
as that in [3] we omit the proof.
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2.2. Remark on the existence and uniqueness. The existence of so-
lution to (2.1) is established by Perron’s method due to H. Ishii [21]. This
method is based on the following two propositions.

Proposition 2.3. Let S be a non-empty set of subsolutions (resp. superso-
lutions) to (2.1) in (0, T )×Ω. Assume that functions in S is locally uniformly
bounded in (0, T ) × Ω. Then,

u(t, x) = sup{v(t, x); v ∈ S} (resp. u(t, x) = inf{v(t, x); v ∈ S})
is still a subsolution (resp. supersolution) to (2.1) in (0, T ) × Ω.

Proposition 2.4 (Perron’s method). Assume that (F3) holds.
Let f, g : (0, T )×Ω → R be a locally bounded sub- and supersolution to (2.1)
in (0, T ) × Ω satisfying f ≤ g in (0, T ) × Ω. Then,

u(t, x) = sup

{
v(t, x);

v is a subsolution to (2.1) in (0, T ) × Ω,

f ≤ v ≤ g in [0, T ] × Ω

}
is a solution to (2.1) in (0, T ) × Ω.

This method is established by [21] for Hamilton-Jacobi equations, and is
extended not only to second order degenerate elliptic equation in [22]. This
method is also extended to the degenerate parabolic equation in [7] with an
interpretation of (2.1) to a second order degenerate elliptic equation

E(Du,D2u) = ut + F (∇u,∇2u)

with a differential operator

D =
(
∂

∂t
,
∂

∂x1
, . . . ,

∂

∂xN

)
.

It is also extended to the Neumann boundary value problem in [29]. One also
can find in [7] or [29] the detailed construction of a solution with initial data
u0 ∈ BUC(Ω) to (2.1), where BUC(Ω) denotes the space of bounded and
uniformly continuous functions. By combining the comparison principle,
which is explained later, one observe that the solution is continuous.

The uniqueness of solutions to (2.1) with respect to the initial data u|t=0 =
u0 is derived from the following comparison principle.

Comparison principle(CP): Let u and v be a sub- and supersolution to
(2.1) in (0, T )×Ω. Under a suitable assumptions from boundary condition,
if

(2.7) u∗(0, x) ≤ v∗(0, x) for x ∈ Ω,

then
u∗(t, x) ≤ v∗(t, x) for (t, x) ∈ [0, T ) × Ω.

We now summarize the known results on the comparison principle. In the
following sections we consider two type of domains;

• Ω = RN (in §3),
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• axis-symmetric nonconvex domain (in §4):

(2.8) Ω = {(x′, xN ) ∈ RN−1 × R; |x′| < r(xN )}

with a smooth function r : R → (0,∞) satisfying
(Ω1) r′ < 0 in (−∞, 0), r′ > 0 in (0,∞),
(Ω2) there exists δ0 > 0 such that

Bδ0(x+ δ0~ν(x)) ∩ Ω = Bδ0(x− δ0~ν(x)) ∩ Ωc = {x}

for x ∈ ∂Ω, where Bδ(x0) = {x ∈ RN ; |x− x0| < δ}.
If Ω is bounded, (CP) is established by [7] at least (2.1) with (F1)–(F3) and
additional assumption from Dirichlet boundary condition as

u∗(t, x) ≤ v∗(t, x) in (0, T ) × ∂Ω.

Their proof is easily extend to the case Ω = RN with (F1)–(F3) and

(2.9)
{ there exist α, β ∈ R and R > 0 such that

u(t, x) = α, v(t, x) = β if |x| > R and t ∈ [0, T ).

The above condition is essentially same as the Dirichlet boundary condition.
Note that α ≤ β by (2.7). In general (CP) for unbounded domain by [15]
with additional assumptions of asymptotic behavior for sub- and supersolu-
tions as |x| → ∞ and boundedness assumptions for F ; see [15] for details.
For the Neumann boundary value problem on bounded nonconvex domain
(CP) is established by [18] for (2.1) satisfying (F1)–(F3) and (F5). When
we consider the axis-symmetric domain, we additionally assume that

(2.10)


there exist αj , βj ∈ R for j = 1, 2 and R > 0 such that

u(t, x) = α1, v(t, x) = α2 if xN < −R,
u(t, x) = β1, v(t, x) = β2 if xN > R

for t ∈ [0, T ) and x = (x′, xN ) ∈ Ω.

Then (CP) is established by applying the proof in [18]. By (CP) we obtain
the solution constructed from u0 ∈ BUC(Ω) which satisfies (2.9) or (2.10)
is not only unique but also continuous in [0,∞) × Ω.

The level set method establishes the evolution of interfaces by extracting
implicitly described Γt as in (1.3) with a solution to the level set equation
of the evolution equation. However, we remark that the initial data u0 is
not unique for given Γ0 and implicit description (1.3); for example u3

0 still
describes Γ0 if u0 describes it with c = 0 level set. Thus, even if solution
to the level set equation is unique with respect to initial data u0, one can
obtain several level sets started from Γ0. It is very important property if Γt

is determined uniquely with respect to Γ0.
We shall conclude this section with mentioning the uniqueness of level

sets. It is obtained from the comparison of interior or exterior sets. In the
level set method we regard a set {x ∈ Ω;u(t, x) > c} or {x ∈ Ω;u(t, x) < c}
is interior or exterior of Γt given by (1.3), respectively. We now deduce a
comparison principle of interior or exterior set from (CP). We first recall the
stability result of solutions.
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Proposition 2.5. Let uk : (0, T )×Ω → R be a sub- (resp. super-) solution to
(2.1) in (0, T )×Ω for k ∈ N. Assume that uk converges to u : (0, T )×Ω → R
locally uniformly in (0, T ) × Ω as k → ∞. If u∗ < ∞ (resp. u∗ > −∞) in
(0, T ) × Ω, then u is a sub- (resp. super-) solution to (2.1) in (0, T ) × Ω.

Proposition 2.5 is established for more general equations in [7] and extended
to the Neumann boundary problem in [29]. We now show the following
rescaling invariance of dependent variable for geometric evolution equations.

Lemma 2.6. Assume that (F1)–(F4) hold. Let u be a sub- (resp. super-)
solution to (2.1) in (0, T ) × Ω and G : R → R be uniformly continuous and
nondecreasing function. Then, G(u∗(t, x)) (resp. G(u∗(t, x))) is still a sub-
(resp. super-) solution to (2.1) in (0, T ) × Ω.

Proof. In this proof we demonstrate only that w(t, x) = G(u∗(t, x)) is a
subsolution if u is so. Note that w is upper semicontinuous and thus w∗ = w
in this case.

We first demonstrate that G ∈ C2(R) and G′ > 0 in R. Let ϕ ∈
C2((0,∞) × Ω) and assume that

w(t, x) − ϕ(t, x) ≤ w(t̂, x̂) − ϕ(t̂, x̂) for (t, x) ∈ (0,∞) × Ω

We may assume that w(t̂, x̂)−ϕ(t̂, x̂) = 0 by considering ϕ(t, x)− (w(t̂, x̂)−
ϕ(t̂, x̂)) instead of ϕ.

Since G′ > 0 there exists H = G−1 ∈ C2(R) and H ′ > 0 in R. We now
define ψ(t, x) = H(ϕ(t, x)). Then,

u∗(t, x) − ψ(t, x) ≤ u∗(t̂, x̂) − ψ(t̂, x̂) = 0 for (t, x) ∈ (0,∞) × Ω.

In fact, since H ′ > 0 and w(t, x) = G(u∗(t, x)) ≤ ϕ(t, x) we obtain

u∗(t, x) ≤ H(ϕ(t, x)) = ψ(t, x).

Moreover, we have

ψ(t̂, x̂) = H(ϕ(t̂, x̂)) = H(G(u∗(t̂, x̂))) = u∗(t̂, x̂),

which implies

u∗(t, x) − ψ(t, x) ≤ 0 = u∗(t̂, x̂) − ψ(t̂, x̂)

for (t, x) ∈ (0,∞) × Ω.
By straightforward calculation we obtain

ψt = H ′(ϕ)ϕt, ∇ψ = H ′(ϕ)∇ϕ,
∇2ψ = H ′(ϕ)∇2ϕ+H ′′(ϕ)∇ϕ⊗∇ϕ.

Since u∗ is a subsolution to (2.1) then we have

ψt + F∗(t̂, x̂,∇ψ,∇2ψ) ≤ 0 at (t̂, x̂),

which implies

H ′(ϕ)(ϕt + F∗(t̂, x̂,∇ϕ,∇2ϕ)) ≤ 0 at (t̂, x̂)

by (A4). Since H ′ > 0 we obtain

ϕt + F∗(t̂, x̂,∇ϕ,∇2ϕ)) ≤ 0 at (t̂, x̂).
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Let G is uniformly continuous and nondecreasing. We now approximate
G with smooth and strictly increasing Gε. Let Gε = (G ∗ ρε)(s) + ε tanh s,
where G ∗ ρε is a convolution between G and ρε, and ρε ∈ C∞(R) is a
mollifier, i.e., ρε ≥ 0,

∫
R ρε = 1 and suppρε ⊂ [−ε, ε]. Then, Gε ∈ C∞(R),

G′ > 0 and limε→0Gε = G uniformly in R.
We now define wε(t, x) = Gε(u∗(t, x)). Then, limε→0wε(t, x) = w(t, x)

uniformly on [0,∞)×Ω and thus w is a subsolution to (2.1) by Proposition
2.5. �

We are now in the position to state the comparison principle of interior and
exterior sets.

Theorem 2.7. Either following (i) or (ii) holds.
(I) For the case Ω = RN , assume (F1)–(F4) hold. Let u and v be sub-

and supersolutions to (2.1) in (0, T ) × Ω satisfying (2.9).
(II) For the case Ω given by (2.8) satisfying (Ω1)–(Ω2), assume that

(F1)–(F5) hold. Let let u and v be sub- and supersolutions to (2.1)–
(2.2) in (0, T ) × Ω satisfying (2.10).

If

{x ∈ Ω; u∗(0, x) > c1} ⊂ {x ∈ Ω; v∗(0, x) > c2}(2.11)

(resp. {x ∈ Ω; u∗(0, x) < c1} ⊃ {x ∈ Ω; v∗(0, x) < c2})(2.12)

for some c1, c2 ∈ R. Then,

{x ∈ Ω; u∗(t, x) > c1} ⊂ {x ∈ Ω; v∗(t, x) > c2}(2.13)

(resp. {x ∈ Ω; u∗(t, x) < c1} ⊃ {x ∈ Ω; v∗(t, x) < c2})(2.14)

for t ∈ [0, T ].

Note that (CP) is available for the situations Theorem 2.7 considered. How-
ever, Theorem 2.7 requires no relation between u∗ and v∗ except (2.11) or
(2.12) though (CP) is crucial to prove that. This comparison principle is the
generalized result of [7, Theorem 7.1]. Moreover no regularity assumptions
for initial data u(0, ·) and v(0, ·) are required in Theorem 2.7, which is the
advantage to the result in [7, §7]. The proof is similar to that in [7], but we
verify it here because we relax the assumptions.

Proof. We may assume that c1 = c2 = 0 without loss of generality by
considering u − c1 and v − c2 instead of u and v, respectively. We here
mention only the case (I) since the argument for the case (II) is parallel.

We divide the proof into three steps.

Step 1. We construct a rescaling function to apply the comparison principle.
We now define

G(s) = sup{(u∗(0, y))+; v∗(0, y) ≤ s},
where (a)+ = max{0, a}. Then, the followings hold.

(i) G is monotone nondecreasing, G ≥ 0,
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(ii) G(s) = 0 if s ≤ 0,
(iii) u∗(0, x) ≤ G(v∗(0, x)) for x ∈ Ω,
(iv) G is upper semicontinuous in R, and continuous on (−∞, 0].

We now demonstrate these properties. The property (i) is derived directly
from the definition of G. The property (ii) is derived from (2.11). In fact,
from (2.11) we have u∗(0, x) ≤ 0 if v∗(0, x) ≤ 0, which implies

(u∗(0, x))+ = 0 for x ∈ {y ∈ Ω; v∗(0, y) ≤ 0}
and thus G(s) = 0 for s ≤ 0. The property (iii) follows from definition of
G. In fact, for fixed x ∈ Ω we have x ∈ {y ∈ Ω; v∗(0, y) ≤ v∗(0, x)}, which
implies

u∗(0, x) ≤ (u∗(0, x))+ ≤ G(v∗(0, x)).
Finally we demonstrate that (iv). Let

s∗ := sup{s̄; G(s) = 0 for s ∈ (−∞, s̄)},
then it is clear that G is continuous in (−∞, s∗) since G = 0 in (−∞, s∗).
Let ŝ ≥ s∗. Then, for each k ∈ N there exists yk ∈ Ω such that

(2.15) u∗(0, yk) > G(ŝ+ k−1) − k−1, v∗(0, yk) ≤ ŝ+ k−1

by the definition of G and s∗ since G(ŝ+ k−1) > 0. We now divide the case
into two cases.

Case 1. Assume that there exists k0 such that |yk| > R for k > k0,
where R > 0 is such that u∗(0, y) = α and v∗(0, y) = β if |y| > R. Then,
v∗(0, yk) = β ≤ ŝ + k−1 provided k > k0, which implies v∗(0, yk) ≤ ŝ for
k > k0 so that we have

u∗(0, yk) ≤ G(ŝ)
provided that k > k0. Then, for ε > 0 we choose k ∈ (k0,∞) satisfying
k−1 < ε. If r ∈ (0, k−1) then

(2.16) G(ŝ+ r) ≤ G(ŝ+ k−1) = u∗(0, yk) + k−1 < G(ŝ) + ε.

Case 2. Assume that there exists a subsequence of yk, which we denoted
also by yk, satisfying |yk| ≤ R. Then, we may assume that limk→∞ yk = y0 ∈
RN by taking a subsequence of yk if necessary. Then the second inequality
of (2.15) and lower semicontinuity of v∗ imply that

v∗(0, y0) ≤ ŝ

and thus u∗(0, y0) ≤ G(ŝ). For ε > 0 we choose k ∈ (0,∞) such that
k−1 < ε/2 and u∗(0, yk) < u∗(0, y0)+ε/2 by the upper semicontinuity of u∗.
If r ∈ (0, k−1) then

G(ŝ+ r) ≤ G(ŝ+ k−1) ≤ u∗(0, yk) + k−1 < u∗(0, y0) + ε(2.17)

≤ G(ŝ) + ε.

The inequalities (2.16) and (2.17) imply lims→ŝ+0G(s) = G(ŝ): here we
have used G(ŝ + r) ≥ G(ŝ). On the other hand lims→ŝ−0G(s) ≤ G(ŝ) by
(i). Hence we upper semicontinuity of G.

It remains the continuity of G at s = 0. Note that s∗ ≥ 0 by (ii), thus
it suffices to prove the continuity of G at s = 0 provided that s∗ = 0. In
this case there exists sequence yk ∈ RN satisfying (2.15) with ŝ = 0, since
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G(k−1) > 0. Then, by the parallel argument of the above Case 1 or Case 2
yields that either the following Case 3 or 4 holds;
Case 3. There exists k0 > 0 such that v∗(0, yk) ≤ 0 provided that k > k0,
Case 4. There exists y0 = limk→∞ yk satisfying v∗(0, y0) ≤ 0 by taking

subsequence of yk.
If Case 3 holds then u∗(0, yk) ≤ 0 provided that k > k0, and if Case 4 holds
then u∗(0, y0) ≤ 0 by (2.11). This implies that lims→+0G(s) ≤ 0 by the
parallel argument of the above Case 1 and 2. Since G ≥ 0 in R and G = 0
on (−∞, 0] we obtain lims→0G(s) = 0 = G(0).

Step 2. We now mollify G to uniformly continuous, monotone nondecreas-
ing function.

Since u(0, ·) ∈ Dα and u∗ is upper semicontinuous, there exists K > 0
such that u∗(0, x) ≤ K for x ∈ RN . We first define

Ḡ(2k) := G(2k+1) if k ∈ Z ∩ (−∞, 0],

Ḡ(2) := K.

We next define Ḡ in [2k, 2k+1] for k ∈ Z∩ (−∞, 0] with linear interpolation,
i.e.,

Ḡ(s) := Ḡ(2k)
2k+1 − s

2k+1 − 2k
+ Ḡ(2k+1)

s− 2k

2k+1 − 2k
for s ∈ [2k, 2k+1]

for k ∈ Z ∩ (−∞, 0]. Finally, we define

Ḡ(s) :=
{
Ḡ(2) if s ∈ [2,∞),
0 if s ∈ (−∞, 0].

Then, Ḡ satisfies
(v) Ḡ is monotone nondecreasing, Ḡ ≥ 0 in R,
(vi) Ḡ(s) = 0 if s ≤ 0,
(vii) u∗(0, x) ≤ Ḡ(v∗(0, x)) for x ∈ RN ,
(viii) Ḡ is uniform continuous on R.
We now demonstrate the above properties. The properties (v), (vi) and

(viii) follows directly from the definition of Ḡ.
It remains to prove (vii). Note that G ≤ Ḡ on R so that (vii) follows

from (iii). In fact, if s ∈ (0, 1] then there exists k ∈ Z ∩ (−∞, 0] such that
s ∈ [sk−1, sk], which implies

Ḡ(s) ≥ Ḡ(sk−1) = G(sk) ≥ G(s).

If s ≤ 0, then Ḡ(s) = 0 = G(s). If s ≥ 2, then Ḡ(s) = K ≥ G(s) by
definition of G. If s ∈ [1, 2], then

Ḡ(s) = (K −G(2))(s− 1) +G(2) ≥ G(2) ≥ G(s).

Step 3. We are in the position to prove (2.13).
Let w(t, x) = Ḡ(v∗(t, x)). Then, w is a supersolution to (2.1) by Lemma

2.6, and lower semicontinuous i.e., w∗ = w. Moreover, we observe that

u∗(0, x) ≤ w(0, x) for x ∈ RN
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by (vii). Then, we obtain

u∗(t, x) ≤ w(t, x) for (t, x) ∈ (0.T ) × RN

by (CP). The above implies

{x ∈ RN ; u∗(t, x) > 0} ⊂ {x ∈ RN ; w(t, x) > 0}

for t ∈ [0, T ). By (vi) we have

{x ∈ RN ; w(t, x) > 0} ⊂ {x ∈ RN ; v∗(t, x) > 0}

for t ∈ [0, T ) so that we obtain (2.13).

To derive (2.14) from (2.12) we construct a rescaled subsolution H̄(u∗(t, x))
with

H(s) = inf{(v∗(0, y))−; u∗(0, y) ≥ s},
where (a)− = min{0, a}, and its relaxation H̄ by the parallel argument of
the above Step 1, 2, and 3. Then, H̄ satisfies

• H̄ is monotone nondecreasing, H̄ ≤ 0 in R,
• H̄(s) = 0 if s ≥ 0,
• H̄(u∗(0, x)) ≤ v∗(0, x) for x ∈ RN ,
• H̄ is uniform continuous on R.

Hence we obtain (2.14). �

2.3. Set theoretic solution. Set-theoretic solution for a geometric evo-
lution equation is introduced in [16]; we say Dt is set-theoretic sub- (resp
super-) solution to (1.1) if

w(t, x) := χDt(x) =
{

1 if x ∈ Dt

0 otherwise

is sub- (resp. super-) solution to the level set equation of (1.1), i.e., (2.1)
with (2.3).

The characterizations of the set-theoretic solution are also introduced
in [16]; see for details. In this section we derive a direct calculation of
derivatives of a characteristic function in viscosity solution sense.

Theorem 2.8. Let D ⊂ RN be a N -dimensional submanifold with smooth
boundary Γ = ∂D. If ϕ(x) ∈ C2(RN ) and x̂ ∈ Γ satisfies

(χD)∗(x) − ϕ(x) ≤ (χD)∗(x̂) − ϕ(x̂)

(resp. (χD)∗(x) − ϕ(x) ≥ (χD)∗(x̂) − ϕ(x̂)) for x ∈ RN

and |∇ϕ(x̂)| 6= 0, then

−div
∇ϕ
|∇ϕ|

+ KΓ ≤ 0
(

resp. − div
∇ϕ
|∇ϕ|

+ KΓ ≥ 0
)

at x̂,

where KΓ = KΓ(x) is the mean curvature of Γ at x ∈ Γ in the direction of
the outer unit normal vector field n of ∂D.



DISCONT. STATIONARY SOLUTION TO EIKONAL-CURVATURE EQUATION 13

Proof. We here demonstrate only the subsolution case since the proof on
supersolution case is parallel.

By the definition ofN -dimensional submanifold with boundary Γ is smooth
N − 1-dimensional submanifold, i.e., smooth hypersurface in RN . We here
choose the orthonormal basis τj (j = 1, . . . , N − 1) of tangential space Tx̂Γ
at x̂. Then the outer unit normal vector field n of Γ is defined, and there
exists δ0 > 0 such that

x̂+ δn̂ ∈ RN \D, x̂− δn̂ ∈ IntD,

for δ ∈ (0, δ0), where n̂ = n(x̂). We next choose a smooth curve ζj on Γ,
which is defined in a neighborhood of 0 ∈ R, satisfying

ζj(0) = x̂, ζ ′j(0) = τj

for j = 1, . . . , N − 1.
We now define functions Φj(σ), Ψ(σ), which are defined in a neighbor-

hood of 0 ∈ R, given as

Φj(σ) = (χD)∗(ζj(σ)) − ϕ(ζj(σ)),

Ψ(σ) = (χD)∗(x̂+ σn̂) − ϕ(x̂+ σn̂).

Then, both Φj and Ψ take their maximum at σ = 0. Moreover, since
(χD)∗ = χD, Φj is smooth in a neighborhood of 0 for j = 1, . . . , N − 1, and
Ψ is continuous on [−δ0, 0] and smooth in (−δ0, 0). Thus we first obtain

Φ′
j(0) = −〈∇ϕ(x̂), τj〉 = 0

for j = 1, . . . , N − 1, which and |∇ϕ(x̂)| 6= 0 yield that

∇ϕ(x̂)
|∇ϕ(x̂)|

= n̂ or − n̂.

We next obtain

0 ≥ Ψ(−σ) − Ψ(0) = 1 − ϕ(x̂− σn̂) − (1 − ϕ(x̂))

= −ϕ(x̂− σn̂) + ϕ(x̂) = σ〈∇ϕ(x̂), n̂〉 +O(σ2),

which implies 〈∇ϕ(x̂), n̂〉 ≤ 0 and thus

∇ϕ(x̂)
|∇ϕ(x̂)|

= −n̂.

Moreover, we obtain Φ′′
j (0) ≤ 0 for j = 1, . . . , N − 1 since Φj(σ) attains its

maximum at σ = 0, which implies

0 ≥
N−1∑
j=1

(−〈∇2ϕ(x̂)τj , τj〉 − 〈ϕ(x̂), ζ ′′j (0)〉)

=
N−1∑
j=1

[
−trace

{
(τj ⊗ τj)∇2ϕ(x̂)

}
+ |∇ϕ(x̂)|〈n̂, ζ ′′j (0)〉

]
.

Note that

IN −
N−1∑
j=1

τj ⊗ τj = n̂ ⊗ n̂ =
∇ϕ(x̂)
|∇ϕ(x̂)|

⊗ ∇ϕ(x̂)
|∇ϕ(x̂)|

,
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and
N−1∑
j=1

〈n̂, ζ ′′j (0)〉 = −
N−1∑
j=1

〈Dτj n̂, τj〉 = KΓ(x̂).

Then the above yields

−trace
{(

IN − ∇ϕ⊗∇ϕ
|∇ϕ|2

)
∇2ϕ

}
+ KΓ|∇ϕ| ≤ 0 at x̂.

Since

trace
{(

IN − ∇ϕ⊗∇ϕ
|∇ϕ|2

)
∇2ϕ

}
= |∇ϕ|div

∇ϕ
|∇ϕ|

we obtain the conclusion of Theorem 2.8. �

The following corollary states clear result however we need Theorem 2.8 and
Lemma 2.2 to prove.

Corollary 2.9. A domain with suitable constant mean curvature boundary
is a stationary set theoretic solution to (1.1). For example,

(i) Ball: {x ∈ RN ; |x − x0| < (N − 1)/C} for x0 ∈ RN provided that
C 6= 0,

(ii) Generalized cylindrical surface:
{(x′, xk+1, . . . , xN ) ∈ Rk × RN−k; |x′| < (N − 1 − k)/C} for k ∈
[2, N − 1] ∩ Z and its rotation provided that C 6= 0,

(iii) For e ∈ SN−1 and x0 ∈ RN , the set under a hyperplane {x ∈
RN ; 〈e, x− x0〉 ≤ 0} provided that C = 0.

Remark 2.10. We remark that the mean curvature of ∂{x ∈ RN ; |x− x0| <
(N − 1)/C} is −C since the curvature is defined with the outer unit normal
vector field n and we do not take the average of principal curvature as the
mean curvature.

3. Eikonal-curvature flow

In this section we consider a stationary ball for (1.1) in RN with a level
set formulation. The level set equation of (1.1) is of the form

(3.1) ut + F (∇u,∇2u) = 0 in (0,∞) × RN ,

with (2.3) and (2.4). To consider stability of a stationary ball we consider
evolution of compact interface with a level set formulation so that we con-
sider spatially profile of initial data or solutions to (3.1) in

Xα := {f : RN → R; supp(f − α) is compact}.
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3.1. Barrier solutions for the uniqueness. The comparison principle
is established by [7] or [15]. Note that we now consider Ω = RN thus Ω
is unbounded. However, if we assume (2.9) for a sub- and supersolution u,
v to (3.1), then we obtain (CP) in this problem with the argument as in
[7]. Note that if we assume (2.7) then we observe α ≤ β for α, β in (2.9).
Theorem 2.7 is also available in this problem.

The existence of viscosity solution with initial data u0 ∈ BUC(RN ), where
BUC(Ω) denotes the space of bounded uniformly continuous functions on
Ω, is also established in [7] with Perron’s method. For the uniqueness of
solutions we have to verify that

u(t, x) = α if |x| > R(t)

with at least locally bounded R(t). For this purpose we now construct
barrier sub- and supersolutions. We here construct only the supersolution
since the construction of subsolution is established parallel.

We now assume that there exists R0 > 0 such that

u0(x) = u(0, x) = α if |x| ≥ R0.

We now set
b(t, x) = Bt+A(−|x| +R0 + 1)

for constants A,B > 0 determined later. Then, for x 6= 0 we have

∇b = −Ax
|x|

, ∇2b = − A

|x|
I +

Ax⊗ x

|x|3
.

Thus we obtain

F (∇b,∇2b) = F

(
− A

|x|
x,− A

|x|
I

)
= A

(
(N − 1)

|x|
− C

)
for x 6= 0 by (F4). We now set B = AC. Then

bt + F (∇b,∇2b) =
A(N − 1)

|x|
> 0

for x 6= 0.
We now set A = ‖u0‖∞ − α and define

b+(t, x) = min{θ+
α (b(t, x) + α), ‖u0‖∞}

with a cut-off function

(3.2) θ+
α (σ) =

{
α if σ < α,
σ otherwise,

where ‖u0‖∞ = supRN |u0|. Note that a constant function is a solution
to (3.1) and then b+ is a supersolution. Then, we observe that b+ is a
supersolution to (3.1) in (0,∞)×RN from Lemma 2.6 and Proposition 2.3,
and satisfies

b+(0, x) = ‖u0‖∞ if |x| ≤ R0,(3.3)

b+ ≥ α in [0, T ] × RN , and b+(t, x) = α if |x| ≥ R0 + 1 +Bt/A.(3.4)

The property (3.3) and (3.4) implies that b+(0, x) ≥ u0(x). Then, the
solution u constructed by Perron’s method implies u(t, x) ≤ b+(t, x) by
taking infimum of the constructed supersolutions and b+.
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By the parallel argument of the above with A = ‖u0‖∞ + α we obtain
a barrier subsolution b−(t, x) = max{θ−α (−b(t, x) + α),−‖u0‖∞} to (3.1) in
(0,∞) × RN satisfying

b−(0, x) = −‖u0‖∞ if |x| ≤ R0,

b− ≤ α in [0, T ] × RN , and b−(t, x) = α if |x| ≥ R0 + 1 +Bt/A,

where

(3.5) θ−α (σ) =
{
α if σ > α,
σ otherwise.

The above implies that the solution u(t, x) to (3.1) with u(0, x) = u0(x)
satisfies

u(t, x) = α if |x| ≥ R(t) := R0 + 1 + Ct,

and then the solution u is unique with respect to u0 ∈ UC(RN ) ∩ Xα in
[0, T ) × RN for arbitrary T > 0.

3.2. Instability of stationary ball. By Corollary 2.9

Ξ =
{
x ∈ RN ; |x− x0| <

N − 1
C

}
.

is a set-theoretic solution to (1.1) with a constant C 6= 0. It is also easy to
find that the above stationary solution is unstable by considering a ball with
the different radius from (N−1)/C; if the radius is less than (N−1)/C then
the ball will vanish, and if the radius is larger than that then the ball will
spread whole domain. The following result expresses the above phenomena
from a view point with a level set formulation.

Theorem 3.1. Let u ∈ C([0,∞) × RN ) be a solution to (3.1) with initial
data u(0, ·) = u0 ∈ UC(RN ) ∩ Xα satisfying

Ξ = {x ∈ RN ; u(0, x) > c}, Γ = ∂Ξ = {x ∈ RN ;u(0, x) = c}

for fixed c ∈ R. Then
lim
t→∞

u(t, x) = c.

Proof. We may assume that c = 0 and x0 = 0 without loss of generality by
considering ũ(t, x) = u(t, x+ x0) − c instead of u.

We first note that, for arbitrary T > 0 we have

(3.6) u ≥ 0 on [0, T ) × Ξ, u ≤ 0 on [0, T ) × Ξc

by (CP), which implies that

(3.7) u ≡ 0 on [0,∞) × Γ.

In fact, χ−(x) = −‖u0‖∞χΞc(x) is a solution to (3.1) by Corollary 2.9 and
satisfies

χ∗
−(x) ≤ u(0, x) for x ∈ RN .

Note that u∗ = u∗ = u since u ∈ C([0,∞) × RN ). This implies

χ∗
−(x) ≤ u(t, x) for (t, x) ∈ (0, T ) × RN
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with arbitrary T > 0 by (CP). Note that χ∗
−(x) = ‖u0‖∞(χΞ(x) − 1) and

then we obtain the first inequality of (3.6). The second inequality of (3.6)
is obtained the parallel argument of the above with χ+(x) = ‖u0‖∞χΞ(x).

Let ε > 0. Then, there exists δ > 0 such that

{x ∈ RN ; u(0, x) > ε} ⊂ Ξδ :=
{
x ∈ RN ; |x| < N − 1

C
− δ

}
since u is uniformly continuous in RN . We may assume that δ → 0 as ε→ 0
by taking δ′ = min{δ, ε} instead of δ.

We now define

v+
δ (t, x) = −A1t− |x|2 +

(
N − 1
C

− δ

)2

,

where A1 > 0 is a constant determined later. Then,

Ξδ = {x ∈ RN ; v+
δ (0, x) > 0}

which implies

(3.8) {x ∈ RN ; u(0, x) > ε} ⊂ {x ∈ RN ; v+
δ (0, x) > 0}.

By straightforward calculation we obtain

(v+
δ )t = −A1, ∇v+

δ = −2x, ∇2v+
δ = −2I

and then

(v+
δ )t + F ∗(∇v+

δ ,∇
2v+

δ ) = −A1 + 2(N − 1) − 2C|x|.
We here have used the fact that

F ∗
0 (0, X) = −

N−1∑
j=1

λj ,

where λj is an eigenvalue of X satisfying λ1 ≤ λ2 ≤ · · · ≤ λN . Then, if
x ∈ Ξδ/4, then

(v+
δ )t + F ∗(∇v+

δ ,∇
2v+

δ )

≥ −A1 + 2(N − 1) − 2(N − 1) +
Cδ

2
= −A1 +

Cδ

2
.

Hence we obtain v+
δ is a supersolution to (3.1) in (0,∞) × Ξδ/4 provided

that A1 ∈ (0, Cδ/2).
We extend v+

δ to the whole domain. Fix A1 ∈ (0, Cδ/2) and let G+ : R →
R be a function such that

G+(s) =


−1 if s < −M1,
s

M1
if −M1 ≤ s < 0,

s if s ≥ 0,

where

M1 =
(
N − 1
C

− δ

2

)2

−
(
N − 1
C

− δ

)2

.

Then, G+ is continuous and monotone nondecreasing function and thus

ṽ+
δ (t, x) = G+(v+

δ (t, x))



18 T. OHTSUKA

is still a supersolution to (3.1) in (0, T )×Ξδ/4. Moreover, if |x| ≥ C−1(N −
1) − δ/2, then ṽ+

δ (t, x) = −1 for t > 0 since

v+
δ (t, x) ≤ −

(
N − 1
C

− δ

2

)2

+
(
N − 1
C

− δ

)2

= −M1.

We now define

w+
δ (t, x) =

 ṽ+
δ (t, x) if x ∈

{
y ∈ RN ; |x| < N − 1

C
− δ

4

}
,

−1 otherwise.

Then, w+
δ is a supersolution to (3.1) in (0,∞) × RN . In fact, w+

δ ≡ −1 in
(0,∞) × {x ∈ RN ; |x| > (N − 1)/C − δ/2}, which implies

(w+
δ )t + F ∗(∇w+

δ ,∇
2w+

δ ) = 0 + F ∗(0, O) = 0

in (0,∞) × {x ∈ RN ; |x| > (N − 1)/C − δ/2}.
Theorem 2.7 and (3.8) yields

{x ∈ RN ; u(t, x) > ε} ⊂ {x ∈ RN ; w+
δ (t, x) > 0}

for t ∈ (0, T ) with arbitrary fixed T > 0. Note that

{x ∈ RN ; w+(t, x) > 0} = ∅

provided that t > Tδ := ((N − 1)/C − δ)2/A1. Hence we obtain

{x ∈ RN ; u(t, x) > ε} = ∅ provided that t > Tδ,

which implies
lim
t→∞

u(t, x) ≤ ε for x ∈ Ξδ.

By tending ε→ 0 yields that

lim
t→∞

u(t, x) ≤ 0 for x ∈ Ξ,

which and the second inequality of (3.6) implies

(3.9) lim
t→∞

u(t, x) ≤ 0 for x ∈ RN .

The lower estimate of u, i.e.,

lim
t→∞

u(t, x) ≥ 0 for x ∈ RN

is derived with similar way. For ε > 0 we first choose δ > 0 such that
limε→0 δ = 0 and

(3.10) {x ∈ RN ; u(0, x) < −ε} ⊂ Ξδ :=
{
x ∈ RN ; |x| > N − 1

C
+ δ

}
.

We introduce the function v−δ of the form

v−δ (t, x) = A2t− |x|2 +
(
N − 1
C

+ δ

)2

.
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Then we can find suitable A2 such that is a subsolution to (3.1) in (0,∞)×
Ξδ/4 by the parallel way of the case of v+

δ . Then, we extend v−δ into (0, T )×
RN by similar way with

G−(s) =


−1 if s ≤ −1,
s if − 1 < s ≤ 0,
s

M2
if 0 < s ≤M2,

1 otherwise,

where

M2 =
(
N − 1
C

+ δ

)2

−
(
N − 1
C

+
δ

2

)2

,

i.e.,

w−
δ (t, x) =

{
G−(v−δ (t, x)) if x ∈ Ξδ/4,
1 otherwise.

Then we obtain

{x ∈ RN ; u(t, x) < −ε} ⊂ {x ∈ RN ; w−
δ (t, x) < 0}

for t ∈ [0, T ) with arbitrary fixed T > 0 from (3.10) and Ξδ = {x ∈
RN ; w−

δ (0, x) < 0}. The above implies

u(t, x) ≥ −ε if |x| ≤

√
A2t+

(
N − 1
C

+ δ

)2

and then limt→∞ u(t, x) ≥ −ε. By tending ε→ 0 we obtain

(3.11) lim
t→∞

u(t, x) ≥ 0 for x ∈ RN .

We obtain the conclusion in Theorem 3.1 by (3.9), (3.11) and (3.7). �

Note that the estimate (3.11) is not uniform with respect to x ∈ RN and
thus limt→∞ ‖u(t, ·) − c‖∞ 6= 0.

Theorem 3.1 means that every continuous stationary solution to (3.1) at
least has no strict local maximum and minimum. This is generalized as
follows.

Theorem 3.2. There are no continuous stationary solutions u ∈ Xα for
α ∈ R to (3.1) such that u has a connected component U 6= ∅ of super- or
sublevel set whose closure is included in Ξ, i.e., Ξ ⊃ {x ∈ Ξ; u(x) > c} 6= ∅
or Ξ ⊃ {x ∈ Ξ; u(x) < c} 6= ∅ for a constant c ∈ R and a center x0 ∈ RN .

Proof. We may assume that c = 0 and x0 = 0 without loss of generality. We
also assume that {x ∈ Ξ; u(x) > 0} ⊂ Ξ since the proof of the other case is
parallel.

Fix ε ∈ (0,maxΞ u(x)). Since max∂Ξ u(x) ≤ 0, the function ũ defined as

ũ =
{

max{ε/2, u(x)} if x ∈ Ξ,
ε/2 otherwise
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is still a subsolution to (3.1) by Proposition 2.3 and ũ ∩Xε/2. However, the
superlevel set {x ∈ Ξ; u(x) > ε} must vanish by the similar argument in
the proof of Theorem 3.1, which is the contradiction. �

Remark 3.3. (i) The proof of Theorem 3.1 is naturally extended to the
solution u(t, x) ∈ C([0,∞)×Rk × (R/Z)N−k) describing the gener-
alized cylindrical surface

Γ =
{

(x′, xk+1, . . . , xN ) ∈ Rk × RN−k; |x′| =
N − 1 − k

C

}
for k ∈ [2, N − 1] ∩ Z with the comparison principle for unbounded
domain as in [15]. Note that the assumption (2.9) for the above
problems should be revised as follows.

(2.9)’ there exists R > 0 such that u(t, x) = α and v(t, x) = β if
|x′| > R for t ∈ [0, T ) and x = (x′, xk+1, . . . , xN ) ∈ Rk ×RN−k.

(ii) We also obtain the nonexistence result like as Theorem 3.2 corre-
sponding to the stationary cylindrical surface in (i).

4. Curvature flow equation on axis-symmetric domain

Let Ω ⊂ RN be an axis-symmetric domain

Ω = {(x′, xN ) ∈ RN−1 × R; |x′| < r(xN )}

with some smooth positive function r satisfying (Ω1)–(Ω2) (see §2.2). In
this section we consider evolving hypersurface Γt ⊂ Ω by (1.1) with C = 0
and the right angle condition, i.e.,

V = K on Γt,(4.1)

Γt ⊥ ∂Ω.(4.2)

The level set equation is of the form

ut + F0(∇u,∇2u) = 0 in (0, T ) × Ω,(4.3)

〈∇u, ~ν〉 = 0 on (0.T ) × ∂Ω(4.4)

with (2.4), where ~ν is the outer unit normal vector field of ∂Ω.
Note that Ω is non-convex. In this section we consider the situation such

that (x′, xN ) is in interior or exterior if xN → −∞ or xN → ∞, respectively.
To describe this situation with level set method we consider a spatially
profile of initial data or solutions in

Yα,β =

f : Ω → R;

there exists R > 0 such that

f(x′, xN ) = α if xN < −R,
f(x′, xN ) = β if xN > R

 .
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4.1. Barrier solutions for the uniqueness. We here remark on the
uniqueness and existence of solutions to (4.3)–(4.4). The comparison prin-
ciple for (4.3)–(4.4) for a nonconvex and bounded Ω is established by [18].
Although Ω in our problem is unbounded, the comparison principle for our
problem is also derived by applying the proof of [18] for sub- and superso-
lution u and v satisfying (2.10).

The existence of solution u to (4.3)–(4.4) with initial data u0 ∈ UC(Ω)∩
Yα,β is also derived by the Perron’s method; see [29]. To show the uniqueness
of solution we have to see u(t, ·) ∈ Yα,β with at least locally bounded R =
R(t) > 0. For this purpose we make barrier sub- and supersolutions as well
as in §3 and demonstrate that the above R is independent of time t ≥ 0.

We now assume there exists R0 > 0 such that

u0(x) = α if xN < −R0, u0(x) = β if xN > R0

for x = (x′, xN ) and u0 = u(0, ·). Then,

b(x) =

 −A(xN +R0)4 + ‖u0‖∞ if xN < −R0,
‖u0‖∞ if |xN | ≤ R0,
−A(xN −R0)4 + ‖u0‖∞ otherwise

is a C2 supersolution to (4.3)–(4.4) in (0,∞) × RN . In fact, by straightfor-
ward calculation we have ∇2b = c(x)∇b⊗∇b for x ∈ Ω, which implies

bt + F ∗
0 (∇b,∇2b) = 0 + F ∗

0 (∇b,O) = 0 in (0, T ) × Ω

by (F4). For (4.4) we have

〈∇b, ~ν〉 =



4A(xN +R0)3r′(xN )√
1 + r′(xN )2

if xN < −R0,

0 if |xN | ≤ R0,
4A(xN −R0)3r′(xN )√

1 + r′(xN )2
otherwise,

which implies 〈∇b, ~ν〉 ≥ 0 on (0, T ) × ∂Ω from (Ω1).
We now define

b+(x) :=
{
θ+
α (b(x)) if xN < 0,
θ+
β (b(x)) if xN ≥ 0,

where θ+
α or θ+

β is defined in (3.2). Then, b+(x) is a still supersolution to
(4.3)–(4.4) in (0,∞) × Ω satisfying b+ ≥ u0. Then, we observe that the
solution by Perron’s method satisfies b+(x) ≥ u(t, x) for t > 0 and x ∈ Ω.
By the parallel argument of the above with −b and cut-off functions θ−α , θ−β
as in (3.5) we also obtain the subsolution

b−(x) :=
{
θ−α (−b(x)) if xN < 0,
θ−β (−b(x)) if xN ≥ 0

satisfying b−(x) ≤ u(t, x) for (t, x) ∈ (0,∞) × Ω. By the definitions of b±

there exists R = R0 +O(1/A) > R0 such that

b−(x) = b+(x) = α if xN < −R,
b−(x) = b+(x) = β if xN > R
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and thus

u(t, x) =
{
α if xN < −R,
β if xN > R,

for t ≥ 0: note that R is independent of t. Hence we obtain the solution
u ∈ C([0,∞) × Ω) for u0 ∈ UC(RN ) ∩ Yα,β is unique.

Moreover, the idea of barrier solutions b± yields the following fundamental
property.

Lemma 4.1. Let u be a solution to (4.3)–(4.4) in (0,∞) × Ω. If

{x ∈ Ω; u(t0, x) = c} ⊂ ΩI := Ω ∩ (RN−1 × I)

for a connected interval I ⊂ R and t0 ∈ [0,∞), then,

{x ∈ Ω; u(t, x) = c} ⊂ ΩĪ

for t > t0.

Proof. Let p = inf I, q = sup I, and

Ωc−
I = {(x′, xN ) ∈ Ω; xN < p}, Ωc+

I = {(x′, xN ) ∈ Ω; xN > q}.

Note that Ωc−
I or Ωc+

I is empty if p = −∞ or q = ∞, respectively. By
assumption we have that each Ωc±

I is included in {x ∈ Ω; u(t0, x) > c} or
{x ∈ Ω; u(t0, x) < c}.

We now demonstrate that

{x ∈ Ω; u(t, x) = c} ⊂ Ω[p,∞) for t ≥ t0 provided that p > −∞.(4.5)

We now assume Ωc−
I ⊂ {x ∈ Ω; u(t, x) > c}. Then, the subsolution

b̄(x) =
{
θ−1 (|x− (p+ 1)|4 − 1) if xN < p+ 1,
−1 otherwise

satisfies b̄ ∈ Y1,−1 and

{x ∈ Ω; b̄(x) > 0} = (−∞, p) ⊂ {x ∈ Ω; u(t0, x) > c}.

Then, by Theorem 2.7 we obtain

(−∞, p) ⊂ {x ∈ Ω; u(t, x) > c}

for t > t0, which implies (4.5). If Ωc−
I ⊂ {x ∈ Ω; u(t, x) < c}, then we

deduce (4.5) with similar argument as the above with the supersolution

b̃(x) =
{
θ+
−1(−|x− (p+ 1)|4 + 1) if x < p+ 1,

1 otherwise.

We also deduce

{x ∈ Ω; u(t, x) = c} ⊂ Ω(−∞,q] for t ≥ t0 provided that q <∞

with the parallel argument. �
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4.2. Stability of plane at the neck. By Corollary 2.9 we obtain that
the plane at xN = 0, i.e.,

Ξ = {(x′, xN ) ∈ Ω; xN < 0}, Γ = ∂Ξ = {(x′, 0) ∈ Ω; x′ ∈ RN−1}(4.6)

is a set theoretic solution to (4.1)–(4.2). The goal of this section is to show
the discontinuous solution is stable in the following sense.

Theorem 4.2. Let u ∈ C([0,∞)×Ω) be a solution to (4.3)–(4.4) in (0,∞)×
Ω with initial data u0 ∈ Yα,β. Then,

lim
t→∞

u(t, x) =
{
α if xN < 0,
β if xN > 0.

In other words, for every c ∈ R between α and β the level set {x ∈ Ω; u(t, x) =
c} converges to Γ as t→ ∞.

Proof. We may assume that α > β without loss of generality. Let R0 > 0
be such that

u0(x) =
{
α if xN < −R0,
β if xN > R0

for x = (x′, xN ) ∈ Ω. Then, for µ > 0

{x ∈ Ω; u0(x) > α+ µ or u0(x) < β − µ} ⊂ Ω(−R0,R0),

{x ∈ Ω; u0(x) < α− µ} ⊂ Ω(−R0,+∞),

{x ∈ Ω; u0(x) > β + µ} ⊂ Ω(−∞,R0).

We now prove that, for ε ∈ (0,min{1, R0}), there exists Tε > 0 such that

{x ∈ Ω; u(t, x) > α+ µ or u(t, x) < β − µ} ⊂ Ω(−ε,ε),

{x ∈ Ω; u(t, x) < α− µ} ⊂ Ω(−ε,+∞),

{x ∈ Ω; u(t, x) > β + µ} ⊂ Ω(−∞,ε)(4.7)

for t > Tε. We here demonstrate only (4.7) since the proof of the others are
parallel.

Let
v(x) = −|x− y|2 + z = −|x′|2 − |xN + yN |2 + z

for y = (0′,−yN ), yN > 0 and z > 0. We choose yN and z as

v(x′, R0) = 0 if (x′, R0) ∈ ∂Ω,(4.8)

v(0′, R0 + 1) ≤ −1,(4.9)

v(x′, ε/2) ≥ cε + 1 if (x′, ε/2) ∈ ∂Ω, where cε = v(0′, ε),(4.10)

〈∇v, ~ν〉 ≥ 0 for (x′, xN ) ∈ ∂Ω if xN ∈ Iε = [ε/2, R0 + 1].(4.11)

From (4.8) we set
z = r(R0)2 + (R0 + yN )2.

For (4.9), (4.10) and (4.11) it suffices to choose yN satisfying

yN ≥ max
{
r(R0)2

2
−R0,

r(R0)2

ε
+

1
ε
− 3

4
ε,
r(R0 + 1)

mε

}
,
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where mε = infIε r
′ > 0, since

〈∇v, ~ν〉 = −2(|x′| − r′(xN )(xN + yN ))√
1 + r′(xN )2

≥ −2(r(R0 + 1) −mεyN )√
1 + r′(xN )2

for (x′, xN ) ∈ ∂Ω by (Ω1), and ~ν = (1 + r′(xN )2)−1/2(x′/|x′|,−r′(xN )).
We now introduce

w(t, x) = −Bt+Av(x)
for A,B > 0 chosen later. Then we have

∇w = −2A(x′, xN + yN ), ∇2w = −2AI,

which implies
F ∗

0 (∇w,∇2w) = 2A(N − 1).
Thus, we set B = 2A(N − 1) > 0 to get

wt + F ∗
0 (∇w,∇2w) = 0 in (0,∞) × Ω.

Moreover we have

〈∇w,~ν〉 ≥ 0 on (0,∞) × (∂Ω ∩ ΩIε).

Hence we obtain w(t, x) is a supersolution to (4.3)–(4.4) on (0,∞) × ΩIε .
Let Tε > 0 be such that

w(Tε, (0′, ε)) = −BTε +Acε = 0, i.e., Tε =
Acε
B

=
cε

2(N − 1)
.

Then, we have

w(t, (x′, R0 + 1)) ≤ −A for (t, (x′, R0 + 1)) ∈ [0, Tε] × Ω(4.12)

w(t, (x′, ε/2)) ≥ A for (t, (x′, ε/2)) ∈ [0, Tε] × Ω(4.13)

from (4.9) and (4.10), respectively. Fix A > 1. Then (4.12) and (4.13)
implies that there exists εA > 0 such that

w(t, (x′, R0 + 1)) < −1 for (t, (x′, R0 + 1)) ∈ [0, Tε + εA] × Ω,

w(t, (x′, ε/2)) > 1 for (t, (x′, ε/2)) ∈ [0, Tε + εA] × Ω.

We now define

w̄(t, x) = min{1,max{−1, w(t, x)}} = θ̄(w(t, x)),

where

θ̄(σ) =

 −1 if σ < −1,
σ if |σ| ≤ 1,
1 otherwise.

Then, w̄ is still a supersolution to (4.3)–(4.4) in (0, Tε + εA)×Ω. Moreover,
(4.8) implies

{x ∈ Ω; w̄(0, x) > 0} ⊃ Ω(−∞,R0) ⊃ {x ∈ Ω; u0(x) > β + µ}.
Thus we obtain

{x ∈ Ω; w̄(Tε, x) > 0} ⊃ {x ∈ Ω; u(Tε, x) > β + µ}
by Theorem 2.7. The definition of Tε implies

w̄(Tε, (x′, xN )) ≤ w̄(Tε, (x′, ε)) ≤ w̄(Tε, (0′, ε)) = 0
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if xN ≥ ε, which and Lemma 4.1 yield

Ω(−∞,ε) ⊃ {x ∈ Ω; u(t, x) > β + µ} for t ≥ Tε.

Hence we obtain
lim
t→∞

u(t, x) ≤ β + µ if xN ≥ ε.

Tending ε→ 0, and next µ→ 0 yields that

lim
t→∞

u(t, x) ≤ β if xN > 0.

The parallel arguments making a subsolution with Bt − Av(x) we obtain
that

lim
t→∞

u(t, x) ≥ β if xN > 0.

Hence we obtain limt→∞ u(t, x) = β if xN > 0.
We also deduce limt→∞ u(t, x) = α if xN < 0 by the parallel argument

constructing a sub- and supersolution by v with y = (0, yN ), yN > 0. �

One can easily deduced the asymptotic stability of Γ from the proof of
Theorem 4.2.

Corollary 4.3. There is no continuous stationary solution u ∈ Yα,β to
(4.3)–(4.4) satisfying Γ = {x ∈ W ; u(x) = c} in (4.6) for c ∈ R between α
and β.

5. Concluding remarks

The following problems are still open:
(i) Are there continuous stationary solutions to (3.1) describing a con-

stant mean curvature interface?
(ii) Are there nonconstant stationary solutions to (3.1)?

However, at least every continuous stationary solution to (3.1) has neither
strict local maximum nor minimum by Theorem 3.2. It is very strong re-
striction to continuous stationary solutions except constant functions.

Although we prove the nonexistence of continuous stationary solutions
describing stationary interface Γ considered in §3 or §4, but there exist
continuous and exactly unstationary solution describing Γ by [7] or [29]. It
means that we have to choose the unstationary solution as the center of
linearization if we consider the stability of stationary interface to (1.1) with
a level set method from a view point of eigenvalue problem.

We conclude this section to mention anisotropic curvature equation, which
we do not treat in this paper. The exact solution to the level set equa-
tion of an anisotropic mean curvature equation is presented in [16, §1.7.2].
Thus, one can easily find a vanishing or spreading self similar solution to
an anisotropic curvature flow with constant driving force by the parallel
argument of the proof of Theorem 3.1.
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