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Abstract

We have already defined the evolutes and the involutes of fronts without inflection
points. For regular curves or fronts, we can not define the evolutes at inflection points.
On the other hand, the involutes can be defined at inflection points. In this case, the
involute is not a front but a frontal at inflection points. We define evolutes of frontals
under conditions. The definition is a generalisation of both evolutes of regular curves
and of fronts. By using relationship between evolutes and involutes of frontals, we give
an existence condition of the evolute with inflection points. We also give properties of
evolutes and involutes of frontals.

1 Introduction

The notions of evolutes and involutes (also known as evolvents) were studied by C. Huygens
in his work [13] and studied in classical analysis, differential geometry and singularity theory
of planar curves (cf. [3, 4, 6, 10, 11, 12, 16]). The evolute of a regular curve in the Euclidean
plane is given by not only the locus of all its centres of the curvature (the caustics of the regular
curve), but also the envelope of normal lines of the regular curve, namely, the locus of singular
loci of parallel curves (the wave front of the regular curve). On the other hand, the involute
of a regular curve is the trajectory described by the end of stretched string unwinding from a
point of the curve. Alternatively, another way to construct the involute of a curve is to replace
the taut string by a line segment that is tangent to the curve on one end, while the other end
traces out the involute. The length of the line segment is changed by an amount equal to the
arc length traversed by the tangent point as it moves along the curve.

In the previous papers [8, 9], we defined the evolutes and the involutes of fronts without
inflection points and gave properties of them. In §2, we review the evolutes and the involutes
of regular curves and of fronts. We introduce the moving frame along Legendre curves and the
curvature of Legendre curves (cf. [7]). Moreover, we also gave properties of the evolutes and
the involutes of fronts, for more detail see [8, 9]. For a Legendre immersion without inflection
points, the evolute and the involute of the front are also fronts without inflection points. It
follows that we can repeat the evolute and the involute of fronts without inflection points. We
gave the n-th form of evolutes and involutes of fronts without inflection points for all n ∈ N in
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[8, 9]. The evolute and the involute of the front without inflection points are corresponding to
the differential and the integral of the curvatures of the Legendre immersions.

The evolutes of fronts can not be defined at inflection points. On the other hand, the
involutes of fronts can be defined at inflection points. In this case, the involute is a frontal at
inflection points. In this paper, we consider evolutes and involutes of frontals under conditions.
In §3, we define evolutes and involutes of frontals by extending to the evolutes and the involutes
of fronts. These definitions are generalisations of evolutes and involutes of regular curves and
of fronts. Even if evolutes of frontals exists, we don’t know whether evolutes of evolutes exists
or not. By using relationship between evolutes and involutes of frontals, we give an existence
condition for the n-th evolute. In §4, we give examples of Legendre curves and evolutes of
frontals. These examples are useful to understand properties and results.

We shall assume throughout the whole paper that all maps and manifolds are C∞ unless
the contrary is explicitly stated.

Acknowledgement. The second author was supported by a Grant-in-Aid for Young Scientists
(B) No. 23740041.

2 Preliminaries

We quickly review on the theory of evolutes and involutes of regular curves and of fronts (cf.
[6, 8, 9, 10, 11, 12, 13, 16]). Moreover, we introduce Legendre curves on the unit tangent bundle
and the curvature of the Legendre curve (cf. [7]).

2.1 Regular plane curves

Let I be an interval or R and let R2 be the Euclidean plane with the inner product a · b =
a1b1 + a2b2, where a = (a1, a2) and b = (b1, b2) ∈ R2. Suppose that γ : I → R2 is a regular
plane curve, that is, γ̇(t) = (dγ/dt)(t) ̸= 0 for any t ∈ I. We have the unit tangent vector
t(t) = γ̇(t)/|γ̇(t)| and the unit normal vector n(t) = J(t(t)), where |γ̇(t)| =

√
γ̇(t) · γ̇(t) and J

is the anti-clockwise rotation by π/2 on R2. Then we have the Frenet formula(
ṫ(t)
ṅ(t)

)
=

(
0 |γ̇(t)|κ(t)

−|γ̇(t)|κ(t) 0

)(
t(t)
n(t)

)
,

where the curvature is given by

κ(t) =
ṫ(t) · n(t)
|γ̇(t)|

=
det (γ̇(t), γ̈(t))

|γ̇(t)|3
.

Note that the curvature κ(t) is independent on the choice of a parametrisation.

In this paper, we consider evolutes and involutes of plane curves.

Definition 2.1 The evolute Ev(γ) : I → R2 of a regular plane curve γ is given by

Ev(γ)(t) = γ(t) +
1

κ(t)
n(t), (1)

away from the point κ(t) = 0, that is, without inflection points (cf. [6, 10, 11]).
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Definition 2.2 The involute Inv(γ, t0) : I → R2 of a regular plane curve γ at t0 ∈ I is given
by

Inv(γ, t0)(t) = γ(t)−
(∫ t

t0

|γ̇(u)|du
)
t(t). (2)

The following properties are also well-known in the classical differential geometry of curves:

Proposition 2.3 Let γ : I → R2 be a regular curve and t0 ∈ I.

(1) If t is a regular point of Inv(γ, t0), then Ev(Inv(γ, t0))(t) = γ(t).

(2) If t and t0 are regular points of Ev(γ) and not inflection points of γ, then Inv(Ev(γ), t0)(t) =
γ(t) + (1/κ(t0))n(t).

We say that t0 is an ordinary inflection point of γ if κ(t0) = 0 and κ̇(t0) ̸= 0. By definition
of the curvature, κ(t0) = 0 and κ̇(t0) ̸= 0 are equivalent to the conditions

det(γ̇(t0), γ̈(t0)) = 0, det(γ̇(t0),
...
γ (t0)) ̸= 0.

2.2 Legendre curves and Legendre immersions

We say that (γ, ν) : I → R2 × S1 is a Legendre curve if (γ, ν)∗(t)θ = 0 for all t ∈ I, where θ is
the canonical contact 1-form on the unit tangent bundle T1R2 = R2 × S1 (cf. [2, 4]) and S1 is
the unit circle. This condition is equivalent to γ̇(t) · ν(t) = 0 for all t ∈ I. Moreover, if (γ, ν)
is an immersion, we call (γ, ν) a Legendre immersion. We say that γ : I → R2 is a frontal
(respectively, a front or a wave front) if there exists a smooth mapping ν : I → S1 such that
(γ, ν) is a Legendre curve (respectively, a Legendre immersion).

Let (γ, ν) : I → R2 × S1 be a Legendre curve. Then we have the Frenet formula of the
frontal γ as follows. We put on µ(t) = J(ν(t)). We call the pair {ν(t),µ(t)} a moving frame
along the frontal γ(t) in R2 and we have the Frenet formula of the frontal (or, the Legendre
curve) which is given by (

ν̇(t)
µ̇(t)

)
=

(
0 ℓ(t)

−ℓ(t) 0

)(
ν(t)
µ(t)

)
,

where ℓ(t) = ν̇(t) · µ(t). Moreover, there exists a smooth function β(t) such that

γ̇(t) = β(t)µ(t).

The pair (ℓ, β) is an important invariant of Legendre curves (or, frontals). We call the pair
(ℓ(t), β(t)) the curvature of the Legendre curve (with respect to the parameter t) (cf. [7]). If
(γ, ν) : I → R2 × S1 is a Legendre immersion, then (ℓ(t), β(t)) ̸= (0, 0) for all t ∈ I.

Proposition 2.4 Let (γ, ν) : I → R2 × S1 be a Legendre curve with the curvature (ℓ, β) and

f : Ĩ → I be a smooth function. Then (γ ◦ f, ν ◦ f) : Ĩ → R2 ×S1 is also a Legendre curve with
the curvature ((ℓ ◦ f)f ′, (β ◦ f)f ′).

Proof. Since

(γ ◦ f)′(u) = γ̇(f(u))f ′(u) = β(f(u))f ′(u)µ(f(u)) = (β ◦ f(u))f ′(u)µ ◦ f(u)
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and
(ν ◦ f)′(u) = ν̇(f(u))f ′(u) = ℓ(f(u))f ′(u)µ(f(u)) = (ℓ ◦ f)(u)f ′(u)µ ◦ f(u),

it holds that (γ◦f, ν◦f) is a Legendre curve with the curvature ((ℓ◦f(u))f ′(u), (β◦f(u))f ′(u)).
2

Example 2.5 Let n,m and k be natural numbers with m = n + k. Let (γ, ν) : R → R2 × S1

be

γ(t) =

(
1

n
tn,

1

m
tm
)
, ν(t) =

1√
t2k + 1

(
−tk, 1

)
.

It is easy to see that (γ, ν) is a Legendre curve, and a Legendre immersion when n = 1 or
k = 1. We call γ is of type (n,m). For example, the frontal of type (2, 3) has the 3/2 cusp
(A2 singularity) at t = 0, of type (3, 4) has the 4/3 cusp (E6 singularity) at t = 0, of type
(3, 5) has the 5/3 cusp (E8 singularity) at t = 0. These types (2, 3) and (3, 4) are Legendre
immersions. The type (3, 5) is a Legendre curve but not a Legendre immersion, see Example
4.1. By definition, we have µ(t) = (1/

√
t2k + 1)(−1,−tk) and

ℓ(t) =
ktk−1

t2k + 1
, β(t) = −tn−1

√
t2k + 1.

Definition 2.6 Let (γ, ν) and (γ̃, ν̃) : I → R2 × S1 be Legendre curves. We say that (γ, ν)
and (γ̃, ν̃) are congruent as Legendre curves if there exists a congruence C on R2 such that
γ̃(t) = C(γ(t)) = A(γ(t)) + b and ν̃(t) = A(ν(t)) for all t ∈ I, where C is given by the rotation
A and the translation b on R2.

We have the existence and the uniqueness for Legendre curves in the unit tangent bundle
like as regular plane curves, see [7].

Theorem 2.7 (The Existence Theorem) Let (ℓ, β) : I → R2 be a smooth mapping. There
exists a Legendre curve (γ, ν) : I → R2 × S1 whose associated curvature of the Legendre curve
is (ℓ, β).

Theorem 2.8 (The Uniqueness Theorem) Let (γ, ν) and (γ̃, ν̃) : I → R2 × S1 be Legendre

curves whose curvatures of Legendre curves (ℓ, β) and (ℓ̃, β̃) coincide. Then (γ, ν) and (γ̃, ν̃)
are congruent as Legendre curves.

In fact, the Legendre curve whose associated curvature of the Legendre curve is (ℓ, β), is given
by the form

γ(t) =

(
−
∫

β(t) sin

(∫
ℓ(t)dt

)
dt,

∫
β(t) cos

(∫
ℓ(t)dt

)
dt

)
,

ν(t) =

(
cos

∫
ℓ(t)dt, sin

∫
ℓ(t)dt

)
.

Let (γ, ν) : I → R2 × S1 be a Legendre curve with the curvature of the Legendre curve
(ℓ, β).

Definition 2.9 We say that a point t0 ∈ I is an inflection point of the frontal γ (or, the
Legendre curve (γ, ν)) if ℓ(t0) = 0.
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Remark that the definition of the inflection point of the frontal is a generalisation of the
definition of the inflection point of a regular curve (cf. [7]).

We also recall the notion of the contact between Legendre curves (cf. [7]). Let (γ, ν) :

I → R2 × S1; t 7→ (γ(t), ν(t)) and (γ̃, ν̃) : Ĩ → R2 × S1;u 7→ (γ̃(u), ν̃(u)) be Legendre curves
respectively and let k be a natural number. We say that (γ, ν) and (γ̃, ν̃) have at least k-th
order contact at t = t0, u = u0 if

(γ, ν)(t0) = (γ̃, ν̃)(u0),
d

dt
(γ, ν)(t0) =

d

du
(γ̃, ν̃)(u0), · · · ,

dk−1

dtk−1
(γ, ν)(t0) =

dk−1

duk−1
(γ̃, ν̃)(u0).

In general, we may assume that (γ, ν) and (γ̃, ν̃) have at least first order contact at any
point t = t0, u = u0, up to congruence as Legendre curves. We denote the curvatures of the
Legendre curves (ℓ(t), β(t)) of (γ(t), ν(t)) and (ℓ̃(u), β̃(u)) of (γ̃(u), ν̃(u)), respectively.

Theorem 2.10 ([7, Theorem 3.1]) If (γ, ν) and (γ̃, ν̃) have at least (k+1)-th order contact at
t = t0, u = u0, then

(ℓ, β)(t0) = (ℓ̃, β̃)(u0),
d

dt
(ℓ, β)(t0) =

d

du
(ℓ̃, β̃)(u0), · · · , dk−1

dtk−1
(ℓ, β)(t0) =

dk−1

duk−1
(ℓ̃, β̃)(u0). (3)

Conversely, if the condition (3) holds, then (γ, ν) and (γ̃, ν̃) have at least (k+1)-th order contact
at t = t0, u = u0, up to congruence as Legendre curves.

Definition 2.11 We say that a Legendre curve (γ, ν) : I → R2 × S1 is a part of a circle if
there exist a smooth function θ : I → R and constants r, a, b ∈ R such that

γ(t) = (r cos θ(t) + a, r sin θ(t) + b), ν(t) = (cos θ(t), sin θ(t)).

Proposition 2.12 Let (γ, ν) : I → R2×S1 be a Legendre curve with the curvature (ℓ, β). The
Legendre curve (γ, ν) is a part of a circle if and only if there exists a constant r ∈ R such that
β(t) = rℓ(t) for all t ∈ I.

Proof. Assume the Legendre curve (γ, ν) is a part of a circle. There exist a smooth function
θ : I → R and constants r, a, b ∈ R such that

γ(t) = (r cos θ(t) + a, r sin θ(t) + b), ν(t) = (cos θ(t), sin θ(t)).

Since µ(t) = (− sin θ(t), cos θ(t)), we have ℓ(t) = θ̇(t) and β(t) = rθ̇(t). Thus, β(t) = rℓ(t)
holds.

By the existence and uniqueness Theorems 2.7 and 2.8, the converse is holded. 2

Note that a part of a circle may have singular points and inflection points.

2.3 Evolutes and involutes of fronts

Let (γ, ν) : I → R2 × S1 be a Legendre curve with the curvature of the Legendre curve (ℓ, β).
If (γ, ν) dose not have inflection points, namely, ℓ(t) ̸= 0 for all t ∈ I, then (γ, ν) is a Legendre
immersion. In this subsection, we assume that (γ, ν) dose not have inflection points.
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Definition 2.13 The evolute Ev(γ) : I → R2 of the front γ is given by

Ev(γ)(t) = γ(t)− β(t)

ℓ(t)
ν(t). (4)

Definition 2.14 The involute Inv(γ, t0) : I → R2 of the front γ at t0 ∈ I is given by

Inv(γ, t0)(t) = γ(t)−
(∫ t

t0

β(u)du

)
µ(t). (5)

Proposition 2.15 ([9, Proposition 2.14]) Under the above notations, we have the following.

(1) The evolute Ev(γ) is also a front. More precisely, (Ev(γ), J(ν)) : I → R2 × S1 is a
Legendre immersion with the curvature(

ℓ(t),
d

dt

β(t)

ℓ(t)

)
.

(2) The involute Inv(γ, t0) is also a front for each t0 ∈ I. More precisely, (Inv(γ, t0), J−1(ν)) :
I → R2 × S1 is a Legendre immersion with the curvature(

ℓ(t),

(∫ t

t0

β(u)du

)
ℓ(t)

)
.

Proposition 2.16 ([9, Proposition 4.1]) For any t0 ∈ I, we have the following.

(1) Ev(Inv(γ, t0))(t) = γ(t).

(2) Inv(Ev(γ), t0)(t) = γ(t)− (β(t0)/ℓ(t0))ν(t).

The following results give the relationships between singular points of γ and the properties
of the evolutes and involutes.

Proposition 2.17 ([8, Propositions 3.8 and 4.5])

(1) Suppose that t0 is a singular point of γ. Then γ is diffeomorphic to the 3/2 cusp at t0
if and only if t0 is a regular point of Ev(γ).

(2) Suppose that t0 is a singular point of both γ and Ev(γ). Then γ is diffeomorphic to the
4/3 cusp at t0 if and only if Ev(γ) is diffeomorphic to the 3/2 cusp at t0.

Proposition 2.18 ([9, Proposition 3.9]) (1) Inv(γ, t0) is diffeomorphic to the 3/2 cusp at t0
if and only if t0 is a regular point of γ.

(2) Inv(γ, t0) is diffeomorphic to the 4/3 cusp at t0 if and only if γ is diffeomorphic to the
3/2 cusp at t0.

Let (γ, ν) : I → R2 × S1 be a Legendre immersion with the curvature (ℓ, β) and without
inflection points. By Proposition 2.15, (Ev(γ), J(ν)) : I → R2 × S1 and (Inv(γ, t0), J−1(ν)) :
I → R2 × S1 are also Legendre immersions without inflection points for any t0 ∈ I. Therefore,
we can repeat the evolute and the involute of the front.

We give the form of the n-th evolute and the n-th involute of the front, where n is a natural
number. We denote Ev0(γ)(t) = γ(t) and Ev1(γ)(t) = Ev(γ)(t) for convenience. We define
Evn(γ)(t) = Ev(Evn−1(γ))(t) and

β0(t) = β(t), βn(t) =
d

dt

(
βn−1(t)

ℓ(t)

)
,
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inductively. Moreover, we denote Inv0(γ, t0)(t) = γ(t) and Inv1(γ, t0)(t) = Inv(γ, t0)(t) for
convenience. We define Invn(γ, t0)(t) = Inv(Invn−1(γ, t0), t0)(t) and

β−1(t) =

(∫ t

t0

β(u)du

)
ℓ(t), β−n(t) =

(∫ t

t0

β−n+1(u)du

)
ℓ(t)

inductively.

Theorem 2.19 ([8, 9]) (1) (Evn(γ), Jn(ν)) : I → R2 × S1 is a Legendre immersion with the
curvature (ℓ, βn), where the n-th evolute of the front is given by

Evn(γ)(t) = Evn−1(γ)(t)− βn−1(t)

ℓ(t)
Jn−1(ν(t))

and Jn is n-times operation of J .

(2) (Invn(γ, t0), J−n(ν)) : I → R2×S1 is a Legendre immersion with the curvature (ℓ, β−n),
where the n-th involute of the front γ at t0 is given by

Invn(γ, t0)(t) = Invn−1(γ, t0)(t) +
β−n(t)

ℓ(t)
J−n(ν(t))

and J−n is n-times operation of J−1.

3 Evolutes and involutes of frontals

Let (γ, ν) : I → R2 × S1 be a Legendre curve with the curvature (ℓ, β). We can define the
involute of the frontal as the same form of the involute of the front.

Definition 3.1 The involute Inv(γ, t0) : I → R2 of the frontal γ at t0 ∈ I is given by

Inv(γ, t0)(t) = γ(t)−
(∫ t

t0

β(u)du

)
µ(t). (6)

On the other hand, Proposition 2.16 suggests that we may define an evolute of the frontal under
existence and uniqueness conditions.

Definition 3.2 The evolute Ev(γ) : I → R2 of the frontal γ is given by

Ev(γ)(t) = γ(t)− α(t)ν(t), (7)

if there exists a unique smooth function α : I → R such that β(t) = α(t)ℓ(t). In this case, we
say that the evolute Ev(γ) exists.

The uniqueness condition is well-known as a topological condition.

Lemma 3.3 Suppose that there exists a continuous function α : I → R such that α(t) =
β(t)/ℓ(t) on L = {t ∈ I | ℓ(t) ̸= 0}. Then the function α is a unique if and only if L is a dense
subset of I, namely, L = I.
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Let (γ, ν) : I → R2 × S1 be a Legendre curve with the curvature (ℓ, β). In this paper, we
assume that L = {t ∈ I | ℓ(t) ̸= 0} is a dense subset of I. This condition follows that if such a
smooth function α exists, then the uniqueness condition is satisfied by Lemma 3.3.

Remark 3.4 If the inflection points ℓ(t) = 0 are isolated, then the condition that L is a dense
subset of I is satisfied.

If t0 is an inflection point of (γ, ν) and the evolute Ev(γ) exists, then the inflection point
must be a singular point of γ. It follows that t0 is a singular point of Legendre curve (γ, ν),
that is, (ℓ(t0), β(t0)) = (0, 0).

Proposition 3.5 Under the above notations, we have the following.

(1) If the evolute Ev(γ) of the frontal exists and β(t) = α(t)ℓ(t), then the evolute Ev(γ)
is also a frontal. More precisely, (Ev(γ), J(ν)) : I → R2 × S1 is a Legendre curve with the
curvature

(ℓ(t), α̇(t)) .

(2) The involute of the frontal Inv(γ, t0) is also a frontal for each t0 ∈ I. More precisely,
(Inv(γ, t0), J−1(ν)) : I → R2 × S1 is a Legendre curve with the curvature(

ℓ(t),

(∫ t

t0

β(u)du

)
ℓ(t)

)
.

Proof. (1) By using the Frenet formula of the Legendre curve, we have

Ėv(γ)(t) = γ̇(t)− α̇(t)ν(t)− α(t)ν̇(t)

= β(t)µ(t)− α̇(t)ν(t)− α(t)ℓ(t)µ(t)

= α̇(t)J(J(ν(t))).

It follows that Ėv(γ)(t) · J(ν(t)) = 0. Since (d/dt)J(ν(t)) = ℓ(t)J(J(ν(t))), the curvature of
the Legendre curve (Ev(γ), J(ν)) is given by (ℓ(t), α̇(t)) .

(2) By using the Frenet formula of the Legendre curve, we have

İnv(γ, t0)(t) = γ̇(t)− β(t)µ(t)−
(∫ t

t0

β(u)du

)
µ̇(t) =

(∫ t

t0

β(u)du

)
ℓ(t)J(J−1(ν(t))).

It follows that İnv(γ, t0)(t) · J−1(ν(t)) = 0. Since (d/dt)J−1(ν(t)) = ℓ(t)J(J−1(ν(t))), the
curvature of the Legendre curve (Inv(γ, t0), J−1(ν)) is given by(

ℓ(t),

(∫ t

t0

β(u)du

)
ℓ(t)

)
.

2

By Proposition 3.5, if t0 is an inflection point of a Legendre curve (γ, ν), then t0 is also an
inflection point of both the evolute if exists, and the involute of the frontal. Moreover, t0 is a
singular point of the involute of the frontal. The important difference between the evolute and
the involute of the frontal is that we can always repeat the involute of the frontal but can not
repeat the evolute of the frontal in general.
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Proposition 3.6 Let (γ, ν) : I → R2 × S1 be a Legendre curve with the curvature of the
Legendre curve (ℓ, β).

(1) The evolute of the involute of the frontal always exists and Ev(Inv(γ, t0))(t) = γ(t) for
any t0 ∈ I.

(2) If the evolute Ev(γ) of the frontal exists and β(t) = α(t)ℓ(t), then Inv(Ev(γ), t0)(t) =
γ(t)− α(t0)ν(t) for any t0 ∈ I.

Proof. (1) We denote the curvature of the involute of the frontal by (ℓ−1(t), β−1(t)). Since the
form of the curvature of the involute of the frontal in Proposition 3.5 (2), ℓ−1(t) = ℓ(t) and
β−1(t) = α(t)ℓ(t), where

α(t) =

∫ t

t0

β(u)du.

By definition of the evolute of the frontal, it holds that

Ev(Inv(γ, t0))(t) = Inv(γ, t0)(t)−
(∫ t

t0

β(u)du

)
J−1(ν(t))

= γ(t)−
(∫ t

t0

β(u)du

)
µ(t) +

(∫ t

t0

β(u)du

)
µ(t)

= γ(t).

(2) By definition of the involute of the frontal, it holds that

Inv(Ev(γ), t0)(t) = Ev(γ)(t)−
(∫ t

t0

α̇(u)du

)
J(µ(t))

= γ(t)− α(t)ν(t) + α(t)ν(t)− α(t0)ν(t)

= γ(t)− α(t0)ν(t).

2

By a direct calculation, we have the following Lemma.

Lemma 3.7 Let (γ, ν) : I → R2 × S1 be a Legendre curve with the curvature of the Legendre
curve (ℓ, β).

(1) det(γ̇(t), γ̈(t)) = 0 and det(γ̇(t),
...
γ (t)) ̸= 0 if and only if β(t) ̸= 0, ℓ(t) = 0 and ℓ̇(t) ̸= 0.

(2) γ̇(t) = 0, γ̈(t) = 0, det(γ(3)(t), γ(4)(t)) = 0 and det(γ(3)(t), γ(5)(t)) ̸= 0 if and only if
β(t) = β̇(t) = 0, β̈(t) ̸= 0, ℓ(t) = 0 and ℓ̇(t) ̸= 0.

Proposition 3.8 Let (γ, ν) : I → R2 × S1 be a Legendre curve with the curvature of the
Legendre curve (ℓ, β).

(1) γ is diffeomorphic to the 5/3 cusp at t0 if and only if the evolute Ev(γ) of the frontal
exists, β(t) = α(t)ℓ(t) around t0 with α(t0) = 0 and t0 is an ordinary inflection point of Ev(γ).

(2) Inv(γ, t0)(t) is diffeomorphic to the 5/3 cusp at t0 if and only if t0 is an ordinary
inflection point of γ.

Proof. (1) By Lemma 3.7, we have β(t0) = β̇(t0) = 0, β̈(t0) ̸= 0, ℓ(t0) = 0 and ℓ̇(t0) ̸= 0. Since
t0 is an isolated singular point of (γ, ν) and

lim
t→t0

β(t)

ℓ(t)
= lim

t→t0

β̇(t)

ℓ̇(t)
= 0,

9



there exists a unique smooth function germ α : (I, t0) → R such that β(t) = α(t)ℓ(t) with
α(t0) = 0. It follows that Ev(γ) exists around t0. Note that Ev(γ)(t0) = γ(t0). Since
β̈(t) = α̈(t)ℓ(t) + 2α̇(t)ℓ̇(t) + α(t)ℓ̈(t), we have α̇(t0) = β̈(t0)/(2ℓ̇(t0)) ̸= 0. It follows from
(d/dt)(Ev(γ)(t)) = α̇(t)J2(ν(t)) that t0 is a regular point of Ev(γ). By Proposition 3.5, the
curvature of the Legendre curve of the evolute is (ℓ(t), α̇(t)). Hence, t0 is also an ordinary
inflection point of Ev(γ) by Lemma 3.7.

Conversely, if t0 is an ordinary inflection point of Ev(γ), we have ℓ(t0) = 0 and ℓ̇(t0) ̸= 0.
By α(t0) = 0, we have β(t0) = 0 and β̇(t0) = 0. Moreover, since t0 is a regular point of Ev(γ),
namely α̇(t0) ̸= 0, we have β̈(t0) ̸= 0. It follows from Lemma 3.7 that γ is diffeomorphic to the
5/3 cusp at t0 (cf. [5, 14, 15, 17]).

(2) Suppose that Inv(γ, t0)(t) is diffeomorphic to the 5/3 cusp at t0. By Proposition 3.6
and (1), it holds that t0 is an ordinary inflection point of γ.

Conversely, if t0 is an ordinary inflection point of γ, then β(t0) ̸= 0, ℓ(t0) = 0 and ℓ̇(t0) ̸= 0
by Lemma 3.7. By Proposition 3.5, the curvature of the Legendre curve of the involute is given
by

(ℓ−1(t), β−1(t)) =

(
ℓ(t),

(∫ t

t0

β(u)du

)
ℓ(t)

)
.

By a direct calculation, we have

β−1(t0) = 0, β̇−1(t0) = 0, β̈−1(t0) ̸= 0.

It follows from Lemma 3.7 that Inv(γ, t0) is diffeomorphic to the 5/3 cusp at t0. 2

Remark 3.9 If t0 is an inflection point and a singular point of the frontal γ, then γ is degen-
erate more than 3/2 cusp at t0. Indeed, we have γ̇(t0) = β(t0)µ(t0) = 0 and det(γ̈(t0),

...
γ (t0)) =

2β̇(t0)
2ℓ(t0) = 0 (cf. Propositions 2.17 and 2.18).

Proposition 3.10 If (γ, ν) : I → R2 × S1 is a part of a circle, then the evolute of the circle
exists and is given by a point.

Proof. There exist a smooth function θ : I → R and constants r, a, b ∈ R such that

γ(t) = (r cos θ(t) + a, r sin θ(t) + b), ν(t) = (cos θ(t), sin θ(t)).

By Proposition 2.12, β(t) = rℓ(t). It follows that Ev(γ)(t) = γ(t)− rν(t) = (a, b). 2

Let (γ, ν) : I → R2 × S1 be a Legendre curve with the curvature (ℓ, β).

Definition 3.11 We say that t0 is a vertex of the frontal γ (or, of the Legendre curve (γ, ν)) if
the evolute Ev(γ) of the frontal exists and Ėv(γ)(t0) = 0.

Suppose that the evolute of the frontal Ev(γ) exists and β(t) = α(t)ℓ(t). Then t0 is a vertex
of the frontal γ if and only if α̇(t0) = 0.

Proposition 3.12 Let (γ, ν) : I → R2 × S1 be a Legendre curve with the curvature (ℓ, β) and
t0 ∈ I. Suppose that the evolute Ev(γ) of the frontal exists and β(t) = α(t)ℓ(t). We denote
(γ̃, ν̃) : I → R2 × S1 by a part of a circle with the curvature (ℓ(t), α(t0)ℓ(t)).

(1) (γ, ν) and (γ̃, ν̃) have at least second order contact at t = t0, up to congruence as
Legendre curves.
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(2) If t0 is a singular point of (γ, ν), then (γ, ν) and (γ̃, ν̃) have at least third order contact
at t = t0, up to congruence as Legendre curves.

(3) If t0 is a singular point and a vertex of (γ, ν), then (γ, ν) and (γ̃, ν̃) have at least 4-th
order contact at t = t0, up to congruence as Legendre curves.

Proof. (1) Since (ℓ(t0), β(t0)) = (ℓ(t0), α(t0)ℓ(t0)), it holds that (γ, ν) and (γ̃, ν̃) have at least
second order contact at t = t0, up to congruence as Legendre curves by Theorem 2.10.

(2) By differentiating β(t) = α(t)ℓ(t), we have β̇(t) = α̇(t)ℓ(t)+α(t)ℓ̇(t). By the assumption,
ℓ(t0) = β(t0) = 0 holds. It follows that (ℓ̇(t0), β̇(t0)) = (ℓ̇(t0), α(t0)ℓ̇(t0)). By Theorem 2.10,
(γ, ν) and (γ̃, ν̃) have at least third order contact at t = t0, up to congruence as Legendre
curves.

(3) Also we have β̈(t) = α̈(t)ℓ(t) + 2α̇(t)ℓ̇(t) + α(t)ℓ̈(t). By the assumption, ℓ(t0) = β(t0) =
α̇(t0) = 0 holds. It follows that (ℓ̈(t0), β̈(t0)) = (ℓ̈(t0), α(t0)ℓ̈(t0)). By Theorem 2.10, (γ, ν) and
(γ̃, ν̃) have at least 4-th order contact at t = t0, up to congruence as Legendre curves. 2

Remark 3.13 Suppose that t0 is a regular point and not an inflection point of γ. It is well-
known that if t0 is a vertex of γ, then γ and the osculating circle have at least third order
contact at t0.

Proposition 3.14 Let (γ, ν) and (γ̃, ν̃) : I → R2 × S1 be Legendre curves with the curvatures

of the Legendre curves are (ℓ(t), β(t)) and (ℓ̃(t), β̃(t)) respectively.

(1) Suppose that the evolute Ev(γ) of the frontal exists and β(t) = α(t)ℓ(t). If (γ, ν) and
(γ̃, ν̃) are congruent as Legendre curves, then the evolute Ev(γ̃) of the frontal exists. Moreover,
(Ev(γ), J(ν)) and (Ev(γ̃), J(ν̃)) are congruent as Legendre curves.

(2) Let t0 ∈ I. (γ, ν) and (γ̃, ν̃) are congruent as Legendre curves if and only if (Inv(γ, t0), J−1(ν))
and (Inv(γ̃, t0), J−1(ν̃)) are congruent as Legendre curves.

Proof. (1) Since (ℓ(t), β(t)) = (ℓ̃(t), β̃(t)), we have β̃(t) = α(t)ℓ̃(t). Thus, the evolute Ev(γ̃)
exists. Moreover, the curvatures of the evolutes are the same (ℓ(t), α̇(t)). By Theorem 2.8,
(Ev(γ), J(ν)) and (Ev(γ̃), J(ν̃)) are congruent as Legendre curves.

(2) If (ℓ(t), β(t)) = (ℓ̃(t), β̃(t)), then(
ℓ(t),

(∫ t

t0

β(u)du

)
ℓ(t)

)
=

(
ℓ̃(t),

(∫ t

t0

β̃(u)du

)
ℓ̃(t)

)
holds. It follows that (Inv(γ, t0), J−1(ν)) and (Inv(γ̃, t0), J−1(ν̃)) are congruent as Legendre
curves. The converse is a direct corollary of (1) and Proposition 3.6. 2

Let (γ, ν) : I → R2 × S1 be a Legendre curve with the curvature (ℓ, β) and f : Ĩ → I be a

smooth function, where Ĩ is an interval or R. By Proposition 2.4, (γ ◦ f, ν ◦ f) : Ĩ → R2 × S1

is also a Legendre curve with the curvature ((ℓ ◦ f)f ′, (β ◦ f)f ′).

Proposition 3.15 Under the above notations, we have the following. Suppose that L̃ = {u ∈
Ĩ|ℓ(f(u))f ′(u) ̸= 0} is a dense subset in Ĩ.

(1) If Ev(γ) exists, then Ev(γ ◦ f) exists and Ev(γ ◦ f)(u) = Ev(γ)(f(u)) ∈ Ev(γ)(I).
(2) Let u0 ∈ Ĩ. Inv(γ ◦ f, u0)(u) = Inv(γ, f(u0))(f(u)) ∈ Inv(γ, f(u0))(I).
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Proof. (1) There exists a unique smooth function α : I → R such that β(t) = α(t)ℓ(t). It
follows that (β ◦ f(u))f ′(u) = (α ◦ f(u))(ℓ ◦ f(u))f ′(u). By definition of the evolute of the
frontal, we have

Ev(γ ◦ f)(u) = γ ◦ f(u)− (α ◦ f(u))(ν ◦ f(u)) = Ev(γ)(f(u)) ∈ Ev(γ)(I).

(2) By definition of the involute of the frontal, we have

Inv(γ ◦ f, u0)(u) = γ ◦ f(u)−
(∫ u

u0

(β ◦ f(s))f ′(s)ds

)
µ ◦ f(u)

= γ ◦ f(u)−

(∫ f(u)

f(u0)

β(t)dt

)
µ ◦ f(u)

= Inv(γ, f(u0))(f(u)) ∈ Inv(γ, f(u0))(I).

2

Let (γ, ν) : I → R2 × S1 be a Legendre curve. We define a parallel curve γλ : I → R2 of the
frontal γ (or, Legendre curve (γ, ν)) by

γλ(t) = γ(t) + λν(t),

where λ ∈ R.

Proposition 3.16 Let (γ, ν) : I → R2 × S1 be a Legendre curve with the curvature (ℓ, β).

(1) The parallel curve γλ : I → R2 is also a frontal for any λ ∈ R. More precisely,
(γλ, ν) : I → R2 × S1 is a Legendre curve with the curvature

(ℓ(t), β(t) + λℓ(t)) .

(2) If the evolute Ev(γ) exists, then the evolute of a parallel curve of γ exists. Moreover,
the evolute Ev(γλ) coincides with the evolute Ev(γ).

Proof. (1) Let γλ(t) = γ(t) + λν(t) where λ ∈ R. By the Frenet formula, we have

γ̇λ(t) = γ̇(t) + λν̇(t) = (β(t) + λℓ(t))µ(t)

holds. It follows that γ̇λ(t) · ν(t) = 0 and hence (γλ, ν) is a Legendre curve. Then the curvature
of the Legendre curve (γλ, ν) is given by (ℓ(t), β(t) + λℓ(t)) .

(2) There exists a unique smooth function α such that β(t) = α(t)ℓ(t). By the form of the
curvature of the parallel curve, we have

β(t) + λℓ(t) = (α(t) + λ)ℓ(t).

Therefore, the evolute of γλ exists again. Moreover,

Ev(γλ)(t) = γλ(t)− (α(t) + λ)ν(t) = γ(t)− α(t)ν(t) = Ev(γ).

2
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Proposition 3.17 For any points t0, t1 ∈ I, the involute Inv(γ, t1)(t) is a parallel curve of
(Inv(γ, t0), J−1(ν)).

Proof. By definition of the involute of the frontal, we have

Inv(γ, t1)(t) = γ(t)−
(∫ t

t1

β(u)du

)
µ(t)

= γ(t)−
(∫ t

t0

β(u)du

)
µ(t)−

(∫ t0

t1

β(u)du

)
µ(t)

= Inv(γ, t0)(t) +
(∫ t0

t1

β(u)du

)
J−1(ν(t)).

It follows that Inv(γ, t1)(t) is a parallel curve of (Inv(γ, t0), J−1(ν)). 2

For a Legendre curve (γ, ν) : I → R2 × S1, we denote the set of Legendre curves of the
parallel curves of the involute (Inv(γ, t0), J−1(ν)) : I → R2 × S1 by PI(γ, ν), that is,

PI(γ, ν) = {(Inv(γ, t0) + λJ−1(ν), J−1(ν)) | λ ∈ R}.

Note that by Proposition 3.17, for any t1 ∈ I, (Inv(γ, t1), J−1(ν)) ∈ PI(γ, ν). Hence
PI(γ, ν) is independent on the choice of the initial point t0.

We also define PIn(γ, ν) by PIn(γ, ν) = PI(PIn−1(γ, ν)) inductively, that is,

PIn(γ, ν) = {(Inv(γ̃, t0) + λJ−1(ν̃), J−1(ν̃)) | (γ̃, ν̃) ∈ PIn−1(γ, ν), λ ∈ R}.
We denote Ev0(γ)(t) = γ(t) and Ev1(γ)(t) = Ev(γ)(t) if the evolute exists. We also define
Evn(γ)(t) = Ev(Evn−1(γ))(t) inductively, if the evolute exists. We give an existence condition
of the n-th evolute of the frontal.

Theorem 3.18 Let (γ, ν) : I → R2 × S1 be a Legendre curve with the curvature (ℓ, β). Then
the following are equivalent.

(1) The n-th evolute Evn(γ) exists and (Evn(γ), Jn(ν)) is a Legendre curve.

(2) There exists a Legendre curve (γ̃, ν̃) : I → R2 × S1 such that (γ, ν) ∈ PIn(γ̃, ν̃).

Proof. We give the proof by the induction on n ∈ N. First we consider the case of n = 1. If the
evolute of the frontal Ev(γ) exists and β(t) = α(t)ℓ(t), then Inv(Ev(γ), t0)(t) = γ(t)−α(t0)ν(t)
by Proposition 3.6. Therefore,

γ(t) = Inv(Ev(γ), t0)(t) + α(t0)J
−1(J(ν(t)))

holds. It follows that (γ, ν) ∈ PI(Ev(γ), J(ν)). Conversely, suppose that there exists a Leg-
endre curve (γ̃, ν̃) such that (γ, ν) ∈ PI(γ̃, ν̃). Then Ev(γ)(t) = γ̃(t) by Propositions 3.6 and
3.16. Therefore, the evolute Ev(γ) exists and (Ev(γ), J(ν)) is a Legendre curve by Propositions
3.5 and 3.6.

Next suppose that the case of n−1 is holded. If Evn(γ) exists, then (Evn−1(Ev(γ)), Jn−1(J(ν)))
exists. By the assumption of the induction, there exists a Legendre curve (γ̃, ν̃) such that
(Ev(γ), J(ν)) ∈ PIn−1(γ̃, ν̃). Moreover, we have (γ, ν) ∈ PI(Ev(γ), J(ν)). It follows that
(γ, ν) ∈ PIn(γ̃, ν̃). Conversely, suppose that there exists a Legendre curve (γ̃, ν̃) such that
(γ, ν) ∈ PIn(γ̃, ν̃). Then there exists (γ, ν) ∈ PIn−1(γ̃, ν̃) such that (γ, ν) ∈ PI(γ, ν). It
follows that (Ev(γ), J(ν)) = (γ, ν). By the assumption of the induction, Evn−1(γ) exists
and (Evn−1(γ), Jn−1(ν)) is a Legendre curve. Therefore, Evn−1(Ev(γ)) = Evn(γ) exists and
(Evn(γ), Jn(ν)) is a Legendre curve. This completes the proof of Theorem. 2
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4 Example

We give examples of evolutes of frontals. These are useful to understand the phenomena and
results.

Example 4.1 Let n,m and k be natural numbers with m = n + k and n ≥ k. Let (γ, ν) :
R → R2 × S1 be of type (n,m),

γ(t) =

(
1

n
tn,

1

m
tm
)
, ν(t) =

1√
t2k + 1

(−tk, 1),

see Example 2.5. Then we have

ℓ(t) =
ktk−1

t2k + 1
, β(t) = −tn−1

√
t2k + 1,

see Example 2.5. Under the condition n ≥ k, there exists a unique smooth function α(t) =

−tn−k(t2k + 1)
3
2/k such that β(t) = α(t)ℓ(t). Hence the evolute of γ exists and is given by

Ev(γ)(t) =
(
−n− k

nk
tn − 1

k
tn+2k,

n+ 2k

(n+ k)k
tn+k +

1

k
tn−k

)
.

As a concrete example, we take n = 3,m = 5 and k = 2. That is,

γ(t) =

(
1

3
t3,

1

5
t5
)
, ν(t) =

1√
t4 + 1

(−t2, 1),

see Figure 1 left. Then the evolute of the 5/3 cusp is given by

Ev(γ)(t) =
(
−1

6
t3 − 1

2
t7,

1

2
t+

7

10
t5
)
,

see Proposition 3.8 and Figure 1 centre. Moreover, the parallel curve for each λ ∈ R is given
by

γλ(t) =

(
1

3
t3 − λt2√

t4 + 1
,
1

5
t5 +

λ√
t4 + 1

)
,

see Figure 1 right (cf. [1, 17]).
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-2 -1 1 2
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1

2

-2 -1 1 2

-2

-1

1

2

the 5/3 cusp the evolute of the 5/3 cusp parallel curves of the 5/3 cusp
Figure 1.
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Example 4.2 Let n,m and k be natural numbers with m = n + k and n ≥ k. Let (γ, ν) :
[0, 2π) → R2 × S1 be given by

γ(t) = (sinn t cosm t, sinm t cosn t) ,

ν(t) =
1√

((2n+ k) cos2 t− n− k)2 cos2k t+ ((2n+ k) sin2 t− n− k)2 sin2k t(
((2n+ k) sin2 t− n− k) sink t, ((2n+ k) cos2 t− n− k) cosk t

)
.

By a direct calculation, (γ, ν) is a Legendre curve. By definition, we have

µ(t) =
1√

((2n+ k) cos2 t− n− k)2 cos2k t+ ((2n+ k) sin2 t− n− k)2 sin2k t(
−((2n+ k) cos2 t− n− k) cosk t, ((2n+ k) sin2 t− n− k) sink t

)
,

ℓ(t) =
k sink−1 t cosk−1 tF (t;n, k)

8(((2n+ k) cos2 t− n− k)2 cos2k t+ ((2n+ k) sin2 t− n− k)2 sin2k t)
,

β(t) = − sinn−1 t cosn−1 t

√
((2n+ k) cos2 t− n− k)2 cos2k t+ ((2n+ k) sin2 t− n− k)2 sin2k t,

where

F (t;n, k) = −k2 + 4n(1 + n) + 2k(1 + 2n) + (k2 + 4n(−1 + n) + 2k(−1 + 2n)) cos 4t.

Under the conditions F (t;n, k) ̸= 0 for all t ∈ [0, 2π) and n ≥ k, there exists a unique smooth
function

α(t) = −8 sinn−k t cosn−k t(((2n+ k) cos2 t− n− k)2 cos2k t+ ((2n+ k) sin2 t− n− k)2 sin2k t)
3
2

kF (t;n, k)
.

Then the evolute of the frontal γ exists and is given by Ev(γ)(t) = γ(t)− α(t)ν(t). Note that
if k = 1, 2, 3, 4, 5 and n ≥ k, then F (t;n, k) ̸= 0 for all t ∈ [0, 2π).

As a concrete example, we take n = 3,m = 5 and k = 2. That is,

γ(t) =
(
sin3 t cos5 t, sin5 t cos3 t

)
,

ν(t) =
2√

15 + 17 cos 4t+ 4 cos 8t

(
3 sin4 t− 5 sin2 t cos2 t, 3 cos4 t− 5 sin2 t cos2 t

)
,

see Figure 2 left. Then we have

µ(t) =
2√

15 + 17 cos 4t+ 4 cos 8t

(
−3 cos4 t+ 5 sin2 t cos2 t, 3 sin4 t− 5 sin2 t cos2 t

)
,

ℓ(t) =
12(3 + 2 cos 4t) sin 2t

15 + 17 cos 4t+ 4 cos 8t
,

β(t) = −1

8

√
15 + 17 cos 4t+ 4 cos 8t sin2 2t.

It follows that there exists a unique smooth function α : [0, 2π) → R,

α(t) = −(15 + 17 cos 4t+ 4 cos 8t)
3
2

96(3 + 2 cos 4t)
sin 2t.

The evolute Ev(γ)(t) = γ(t)− α(t)ν(t) of the frontal γ see Figure 2 right.

15



-0.15 -0.10 -0.05 0.05 0.10 0.15

-0.15

-0.10

-0.05

0.05

0.10

0.15

γ(t) = (sin3 t cos5 t, sin5 t cos3 t) the evolute Ev(γ)(t)
Figure 2.

References

[1] V. I. Arnol’d, Critical points of functions on a manifolds with boundary, the simple Lie groups
Bk, Ck, and F4 and singularities of evolvents. Russ. Math. Sure, 33 (1978), 99–116.

[2] V. I. Arnol’d, Singularities of Caustics and Wave Fronts. Mathematics and Its Applications 62
Kluwer Academic Publishers (1990).

[3] V. I. Arnol’d, Topological properties of Legendre projections in contact geometry of wave fronts..
St. Petersburg Math. J. 6 (1995), 439–452.

[4] V. I. Arnol’d, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps vol.
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