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Abstract

The quantum system of a massless charged scalar field with a self-interaction is investigated. By intro-
ducing a spacial cut-off function, the Hamiltonian of the system is realized as a linear operator on a boson
Fock space. It is proven that the Hamiltonian strongly commutes with the total charge operator. This fact
implies that the state space of the charged scalar field is decomposed into the infinite direct sum of fixed
total charge spaces. Moreover, under certain conditions, the Hamiltonian is bounded below, self-adjoint and
has a ground ground state for an arbitrarily coupling constant. A relation between the total charge of the
ground state and a number operator bound is also revealed.

1 Introduction

Let us consider a quantum system of a charged scalar field ϕ(x̃) which interacts with itself on the 1 + d
dimensional space-time R1+d := {x̃ = (x0, x1, . . . , xd) : xν ∈ R, ν = 0, . . . , d} with the Minkowski metric
g = (gµν), g00 = 1, gjj = −1, (j = 1, . . . d), gµν = 0 (µ ̸= ν). The Lagrangian L of a complex Klein-Gordon
equation with a self-interaction term is given by

L = (∂νϕ)(∂
νϕ)∗ −m2ϕϕ∗ − λ

4!
(ϕϕ∗)2,

(
∂ν :=

∂

∂xν
, ∂ν := gνρ∂ρ

)
,

where the Einstein convention for the sum on repeated Greek indices is used, A∗ denotes the complex conjugate
of A, m ≥ 0 is the mass of a particle and λ > 0 is a coupling constant. Let us consider the following Lagrangian
L′:

L′ = (∂νϕ)(∂
νϕ)∗ + µ2ϕϕ∗ − λ

4!
(ϕϕ∗)2, (1)

where µ > 0 is merely a parameter. L′ is the deformation of L by the replacement m2 → −µ2. As is well
known, the formal quantization of ϕ yields particles and anti-particles. We denote by a+(k) (resp. a−(k)) the
formal distribution kernel of the annihilation operator for the particle (resp. anti-particle). The formal adjoint
a+(k)

∗ (resp. a−(k)
∗) represents the formal distribution kernel of the creation operator for the particle (resp.

anti-particle). We denote by ϕ(x) (x ∈ Rd) the time-zero field of ϕ. Then the Hamiltonian derived from (1) is
formally given by,

Hformal =

∫
Rd

|k|(a+(k)∗a+(k) + a−(k)
∗a−(k))dk +

∫
Rd

(
− µ2ϕ(x)ϕ(x)∗ +

λ

4!
(ϕ(x)ϕ(x)∗)2

)
dx. (2)

The integrand of second term on right hand side of (2) is of the form of the so-called Higgs potential. The
Lagrangian L′ is introduced as an example of spontaneous symmetry breaking in quantum field theory (see
,e.g., [17,19]). Unfortunately, Hformal is ill-defined as a linear operator on Hilbert spaces. Therefore we need
modification.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by EPrint Series of Department of Mathematics, Hokkaido University

https://core.ac.uk/display/42026688?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Let ω be a non-negative function on Rd denoting a one-boson Hamiltonian. Then, the free Hamiltonian H0

of a charged scalar field is defined by the second quantization of ω ⊕ ω:

H0 := dΓb(ω ⊕ ω)

on a suitable boson Fock space (see Section 2). Let χsp be a non-negative function on Rd which plays a role as
spacial cut-off. For x ∈ Rd, let ϕ(fx) be a field operator smeared by a suitable function fx. The Hamiltonian
H under consideration is defined as follows:

H := dΓb(ω ⊕ ω) + µ

∫
Rd

χsp(x)ϕ(fx)
∗ϕ(fx)dx+ λ

∫
Rd

χsp(x)(ϕ(fx)
∗ϕ(fx))

2dx, (3)

where µ ∈ R and λ > 0 are coupling constants. A rigorous definition of H is introduced in Section 2. The
integral on the right hand side of (3) is taken in the sense of strong Bochner integral. If µ < 0, H describes
a cutoff Hamiltonian of a charged scalar field with Higgs type potential. If µ = 0, H becomes a complex-λϕ4

model with cutoffs. Hence H unifies two important models. In this paper we study the properties of H via
operator theoretical methods. Since the interaction term of (3) is singular, we need careful treatment to analyze
H. Here, “singular” means that an interaction term is not relatively bounded with the respect to the free Hamil-
tonian. Introducing the spacial cut-off breaks the translation invariance of the quantum system. On the other
hand, it is seen that the quantum system still holds the charge conservation. It means that the Hamiltonian H
and a total charge operator strongly commute. In the physical context, this property corresponds to the global
U(1)-gauge symmetry. Note that this structure is not seen in a real scalar field model.
There are several models similar to (3), which have been studied so far. Glimm-Jaffe [13] considered the

real P (ϕ)2 model which describes a real scalar Bose field with λϕ4-interaction in the 2-dimensional space-time.
Dereziński-Gérard [9] considered the scattering theory for the real P (φ)2 model. Gérard-Panati [12] also con-
sidered the real P (ϕ)2 model under general settings. Gérard [11] considered the charged P (ϕ)2 model which
describes the charged scalar field with a self-interaction in the 2-dimensional space-time. Note that the infimum
of ω is assumed to be strictly positive in these models. An interaction model between quantum mechanical
particles and a real scalar Bose field is also established. Recently, some singular perturbed models are studied.
Takaesu [24] considered the generalized spin-boson model with ϕ4-perturbation. He showed the existence of
a ground state and the existence of asymptotic fields for a sufficiently small coupling constant. Hidaka [15]

considered the Nelson model with perturbation of a form
∑4

j=1 cjϕ
j with c4 > 0. He showed the existence of

a ground state for arbitrary coupling constants. A study about the total charge operator is already done by
Takaesu [23] who treats a model of quantum electrodynamics. To our best knowledge, there are few results
about the charged scalar field with the infimum of ω being zero.
We give our strategy comparing with some related works.
Self-adjointness: To show the self-adjointness of H, we apply the method in [15]. A key lemma is that

the interaction term is H-bounded. To prove this lemma, we need the fact that the second term on the right
hand side of (3) is infinitesimally small with respect to the third term of it. We need some technical treatments
because of strong Bochner integral.

Existence of a ground state: First of all we show the existence of a ground state of a massive Hamiltonian.
After that, we consider the mass zero limit of the massive ground state. In the massive case, we apply methods
used in [7,8,15] and references therein. In these methods the so-called Number-Energy Estimate is an important
lemma to show the existence of a ground state of the massive Hamiltonian. However, it is difficult to prove this
lemma in our Hamiltonian since the interaction term is singular and defined by using strong Bochner integrals.
As is seen below, we study the massive case without using the Number - Energy Estimate. To show that the
mass zero limit of the massive ground state is not zero, we use the methods in [17, 21] and references therein.

Total charge of a ground state: First, we show the strong commutativity of H and the total charge operator.
This fact is shown by applying properties of boson Fock space. In [23], the total charge of a ground state is
studied only when coupling constants are sufficiently small. In this paper, we clarify the relation of the total
charge of a ground state and a number operator bound, which contains the relevant result of [23].
This paper is organized as follows. In Section 2, we recall several notations and symbols about the abstract bo-

son Fock space and introduce a Hamiltonian H under consideration and state main results. The self-adjointness
of H is discussed in Section 3. In Section 4, the spectrum of H is specified. The existence of a ground state is
proved in Section 5. The total charge of a ground state is discussed in Section 6. In Appendix A, some results
which are used in this paper are collected. In Appendix B, we summarize the results of [2,5] which we use in
Section 3 and Section 4.
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2 A charged scalar field with spacial cut-off

2.1 Preliminaries

First of all, let us recall some notations and symbols about the abstract boson Fock space. Let K be a Hilbert
space over C. Then the boson Fock space over K is given by

Fb(K ) := ⊕∞
n=0 ⊗n

s K ,

where ⊗n
s denotes the n-fold symmetric tensor product with ⊗0

sK := C . The inner product is denoted by ⟨·, ·⟩
which is linear in the right vector and the norm is denoted by ∥ · ∥. The Fock vacuum in Fb(K ) is denoted by
Ω and

Ω := {1, 0, 0, · · · } ∈ Fb(K ).

Let us introduce the finite particle subspace Fb,0(K ) as follows:

Fb,0(K ) :=
{
Ψ = {Ψ(n)}∞n=0 ∈ Fb(K ) : ∃N such that,Ψ(n) = 0 for all n ≥ N + 1

}
.

Note that Fb,0(K ) is dense in Fb(K ). For each u ∈ K , the creation operator A(u)† is defined as follows:

D(A(u)†) :=
{
Ψ = {Ψ(n)}∞n=0 ∈ Fb(K ) :

∞∑
n=1

n
∥∥Sn(u⊗Ψ(n−1))

∥∥2
⊗n

s K
<∞

}
,

(A(u)†Ψ)(n) :=
√
nSn(u⊗Ψ(n−1)), Ψ ∈ D(A(u)†), (n ≥ 1),

and (A(u)†Ψ)(0) := 0. Here D(T ) denotes the domain of a linear operator T and Sn denotes the symmetrization
operator on ⊗nK . The annihilation operator with u is given by the adjoint of A(u)†:

A(u) := (A(u)†)∗.

Then, for all u, v ∈ K , annihilation and creation operators satisfy the following canonical commutation relations
on Fb,0(K ):

[A(u), A(v)] = [A(u)†, A(v)†] = 0, [A(u), A(v)†] = ⟨u, v⟩K ,

where [X,Y ] := XY − Y X. For a subspace D of K , the subspace Fb,fin(D) is introduced as follows,

Fb,fin(D) := L.H.{Ω, A(u1)† · · ·A(un)†Ω : n ∈ N, uj ∈ D, j = 1, . . . , n},

where L.H{· · · } denotes the linear hull of a set {· · · }. Note that, if D is dense in K , then Fb,fin(D) is dense
in Fb(K ).

Let T be a densely defined closable operator on K . We denote the closure of T by T . Then the second
quantization of T is given by

dΓb(T ) := 0⊕
∞⊕

n=1

n∑
j=1

I ⊗ · · · ⊗ I⊗
j−th

T ⊗I · · · ⊗ I � ⊗̂n
sD(T ),

where I is identity on K, S � D is the restriction of S to D and ⊗̂n
s denotes the n-fold algebraic symmetric

tensor product. It is seen that dΓb(T ) is a closed operator. If T is self-adjoint, so is dΓb(T ). Associated with
T , another operator Γb(T ) is also defined as follows:

Γb(T ) := 1⊕
∞⊕

n=1

T ⊗ · · · ⊗ T � ⊗̂n
sD(T ).

Note that, if T is bounded operator with operator norm ∥T∥ ≤ 1, then Γb(T ) is bounded with ∥Γb(T )∥ ≤ 1.

3



2.2 A Hamiltonian of a charged scalar field and main results

For a subspace D of a Hilbert space K , we set

[D] := D ⊕D.

For d ∈ N, the state space H of a charged scalar field is given by

H := Fb([L
2(Rd)]),

the boson Fock space over [L2(Rd)]. In the physical context under consideration, [L2(Rd)] describes the state
space of a particle and an anti-particle. For u ∈ L2(Rd), the operators a±(u) and a±(u)

† on H are defined as
follows:

a+(u) := A((u, 0)), a+(u)
† := A((u, 0))†, a−(u) := A((0, u)), a−(u)

† := A((0, u))†.

The operators a+(u) and a−(u) are called the annihilation operator of a particle and an anti-particle with state
function u respectively. On the other hand, a+(u)

† and a−(u)
† are called the creation operator of a particle and

an anti-particle with state function u respectively. These operators satisfy the canonical commutation relations
on the finite particle subspace Fb,0([L

2(Rd)]):

[a±(u), a±(v)] = [a±(u), a∓(v)] = [a±(u), a∓(v)
†] = 0, [a♯(u), a♮(v)

∗] = δ♯,♮⟨u, v⟩L2(Rd), ♯, ♮ = + or − . (4)

We denote the field operator smeared by u ∈ L2(Rd) by

ϕ(u) :=
1√
2
(a+(u) + a−(u)

†).

It is easy to see that ϕ(u) is densely defined and closable. We denote the closure of ϕ(u) by the same symbol.
By von Neumann’s theorem, ϕ(u)∗ϕ(u) and ϕ(u)ϕ(u)∗ are non-negative self-adjoint operators on H . Note that
a concrete action of ϕ(u)∗ is as follows:

ϕ(u)∗ =
1√
2
(a+(u)

† + a−(u)), on Fb,0([L
2(Rd)]).

By (4), the field operators satisfy the following commutation relations on H0:

[ϕ(u), ϕ(v)] = [ϕ(u)∗, ϕ(v)∗] = 0, [ϕ(u), ϕ(v)∗] = iIm ⟨u, v⟩L2(Rd),

where Im z denotes the imaginary part of z ∈ C. Let ω be the multiplication operator on L2(Rd) by the function

ω(k) := |k|, k ∈ Rd.

For a linear operator T on L2(Rd), we set [T ] := T ⊕ T . Then the free Hamiltonian of the charged scalar field
H0 is defined by the second quantization of [ω];

H0 := dΓb([ω]).

The number operator Nb is introduced as
Nb := dΓb([1]).

For q ∈ R \ {0}, the total charge operator Q is defined as follows:

Q := dΓb((q ⊕−q)).

Let χsp ∈ L1(Rd) be a non-negative function which plays role as a spacial cut-off. We pick a function φ which
satisfies the following Assumption:

Assumption 2.1. φ ∈ D(ω−1/2), |φ(k)| = |φ(−k)|, a.e.k ∈ Rd.

For x ∈ Rd, fx ∈ L2(Rd) is defined as follows:

fx(k) :=
φ(k)√
ω(k)

e−ikx, a.e. k ∈ Rd.

4



with kx := k1x1 + · · · + kdxd for k = (k1, . . . kd) ∈ Rd and x = (x1, . . . , xd) ∈ Rd. Let µ ∈ R and λ > 0 are
parameters denoting coupling constants. The Hamiltonian we study in this paper is as follows:

H := H0 + µH1 + λH2, (5)

where

H1 :=

∫
Rd

χsp(x)ϕ(fx)
∗ϕ(fx)dx, H2 :=

∫
Rd

χsp(x)
(
ϕ(fx)

∗ϕ(fx)
)2
dx. (6)

The integrals on the right hand sides of (6) are taken in the sense of H -valued strong Bochner integral. Our
first task is to find a condition for the self-adjointness of H.

Theorem 2.1. Under Assumption 2.1, H is bounded below, self-adjoint with D(H) = D(H0) ∩ D(H2) and
essentially self-adjoint on Fb,fin([C

∞
0 (Rd)]) for arbitrary µ ∈ R and λ > 0.

For a linear operator T , σ(T ) denotes the spectrum of T and σess(T ) denotes the essential spectrum of T .
If T is bounded below and self-adjoint operator, then we define

E0(T ) := inf σ(T ).

Theorem 2.2. Under Assumption 2.1,

σ(H) = σess(H) = [E0(H),∞).

Let T be a bounded below self-adjoint operator. In general, we call that T has a ground state if E0(T ) is a
eigenvalue of T . To prove the existence of a ground state of H, we need the following assumption:

Assumption 2.2.

(1) φ is a rotation invariant function and has a compact support.

(2) There exists an open set Ω ⊂ Rd such that Ω =supp φ and φ is continuously differentiable on Ω.

(3) φ ∈ D(ω−5/2), ∂φ
∂kj

∈ D(ω−3/2), (j = 1, . . . , d).

(4)

∫
Rd

(1 + |x|2)χsp(x)dx <∞.

Theorem 2.3. Under Assumptions 2.1 and 2.2, H has a ground state for arbitrary µ ∈ R and λ > 0.

The next theorem is one of characteristic structures which is not seen in the case of real scalar field and it
corresponds to the charge conservation of the quantum system.

Theorem 2.4. Under Assumption 2.1, H and Q strongly commute.

Let Φg be a ground state of H with ∥Φg∥ = 1. By Theorem 2.4, H is decomposed with respect to the
spectrum of the total charge Q as

H =
⊕
z∈Z

Hq(z),

where Hq(z) :=Ker(Q− qz). The next result is a slight generalization of [23, Theorem1.7].

Theorem 2.5. Suppose that Assumptions 2.1 and 2.2 are satisfied. Let

n0 := min
{
n ∈ N :

∥∥N1/2
b Φg

∥∥2
H

< n
}
.

Then Φg /∈ Hq(z) for all |z| ≥ n0.

3 Self-adjointness of H

In this section, we prove Theorem 2.1.

Lemma 3.1. Assume that φ ∈ D(ω−1/2), then H is essentially self-adjoint on Fb,fin([C
∞
0 (Rd]).
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Proof. First, we check that H satisfies the criterion of essential self-adjointness on D(H0)∩Fb,0([L
2(Rd)]) (see

Proposition B.1). Since µH1 + λH2 maps ⊗n
s ([L

2(Rd)]) to ⊕4
j=−4 ⊗n+j

s ([L2(Rd]), we see that

⟨Ψ(n), (µH1 + λH2)Ψ
(m)⟩ = 0, whenever |n−m| ≥ 5.

If µ ≥ 0, then it is obvious that H is bounded below on D(H0) ∩ Fb,0([L
2(Rd)]). In the case where µ < 0, for

any Ψ ∈ D(H0) ∩ Fb,0([L
2(Rd)]), we see that

⟨Ψ,HΨ⟩ = ⟨Ψ,H0Ψ⟩+
∫
Rd

χsp(x)⟨Ψ, {µϕ(fx)∗ϕ(fx) + λ(ϕ(fx)
∗ϕ(fx))

2}Ψ⟩dx

≥
∫
Rd

χsp(x)dx

∫
t≥0

(µt+ λt2)d
∥∥Ex(t)Ψ

∥∥2
≥ −µ

2

4λ

∥∥Ψ∥∥2∥∥χsp

∥∥
L1 > −∞,

where Ex(·) is the spectral measure of ϕ(fx)
∗ϕ(fx). The relative boundedness of µH1 + λH2 with respect to

(Nb + 1)2 is seen by using Proposition A.1. Therefore H is essentially self-adjoint on D(H0) ∩ Fb,0([L
2(Rd)]).

Since Fb,fin([C
∞
0 (Rd)]) is a core of H0, for any Ψ ∈ D(H0) ∩ Fb,0([L

2(Rd)]), there exist an N ∈ N and a
sequence {Ψn}∞n=1 ⊂ Fb,fin([C

∞
0 (Rd)]) such that Ψn → Ψ, H0Ψn → H0Ψ (as n −→ ∞) and Ψ(n) = 0 whenever

n > N . Since (µH1 + λH2) � (⊕N
n=0 ⊗n

s [L2(Rd)]) is bounded , we see that Ψn → Ψ and HΨn → HΨ. Thus the
desired result follows.

Let ϵ and η be arbitrary positive constants with λ2−2ϵ−λ2µ2η/ϵ > 0. Then we define a constant C(µ, λ, ϵ, η)
as follows:

C(µ, λ, ϵ, η) := (λ2 − 2ϵ− λ2µ2η/ϵ)−1/2
(λ2µ2

4ϵη

∥∥χsp

∥∥2
L1 +

∥χsp∥2L1

4ϵ
+ λ2∥φ∥4L2 + 1

)1/2

.

Lemma 3.2. Suppose that Assumption 2.1 is satisfied. Then for all Ψ ∈ D(H),∥∥H1Ψ
∥∥ ≤ θC(µ, λ, ϵ, η)

∥∥HΨ
∥∥+

(
θC(µ, λ, ϵ, η) +

1

4θ

)∥∥Ψ∥∥, (7)∥∥H2Ψ
∥∥ ≤ C(µ, λ, ϵ, η)

(∥∥HΨ
∥∥+

∥∥Ψ∥∥), (8)

where θ is an arbitrary positive constant.

Proof. Since |φ(k)| = |φ(−k)|, we have [ϕ(fx), ϕ(fy)
∗] = 0 on Fb,0([L

2(Rd)]) for all x, y ∈ Rd. For any
Ψ ∈ Fb,fin([C

∞
0 (Rd)]), it follows that

∥∥H1Ψ
∥∥2 =

∫∫
Rd×Rd

χsp(x)χsp(y)⟨ϕ(fx)∗ϕ(fx)Ψ, ϕ(fy)∗ϕ(fy)Ψ⟩dxdy

≤
∫∫

Rd×Rd

χsp(x)χsp(y)
∥∥Ψ∥∥∥∥ϕ(fx)∗ϕ(fx)ϕ(fy)∗ϕ(fy)Ψ∥∥dxdy

≤ ϵ

∫∫
Rd×Rd

χsp(x)χsp(y)
∥∥ϕ(fx)∗ϕ(fx)ϕ(fy)∗ϕ(fy)Ψ∥∥2dxdy + 1

4ϵ

∥∥χsp

∥∥2
L1

∥∥Ψ∥∥2 (9)

= ϵ

∫∫
Rd×Rd

χsp(x)χsp(y)⟨(ϕ(fx)∗ϕ(fx))2Ψ, (ϕ(fy)∗ϕ(fy))2Ψ⟩dxdy + 1

4ϵ

∥∥χsp

∥∥2
L1

∥∥Ψ∥∥2
= ϵ

∥∥H2Ψ
∥∥2 + 1

4ϵ

∥∥χsp

∥∥2
L1

∥∥Ψ∥∥2. (10)

Here, to get (9), we used following elementary inequality:

ab ≤ ϵa2 +
1

4ϵ
b2, for a, b ≥ 0 and ϵ > 0. (11)
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Thus, H1 is infinitesimally small with respect to H2. Next we show that H2 is H-bounded. For all Ψ ∈
Fb,fin([C

∞
0 (Rd)]),∥∥λH2Ψ

∥∥2 =
∥∥(H −H0 − µH1)Ψ

∥∥2
=

∥∥HΨ
∥∥2 − ⟨HΨ, (H0 + µH1)Ψ⟩ − ⟨(H0 + µH1)Ψ,HΨ⟩+

∥∥(H0 + µH1)Ψ
∥∥2

=
∥∥HΨ

∥∥2 − λ⟨H2Ψ,H0Ψ⟩ − λ⟨H0Ψ,H2Ψ⟩ − 2λµRe⟨H1Ψ,H2Ψ⟩ −
∥∥(H0 + µH1)Ψ

∥∥2
≤

∥∥HΨ
∥∥2 − λ⟨H2Ψ,H0Ψ⟩ − λ⟨H0Ψ,H2Ψ⟩+ 2λ|µ||Re⟨H1Ψ,H2Ψ⟩|,

where Re z denotes the real part of z ∈ C. By using (10) and (11), 2λ|µ||Re⟨H1Ψ,H2Ψ⟩| is estimated as follows:

2λ|µ||Re⟨H1Ψ,H2Ψ⟩| ≤ 2λ|µ|
∥∥H1Ψ

∥∥∥∥H2Ψ
∥∥

≤ ϵ
∥∥H2Ψ

∥∥2 + λ2µ2

ϵ

∥∥H1Ψ
∥∥2

≤ ϵ
∥∥H2Ψ

∥∥2 + λ2µ2

ϵ

(
η
∥∥H2Ψ

∥∥2 + 1

4η

∥∥χsp

∥∥2
L1

∥∥Ψ∥∥2),
where ϵ and η are arbitrary positive constants. Therefore we have

∥∥λH2Ψ
∥∥2 ≤

∥∥HΨ
∥∥2 − λ

∫
Rd

χsp(x)⟨Ψ, {(ϕ(fx)∗)ϕ(fx))2,H0}Ψ⟩dx+ (ϵ+
λ2µ2η

ϵ
)
∥∥H2Ψ

∥∥2 + λ2µ2

4ϵη

∥∥χsp

∥∥2
L1

∥∥Ψ∥∥2,
where {X,Y } := XY + Y X. By using the identity X2Y + Y X2 = 2XYX + [X, [X,Y ]] and the positivity of
H0, we see that

∥∥λH2Ψ
∥∥2 ≤

∥∥HΨ
∥∥2−λ∫

Rd

χsp(x)⟨Ψ, [ϕ(fx)∗ϕ(fx), [ϕ(fx)∗ϕ(fx),H0]]Ψ⟩dx+(ϵ+
λ2µ2η

ϵ
)
∥∥H2Ψ

∥∥2+λ2µ2

4ϵη

∥∥χsp

∥∥2
L1

∥∥Ψ∥∥2,
By applying Proposition A.2, we have

[ϕ(fx)
∗ϕ(fx), [ϕ(fx)

∗ϕ(fx), dΓb([ω])]] = −2
∥∥φ∥∥2

L2ϕ(fx)
∗ϕ(fx).

Hence it follows that∥∥λH2Ψ
∥∥2 ≤

∥∥HΨ
∥∥2 + 2λ

∥∥φ∥∥2
L2⟨Ψ,H1Ψ⟩+ (ϵ+

λ2µ2η

ϵ
)
∥∥H2Ψ

∥∥2 + λ2µ2

4ϵη

∥∥χsp

∥∥2
L1

∥∥Ψ∥∥2. (12)

By using (10) and (11), we have

2λ
∥∥φ∥∥2

L2⟨Ψ, H1Ψ⟩ ≤ 2λ∥φ∥2L2∥Ψ∥∥H1Ψ∥

≤
∥∥H1Ψ

∥∥2 + λ2∥φ∥4L2∥Ψ∥2

≤ ϵ
∥∥H2Ψ

∥∥2 + (∥χsp∥2L1

4ϵ
+ λ2∥φ∥4L2

)
∥Ψ∥2. (13)

From (12) and (13), it is seen that

∥∥λH2Ψ
∥∥2 ≤

∥∥HΨ
∥∥2 + (

2ϵ+
λ2µ2η

ϵ

)∥∥H2Ψ
∥∥+

(λ2µ2

4ϵη

∥∥χsp

∥∥2
L1 +

∥χsp∥2L1

4ϵ
+ λ2∥φ∥4L2

)∥∥Ψ∥∥2.
Thus, by choosing constants ϵ and η such that 2ϵ+ λ2µ2η/ϵ < λ2, we have following inequality:

(λ2 − 2ϵ− λ2µ2η/ϵ)
∥∥H2Ψ

∥∥2 ≤
∥∥HΨ

∥∥2 + (λ2µ2

4ϵη

∥∥χsp

∥∥2
L1 +

∥χsp∥2L1

4ϵ
+ λ2∥φ∥4L2

)∥∥Ψ∥∥2.
Thus (8) holds for all Ψ ∈ Fb,fin([C

∞
0 (Rd)]). Since Fb,fin([C

∞
0 (Rd)]) is a core of H, (8) follows for all Ψ ∈ D(H)

from a limiting argument. (7) immediately follows from (8) and (11).
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Proof of Theorem 2.1. It suffices to show that D(H) ⊂ D(H). For any Ψ ∈ D(H), there exists a sequence
{Ψn}∞n=1 ⊂ Fb,fin([C

∞
0 (Rd)]) such that

Ψn → Ψ, HΨn → HΨ, (as n→ ∞).

By Lemma 3.2, H0 is H-bounded on Fb,fin([C
∞
0 (Rd)]). Indeed we note that following inequality holds:∥∥H0Ψ

∥∥ =
∥∥(H − µH1 − λH2)Ψ

∥∥ ≤
∥∥HΨ

∥∥+ |µ|
∥∥H1Ψ

∥∥+ λ
∥∥H2Ψ

∥∥.
Therefore, {H0Ψn}∞n=1 and {H2Ψn}∞n=1 are Cauchy sequences. By the closedness of H0 and the closability of
H2, it follows that Ψ ∈ D(H0) ∩D(H2) = D(H).

4 Identification of σ(H)

In this section, we prove Theorem 2.2. Throughout this section, we always assume Assumption 2.1. Let us
calculate [µH1 + λH2, A((u, v))

†] with u, v ∈ H . For all Ψ ∈ Fb,fin([C
∞
0 (Rd)]), we see that

[
µH1 + λH2, A((u, v))

†]Ψ =
1√
2
(µT1 + µT2 + 2λT3 + 2λT4)Ψ,

where,

T1 :=

∫
Rd

χsp(x)⟨fx, v⟩ϕ(fx)dx, T2 :=

∫
Rd

χsp(x)⟨fx, u⟩ϕ(fx)∗dx,

T3 :=

∫
Rd

χsp(x)⟨fx, v⟩ϕ(fx)ϕ(fx)∗ϕ(fx)dx, T4 :=

∫
Rd

χsp(x)⟨fx, u⟩ϕ(fx)∗ϕ(fx)ϕ(fx)∗dx.

Note that integrals of right hand side are taken in the H -valued strong Bochner integral.

Lemma 4.1. Tj (j = 1, 2, 3, 4) are H-bounded on Fb,fin([C
∞
0 (Rd)]).

Proof. Let Ψ ∈ Fb,fin([C
∞
0 (Rd)]). Then

∥∥T1Ψ∥∥2 ≤
∫
Rd×Rd

χsp(x)χsp(y)|⟨fx, v⟩⟨fy, v⟩|⟨Ψ, ϕ(fy)∗ϕ(fx)Ψ⟩|dxdy

≤ 1

2

∥∥ω−1/2φ
∥∥2∥∥v∥∥2 ∫

Rd×Rd

χsp(x)χsp(y)⟨ϕ(fy)∗ϕ(fy)Ψϕ(fx)
∗ϕ(fx)Ψ⟩dxdy + 1

2

∥∥ω−1/2φ
∥∥2∥∥v∥∥2∥∥χsp

∥∥2
L1

∥∥Ψ∥∥2
=

1

2

∥∥ω−1/2φ
∥∥2∥∥v∥∥2(∥∥H1Ψ

∥∥2 + ∥∥χsp

∥∥2
L1

∥∥Ψ∥∥2).
By applying Lemma 3.2, T1 is H-bounded. It is shown that T2 is also H-bounded. Next, we show the H-
boundedness of T3. It follows that∥∥T3Ψ∥∥2 ≤

∫
Rd×Rd

χsp(x)χsp(y)
∣∣⟨fx, v⟩∣∣∣∣⟨fy, v⟩∣∣∣∣⟨ϕ(fy)∗ϕ(fx)Ψ, ϕ(fx)∗ϕ(fx)ϕ(fy)∗ϕ(fy)Ψ⟩

∣∣dxdy
≤ 1

2

∥∥ω−1/2φ
∥∥2∥∥v∥∥2 ∫

Rd×Rd

χsp(x)χsp(y)⟨ϕ(fy)∗ϕ(fx)Ψ, ϕ(fy)∗ϕ(fx)Ψ⟩dxdy

+
1

2

∥∥ω−1/2φ
∥∥2∥∥v∥∥2 ∫

Rd×Rd

χsp(x)χsp(y)⟨ϕ(fx)∗ϕ(fx)ϕ(fy)∗ϕ(fy)Ψ, ϕ(fx)∗ϕ(fx)ϕ(fy)∗ϕ(fy)Ψ⟩dxdy

=
1

2

∥∥ω−1/2φ
∥∥2∥∥v∥∥2(∥∥H1Ψ

∥∥2 + ∥∥H2Ψ
∥∥2).

Thus T3 is H-bounded by Lemma 3.2. The case of T4 is also estimated similarly. Thus the desired results
follow.

Let {un}∞n=1 and {vn}∞n=1 ⊂ D(ω) ∩D(ω−1/2) be arbitrary sequences such that

w-lim
n→∞

un = 0, w-lim
n→∞

vn = 0 and ∥un∥2 + ∥vn∥2 = 1, (n ∈ N),
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where w-lim denotes a weak limit. It is seen that

Fb,fin([C
∞
0 (Rd)]) ⊂ D((µH1 + λH2)A((un, vn))

†) ∩D(A((un, vn))
†(µH1 + λH2))

∩D((µH1 + λH2)
∗A((un, vn))) ∩D(A((un, vn))(µH1 + λH2)

∗).

By applying Proposition B.3 as A = µH1 + λH2, B = A((un, vn))
†, C = H and D = EC = Fb,fin([C

∞
0 (Rd)]),

we see that the weak commutator [µH1 + λH2, A((un, vn))]w,D(H) exists and

[µH1 + λH2, A((un, vn))
†]w,D(H) =

1√
2

(
µT1,n + µT2,n + 2λT3,n + 2λT4,n

)
� D(H), (14)

where

T1.n :=

∫
Rd

χsp(x)⟨fx, vn⟩ϕ(fx)dx T2.n :=

∫
Rd

χsp(x)⟨fx, un⟩ϕ(fx)∗dx

T3.n :=

∫
Rd

χsp(x)⟨fx, vn⟩ϕ(fx)ϕ(fx)∗ϕ(fx)dx T4.n :=

∫
Rd

χsp(x)⟨fx, un⟩ϕ(fx)∗ϕ(fx)ϕ(fx)∗dx.

Proof of Theorem 2.2. We apply Proposition B.4. Hence we need only to show that for all Ψ ∈ D(H),

lim
n→∞

[µH1 + λH2, A((un, vn))
†]w,D(H)Ψ = 0.

By (14), we have

lim
n→∞

[µH1 + λH2, A((un, vn))]w,D(H)Ψ = lim
n→∞

1√
2
(µT1,n + µT2,n + 2λT3,n + 2λT4,n)Ψ.

Thus it suffices to show that limn→∞ ∥Tj,nΨ∥ = 0 (j = 1, 2, 3, 4). First, we consider T1,n. Since Fb,fin([C
∞
0 (Rd)])

is a core of H, there exists a sequence {Ψk}k ⊂ Fb,fin([C
∞
0 (Rd)]) such that Ψk → Ψ, HΨk → HΨ (k → ∞).

Then T1,nΨk → T1,nΨ (k → ∞) and, for any k ∈ N, we have∥∥T1,nΨ∥∥ ≤
∥∥T1,nΨ− T1,nΨk

∥∥+
∥∥T1,nΨk

∥∥
≤ C

∥∥H(Ψ−Ψk)
∥∥+D

∥∥Ψ−Ψk

∥∥+ E
∥∥(Nb + 1)1/2Ψk

∥∥ ∫
Rd

χsp(x)|⟨fx, vn⟩|dx,

where C, D and E are positive constants independent of n and k. By the property of vn, it follows that

lim
n→∞

|⟨fx, vn⟩| = 0, for x ∈ Rd,

and
χsp(x)|⟨fx, vn⟩| ≤ χsp(x)

∥∥ω−1/2φ
∥∥
L2

is integrable. Hence, by applying the Lebesgue dominated convergence theorem, we have

lim sup
n→∞

∥∥T1,nΨ∥∥ ≤ C
∥∥H(Ψ−Ψk)

∥∥+D
∥∥Ψ−Ψk

∥∥.
Since k ∈ N is arbitrary, we have limn→∞ ∥T1,nΨ∥ = 0 by taking k → ∞. In the same manner, we can show
that limn→∞ ∥Tj,nΨ∥ = 0 (j = 2, 3, 4).

5 Existence of a ground state

In this section, we prove Theorem 2.3. Throughout this section, we always suppose that Assumption 2.1 holds.
For a positive constant m > 0, we define ωm(k) by

ωm(k) :=
√
k2 +m2, k ∈ Rd.

The constant m > 0 is regarded as the mass of a boson. Let us introduce a massive Hamiltonian Hm as follows:

Hm := dΓb([ωm]) + µH1 + λH2.
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In the same way as in the proof of Theorem 2.1, one can show that Hm is self-adjoint, bounded below and
essentially self-adjoint on Fb,fin([C

∞
0 (Rd)]).

Remark 5.1. The operators H1 and H2 are Hm-bounded with∥∥H1Ψ
∥∥ ≤ θCm(µ, λ, ϵ, η)

∥∥HmΨ
∥∥+

(
θCm(µ, λ, ϵ, η) +

1

4θ

)∥∥Ψ∥∥,∥∥H2Ψ
∥∥ ≤ Cm(µ, λ, ϵ, η)

(∥∥HmΨ
∥∥+

∥∥Ψ∥∥), Ψ ∈ D(Hm),

where θ is arbitrary positive constant and

Cm(µ, λ, ϵ, η) := (λ2 − 2ϵ− λ2µ2η/ϵ)−1/2
(λ2µ2

4ϵη

∥∥χsp

∥∥2
L1 +

∥χsp∥2L1

4ϵ
+ λ2∥ω1/2

m ω−1/2φ∥4L2 + 1
)1/2

,

with ϵ > 0 and η > 0 being arbitrary such that λ2 > 2ϵ+ λ2µ2η/ϵ. Therefore dΓb([ωm]) is Hm-bounded.

Let us consider the extended Hilbert space H e defined by

H e := H ⊗ H .

Then the extended Hamiltonian He
m is defined as follows:

He
m := Hm ⊗ 1H + 1H ⊗ dΓb([ωm]),

He
0,m := dΓb([ωm])⊗ 1H + 1H ⊗ dΓb([ωm]).

Let us introduce a partition of unity. Let j0, j∞ be R-valued functions such that j0, j∞ ∈ C∞(Rd), j20 + j
2
∞ ≡ 1,

0 ≤ j0, j∞ ≤ 1 and

j0(x) =

{
1 |x| ≤ 1,

0 |x| ≥ 2.

We set for R > 0, j0,R := j0(·/R), j∞,R := j∞(·/R) and ĵ0,R := j0,R(−i∇k), ĵ∞,R := j∞,R(−i∇k), where

∇k := (∂/∂k1, . . . , ∂/∂kd). We introduce an operator ĵR which acts on ⊕2L2(Rd) to ⊕4L2(Rd) as follows:

ĵR(u, v) :=
(
ĵ0,Ru, ĵ0,Rv, ĵ∞,Ru, ĵ∞,Rv

)
, (u, v) ∈ [L2(Rd)].

Note that ĵR is isometry. Let us denote the unitary operator which maps Fb(⊕4L2(Rd)) to H e by U[L2(Rd)],[L2(Rd)]

(see Proposition A.3). We define an operator Γ̌(ĵR) by

Γ̌(ĵR) := U[L2(Rd)],[L2(Rd)]Γb(ĵR), (15)

which acts from H to H e.

Lemma 5.1. For any χ ∈ C∞
0 (R),

lim
R→∞

∥∥χ(He
m)Γ̌(ĵR)− Γ̌(ĵR)χ(Hm)

∥∥ = 0.

Proof. By the Helffer-Sjöstrand formula [7,16], it is seen that

χ(He
m)Γ̌(ĵR)− Γ̌(ĵR)χ(Hm) =

−i
2π

∫
C
∂zχ̃(z)(z −He

m)−1
(
He

mΓ̌(ĵR)− Γ̌(ĵR)Hm

)
(z −Hm)−1dzdz, (16)

where χ̃ is an almost analytic extension of χ and ∂z = 1
2 (∂x + i∂y) (z = x+ iy). Let us estimate the integrand

on the left hand side of (16). It follows that

(z −He
m)−1

(
He

mΓ̌(ĵR)− Γ̌(ĵR)Hm

)
(z −Hm)−1

= (z −He
m)−1(N0 +N∞ + 1)(N0 +N∞ + 1)−1

(
He

mΓ̌(ĵR)− Γ̌(ĵR)Hm

)
(Nb + 1)−1(Nb + 1)(z −Hm)−1.
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Where, N0 := Nb ⊗ 1H and N∞ := 1H ⊗Nb. It is easy to see that (z −He
m)−1(N0 +N∞ + 1) is a bounded

operator on D(N0 +N∞) with operator norm∥∥(z −He
m)−1(N0 +N∞ + 1)

∥∥ ≤ C
(
1 + (1 + |z|)|Im z|−1

)
,

where C > 0 is a constant independent of z and we used the fact that Nb is dΓb([ωm]) -bounded and the fact
that if a linear operator S is bounded, so is S∗. Similarly one can show that (Nb + 1)(z − Hm)−1 is also a
bounded operator with operator norm∥∥(Nb + 1)(z −Hm)−1

∥∥ ≤ D
(
1 + (1 + |z|)|Im z|−1

)
,

where D > 0 is a constant independent of z. Thus we have∥∥(z −He
m)−1

(
He

mΓ̌(ĵR)− Γ̌(ĵR)Hm

)
(z −Hm)−1

∥∥
≤ CD

(
1 + (1 + |z|)|Im z|−1

)2∥∥(N0 +N∞ + 1)−1
(
He

mΓ̌(ĵR)− Γ̌(ĵR)Hm

)
(Nb + 1)−1

∥∥.
By the property of χ̃, it suffices show that

lim
R→∞

∥∥(N0 +N∞ + 1)−1
(
He

mΓ̌(ĵR)− Γ̌(ĵR)Hm

)
(Nb + 1)−1

∥∥ = 0. (17)

We have(
He

mΓ̌(ĵR)− Γ̌(ĵR)Hm

)
=

{
He

0,mΓ̌(ĵR)− Γ̌(ĵR)dΓb([ωm])
}
+
{
(µH1 + λH2)⊗ 1H Γ̌(ĵR)− Γ̌(ĵR)(µH1 + λH2)

}
.

(18)
Let us estimate the first term on the right hand side of (18). For any Ψ ∈ Fb,fin([C

∞
0 (Rd)]), it is seen that∥∥(He

0,mΓ̌(ĵR)− Γ̌(ĵR)dΓb([ωm])
)
(Nb + 1)−1Ψ

∥∥2
=

∥∥dΓb(ĵR,⊕2[ωm]ĵR − ĵR[ωm])(Nb + 1)−1Ψ
∥∥2

≤ 4
(∥∥[ωm, ĵ0,R]

∥∥+
∥∥[ωm, ĵ∞,R]

∥∥)2∥∥Ψ∥∥2
≤ C2

R2

∥∥Ψ∥∥2,
(19)

where C > 0 is a constant and

dΓb(ĵR,⊕2[ωm]ĵR − ĵR[ωm]) := 0⊕
∞⊕

n=1

n∑
l=1

ĵR ⊗ · · · ⊗ ĵR ⊗
(
⊕2 [ωm]ĵR − ĵR[ωm]

)︸ ︷︷ ︸
l-th

⊗ĵR ⊗ · · · ⊗ ĵR.

To derive the last inequality of (19), let us estimate ∥[ωm, ĵ0,R]∥ and ∥[ωm, ĵ∞,R]∥. For any f ∈ L1(Rd)∩L2(Rd)
we see that

(ĵ0,Rf)(k) = (2π)−d/2

∫
Rd

(Fj0)(u)f(k + u/R)du,

where F denotes the Fourier transform on L2(Rd). We define a positive function ⟨·⟩ by

⟨k⟩ :=
√
k2 + 1, k ∈ Rd.

For any g ∈ C∞
0 (Rd), it is seen that∥∥[ĵ0, ω̃m]g

∥∥2 =

∫
Rd

∣∣(ĵ0,Rωmg)(k)− ωm(k)(ĵ0,Rg)(k)
∣∣2dk

≤ (2π)−d

∫
Rd

(∫
Rd

|(Fj0)(u)||ωm(k + u/R)− ωm(k)||g(k + u/R)|du
)2

dk

≤ 1

(2π)dR2

∫
Rd

(∫
Rd

|(Fj0)(u)||u||g(k + u/R)|du
)2

dk

≤ 1

(2π)dR2

∫
Rd

(∫
Rd

|(Fj0)(u)|⟨u⟩|g(k + u/R)|du
)2

dk

≤ 1

(2π)dR2

∥∥(Fj0)⟨·⟩d+1
∥∥2∥∥⟨·⟩−d

∥∥2∥∥g∥∥2.
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Note that ∥∥[ĵ∞,R, ωm]
∥∥ =

∥∥[1− ĵ∞,R, ωm]
∥∥,

and 1− j∞,0 ∈ C∞
0 (Rd),

∥∥[ĵ∞,R, ωm]
∥∥ is also estimated by the same manner. Hence, we have

lim
R→∞

∥∥(N0 +N∞ + 1)−1(He
0,mΓ̌(ĵR)− Γ̌(ĵR)dΓb([ωm])

)
(Nb + 1)−1

∥∥ = 0.

Next we estimate (N0 +N∞ + 1)−1(H2 ⊗ 1H Γ̌(ĵR)− Γ̌(ĵR))H2)(Nb + 1)−1. For any Ψ ∈ Fb,fin([C
∞
0 (Rd)]), it

is seen that

(N0 +N∞ + 1)−1(H2 ⊗ 1H Γ̌(ĵR)− Γ̌(ĵR))H2)(Nb + 1)−1Ψ

=

∫
Rd

χsp(x)(N0 +N∞ + 1)−1
(
(ϕ(fx)

∗ϕ(fx))
2 ⊗ 1H Γ̌(ĵR)− Γ̌(ĵR)((ϕ(fx)

∗ϕ(fx))
2
)
(Nb + 1)−1Ψdx.

(20)

The integrand on the right hand side of (20) is decomposed as follows:

(N0 +N∞ + 1)−1
(
(ϕ(fx)

∗ϕ(fx))
2 ⊗ 1H Γ̌(ĵR)− Γ̌(ĵR)((ϕ(fx)

∗ϕ(fx))
2
)
(Nb + 1)−1Ψ

= (N0 +N∞ + 1)−1
(
ϕ(fx)

∗ϕ(fx)ϕ(fx)
∗ ⊗ 1H

)(
ϕ(fx)⊗ 1H Γ̌(ĵR)− Γ̌(ĵR)ϕ(fx)

)
(Nb + 1)−1Ψ

+ (N0 +N∞ + 1)−1
(
ϕ(fx)

∗ϕ(fx))⊗ 1H

)(
ϕ(fx)

∗ ⊗ 1H Γ̌(ĵR)− Γ̌(ĵR)ϕ(fx)
∗
)
ϕ(fx)(Nb + 1)−1Ψ

+ (N0 +N∞ + 1)−1
(
ϕ(fx)

∗ ⊗ 1H

)(
ϕ(fx)⊗ 1H Γ̌(ĵR)− Γ̌(ĵR)ϕ(fx)

)
ϕ(fx)

∗ϕ(fx)(Nb + 1)−1Ψ

+ (N0 +N∞ + 1)−1
(
ϕ(fx)

∗ ⊗ 1H Γ̌(ĵR)− Γ̌(ĵR)ϕ(fx)
∗
)
ϕ(fx)ϕ(fx)

∗ϕ(fx)(Nb + 1)−1Ψ

=M1

(
ϕ(fx)

∗ ⊗ 1H

)(
ϕ((1− ĵ0,R)fx)⊗ 1H − 1H ⊗ ϕ(ĵ∞,Rfx)

)
Γ̌(ĵR)(Nb + 1)−1Ψ

+M2

(
ϕ((1− ĵ0,R)fx)

∗ ⊗ 1H − 1H ⊗ ϕ(ĵ∞,Rfx)
∗
)
Γ̌(ĵR)ϕ(fx)(Nb + 1)−1Ψ

+M3Γ̌(ĵR)ϕ(fx)
∗ϕ(fx)(Nb + 1)−1Ψ

+M4Γ̌(ĵR)ϕ(fx)
∗ϕ(fx)(Nb + 1)−1Ψ,

where

M1 := (N0 +N∞ + 1)−1
(
ϕ(fx)

∗ϕ(fx)
)
⊗ 1H ,

M2 := (N0 +N∞ + 1)−1
(
ϕ(fx)

∗ϕ(fx)
)
⊗ 1H ,

M3 := (N0 +N∞ + 1)−1
(
ϕ(fx)

∗ ⊗ 1H

)(
ϕ((1− ĵ0,R)fx)⊗ 1H − 1H ⊗ ϕ(ĵ∞,Rfx)

)
,

M4 := (N0 +N∞ + 1)−1
(
ϕ((1− ĵ0,R)fx)

∗ ⊗ 1H − 1H ⊗ ϕ(ĵ∞,Rfx)
∗
)(
ϕ(ĵ0,Rfx)⊗ 1H + 1H ⊗ ϕ(ĵ∞,Rfx)

)
.

Since Mj (j = 1, 2, 3, 4) are bounded operator on D(N0) ∩D(N∞) respectively and

(Nb + 1)−1Ψ ∈ Fb,fin([C
∞
0 (Rd)]), Γ̌(ĵR)Ψ ∈ Fb,fin([L

2(Rd)])⊗̂Fb,fin([L
2(Rd)]),

it follows that∥∥(N0 +N∞ + 1)−1((ϕ(fx)
∗ϕ(fx))

2 ⊗ 1H Γ̌(ĵR)− Γ̌(ĵR)((ϕ(fx)
∗ϕ(fx))

2)(Nb + 1)−1Ψ
∥∥

≤
∥∥M1

∥∥∥∥(ϕ(fx)∗ ⊗ 1H

)(
ϕ((1− ĵ0,R)fx)⊗ 1H + 1H ⊗ ϕ(ĵ∞,Rfx)

)
Γ̌(ĵR)(Nb + 1)−1Ψ

∥∥
+

∥∥M2

∥∥∥∥(ϕ((1− ĵ0,R)fx)
∗ ⊗ 1H + 1H ⊗ ϕ(ĵ∞,Rfx)

∗)(ϕ(ĵ0,Rfx)⊗ 1H + 1H ⊗ ϕ(ĵ∞,Rfx)
)
Γ̌(ĵR)(Nb + 1)−1Ψ

∥∥
+

∥∥M3

∥∥(∥∥(1− ĵ0,R)fx
∥∥+

∥∥ĵ∞,Rfx
∥∥)∥∥Γ̌(ĵR)ϕ(fx)∗ϕ(fx)(Nb + 1)−1Ψ

∥∥
+

∥∥M4

∥∥(∥∥(1− ĵ0,R)fx
∥∥+

∥∥ĵ∞,Rfx
∥∥)∥∥ϕ(fx)∗ϕ(fx)(Nb + 1)−1Ψ

∥∥
≤ D

(∥∥(1− ĵ0,R)fx
∥∥+

∥∥ĵ∞,Rfx
∥∥)∥∥Ψ∥∥.
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Since Fb,fin([C
∞
0 (Rd)]) is dense in H , it follows from an application of the extension theorem of bounded

operators that∥∥(N0 +N∞ + 1)−1(H2 ⊗ 1H Γ̌(ĵR)− Γ̌(ĵR)H2)(Nb + 1)−1
∥∥ ≤ D

∫
Rd

χsp(x)
(∥∥(1− ĵ0,R)fx

∥∥+
∥∥ĵ∞,Rfx

∥∥)dx.
Since limR→∞

∥∥(1− ĵ0,R)fx
∥∥, limR→∞

∥∥ĵ∞,Rfx
∥∥ = 0, we have

lim
R→∞

∥∥|(N0 +N∞ + 1)−1
(
H2 ⊗ 1H Γ̌(ĵR)− Γ̌(ĵR))H2

)
(Nb + 1)−1

∥∥ = 0,

by using the Lebesgue dominated convergence theorem. Similarly we can show that limR→∞
∥∥|(N0 + N∞ +

1)−1
(
H1⊗1H Γ̌(ĵR)− Γ̌(ĵR)H1

)
(Nb+1)−1

∥∥ = 0. Therefore we obtain the desired result. �

Lemma 5.2. For any χ ∈ C∞
0 (R) such that supp χ ⊂ (−∞, E0(Hm) + m), χ(Hm) is a compact operator.

Especially, Hm has a ground state.

Proof. Let ENb
be the spectral measure of Nb. For any n ∈ N, it follows that

ENb
({n})Γb([ĵ

2
0,R])χ(Hm) = ENb

({n})Γb([ĵ
2
0,R])(dΓb([ωm]) + 1)−1(dΓb([ωm]) + 1)χ(Hm) = J1J2,

where
J1 := ENb

({n})Γb([ĵ
2
0,R])(dΓb([ωm]) + 1)−1,

J2 := (dΓb([ωm]) + 1)χ(Hm).

Since J1 is compact (see [8, Lemma 4.2]) and J2 is bounded, ENb
({n})Γb([ĵ

2
0,R])χ(Hm) is compact. Note that

∥∥Γb([ĵ
2
0,R])χ(Hm)−

N∑
n=1

ENb
({n})Γb([ĵ

2
0,R])χ(Hm)

∥∥ ≤ 1

N + 1

∥∥Γb([ĵ
2
0,R])(Nb + 1)χ(Hm)

∥∥ → 0, N → ∞.

Thus Γb([j
2
0,R])χ(Hm) is compact. Next we show that χ(Hm) is compact. Since supp χ ⊂ (−∞, E0(Hm) +m),

it follows that
χ(He

m) = (1H ⊗ P0)χ(H
e
m), (21)

where P0 is the orthogonal projection onto the subspace {zΩ : z ∈ C}. Furthermore, the following property
also holds:

Γ̌(ĵR)
∗Γ̌(ĵR) = 1H e , Γ̌(ĵR)

∗(1H ⊗ P0)Γ̌(ĵR) = Γb([ĵ
2
0,R]).

By applying Lemma 5.1, we have

χ(Hm) = Γ̌(ĵR)
∗Γ̌(ĵR)χ(Hm)

= Γ̌(ĵR)
∗χ(He

m)Γ̌(ĵR) + o(R0)

= Γ̌(ĵR)
∗(1H ⊗ P0)χ(H

e
m)Γ̌(ĵR) + o(R0)

= Γ̌(ĵR)
∗(1H ⊗ P0)Γ̌(ĵR)χ(Hm) + o(R0)

= Γb([ĵ
2
0,R])χ(Hm) + o(R0),

where o(R0) denotes a bounded operator tending to 0 as R → ∞ in operator norm topology. Thus χ(Hm) is
compact. By applying a general theorem [21, Theorem XIII-77], one sees that σ(Hm) ∩ (−∞, E0(Hm) +m) is
purely discrete. In particular, E0(Hm) is an eigenvalue of Hm.

For m > 0, let Φm be a ground state of Hm with ∥Φm∥ = 1.

Lemma 5.3. Hm → H (as m→ 0) in the strong resolvent sense. Especially, E0(Hm) → E0(H) (as m→ 0).
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Proof. For any Ψ ∈ Fb,fin([C
∞
0 (Rd)]), we have HmΨ → HΨ (as m → 0) by direct calculation. This fact

implies the strong resolvent convergence [20, Theorem VIII 25 (a)]. The strong resolvent convergence implies
that lim supm→0E0(Hm) ≤ E0(H). For any m > 0, we have

E0(Hm) = ⟨Φm,HmΦm⟩ ≥ ⟨Φm,HΦm⟩ ≥ E0(H). (22)

By taking lim inf on the both side of (22), we obtain the desired result.

For each n ∈ N, we denote the permutation group of {1, . . . , n} by Sn. We can identify H as follows:

H =
∞⊕

n,n′=0

L2
sym(Rdn × Rdn′

),

where

L2
sym(Rdn) :=

{
f ∈ L2(Rdn) : f(kπ(1), · · · , kπ(n)) = f(k1, · · · , kn) for a,e, k1, · · · , kn ∈ Rd and π ∈ Sn

}
,

L2
sym(Rdn × R0) := L2

sym(Rdn), L2
sym(R0 × Rdn′

) := L2
sym(Rdn′

), L2
sym(R0 × R0) := C,

L2
sym(Rdn × Rdn′

) : = {f ∈ L2(Rd(n+n′)) : for a.e. k1, . . . kn, l1, . . . ln′ ∈ Rd, σ ∈ Sn, τ ∈ Sn′ ,

f(kσ(1), . . . , kσ(n) : lτ(1), . . . , lτ(n′)) = f(k1, . . . , kn : l1, . . . , ln′)}.

For k ∈ Rd, linear operator a+(k) and a−(k) act on H are defined as follows:

(a+(k)Ψ)(n,n
′)(k1, . . . , kn : l1, . . . , ln′) :=

√
n+ 1Ψ(n+1,n′)(k, k1, . . . , kn : l1, . . . , ln′) a.e.,

(a−(k)Ψ)(n,n
′)(k1, . . . , kn : l1, . . . , ln′) :=

√
n′ + 1Ψ(n,n′+1)(k1, . . . , kn : k, l1, . . . , ln′) a.e..

a+(·) and a−(·) are called the annihilation kernel of particle and anti-particle respectively. For each u ∈ L2(Rd),
a+(u) and a−(u) are represented by using the annihilation kernel as follows:

a±(u) =

∫
Rd

u(k)∗a±(k)dk, (23)

where the integrals on the right hand side of (23) are taken in the sense of H -valued strong Bochner integral.
For k ∈ Rd, let us introduce the following operators:

S1(k) :=

∫
Rd

χsp(x)e
−ikxϕ(fx)dx, S2(k) :=

∫
Rd

χsp(x)e
−ikxϕ(fx)ϕ(fx)

∗ϕ(fx)dx,

L1(k) :=

∫
Rd

χsp(x)e
−ikxϕ(fx)

∗dx, L2(k) :=

∫
Rd

χsp(x)e
−ikxϕ(fx)

∗ϕ(fx)ϕ(fx)
∗dx.

Note that these operator are also taken in the sense of H -valued strong Bochner integral.

Lemma 5.4. For k ̸= 0, we have

a+(k)Φm =
φ(k)√
2ω(k)

(
E0(Hm)−Hm − ωm(k)

)−1(
µS1(k) + 2λS2(k)

)
Φm,

a−(k)Φm =
φ(k)√
2ω(k)

(
E0(Hm)−Hm − ωm(k)

)−1(
µL1(k) + 2λL2(k)

)
Φm.

(24)

Proof. Here, we only prove the equation about a+(k)Φm. The case of a−(k)Φm is proven similarly. Let
Θ ∈ Fb,fin([C

∞
0 (Rd)]) and g ∈ C∞

0 (Rd). Since Φm ∈ Ker(Hm − E0(Hm)), we have

⟨(Hm − E0(Hm))Θ, a+(g)Φm⟩
= ⟨[a+(g)†,Hm − E0(Hm)]Θ,Φm⟩

= −⟨a+(ωmg)
†Θ,Φm⟩ − 1√

2

∫
Rd

χsp(x)⟨g, fx⟩⟨
(
µϕ(fx)

∗ + 2λϕ(fx)
∗ϕ(fx)ϕ(fx)

∗)Θ,Φm⟩dx

= −⟨a+(ωmg)
†Θ,Φm⟩ −

∫
Rd

g(k)∗
φ(k)√
2ω(k)

dk

∫
Rd

χsp(x)e
−ikx⟨

(
µϕ(fx)

∗ + 2λϕ(fx)
∗ϕ(fx)ϕ(fx)

∗)Θ,Φm⟩dx.

(25)
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Here to get the last equality of (25), we used Fubini’s theorem. By using (23), we have∫
Rd

g(k)∗⟨(E0(Hm)−Hm − ωm(k))Θ, a+(k)Φm⟩dk

=

∫
Rd

g(k)∗
φ(k)√
2ω(k)

dk

∫
Rd

χsp(x)e
−ikx⟨

(
µϕ(fx)

∗ + 2λϕ(fx)
∗ϕ(fx)ϕ(fx)

∗)Θ,Φm⟩dx,

Since g ∈ C∞
0 (Rd) is arbitrary, we obtain

⟨(E0(Hm)−Hm −ωm(k))Θ, a+(k)Φm⟩ = φ(k)√
2ω(k)

∫
Rd

χsp(x)e
−ikx⟨

(
µϕ(fx)

∗ +2λϕ(fx)
∗ϕ(fx)ϕ(fx)

∗)Θ,Φm⟩dx.

Since Φm ∈ D(Hm), there exists a sequence {Φj
m}∞j=1 ⊂ Fb,fin([C

∞
0 (Rd)]) such that Φj

m → Φm, HmΦj
m →

HmΦm (j → 0). Therefore we have

⟨(E0(Hm)−Hm − ωm(k))Θ, a+(k)Φm⟩ = φ(k)√
2ω(k)

⟨Θ, µS1(k)Φm⟩+ φ(k)√
2ω(k)

lim
j→∞

⟨Θ, 2λS2(k)Φ
j
m⟩,

where we have used the Hm-boundedness of S1(k). We show that for any k ∈ Rd, S2(k) is Hm-bounded on
Fb,fin([C

∞
0 (Rd)]). For Ψ ∈ Fb,fin([C

∞
0 (Rd)]), It follows that

∥∥S2(k)Ψ
∥∥2 ≤

∫
Rd×Rd

χsp(x)χsp(y)
∣∣⟨ϕ(fx)∗ϕ(fx)ϕ(fy)∗ϕ(fy)Ψ, ϕ(fy)ϕ(fx)∗Ψ⟩

∣∣dxdy
≤ 1

2

∫
Rd×Rd

χsp(x)χsp(y)⟨
(
ϕ(fy)

∗ϕ(fy)
)2
Ψ,

(
ϕ(fx)

∗ϕ(fx)
)2
Ψ⟩dxdy

+
1

2

∫
Rd×Rd

χsp(x)χsp(y)⟨ϕ(fy)∗ϕ(fy)Ψ, ϕ(fx)∗ϕ(fx)Ψ⟩dxdy

=
1

2

(∥∥H2Ψ
∥∥2 + ∥∥H1Ψ

∥∥2),
Therefore S2(k) is Hm-bounded by Remark 5.1. This fact implies that {S2(k)Φ

j
m}∞j=1 is a Cauchy sequence.

By the closability of S2(k), we have

⟨(E0(Hm)−Hm − ωm(k))Θ, a+(k)Φm⟩ = ⟨Θ, µS1(k)Φm⟩+ ⟨Θ, 2λS2(k)Φm⟩.

Thus we see that a+(k)Φm ∈ D((E0(Hm)−Hm)− ωm(k)) and

(E0(Hm)−Hm − ωm(k))a+(k)Φm =
φ(k)√
2ω(k)

(
µS1(k) + 2λS2(k)

)
Φm.

Since E0(Hm)−Hm−ωm(k) has a bounded inverse, the equation about a+(k)Φm follows. �

Lemma 5.5. Suppose that φ ∈ D(ω−3/2), then Φm ∈ D(N
1/2
b ) and

sup
0<m≤1

∥N1/2
b Φm∥ <∞.

Proof. By Proposition A.3 and Proposition A.5, we see that∥∥N1/2
b Φm

∥∥2 =

∫
Rd

∥∥a+(k)Φm

∥∥2dk + ∫
Rd

∥∥a−(k)Φm

∥∥2dk.
Let 0 < m ≤ 1. Note that S1(k), S2(k), L1(k) and L2(k) are Hm-bounded uniformly in k. By Lemma 5.4 and
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∥∥(E0(Hm)−Hm − ωm(k))−1
∥∥ ≤ ω(k)−1, we have

∥∥N1/2
b Φm

∥∥2 ≤
∫
Rd

|φ(k)|2

2ω(k)

∥∥(E0(Hm)−Hm − ωm(k)
)−1(

µS1(k) + 2λS2(k)
)
Φm

∥∥2dk
+

∫
Rd

|φ(k)|2

2ω(k)

∥∥(E0(Hm)−Hm − ωm(k)
)−1(

µL1(k) + 2λL2(k)
)
Φm

∥∥2dk
≤ C(|µ|2 + 4λ2)

(∥∥HmΦm

∥∥2 + ∥∥Φm

∥∥2) ∫
Rd

|φ(k)|2

ω(k)3
dk

= C(|µ|2 + 4λ2)
(
E0(Hm)2 + 1

)∥∥ω−3/2φ
∥∥2
L2 ,

where C > 0 is a constant independent ofm. Since {E0(Hm)}0<m≤1 is bounded by Lemma 5.3, the desired result
follows by taking the supremum. �

Lemma 5.6. Suppose that φ is differentiable, φ ∈ D(ω−3/2), ∂jφ ∈ D(ω−3/2) (j = 1, . . . , d) and∫
Rd(1 + |x|2)χsp(x)dx <∞. Then a±(·)Φm is strong differentiable in H . Moreover, for k ̸= 0,

(Dja+)(k)Φm =
2(∂jφ)(k)ω(k)

2 − φ(k)kj

2
√
2ω(k)5/2

(E0(Hm)−Hm − ωm(k))−1(µS1(k) + 2λS2(k))Φm

+
kjφ(k)

ωm(k)
√
2ω(k)

(
E0(Hm)−Hm − ωm(k)

)−2
(µS1(k) + 2λS2(k))Φm

− iφ(k)√
2ω(k)

(
E0(Hm)−Hm − ωm(k)

)−1(
µS1.j(k) + 2λS2.j(k)

)
Φm,

(Dja−)(k)Φm =
2(∂jφ)(k)ω(k)

2 − φ(k)kj

2
√
2ω(k)5/2

(E0(Hm)−Hm − ωm(k))−1(µL1(k) + 2λL2(k))Φm

+
kjφ(k)

ωm(k)
√
2ω(k)

(
E0(Hm)−Hm − ωm(k)

)−2
(µL1(k) + 2λL2(k))Φm

− iφ(k)√
2ω(k)

(
E0(Hm)−Hm − ωm(k)

)−1(
µL1.j(k) + 2λL2.j(k)

)
Φm,

where

S1.j :=

∫
Rd

xjχsp(x)e
−ikxϕ(fx)dx S2,j :=

∫
Rd

xjχsp(x)ϕ(fx)ϕ(fx)
∗ϕ(fx)dx

L1.j :=

∫
Rd

xjχsp(x)e
−ikxϕ(fx)

∗dx L2,j :=

∫
Rd

xjχsp(x)ϕ(fx)
∗ϕ(fx)ϕ(fx)

∗dx,

and Dj is the strong differential operator in the j-th variable kj .

Proof. Since (E0(Hm) − Hm − ωm(·)) is differentiable in operator norm topology and φ/
√
ω is differentiable

for any k ̸= 0, it suffices to show the strong differentiability of S1, S2, L1 and L2. Here we only show the
case of S2. Since Φm ∈ D(Hm), we can take a sequence {Φj

m}∞j=1 ⊂ Fb,fin([C
∞
0 (Rd)]) such that Φj

m → Φm

and HmΦj
m → HmΦm (j → ∞). Since S2(k) and S2,l(k) is Hm-bounded, we have S2(k)Φ

j
m → S2(k)Φm and

S2,l(k)Φ
j
m → S2,l(k)Φm (j → ∞). Let {el}dl=1 be the standard orthogonal basis of Rd and h ∈ R \ {0}. It is

seen that

∥∥S2(k + hel)− S2(k)

h
Φm + iS2,l(k)Φm

∥∥2
= lim

j→∞

∥∥S2(k + hel)− S2(k)

h
Φj

m + iS2,l(k)Φ
j
m

∥∥2
≤ lim

j→∞

∫
Rd×Rd

χsp(x)χsp(y)
∣∣eihxl − 1

h
− ixl

∣∣∣∣e−ihyl − 1

h
+ iyl

∣∣∣∣⟨ϕ(fx)ϕ(fx)∗ϕ(fx)Φj
m, ϕ(fy)ϕ(fy)

∗ϕ(fy)Φ
j
m⟩

∣∣dxdy
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≤ lim
j→∞

∫
Rd

χsp(x)
∣∣eihxl − 1

h
− ixl

∣∣2dx
×

(∫
Rd×Rd

χsp(x)χsp(y)
∣∣⟨ϕ(fx)ϕ(fy)∗Φj

m, ϕ(fx)
∗ϕ(fx)ϕ(fy)

∗ϕ(fy)Φ
j
m⟩

∣∣2dxdy)1/2

(26)

≤ lim
j→∞

C∥(dΓb([ωm]) + 1)Φj
m∥

∫
Rd

χsp(x)
∣∣eihxl − 1

h
− ixl

∣∣2dxdy
×

(∫
Rd×Rd

χsp(x)χsp(y)⟨
(
ϕ(fx)

∗ϕ(fx)
)2
Φj

m,
(
ϕ(fy)

∗ϕ(fy)
)2
Φj

m⟩dxdy
)1/2

≤ lim
j→∞

C
∥∥(dΓb([ωm]) + 1)Φj

m

∥∥∥∥H2Φ
j
m

∥∥ ∫
Rd

χsp(x)
∣∣eihxl − 1

h
− ixl

∣∣2dx. (27)

Here to get (26), we used the Schwartz inequality. Since dΓb([ωm]) and H2 are Hm-bounded, the limit of
(27) exists and is independent of h. Note that |(eihxl − 1)/h − ixl|2 ≤ 4x2l and

∫
Rd χsp(x)x

2
l < ∞. Hence

from Lebesgue’s dominated convergence theorem, we see that S2(k)Φm is strongly differentiable and its strong
derivative is−iS2,l(k)Φm. By using the Leibniz rule for (24), we obtain the desired results. �

Lemma 5.7. Suppose that the same assumption as in Lemma 5.6 holds. Then there exist constants C1, C2 and
C3 > 0 independent of m such that

∥∥Dja±(k)Φm

∥∥
H

≤ C1
|φ(k)|
ω(k)3/2

+ C2
|φ(k)|
ω(k)5/2

+ C3
|(∂jφ)(k)|
ω(k)3/2

for k ̸= 0. (28)

Moreover, under the additional assumption that φ ∈ D(ω−5/2) and ∇kφ ∈ D(ω−3/2), one has

sup
0<m≤1

d∑
j=1

∫
Rd

∥∥Dja±(k)Φm

∥∥2
H

dk <∞. (29)

Proof. For k ̸= 0, it is seen that
∥∥(E0(Hm) − Hm − ωm(k))−1

∥∥ ≤ ω(k)−1. Since S1(k), S2(k), L1(k), L2(k),
S1.j(k), S2.j(k), L1,j(k) and L2,j are Hm-bounded and its bound are independent of k, we have (28). (29) is
immediately follows from (28).

We set Φm = {Φ(n,n′)
m }∞n,n′=0. Note that Φ

(n,n′)
m is d(n+n′)-variable function. We denote kj = (kj.1, . . . kj.d)

and lj = (lj.1, . . . , lj.d).

Lemma 5.8. For 1 ≤ i ≤ n and 1 ≤ j ≤ d, let ∂i,j be the distributional derivative in ki,j in Ω and for
n+1 ≤ i ≤ n+ n′ and 1 ≤ j ≤ d, ∂i.j be the distributional derivative in li.j in Ω. Suppose that Assumption 2.2
holds. Then,

(∂i.jΦ
(n,n′)
m )(k1, . . . , kn : l1, . . . , ln′) =

{
1√
n
Dja+(ki)Φ

(n−1,n′)
m (k1, . . . , k̂i, . . . , kn : l1, . . . , ln′) 1 ≤ i ≤ n,

1√
n′Dja−(li−n)Φ

(n,n′−1)
m (k1, . . . , kn : l1, . . . , l̂i, . . . , ln′) n+ 1 ≤ i ≤ n+ n′,

where k̂ denotes omitting of k.

Proof. Here, we consider only the case of 1 ≤ i ≤ n and 1 ≤ j ≤ d. The other case is proven in a similar
manner. Let f ∈ C∞

0 (Ωn+n′
). Then it suffices to show that∫

Rd(n+n′)
Φ(n,n′)

m (k1, . . . , kn : l1, . . . , ln)(∂i.jf)(k1, . . . , kn, l1, . . . , ln′)dnkdn
′
l

+
1√
n

∫
Rd(n+n′)

Dja+(ki)Φ
(n−1,n′)
m (k1, . . . , k̂i, . . . , kn : l1, . . . , ln′)f(k1, . . . kn, l1, . . . , ln′)dnkdn

′
l = 0,

(30)
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where dnk := dk1 · · ·dkn, dn
′
l := dl1 · · ·dln′ . We denote the standard orthogonal basis of Rd by {ej}dj=1. By

the definition of classical derivative, the left hand side of (30) is calculated as follows:

lim
h→0

∣∣∣ ∫
Rd(n+n′)

Φ
(n,n′)
m (k1, . . . , ki + hej , . . . kn : l1, . . . , ln′)− Φ

(n,n′)
m (k1, . . . , kn : l1, . . . , ln′)

h
f(k1, . . . , kn, l1, . . . ln′)dnkdn

′
l

− 1√
n

∫
Rd(n+n′)

Dja+(ki)Φ
(n−1,n′)
m (k1, . . . , k̂i, . . . , kn : l1, . . . , ln′)f(k1, . . . kn, l1, . . . , ln′)dnkdn

′
l
∣∣∣.

Since Φ
(n,n′)
m ∈ L2

sym(Rdn × Rdn′
), we have

lim
h→0

1√
n

∣∣∣ ∫
Rd(n+n′)

(
a+(ki + hej)− a+(ki)

)
Φ

(n−1,n′)
m (k1, . . . , ki−1, ki+1, . . . kn : l1, . . . , ln′)

h
f(k1, . . . , kn, l1, . . . ln′)dnkdn

′
l

−
∫
Rd(n+n′)

Dja+(ki)Φ
(n−1,n′)
m (k1, . . . , k̂i, . . . , kn : l1, . . . , ln′)f(k1, . . . kn, l1, . . . , ln′)dnkdn

′
l
∣∣∣.

By applying the Schwarz inequality with respect to dk1 · · ·dki−1dki+1 · · · dkndn
′
l, we see that it is dominated

by

lim
h→0

1√
n

∫
Rd

∥∥(a+(ki + hej)− a+(ki)
)
Φ

(n−1,n′)
m

h
−Dja+(ki)Φ

(n−1,n′)
m

∥∥
L2(Rd(n+n′−1))

∥∥f(·, ki, ·)∥∥L2(Rd(n+n′−1))
dki.

(31)

Since the function k 7→ a+(k)Φ
(n−1,n′)
m is strongly continuous differentiable in Ω, the first factor of the integrand

of (31) is bounded on Ω uniformly in h. Therefore, we can apply the Lebesgue dominated convergence theorem
and the desired result follows.

Let us denote the Sobolev space of order 1 and index p on open set U in Rd(n+n′) by W 1,p(U).

Lemma 5.9. Suppose that Assumption 2.2 holds. Then for any n + n′ ≥ 1, 0 < m ≤ 1 and 1 ≤ p < 2 ,

Φ
(n,n′)
m ∈W 1,p(Ωn+n′

) and

sup
0<m≤1

∥∥Φ(n,n′)
m

∥∥
W 1,p(Ωn+n′ )

<∞.

Proof. Similar to the proof of [14, Proof of Theorem 2.1, Step 2]. To prove this, we need Lemma 5.7 and Lemma
5.8.

Proof of Theorem 2.3. Since {Φm}0<m≤1 is a bounded set on H , there exists a sequence {Φmj}∞j=1 and a vector
Φ ∈ H such that mj → 0 as j → ∞ and

w-lim
j→∞

Φmj
= Φ.

Let z ∈ C \ R and Ψ ∈ H be arbitrary. Then

⟨Ψ, (Hmj − z)−1Φmj ⟩ = ⟨Ψ, (E0(Hmj )− z)−1Φmj ⟩. (32)

By taking the limit j → ∞ on the both side of (32), we have by Lemma 5.3,

⟨Ψ, (H − z)−1Φ⟩ = ⟨Ψ, (E0(H)− z)−1Φ⟩.

This fact implies that Φ ∈ D(H) and
HΦ = E0(H)Φ.

Hence Φ is a ground state of H if Φ ̸= 0. Now we assume that Φ = 0. By Lemma 5.5, we have∥∥Φmj

∥∥2 =
∑

n+n′≤N

∥∥Φ(n,n′)
mj

∥∥2 + ∑
n+n′>N

∥∥Φ(n,n′)
mj

∥∥2 ≤
∑

n+n′≤N

∥∥Φ(n,n′)
mj

∥∥2 + 1

N
sup

0<m≤1

∥∥N1/2
b Φm

∥∥2, (33)
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where N ∈ N is arbitrary. Here we show that for any n, n′, Φ
(n,n′)
mj converges to Φ(n,n′) strongly. By applying

Lemma 5.4 and the definition of annihilation kernel, we have

supp Φ(n,n′)
mj

= Ωn+n′ ,

since Φ
(n,n′)
mj ∈ L2

sym(Rdn × Rdn′
)(see ,e.g., [14, Proof of Theorem 2.1, Step2]). Here, A denotes the closure of

A ⊂ Rd(n+n′). Since the Lebesgue measure of Ωn+n′
is finite, we have Ls(Ωn+n′

) ⊂ L2(Ωn+n′
) for all s ≥ 2.

Therefore, Φ
(n,n′)
mj weakly converges to Φ(n,n′) = 0 in the Lp(Ωn+n′

) sense. By Lemma 5.9, a subsequence

of {Φmj}∞j=1 converges to a vector Φ̂(n,n′) ∈ W 1,p(Ωn+n′
) in the W 1,p(Ωn+n′

)∗ sense. It means that for any

f0, f1, . . . , fd(n+n′) ∈ Lp(Ωn+n′
)∗ = Ls(Ωn+n′

) with 1/s+ 1/p = 1,

∫
Ωn+n′

f0
(
Φ(n,n′)

mj
− Φ̂(n,n′)

)
dnkdn

′
l +

d(n+n′)∑
i=1

∫
Ωn+n′

fi∂i
(
Φ(n,n′)

mj
− Φ̂(n,n′)

)
dnkdn

′
l → 0, j → ∞.

Hence we have
0 = Φ(n,n′)(k1, . . . , kn : l1 . . . , ln′) = Φ̂(n,n′)(k1, . . . , kn : l1, . . . , ln′) a.e.

Thus we have for all 1 ≤ p < 2, Φn,n′

mj
→ 0 as j → ∞ in the weak sense of W 1,p(Ωn+n′

). By applying the
Rellich-Kondrachov theorem (see, e.g.,[1, Theorem 6.3],[18, Theorem 8.9]), we have

lim
j→∞

∥∥Φ(n,n′)
mj

∥∥
Lq(Ωn+n′ )

= 0,

for all q < d(n+n′)p
d(n+n′)−p , since Ω has cone property. To get q = 2, we choose p as{

2d(n+n′)
d(n+n′)+2 < p < 2, if 2 ≤ d(n+ n′),

p = 1, if d(n+ n′) = 1.

Thus, by taking lim supj→∞ in (33), we have

1 = lim sup
j→∞

∥∥Φmj

∥∥2 ≤ 1

N
sup

0<m≤1

∥∥N1/2
b Φm

∥∥2.
But this is a contradiction since N is arbitrary. Hence Φ ̸= 0.

6 Total charge of a ground state

In this section, we prove Theorem 2.4 and 2.5.

Proof of Theorem 2.4 It is trivial that H0 and e−itQ commute (see Proposition A.4). By Proposition A.2-(2)
and Proposition A.4-(2), following relations hold:

e−itQa+(u)e
itQ = a+(e

−itqu), e−itQa−(u)e
itQ = a−(e

itqu),

e−itQa+(u)
∗eitQ = a+(e

−itqu)∗, e−itQa−(u)
∗eitQ = a−(e

itqu)∗, u ∈ L2(Rd).

Let Ψ ∈ Fb,fin([C
∞
0 (Rd)]). Then, eitQΨ ∈ Fb,fin([C

∞
0 (Rd)]) and we have

e−itQH1e
itQΨ =

∫
Rd

χsp(x)e
−itQ(ϕ(fx)

∗ϕ(fx))e
itQΨdx,

e−itQH2e
itQΨ =

∫
Rd

χsp(x)e
−itQ(ϕ(fx)

∗ϕ(fx))
2eitQΨdx.

It follows that on Fb,fin([C
∞
0 (Rd)]):

e−itQϕ(fx)
∗ϕ(fx)e

itQ =
1

2
(a+(e

−itqfx)
† + a−(e

itqfx))(a+(e
−itqfx) + a−(e

itqfx)
†)

= e−itqϕ(fx)
∗eitqϕ(fx) = ϕ(fx)

∗ϕ(fx).
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Therefore for any Ψ ∈ Fb,fin([C
∞
0 (Rd)]), we see that

e−itQHeitQΨ = HΨ.

Since e−itQ is unitary and Fb,fin([C
∞
0 (Rd)]) is a core of H, above equality can be extended to operator equality.

By the functional calculus, we have

e−itQe−isHeitQ = e−isH , (s, t ∈ R).

Hence the desired result follows. �

Remark 6.1. Also the massive Hamiltonian Hm strongly commutes with Q. The proof is quite similar to that
of Theorem 2.4.

Lemma 6.1. We assume Assumption 2.1 and 2.2. Then for k ̸= 0, it follows that

a+(k)Φg =
φ(k)√
2ω(k)

(E0(H)−H − ω(k))−1(µS1(k) + 2λS2(k))Φg,

a−(k)Φg =
φ(k)√
2ω(k)

(E0(H)−H − ω(k))−1(µL1(k) + 2λL2(k))Φg.

Especially, Φg ∈ D(N
1/2
b ).

Since the proof of this lemma is quite similar to that of Lemma 5.4 and Lemma 5.5, we omit it.

Proof of Theorem 2.5. Let N+ := dΓb(1)⊗1, N− := 1⊗dΓb(1) and U be the canonical unitary operator acting
from H to Fb(L

2(Rd))⊗ Fb(L
2(Rd)) (see Appendix A). By Proposition A.3, we have

UNbU
−1 = N+ +N−, UQU−1 = q(N+ −N−).

Suppose that Φg ∈ Hq(z) for some z with |z| ≥ n0. Note that QΦg = zqΦg and ∥Φg∥ = 1. Then

|zq| = |⟨Φg, QΦg⟩| = |q||⟨UΦg, (N+ −N−)UΦg⟩| ≤ |q|
∥∥N1/2

+ UΦg

∥∥2 + |q|
∥∥N1/2

− UΦg

∥∥2 = |q|
∥∥N1/2

b Φg

∥∥2 < n0|q|.

Thus we have |z| < n0. But this is a contradiction. Hence Φg /∈ Hq(z) for all |z| ≥ n0. �

Concluding remark One of the next tasks is to analyze the Hamiltonian H on each fixed total charge space
Hq(z) with z ∈ Z. We leave it for future study.

APPENDIX A
In this section, we introduce some facts which are often used in this paper and are well known. We use the

same notations and symbols as in Section 2. Let X and Y be Hilbert spaces.

Proposition A.1.[3, Proposition 4.24 ][4, Lemma 6.32 ] Let T be a non-negative self-adjoint operator on X
with ker T = {0}. If u ∈ D(T−1/2), then∥∥A(u)Ψ∥∥ ≤

∥∥T−1/2u
∥∥∥∥dΓb(T )

1/2Ψ
∥∥,∥∥A(u)†Ψ∥∥ ≤

∥∥T−1/2u
∥∥∥∥dΓb(T )

1/2Ψ
∥∥+

∥∥u∥∥∥∥Ψ∥∥,
for all Ψ ∈ D(dΓb(T )

1/2). Moreover if u, v ∈ D(T ) ∩D(T−1/2), then∥∥A(u)♯A(v)♮Ψ∥∥ ≤ C
∥∥(dΓb(T ) + 1)Ψ

∥∥(∥∥T−1/2u)
∥∥+

∥∥u∥∥)(∥∥T−1/2v
∥∥+

∥∥v∥∥+
∥∥Tv∥∥+

∥∥T 1/2v
∥∥),

for all Ψ ∈ D(dΓb(T )). Here C > 0 is a constant independent of u, v, T and Ψ.

Proposition A.2.[3, Proposition 4.26 ][8, Lemma 2.7 and Lemma 2.8 ] Let T be a densely defined closable
operator on X , and u ∈ D(T ) ∩D(T ∗). Then:
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(1)
[dΓb(T ), A(u)] = −A(T ∗u), and [dΓb(T ), A(u)

†] = A(Tu)†, on Fb,fin(D(T )).

(2) If u ∈ D(T ), then
Γb(T )A(u)

† = A(Tu)†Γb(T ), on Fb,fin(D(T )).

Moreover, if T is isometry, then
Γb(T )A(u) = A(Tu)Γb(T ).

Proposition A.3.[3, Theorem 4-55 and Theorem 4-56 ] Let X and Y be Hilbert spaces. Then there exists a
unique unitary operator UX ,Y : Fb(X ⊕ Y) → Fb(X )⊗ Fb(Y) such that the following (1) and (2) are hold:

(1)
UX ,YΩX⊕Y = ΩX ⊗ ΩY ,

where ΩX is the Fock vacuum in Fb(X ).

(2)

UX ,YA(u⊕ v)♯U−1
X ,Y = A(u)♯ ⊗ I + I ⊗A(v)♯, u ∈ X , v ∈ Y,

and
UX ,YFb,fin(X ⊕ Y) = Fb,fin(X )⊗̂Fb,fin(Y),

where A(·)♯ denotes A(·) or A(·)†. Moreover, for all self-adjoint operators T on X and S on Y,

UX ,YdΓb(T ⊕ S)U−1
X ,Y = dΓb(T )⊗ I + I ⊗ dΓb(S).

Remark If T and S are non-negative in the above,

dΓb(T )⊗ I + I ⊗ dΓb(S) = dΓb(T )⊗ I + I ⊗ dΓb(S).

Proposition A.4.[3, Theorem 4-17 and Theorem 4-20 ] Let A and B are self-adjoint on K .

(1) A and B are strongly commute if and only if dΓb(A) and dΓb(B) are strongly commute.

(2)
Γb(e

−itA) = e−itdΓb(A).

Let K = L2(Rd). Then Fb(L
2(Rd)) is written as follows:

Fb(L
2(Rd)) = C⊕

∞⊕
n=1

L2
sym(Rdn),

where

L2
sym(Rdn) :=

{
f ∈ L2(Rdn) : f(kπ(1), · · · , kπ(n)) = f(k1, · · · , kn) for a,e, k1, · · · , kn ∈ Rd and π ∈ Sn

}
.

For a,e, k ∈ Rd, an annihilation kernel a(k) act on Fb(L
2(Rd)) is defined as follows.

(a(k)Ψ)(n)(k1, · · · , kn) :=
√
n+ 1Ψ(n+1)(k, k1, · · · , kn).

Proposition A.5.[3, Proposition 8.6 ] Let f be a measurable function such that 0 ≤ f(k) <∞ for a,e,k ∈ Rd.
Then Ψ ∈ D(dΓb(f)

1/2) if and only if ∫
Rd

f(k)
∥∥a(k)Ψ∥∥2dk <∞.

In that case ∥∥dΓb(f)
1/2Ψ

∥∥2 =

∫
Rd

f(k)
∥∥a(k)Ψ∥∥2dk.

APPENDIX B
In this section, we introduce facts about essential self-adjointness and essential spectrum which are used in
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Section 3 and Section 4.

For n ∈ N ∪ {0}, let Xn be a Hilbert space and X := ⊕∞
n=0Xn. Let Xfin be defined by

Xfin := {Ψ = {Ψ(n)}∞n=0 ∈ X : ∃N such that Ψ(n) = 0 for all n ≥ N + 1}.

The number operator NX is defined by

D(NX ) :=
{
Ψ ∈ X :

∞∑
n=0

n2
∥∥Ψ(n)

∥∥2
Xn

<∞
}
,

(NXΨ)(n) := nΨ(n), Ψ ∈ D(NX ), (n ∈ N ∪ {0}).

Let An be a self-adjoint operator on Xn, and set A := ⊕∞
n=0An. Let B be a symmetric operator on X . We

identify Ψ(n) ∈ Xn as
Ψ(n) = {0, · · · , 0,Ψ(n), 0, · · · } ∈ X .

Proposition B.1 [2 ] Suppose that following (1)-(3) hold:

(1) Xfin ⊂ D(B) and A+B is bounded below on D(A) ∩ Xfin.

(2) There exists an integer p ∈ N such that

⟨Ψ(n), BΨ(m)⟩X = 0, whenever |n−m| ≥ p.

(3) There exist a constant c > 0 and a linear operator L on X such that D(((A+B) � D(A)∩Xfin)
∗) ⊂ D(L),

Ran(L � D(L) ∩ Xn) ⊂ Xn and

|⟨Φ, BΨ⟩| ≤ c
∥∥LΦ∥∥∥∥(NX + 1)2Ψ

∥∥, Ψ ∈ Xfin, Φ ∈ D(L).

Then A+B is essentially self-adjoint on D(A) ∩ Xfin.

Let K and X be Hilbert spaces. We consider the Hilbert space K ⊗Fb(X ). Let A be a self-adjoint operator
on K and S be a non negative self-adjoint operator on X . Then

H0 := A⊗ 1 + 1⊗ dΓb(S)

is self-adjoint on D(A⊗ 1) ∩D(1⊗ dΓb(S)). Let HI be a symmetric operator on K ⊗ Fb(X ) and

H := H0 +HI . (34)

Let us recall a notion of weak commutator.

Definition B.2. [5 ] Let X be a Hilbert space. Let A and B be densely defined linear operators on X . If
there exists a dense subspace Y and a linear operator K such that Y ⊂ D(K)∩D(A)∩D(A∗)∩D(B)∩D(B∗)
and

⟨A∗ψ,Bϕ⟩ − ⟨B∗ψ,Aϕ⟩ = ⟨ψ,Kϕ⟩, ψ, ϕ ∈ Y ,

then we say that the couple ⟨A,B⟩ has the weak commutator on Y defined by

[A,B]w,Y := K � Y .

The next proposition gives a sufficient condition for ⟨A,B⟩ to have a weak commutator.

Proposition B.3.[5 ] Let X be a Hilbert space and let D be a dense subspace of X . Let A and B be densely
defined linear operators on X such that D ⊂ D(A)∩D(B)∩D(A∗)∩D(B∗). Assume that there exist a densely
defined closed linear operator C on X and a core EC of C with the following properties:

(1) EC ⊂ D ⊂ D(C).
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(2) A and B are C-bounded on EC .

(3) EC ⊂ D(AB) ∩D(BA) and K := [A,B] � EC is C-bounded on EC .

(4) D(A∗B∗) ∩D(B∗A∗) is dense in X .

Then K is closable with D(C) ⊂ D(K) and ⟨A,B⟩ has a weak commutator on D which is given by

[A,B]w,D = K � D.

Proposition B.4.[5 ] Suppose that following (1) and (2) hold.

(1)H is self-adjoint and bounded below.

(2)For any u ∈ D(S)∩D(S−1/2), the couple ⟨HI , I⊗A(u)∗⟩ has the weak commutator [HI , I⊗A(u)∗]w,D(H)

on D(H). Furthermore, for any Ψ ∈ D(H), and any sequences {un}∞n=1 ⊂ D(S) ∩D(S−1/2) such that∥∥un∥∥ = 1, w-limn→∞ un = 0,
lim
n→∞

[HI , I ⊗A(un)]w,D(H)Ψ = 0.

If σ(S) = [0,∞), then
σ(H) = σess(H) = [E0(H),∞).
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