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Abstract. We investigate Lp stability issues of small viscoelastic Poiseuille-
type flows in two dimensions stemming from a model considered in Fang-
Hua Lin, Chun Liu, and Ping Zhang (2005). We show local existence
of perturbed flows of locally-in-time existing Poiseuille-type flows and
global existence of the peturbed flows whenever the initial perturbation
is small enough. In this case the perturbed flow decays exponentially. In
all cases, the perturbations immediately regularize.
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1. Introduction

Viscoelasticity describes a property of materials exhibiting both viscous and
elastic characteristics under deformation. Such a material may exhibit elastic
behavior like memory effects as well as fluid properties. In two space dimen-
sions in a layer, a Poiseuille-type flow has a horizontal flow-profile that is
completely determined by the vertical component.

We are interested in stability of the viscoelastic Poiseuille flow. There
is an earlier work by Dario Götz, Chun Liu and the first auther [11], where
they proved L2-type stability results for small Poiseuille flow by an energy
argument. This paper considers a similar problem in an Lp-setting.

Given a fixed viscosity ν > 0 and a small original viscoelastic Poiseuille-
type flow we consider Lp-dynamics of perturbations of this original flow.
By a change of variables introduced in [16], we can transform the equation
into a parabolic quasilinear evolution equation. Its linear part is a diagonal
operator matrix with the Stokes operator and the Dirichlet-Laplacian on the
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diagonal with lower order perturbations. We can then show unique local-
in-time existence of the perturbed flow for small initial perturbations. We
furthermore establish unique existence on R+ of the perturbed flow given
small initial perturbations as well. This is possible due to the invertibility
and maximal regularity of the Dirichlet-Laplacian and the Stokes operator
on the layer. This global-in-time perturbation decays exponentially to the
initial flow. All obtained solutions immediately regularize due to Angenent’s
trick.

The considered viscoelastic model is due to considerations in [16]. The
authors use weak theory to obtain local-in-time smooth solutions in bounded
domains in R2 and R3 with smooth boundary, the whole space R2 and R3

or a periodic box. They show global-in-time existence of solutions with small
initial data in the case of R2 and the periodic box.

Strong theory of quasilinear evolution equation is based on a local-in-
time existence result of Clément and Li [5] in 1992. Prüss et al. [20, 15, 23]
have subsequently developed a broad quasilinear theory including methods
to analyze asymptotic behavior using the theory of dynamical systems and
exploiting spectral properties of a linearization around equilibria with the so
called generalized principle of linearized stability.

The main ingredient is maximal Lp-regularity of the linear part of the
quasilinear problem. This property is known for a large class of linear equa-
tions and the associated linear operators on various domains, including ellip-
tic operators ([6]) and the Stokes operator on layer domains. These techniques
have been applied to several Navier-Stokes related models, such as nematic
liquid crystals to obtain strong local dynamics and asymptotic behavior close
to equilibria [13]. In our case of a layer domain, both the Dirichlet-Laplacian
and the Stokes operator do not only admit maximal Lp-regularity, but are
also invertible. This fact makes it possible to control also the long-time as-
ymptotic behavior for small perturbations of lower order.

Stability of a flow parallel to the boundary like the Poiseuille flow or
the Couette flow is a very important topic in fluid mechanics. In fact it is
known that the Couette flow for the incompressible Navier-Stokes equations
in a layer domain is stable under a small perturbation, irrespective of how
large its velocity is [12]; see [24] for a pioneering work.

In the remaining part of the introduction we first introduce the model
for viscoelastic fluids. Then we establish a model for a perturbation of a
Poiseuille-type flow in 2D. In the third part we apply a transformation to
the stream-function equation which reveals the hidden diffusive characteris-
tic of the equation. In Section 2 we give a short overview over the tools of
quasilinear evolution equations. In Section 3, we (equivalently) reformulate
our model for our Poiseuille-type flow in the language of quasilinear evolution
equations. Section 4 is concerned with issues of maximal Lp-Lq regularity of
the lineariation of the model. In Section 5 we conclude with our main results.
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1.1. Viscoelastic Fluids

We consider a general system describing the flow of viscoelastic fluids, which
has been considered in [16]. ∂tF + u · ∇F = F∇u,

div u = 0,
∂tu− ν∆u+ u · ∇u+∇π = divFTF,

(1)

where F denotes the deformation tensor, u the velocity, π the pressure and
ν the viscosity.

In two space dimensions, one can obtain an R2-valued stream function
ζ0 such that

F0 = ∇⊥ζ0 =

(
−∂2ζ01

∂1ζ01

−∂2ζ02
∂1ζ02

)
.

Moreover, if, for a divergence-free function u, this quantity is propagated in
time subject to the transport equation

∂tζ + u · ∇ζ = 0,
ζ(0) = ζ0,

(2)

then one can easily show that for F = ∇⊥ζ, the first equation of (1), i.e.
Ft+u ·∇F = F∇u, is fulfilled. This system is much more friendly to analyse
and hence we will in the following consider the function ζ instead of F . With
this new variable, one calculates

divFTF =
1

2
∇|∇ζ|2 −∆ζ1∇ζ1 −∆ζ2∇ζ2.

Note here, that the first term is a gradient that can be absorbed into the
pressure function in the momentum balance equation in (1). So let us intro-
duce a new pressure function π̃ = π− 1

2 |∇ζ|
2, which is again denoted by π in

the following. With this, we end up with an equivalent system that is valid in
two space-dimensions for (u, F, π) = (u,∇⊥ζ, π), when we apply Einstein’s
sum convention adding terms with the same indices k = 1, 2:

∂tζ + u · ∇ζ = 0,

div u = 0,

∂tu− ν∆u+ u · ∇u+∇π = −∆ζk∇ζk.
(3)

In this paper, we want to consider a flow through a two-dimensional layer
Ω = R× (0, 1). In particular, we study the stability of a one-dimensional flow
of Poiseuille-type (ū,∇⊥η, π̄) subject to Dirichlet boundary conditions.

We now want to construct a suitable Poiseuille-type flow solution ū
to (1) or equivalently (3), i.e. a solution with horizontal flow-profile that is
completely determined by the vertical component. Hence, we assume that ū
takes the form

ū(t, x) =

(
ψ(t, x2)

0

)
,
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with homogeneous Dirichlet boundary conditions. Then the divergence con-
dition in (1) is trivially fulfilled.

In order to adequately determine the corresponding deformation tensor
F̄ or equivalently the corresponding stream function η, we introduce the flow
map xi(t,X), 0 ≤ t < T , corresponding to Lagrangian coordinates X. These
flow maps are given by the system of ordinary differential equations

d

dt
x1(t,X) = ū1(t, x1(t,X), x2(t,X)) = ψ(t, x2(t,X)), x1(0) = X1,

d

dt
x2(t,X) = ū2(t, x1(t,X), x2(t,X)) = 0, x2(0) = X2,

which can easily be solved by

x1(t,X) = X1 +

∫ t

0

ψ(s, x2(s,X)) ds = X1 +

∫ t

0

ψ(s,X2) ds,

x2(t,X) = X2,

as long as ψ admits sufficient regularity. Let us abbreviate

φ(t, x2) =

∫ t

0

ψ(s, x2) ds. (4)

Then, we can calculate the deformation tensor and the resulting elastic
force

F̄ =

(
1 0
∂2φ 1

)
, F̄T F̄ =

(
1 + (∂2φ)2 ∂2φ

∂2φ 1

)
and div F̄T F̄ =

(
∂2

2φ
0

)
.

Note here, that with x2(t,X) = X2 it is also ∂
∂X2

= ∂
∂x2

= ∂2. Let us also

remark at this point, that div F̄ = 0.

The stream function η corresponding to F̄ may be chosen as

η(t, x) =

(
−x2

x1 − φ(t, x2)

)
(5)

solving the system{
∂tη + ū · ∇η = 0, in (0, T )× Ω,

η(0, x) = (−x2, x1)T , for x ∈ Ω.

1.2. Perturbation of the flow through the layer

It is our aim to examine the stability of system (3) (or equivalently (1))
with respect to the Poiseuille-type flow (ū, η, π̄) constructed in the previous
section. For this, we introduce the perturbation

(v, α, p) = (u, ζ, π)− (ū, η, π̄)

of the solution (u, ζ, π) (with corresponding deformation tensor G) of (3)
around the Poiseuille-type flow (ū, η, π̄) with deformation tensor F .
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We are interested in solutions (u, ζ, π) that satisfy homogeneous Dirich-
let boundary conditions u|∂Ω = 0 and have initial values ζ0 and u0. Let u0

satisfy the compatibility condition

div u0 = 0.

Let us moreover assume that the initial stream function satisfies

ζ0|∂Ω =

(
−x2

x1

)
and ∂1ζ01

∂2ζ02
− ∂1ζ02

∂2ζ01
= 1.

The first assumption together with the homogeneous Dirichlet boundary con-
ditions for u guarantees ζ|∂Ω = (−x2, x1)T for all times. The second assump-
tion is a reformulation of the incompressibility condition detF0 = 1, which
ensures detF = 1 for all times and hence ∂1ζ1∂2ζ2 − ∂1ζ2∂2ζ1 = 1.
Then (v, α, p) solves

∂tα+v ·∇α+ ū ·∇α = −v ·∇η in (0, T )×Ω,

div v = 0 in (0, T )×Ω,

∂tv−ν∆v+v ·∇v+v ·∇ū+ ū ·∇v+∇p
= −∆αk∇αk−∆ηk∇αk−∆αk∇ηk in (0, T )×Ω,

v|∂Ω = 0, in (0, T ),

α|∂Ω = 0, in (0, T ),

α(0, x) = ζ0(x)− (−x2, x1)T for x ∈ Ω,

v(0) = u0− (ψ0, 0)T in Ω.

1.3. Change of variables and dissipation

Using the definition of η in (5), we obtain

∇η =

(
0 1
−1 −∂2φ(t, x2)

)
, ∆η =

(
0

−∂2
2φ(t, x2)

)
, ∂1∂

2
2φ(t, x2) = 0.

Hence

−∆αk∇ηk −∆ηk∇αk = −∆α1

(
0
−1

)
−∆α2

(
1
−∂2φ

)
−∆(−x2)∇α1

−∆(x1 − φ)∇α2

= ∆

(
−α2

α1

)
+∇φ∆α2 + ∂2

2φ∇α2.

Inserting this into the momentum equation, we see

∂tv − ν∆
(
v +

1

ν

(
−α2

α1

))
+ v · ∇v + v · ∇ū+ ū · ∇v +∇p

= −∆αk∇αk +∇φ∆α2 + ∂2
2φ∇α2.

(6)
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To obtain additional dissipative structure to use for α we introduce the
new variable

w = v +
1

ν

(
−α2

α1

)
such that α = ν

(
0 1
−1 0

)
(w − v).

1.4. Equation for the new variable

The next step is to determine the right system that defines w. It is easy to
see with

−v · ∇η = −(∇η)T v = −
(

0 −1
1 −∂2φ

)
v =

(
v2

−v1 + ∂2φv
2

)
,

that 1
να1 satisfies

∂t

(1

ν
α1

)
+ v · ∇

(1

ν
α1

)
+ ū · ∇

(1

ν
α1

)
=

1

ν
v2.

and for − 1
να2 we have

∂t

(
− 1

ν
α2

)
+ v · ∇

(
− 1

ν
α2

)
+ ū · ∇

(
− 1

ν
α2

)
=

1

ν
(v1 − ∂2φv2)

Adding these equations to the system for v, we receive

∂tw − ν∆w + v · ∇w + v · ∇ū+ ū · ∇w +∇p

= −∆αk∇αk +
1

ν
v − 1

ν

(
∂2φv2

0

)
+ ∂2

2φ∇α2 +∇φ∆α2.
(7)

Now our system takes the form

∂tv−ν∆v+v ·∇v+v ·∇ū+ ū ·∇v+∇p

= −∆αk∇αk−∆ηk∇αk−∆αk∇ηk

∂tw−ν∆w+v ·∇w+v ·∇ū+ ū ·∇w+∇p

= −∆αk∇αk+
1

ν

(
v1−∂2φv2

v2

)
+∂2

2φ∇α2 +∇φ∆α2

div v = 0

(P)

in (0, T )× Ω, with boundary and initial conditions
v|∂Ω = 0, on (0, T )× ∂Ω,

α|∂Ω = 0, on (0, T )× ∂Ω,

α(0) = α0 := ζ0 − (−x2, x1)T , in Ω,

v(0) = v0 := u0 − (ψ0, 0)T , in Ω.

2. Quasilinear Evolution Equations

Let X0 and X1 be Banach spaces such that X1
d
↪→ X0, i.e. X1 is continuously

and densely embedded in X0. Assume T > 0 or T = ∞. By a quasilinear
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autonomous parabolic evolution equation we understand an equation of the
form

ż(t) +A(z(t))z(t) = F (z(t)), t ∈ (0, T ), z(0) = z0, (QL)

where A is a mapping from a real interpolation space Xγ,µ with suitable
weights between X0 and X1 into L(X0, X1). An equilibrium of (QL) is a
stationary solution z ∈ X1, i.e., A(z)z = F (z).

Our approach relies on the maximal Lp-regularity of A(v) for v ∈ Xγ,µ.
For details we refer e.g. to [6].

The equation (QL) is investigated in spaces of the form Lp(0, T ;X0)
with temporal weights. More precisely, for p ∈ (1,∞) and µ ∈ (1/p, 1], the
spaces Lp,µ and H1

p,µ are defined by

Lp,µ(0, T ;X1) := {z : [0, T )→ X1 : t1−µz ∈ Lp(0, T ;X1)},
H1
p,µ(0, T ;X0) := {z ∈ Lp,µ(0, T ;X0) ∩W 1

1 (0, T ;X0) : ż ∈ Lp,µ(0, T ;X0)}.
It is clear, that

Lp(0, T ;X) ↪→ Lp,µ(0, T ;X) and Lp,µ([0, a];X) ↪→ Lp([τ, a];X),

for all Banach spaces X and τ ∈ (0, a) for all a > 0. It has been shown
in [21, Theorem 2.4] that Lp-maximal regularity implies also Lp,µ-maximal
regularity, provided p ∈ (1,∞) and µ ∈ (1/p, 1]. The trace space of the
maximal regularity class containing temporal weights,

z ∈ H1
p,µ(0, T ;X0) ∩ Lp,µ(0, T ;X1)

has been characterized in [21, Theorem 2.4] as

Xγ,µ = (X0, X1)µ−1/p,p,

provided p ∈ (1,∞) and µ ∈ (1/p, 1]; see also [19, Theorem 4.2].
We now impose precise regularity assumptions on A and F .

(A−1) A : Xγ,µ → L(X1, X0)) locally Lipschitz,
(F−1) F : Xγ,µ → X0 locally Lipschitz.

Local in time existence of (QL) for a more general non-autonomous case was
shown by Clément-Li [5] in the case µ = 1 and by Köhne-Prüss-Wilke [15,
Theorem 2.1, Corollary 2.2] for the case µ ∈ (1/p, 1].

Proposition 1. Let 1 < p <∞, µ ∈ (1/p, 1], z0 ∈ Xγ,µ, and suppose that the
assumptions (A−1) and (F−1) are satisfied. Furthermore assume that A(z0)
has the property of maximal Lp-regularity. Then, there exists a > 0, such that
(QL) admits a unique solution z on J = [0, a] in the regularity class

z ∈ H1
p,µ(J ;X0) ∩ Lp,µ(J ;X1) ↪→ C(J ;Xγ,µ) ∩ C((0, a];Xγ).

The solution depends continuously on z0, and can be extended to a maximal
interval of existence J(z0) = [0, t+(z0)).

The following result on global existence and stability of was proved in
[20, Theorem 6.1] in the case µ = 1 and see [15, Theorem 4.1] for µ ∈ (1/p, 1].

For this we need slightly stronger conditions on A and F . We now impose
regularity assumptions regarding the Fréchet differentiability of A and F .
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(A) A ∈ C1(Xγ,µ;L(X1, X0)).
(F) F ∈ C1(Xγ,µ;X0).

Proposition 2. Let 1 < p <∞, µ ∈ (1/p, 1] and z∗ ∈ Xγ be an equilibrium of
(QL), such that A(z∗) has maximal Lp-regularity on R+ and the assumptions
(A) and (F) are satisfied. Let A0 be the linearization of (QL), i.e., let

A0w = A(z∗)w + (A′(z∗)w)z∗ − F ′(z∗)w, w ∈ X1.

Suppose that σ(A0) is contained in the open right half plane C+ = Σπ/2.
Then, there is ε > 0 such that for each z0 ∈ Bε(z

∗) ⊂ Xγ,µ there exists
a unique global solution z ∈ H1

p,µ,loc(R+;X0) ∩ Lp,µ,loc(R+;X1) of (QL).
Furthermore, there is a β > 0 such that

eβtz ∈ H1
p,µ(R+;X0) ∩ Lp,µ(R+;X1) ∩ C0(R+;Xγ,µ).

In particular, the equilibrium z∗ is exponentially stable in Xγ,µ.

We remark that the constant ε > 0 depends only on the maximal regu-
larity constant of A0 and the local Lipschitz constants of A and F .

Parabolic problems allow for additional smoothing effects. In this re-
spect, a method due to Angenent [3] is well known. We will state a variant
of it which is adapted to (QL); see [20, Theorem 5.1] for the case µ = 1. We
remark, that in the context of spatial regularity of Navier-Stokes equations,
a similar technique has already been used before by Kyûya Masuda [17, 18].
We give a slight adjustment to the situation of temporal weights together
with the adaption to space regularity in domains as discussed in [8], which
can easily be transfered to the case of layer domains. To this end, we need
to strengthen our assumptions (A) and (F) with an order of differentiability
k ∈ N ∪ {∞, ω}, where the index ω refers to real analyticity.

(Ak) A ∈ Ck(Xγ,µ;L(X1, X0)).
(Fk) F ∈ Ck(Xγ,µ;X0).

Proposition 3. Let 1 < p < ∞, k ∈ N ∪ {∞, ω} and µ ∈ (1/p, 1], J = [0, a)
for some a > 0 and assume that (Ak) and (Fk) hold. Let z ∈ H1

p,µ(J ;X0) ∩
Lp,µ(J ;X1) be a solution of (QL) on J and assume A(z(t)) has maximal
Lp-regularity for all t ∈ J . Then

tj [
d

dt
]jz ∈ Hj+1

p,µ (J ;X0) ∩Hj
p,µ(J ;X1), j ≤ k.

Furthermore, if k = ∞, then z ∈ C∞(J ;X1) and if k = ω, then z is real
analytic with values in X1 on J .

3. Quasilinear Formulation of the Perturbation

For layer domains Ω, the Helmholtz decomposition exists on Lq(Ω), see [9].
We denote by Pq : Lq(Ω)→ Lq,σ(Ω) the Helmholtz projection, where

Lq,σ(Ω) := {u ∈ Lq(Ω) : divu = 0, u ·N = 0 on ∂Ω};
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here, N denotes the unit exterior vector field of ∂Ω. The Poiseuille problem
(P) is equivalent to the problem{

∂tz + νP̃q(L+ S(z))z = F (z)

z(0) = z0,
(PQL)

where z = (v, w), P̃q(v, w) := (Pqv, w), and z0 = (v0, w0) with

v0 = u0 − (ψ0, 0)T ,

w0 = v0 +
1

ν
(−ζ02 + x1, ζ01 + x2)T .

Moreover,

L =

(
−∆ 0
− 1
ν2 −∆

)
, F (v, w) = −

(
Pq(v · ∇v)

v · ∇w + (I − Pq)(v · ∇v)

)
,

S(z) = S1 + S2 + S3(z),

and with the notation z = (v1, v2, w1, w2),

S1 = S1(ν, ū,∇ū,∇φ,∇2φ)

=

(
S11

1 S12
1

S21
1 S22

1

)
,

where

S11
1 =

(
1
ν ∂1ū1 + ∆η2∂1

1
ν ∂2ū1 −∆η1∂1

1
ν ∂1ū2 + ∆η2∂2

1
ν ∂2ū2 −∆η1∂2

)
,

S12
1 =

(
1
ν ū1∂1 + 1

ν ū2∂2 −∆η2∂1 ∆η1∂1

−∆η2∂2
1
ν ū1∂1 + 1

ν ū2∂2 + ∆η1∂2

)
,

S21
1 =

(
1
ν ∂1ū1 − ∂2

2φ∂1
1
ν2 ∂2φ+ 1

ν ∂2ū1
1
ν ∂1ū2 − ∂2

2φ∂2
1
ν ∂2ū2

)
,

S22
1 =

(
1
ν ū1∂1 + 1

ν ū2∂2 + ∂2
2φ∂1 0

∂2
2φ∂2

1
ν ū1∂1 + 1

ν ū2∂2

)
,

S2 = S2(∇η,∇φ) =


∂1η2∆ −∂1η1∆ −∂1η2∆ ∂1η1∆
∂2η2∆ −∂2η1∆ −∂2η2∆ ∂2η1∆
−∂1φ∆ 0 ∂1φ∆ 0
−∂2φ∆ 0 ∂2φ∆ 0

 ,

S3(z) = S3(ν,∇v,∇w)

= ν


∂1(v1 − w1)∆ ∂1(v2 − w2)∆ ∂1(w1 − v1)∆ ∂1(w2 − v2)∆
∂2(v1 − w1)∆ ∂2(v2 − w2)∆ ∂2(w1 − v1)∆ ∂2(w2 − v2)∆
∂1(v1 − w1)∆ ∂1(v2 − w2)∆ ∂1(w1 − v1)∆ ∂1(w2 − v2)∆
∂2(v1 − w1)∆ ∂2(v2 − w2)∆ ∂2(w1 − v1)∆ ∂2(w2 − v2)∆

 .

Note that S3(0) = 0 and that S3(z) acts on z as

νS3(z)z = ∆αk(z)∇αk(z).
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4. The Linear Problem

Fix 1 < p, q <∞ and µ ∈ (1/p, 1]. We denote by

D(Aq) := H2
q (Ω) ∩H1

q,0(Ω) ∩ Lq,σ(Ω),

Aqu := Pq∆u

the Stokes operator on Ω and by

D(∆q) := H2
q (Ω) ∩H1

q,0(Ω),

∆qu := ∆u

the Dirichlet Laplacian on Ω. Then we write

X0 := Lq,σ(Ω)× Lq(Ω), X1 := D(Aq)×D(∆q),

and

Xγ := (X0, X1)1−1/p,p, Xγ,µ := (X0, X1)µ−1/p,p.

Note that for sufficiently large p and q,

Xγ,µ ={v ∈ B2µ−2/p
qp (Ω) : v = 0 on ∂Ω} ∩ Lq,σ(Ω)

× {w ∈ B2µ−2/p
qp (Ω) : w = 0 on ∂Ω}

(8)

and an analogue definition forXγ . Fix z0 ∈ Xγ,µ, z∗ ∈ Xγ and f ∈ Lp,µ(R+;X0).
Then we call the system{

∂tz + νP̃q(L+ S(z∗))z = f,

z(0) = z0,
(PL)

the linear Poiseuille perturbation problem.

Lemma 4. P̃qL has maximal Lp,µ-regularity on X0. More precisely, the prob-
lem {

∂tz + νP̃qLz = f,

z(0) = z0,

has a unique solution z = (v, w) in the maximal regularity class

(v, w) ∈ H1
p,µ(R+;X0) ∩ Lp,µ(R+;X1)

if and only if z0 ∈ Xγ,µ and f ∈ Lp,µ(R+;X0) and the solution depends
continuously on the data. Moreover, 0 ∈ ρ(L).

Proof. The Dirichlet-Laplacian has maximal Lp-regularity on the layer. This
follows by an argument from 1997 by Hieber and Prüss [14] in Rn which can
be adapted to the layer case as described in [4, Remark 3.7].

The Stokes operator enjoys the property of maximal regularity on the
layer, since the Helmholtz decomposition exists, and maximal regularity fol-
lows by [10]. The off-diagonal entries can be dealt with by first solving for v
and then substituting this solution in the equation for w.

The invertibility of the Stokes operator has been proven in [1], while
the case of the Dirichlet Laplacian can be verified using standard arguments
using Fourier transformation and a reflection principle. �
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Proposition 5. There are ε = ε(1/ν) > 0 and δ = δ(ν) > 0 such that if
z∗ ∈ BUC1(Ω) with ‖z∗‖BUC1(Ω) < δ and ‖(ū, η, π̄)‖BUC(R+;BUC1(Ω̄)) +

‖∇2η,∇2φ‖∞ < ε, then problem (PL) has maximal Lp,µ-regularity on R+.

Proof. In virtue of Lemma 4, P̃qL is invertible and possesses maximal Lp,µ-

regularity. Thus, also P̃qL − ω possesses maximal Lp,µ-regularity for some
small ω > 0 depending on L. We use a standard argument of maximal reg-
ularity using relative perturbation, see e.g. [20, Proposition 1.5]. We need to
establish the estimate

‖P̃qS(z∗)z‖X0
≤ a‖z‖X0

+ b‖(P̃qL− ω)z‖X0
(9)

such that

bC0(L) < 1 and ω ≥ aM0(L)

1− bC0(L)
, (10)

where M0(L) and C0(L) are positive constants depending on the L. The
entries of the lower order perturbation S1 are controlled by

cν

(
‖(ū, η, π̄)‖BUC(R+;BUC1(Ω̄)) + ‖∇2η,∇2φ‖∞

)
< cνε,

where cν = max{1/ν, 1/ν2}. Thus, with the interpolation estimate, cf. [7,
Example III.2.2],

‖∇z‖X0
≤ C‖z‖X0

+ ‖P̃qLz‖X0
,

we can estimate the norm of S1z by

‖P̃qS1z‖X0
≤ cνε‖z,∇z‖X0

≤ cνε
(

(1 + C)‖z‖X0
+ ‖P̃qLz‖X0

)
≤ cνε

(
(1 + C + ω)‖z‖X0

+ ‖(P̃qL− ω)z‖X0

)
.

For the highest order perturbations S2 and S3(z∗) we calculate

‖P̃qS2z‖X0
≤ ε‖P̃qLz‖X0

≤ ε
(
ω‖z‖X0

+ ‖(P̃qL− ω)z‖X0

)
,

‖P̃qS3(z∗)z‖X0
≤ ν‖∇z∗‖∞‖P̃qLz‖X0

≤ νδ
(
ω‖z‖X0

+ ‖(P̃qL− ω)z‖X0

)
.

In total, we choose

a := ε(cν(1 + C + ω) + ω) + νδω,

b := ε(cν + 1) + νδ.
(11)

Hence, for ε, δ > 0 sufficiently small we obtain (10) and the maximal Lp,µ-

regularity follows for (P̃qL− ω) + P̃qS(z∗) + ω = P̃q(L+ S(z∗)). �

Remark 6. The smallness assumption on z∗ is indeed essential for maximal
regularity even in the case of the shifted operator P̃q(L + S(z∗)) + ω: For
fixed viscosity ν > 0, a bounded perturbation argument requires b as defined
in (11) to be suffciently small to preserve sectoriality. Hence, it is necessary
for both ε and δ to be sufficiently small.
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Lemma 7. There is an ε > 0 such that if

‖(ū, η, π̄)‖BUC(R+;BUC1(Ω̄)) + ‖∇2η,∇2φ‖∞ < ε,

then there holds σ(P̃q(L+ S1 + S2)) ⊂ C+ := Σπ/2.

Proof. Observe that S3(0) = 0. Thus, by Proposition 5 applied to z∗ = 0,

P̃q(L + S1 + S2) is sectorial. Therefore the invertibility of P̃qL implies the
assertion. �

5. Main result

We need to clarify what we mean by local and global stability of a given
Poiseuille flow.

Definition 8. We call a Poiseuille flow (ū, η, π̄) stable on [0, T0) of level δ > 0
if

‖(v0, α0)‖Xγ,µ < δ

implies that the problem (3) has a unique strong solution (v, α, p) on [0, T0)
with

(v, α) ∈ H1
p (0, T0;X0) ∩ Lp(0, T0;X1) ∩ C0(0, T0;Xγ,µ)

∇p ∈ Lp(0, T0;Lq(Ω)),

depending continuously on (v0, α0).

Secondly, we need a notion for global-in-time stability which quantifies
its asymptotic behavior for t→∞.

Definition 9. A Poiseuille flow (ū, η, π̄) is called exponentially stable of level
δ > 0 with rate β > 0, if

‖(v0, α0)‖Xγ,µ < δ

implies that Problem (3) has a unique strong solution (v, α, p) such that

etβ(v, α) ∈ H1
p (R+;X0) ∩ Lp(R+;X1) ∩ C0(R+;Xγ,µ),

etβ∇p ∈ Lp(R+;Lq(Ω)),

depending continuously on the initial data (v0, α0).

Permissible initial data

We impose the following condition on the exponents 1 < p, q < ∞ and the
temporal weight µ ∈ (1/p, 1].

1

p
+

1

q
< µ− 1

2
(I)

Then the identity (8) holds by [19, Theorem 4.2] for the half-space case which
can then be transfered to the layer via reflection.

Then Xγ,µ ↪→ BUC1(Ω̄), see [2, Theorem 4.12], and

H1
p (R+;Lq,σ(Ω)) ∩ Lp(R+;D(Aq)) ↪→ BUC(R+;BUC1(Ω̄)).
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Hence we may state our main theorems. We begin with local stability
for finite-time Poiseuille flows.

Main Theorem 1 (Local Stability). Assume the condition (I), let ν > 0 and
T > 0 be given. There are ε, δ > 0 and a T0 ∈ (0, T ) such that whenever
(ū, η, π̄) solves the Poiseuille problem (3) on [0, T ) with ‖(ū, η, π̄)‖BUC(R+;BUC1(Ω̄))+

‖∇2η,∇2φ‖∞ < ε, then (ū, η, π̄) is stable of level δ on [0, T0).

Proof. Maximal regularity on finite times of the linearization of (PQL) is a
direct consequence of Proposition 5. Let us now verify the regularity condi-
tions (A) and (F). For z ∈ X1 and z∗ ∈ Xγ,µ, we estimate similarly as in
(9),

‖P̃q(L+ S(z∗))z‖X0
≤ c‖z‖X1

<∞,

where c = c(z∗) > 0. For the right-hand side F we note that Lp(R+;Lq(Ω))∩
BUC(R+;BUC1(Ω̄)) is an algebra if equipped with the pointwise multipli-
cation. Therefore F (z) ∈ X0. The local Lipschitz assertions in (A) and (F)
are trivially fulfilled, since F and L+S(z) are polynomial in z. Then Propo-
sition 1 yields the unique existence of a solution to the perturbed Poiseuille
problem (PQL) on an interval [0, T0) for some T0 ∈ (0, T ) and hence stability
of (ū, η, π̄) on [0, T0) follows by definition. �

We remark that T0 depends only on the chosen perturbation and is
independent of the choice of the original flow.

Main Theorem 2 (Global Stability). Assume the condition (I) and ν > 0 be
given. Then, there are constants ε, δ, β > 0 such that every global strong solu-
tion (ū, η, π̄) to the Poiseuille problem (3) with ‖(ū, η, π̄)‖BUC(R+;BUC1(Ω̄)) +

‖∇2η,∇2φ‖∞ < ε is exponentially stable of level δ and rate β. Here, φ is
defined as in (4).

Proof. We want to apply Proposition 2. Maximal regularity of the shifted
linear problem with z∗ = 0 has already been proven in Proposition 5. Let us
now verify the regularity conditions (A) and (F). Observe that (A) and (F)
are fulfilled by the same argumentation as in Main Theorem 1. Since F and
L+ S(z) are polynomial in z, Fréchet differentiability follows as well.

By Lemma 7, the spectrum of the linearization

A0 = νP̃q(L+ S1 + S2)

is contained in the right half plane. Hence, Proposition 2 yields the existence
of a level δ > 0 such that the perturbed flow in (PQL) has a unique global
solution for initial data ‖(v0, α0)‖Xγ,µ < δ which decays exponentially with
rate β > 0. �

By the smoothing effects of parabolic equations, further regularity fol-
lows directly from Angenent’s Trick, Proposition 3.

Main Theorem 3 (Regularity). Let T > 0 or T = ∞ and let (v, α,∇p)
be a solution to the perturbed Poseuille problem as obtained by either Main
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Theorem 1 or 2. Then (v, α,∇p) is real analytic with values in X1 on [0, T )
and for k ∈ N it holds

tk[
d

dt
]k(v, α,∇p) ∈ Hk+1

p,µ (0, T ;X0) ∩Hk
p,µ(0, T ;X1)×Hk

p,µ(0, T ;Lq(Ω)).

Employing scaling techniques jointly in time and space, it is possible to
show via maximal regularity and the implicit function theorem that (v, α,∇p)
are real analytic in (0, T )×Ω; see [20, Section 5] for parabolic problems, and
specifically for a Navier-Stokes problem [22].
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