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Abstract

We establish a Liouville type result for a backward global solution to the Navier-
Stokes equations in the half plane with the no-slip boundary condition. No assump-
tions on spatial decay for the vorticity nor the velocity field are imposed. We study
the vorticity equations instead of the original Navier-Stokes equations. As an appli-
cation, we extend the geometric regularity criterion for the Navier-Stokes equations
in the three-dimensional half space under the no-slip boundary condition.

1 Introduction

In this paper we study a backward solution to the Navier-Stokes equations in the half
plane

∂tu+ div (u⊗ u)−∆u+∇p = 0, div u = 0 in (−∞, 0)× R2
+ (1.1)
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subject to the no-slip boundary condition

u = 0 on (−∞, 0)× ∂R2
+. (1.2)

Here R2
+ = {(x1, x2) ∈ R2 | x2 > 0}, and u = u(t, x) = (u1(t, x), u2(t, x)), p = p(t, x)

denote the velocity field, the pressure field, respectively. We use the standard notation for
derivatives; ∂t = ∂/∂t, ∂j = ∂/∂xj, ∆ =

∑2
j=1 ∂

2
j , div u =

∑2
j=1 ∂juj, and (u⊗u)1≤i,j≤2 =

(uiuj)1≤i,j≤2.

We are interested in the Liouville problem for (1.1) - (1.2), that is, the nonexistence
of nontrivial bounded global solutions to (1.1) - (1.2). As is well known, in the study
of evolution equations the Liouville problem for bounded backward solutions plays an
important role in obtaining an a priori bound of forward solutions through a suitable
scaling argument called a blow-up argument. For example, the reader is referred to
[11] for semilinear parabolic equations, to [21, 29] for the axisymmetric Navier-Stokes
equations (see also [7, 8] for a different approach), to [16, 12] for a geometric regularity
criterion to the three-dimensional Navier-Stokes equations, and to a recent result [1] for
the Stokes semigroup in L∞ spaces.

This paper is particularly motivated by [16, 12], where (1.1) - (1.2) is naturally derived
from a blow-up argument for the three-dimensional Navier-Stokes equations in the half
space. Indeed, if one imposes a uniform continuity on the alignment of the vorticity direc-
tion, the blow-up limit of the three-dimensional (Navier-Stokes) flow must be a nontrivial
bounded two-dimensional flow, and the problem is essentially reduced to the analysis of
(1.1) - (1.2). If, in addition, one assumes that the possible blow-up is type I, then the
limit flow is not allowed to be a constant in time. Thus the resolution of the Liouville
problem is a crucial step to reach a contradiction. From this systematic argument we can
exclude the possibility of type I blow-up for the original three-dimensional flows under a
regularity condition on the vorticity direction.

Recently the paper [16] successfully completes the above argument when the velocity
field satisfies the perfect slip boundary condition, but the problem was remained open
for the case of the no-slip boundary condition, which is physically more relevant. In this
paper we prove a Liouville type theorem for (1.1) - (1.2) under some conditions on the
velocity field u, the pressure field p, and the vorticity field ω = ∂1u2 − ∂2u1. Our result is
useful enough to settle the problem left open in [16]; see Theorem 1.2 below. The details
on this geometric regularity criterion will be discussed in Section 4.

When one discusses the Liouville problem the choice of function spaces is of course a
crucial issue. Indeed, if u solves (1.1) - (1.2) and decays fast enough in time and space then
it is easy to conclude that u is identically zero by a standard energy inequality. However,
in view of application to the geometric regularity criterion, it is important to establish a
Liouville type result within the framework of spatially nondecaying solutions. We should
recall here that there are nontrivial shear flows whose velocity fields are bounded and
decaying in time as t → −∞, while the pressure fields grow linearly at spatial infinity;
see [30, 12], and see also (4.3) below. The appearance of the time-decaying shear flows is
due to both the presence of the nontrivial boundary and the no-slip boundary condition
in (1.1) - (1.2). Indeed, if we consider the whole space case or if we replace (1.2) by the
perfect slip boundary condition, ∂2u1 = u2 = 0 on ∂R2, then such kind of flows does not
exist. We note that these shear flows also solve the Stokes equations (i.e. nonlinear term
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is absent). Thus, even for the linearized problem, we need to impose some assumptions
on the spatial growth of the pressure field to obtain a Liouville theorem. In fact, for the
Stokes equations it is recently shown in [19] that any nontrivial bounded backward solution
has to be a shear flow. Especially, the result of [19] gives a complete characterization of
bounded backward solutions for the linear problem.

On the other hand, for the full Navier-Stokes equations there seems to be still few
results on the Liouville type problem even in the case of the half plane. The crucial dif-
ficulty is that, though the vorticity field satisfies the heat-transport equations, maximum
principle is no longer a useful tool to obtain an a priori bound of the vorticity field. In-
deed, the no-slip boundary condition on the velocity field is in general a source of vorticity
on the boundary, and maximum principle does not provide useful information about this
vorticity production on the boundary. This is contrasting with the case of the whole
plane or of the perfect slip boundary condition, where there is no vorticity production
near the boundary and maximum principle is directly applied to derive an a priori bound
of the vorticity field. Although the analysis of the vorticity equations is a core part also
in the proof of our Liouville theorem, the key idea to overcome the difficulty is to use the
boundary condition on the vorticity field, rather than maximum principle.

Roughly speaking, our Liouville theorem requires four kinds of assumptions. The first
one is a uniform bound on the velocity field including their derivatives. The second one
is on a structure of the pressure field, which is essential to exclude the shear flows in
[30, 12] but is a natural requirement in order to restrict our solutions to mild solutions,
i.e., solutions to the integral equations associated with (1.1) - (1.2). The third one is the
type I temporal decay of the velocity field as t→ −∞. The last one is the nonnegativity
of the vorticity field. Precisely, the main result of this paper is stated as follows.

Theorem 1.1. Let (u, p) be a solution to (1.1)-(1.2) satisfying the following conditions.

(C1) sup
−∞<t<0

(
∥u(t)∥C2+µ + ∥∂tu(t)∥Cµ

)
<∞ for some µ ∈ (0, 1).

(C2) p = pF + pH , where pF (t) is the solution to (2.3) in Proposition 2.1 with F =
−u(t) ⊗ u(t) and pH(t) is the solution to (2.6) in Proposition 2.2 with g = ω(t)|x2=0,
respectively.

(C3) sup
−∞<t<0

(−t)1/2∥u(t)∥∞ <∞.

(C4) ω ≥ 0 in (−∞, 0)× R2
+, where ω = ∂1u2 − ∂2u1 is the vorticity field.

Then u is identically zero.

Here ∥ ·∥C2+µ and ∥ ·∥Cµ denote the norms of the Hölder spaces (the definitions are stated
in the end of this section), and ∥ · ∥∞ stands for the usual sup norm in the x variables.

The condition (C3) in Theorem 1.1 is compatible with the type I blow-up assumption
for forward solutions. The sign condition (C4) on the vorticity field is a rather strong
requirement at least in the class of spatially decaying solutions. Indeed, if there is a time
t such that supx1

|u1(t, x1, x2)| → 0 as x2 → ∞ then it is not difficult to see u = 0 even
when (C3) is absent; see [12, Theorem 3.3]. However, in the framework of nondecaying
solutions the situation is different and becomes complicated. We note that, as is observed
in [12], there is a shear flow satisfying all of (C1), (C3), and (C4).
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The key idea of the proof of Theorem 1.1 is to focus on the velocity field formally
defined by the Biot-Savart law:

v(t, x) :=
1

2π

∫
R2
+

((x− y)⊥

|x− y|2
− (x− y∗)⊥

|x− y∗|2
)
ω(t, y) dy, x⊥ = (−x2, x1), y∗ = (y1,−y2).

(1.3)
We note that v coincides with u when u and ω decay fast enough at spatial infinity. By
formally taking the boundary trace of v1 we observe that

v1(t, x1, 0) =
1

π

∫
R2+

y2
(x1 − y1)2 + y22

ω(t, y) dy. (1.4)

Hence, if v1 satisfies the no-slip boundary condition then the assumption (C4) implies
ω = 0, which leads to u = 0 by the Liouville theorem for bounded harmonic functions.

In order to justify the above formal argument we need to prove the following two
claims:

Claim 1: The integral representation of the right-hand side of (1.3) is well-defined. In
other words, the vorticity field has an enough spatial decay so that the integral in (1.3)
converges.

Claim 2: The tangential component v1 satisfies the no-slip boundary condition.

Both of two claims are far from trivial, for we have to start from the spatially non-
decaying data, and the right-hand side of (1.4) is highly nonlocal. To show Claim 1 we
make use of the type I temporal decay of u assumed in (C3). In fact, since (C3) is a
scaling invariant bound, by applying the result of [6] or [27] we can establish the Gaussian
pointwise bound of the Green function for the heat-transport operator ∂t−∆+u ·∇ with
the Neumann boundary condition. This pointwise estimate of the Green function leads
to a polynomial decay of the vorticity field as x2 → ∞, which makes the integral of (1.3)
well-defined. The key ingredient of the proof of Claim 2 is the boundary condition on the
vorticity field. Indeed, combined with a calculation based on the integration by parts, the
vorticity boundary condition yields ∂tv1(t, x1, 0) = 0 for −∞ < t < 0 and x1 ∈ R, as is
already observed in [24] in the setting of spatially decaying solutions. Then the no-slip
boundary condition for v1 is a consequence of the convergence limt→−∞ v1(t, x1, 0) = 0,
which can be verified from the time decay condition (C3) and the polynomial decay of
the vorticity field established in Claim 1.

As an application of Theorem 1.1, we can extend the geometric regularity criterion in
[16] for the three-dimensional Navier-Stokes equations in the half space to the case of the
no-slip boundary condition.

Theorem 1.2. Let (u, p) be a spatially bounded mild solution to the Navier-Stokes equa-
tions (4.1)-(4.2) in (0, T )× R3

+. Assume that the possible blow-up of u is type I, i.e.

sup
0<t<T

(T − t)
1
2∥u(t)∥∞ <∞.

Let d be a positive number and let η be a nondecreasing continuous function on [0,∞)
satisfying η(0) = 0. Assume that η is a modulus of continuity in the x variables for the
vorticity direction ξ = ω/|ω|, in the sense that

|ξ(t, x)− ξ(t, y)| ≤ η(|x− y|) for (t, x), (t, y) ∈ Ωd, (CA)
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where Ωd = {(t, x) ∈ (0, T )× R3
+ | |ω(x, t)| > d}. Then u is bounded up to t = T .

The condition (CA) is called a “continuous alignment” condition. This kind of ge-
ometric condition on the vorticity direction was firstly given in [9] for a finite energy
solution in R3 with H1 initial data. In [9] the modulus η is taken as η(σ) = Aσ with some
constant A > 0, while the type I condition is not needed there. The condition in [9] was
relaxed in [5], where η is allowed to be η(σ) = Aσ1/2; see [16] for further references on the
related results. A corresponding result to [5] for slip boundary conditions is established
in [3], where η(σ) = Aσ1/2 in (CA). However, under the no-slip boundary condition the
regularity criterion, so far obtained in [4], needs an extra assumption that the boundary
integral of the normal derivative of the square of the vorticity is sufficiently small. As
far as the authors know, the present paper gives the first contribution to the case of the
no-slip boundary condition under the same assumption to the whole space. This is rather
surprising since the geometric regularity criterion is still valid even if the vorticity is cre-
ated from the boundary because of the no-slip boundary condition. As in [16], the proof
of Theorem 1.2 is based on a blow-up argument.

Before concluding this section, we introduce Banach spaces with nondecaying func-
tions. Let Ω be a domain in Rn, n ∈ N. Then, for k ∈ N ∪ {0} and µ ∈ (0, 1) the spaces
BC(Ω), Ck(Ω), and Ck+µ(Ω) are respectively defined by

BC(Ω) =
{
f ∈ C(Ω) | ∥f∥∞ = sup

x∈Ω
|f(x)| <∞

}
,

Ck(Ω) =
{
f ∈ BC(Ω) | ∇αf ∈ BC(Ω), |α| ≤ k, ∥f∥Ck =

∑
|α|≤k

∥∇αf∥∞ <∞
}
,

Ck+µ(Ω) =
{
f ∈ Ck(Ω) |

∥f∥Ck+µ = ∥f∥Ck +
∑
|α|=k

sup
x,y∈Ω, x ̸=y

|∇αf(x)−∇αf(y)|
|x− y|µ

<∞
}
.

Let us also introduce the BMO spaces as follows.

BMO(Rn) =
{
f ∈ L1

loc(Rn) | ∥f∥BMO = sup
B

1

|B|

∫
B

|f − AvgBf | dx <∞
}
,

BMO(Ω) =
{
f ∈ L1

loc(Ω) | there is g ∈ BMO(Rn) such that f = g a.e. in Ω,

∥f∥BMO = inf{∥g∥BMO | g ∈ BMO(Rn), f = g a.e. in Ω}
}
.

In the definition of ∥·∥BMO the supremum is taken over all ball B in Rn, |B| is the volume
of B, and AvgBf = |B|−1

∫
B
f dx.

This paper is organized as follows. In Section 2 we consider the Stokes equations
with a inhomogeneous term and derive the boundary condition on the vorticity field. We
also obtain the integral equations for the vorticity field, which is useful to estimate the
vorticity field directly. Section 3 is the core part of this paper, and we study (1.1) - (1.2)
under the conditions of Theorem 1.1. To this end we establish a temporal decay estimate
in Section 3.1 and a spatial decay estimate in Section 3.2. Claim 1 and Claim 2 in this
section are respectively stated as Lemma 3.1 and Lemma 3.2. These are proved in Section
3.3, which completes the proof of Theorem 1.1. Finally, as an application of Theorem 1.1,
we prove Theorem 1.2 in Section 4.
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2 Vorticity boundary condition for the Stokes flows

In this section we consider the Stokes equations

∂tu−∆u+∇p = divF, div u = 0 in (−L, 0)× R2
+ (2.1)

subject to the no-slip boundary condition

u = 0 on (−L, 0)× ∂R2
+. (2.2)

The aim of this section is to derive the boundary condition on the vorticity field

ω = −∇⊥ · u, ∇⊥ = (∂2,−∂1)⊤.

If the flow possesses enough spatial decay then the vorticity boundary condition can be
derived from the Biot-Savart law (e.g. [24]). Here we give an alternative derivation of the
vorticity boundary condition in order to deal with nondecaying flows. The derivation is
closely related with the structure of the pressure field. As is well-known, by acting the
div operator in (2.1) the pressure field is recovered as a solution to the Poisson equations
with the inhomogeneous Neumann boundary condition. With this in mind we start from

Proposition 2.1. Assume that F = (Fij)1≤i,j≤2 ∈ (C2(R2
+))

2×2, Fij = ∂2Fij = 0 on ∂R2
+

for each i, j. Then there is a unique (up to a constant) solution pF ∈ BMO(R2
+) to{

∆pF = div divF in R2
+,

∂2pF = 0 on ∂R2
+,

(2.3)

such that

∥pF∥BMO ≤ C∥F∥∞, ∥∇pF∥Cµ ≤ C∥F∥C1+µ , 0 < µ < 1. (2.4)

Proof. As usual, let us introduce the even extension: p̃F (x) = pF (x) for x2 ≥ 0 and
p̃F (x) = pF (x

∗) for x2 < 0. The same extension is introduced also for F11 and F12, while
the odd extension is applied for F12 and F21. We denote by F̃ the tensor extended in this
manner. Then (2.3) is reduced to the Poisson equation ∆p̃F = div div F̃ in R2 by the
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assumption Fij = ∂2Fij = 0 on ∂R2
+. Its solution is written as p̃F = −div div (−∆R2)−1F̃ ,

where the operator (−∆R2)−1 is defined as the convolution with the Newton potential in
R2. It is well known that div div (−∆R2)−1 defines a singular integral operator, and hence
it is bounded in BMO(R2), and ∇div div (−∆R2)−1 is bounded from C1+µ(R2) to Cµ(R2),
0 < µ < 1. Thus (2.4) holds. The uniqueness is a consequence of the classical Liouville
theorem for harmonic functions in R2. The proof is complete.

In order to recover the no-slip boundary condition on the velocity field we need to
introduce the harmonic pressure field. As a preliminary, let us recall some results on
the fractional power of the Laplace operator −∂21 . As is well known, −∂21 is realized as
a sectorial operator in BC(R) (cf. [23]), and hence its fractional power (−∂21)1/2 is also
sectorial in BC(R). The characterization of the interpolation spaces as in [23, Section
3.1.3] implies that

C1+µ(R) ↪→ D((−∂21)
1
2 ) for all µ ∈ (0, 1), (2.5)

where D((−∂21)1/2) is the domain of (−∂21)1/2 in BC(R). Note that the semigroup gener-
ated by (−∂21)1/2 is nothing but the Poisson semigroup whose kernel is explicitly described.

Proposition 2.2. Assume that g ∈ C1+µ(R) for some µ ∈ (0, 1). Then there is a unique
(up to a constant) solution pH ∈ L1

loc(R2
+) to{

∆pH = 0 in R2
+,

∂2pH = ∂1g on ∂R2
+,

(2.6)

such that

sup
x∈R2

+

x2|∇pH(x)| ≤ C∥g∥∞, ∥∇pH∥Cµ′ ≤ C∥g∥C1+µ , 0 < µ′ < µ. (2.7)

Moreover, it follows that

lim
x2↓0

∂1pH(x) = (−∂21)
1
2 g(x1) in BC(R). (2.8)

Remark 2.3. In Proposition 2.2 the weight estimate in (2.7) is essential in view of the
uniqueness of solutions. In particular, if one tries to avoid the Poiseuille type flows as in
[12] it is important to impose suitable conditions on the behavior of the harmonic pressure
at spatial infinity.

Proof of Proposition 2.2. The solution pH is constructed so as to satisfy the representation

∇pH(x) = −
∫ ∞

0

(
∇∂1e−(x2+y2)(−∂2

1)
1
2 g
)
(x1) dy2. (2.9)

Indeed, if g is compactly supported then pH is given by pH = −
∫∞
0
∂1e

−(x2+y2)(−∂2
1)

1/2
g dy2,

where the integral converges absolutely. Then we modify pH by adding a constant so that
the condition pH(0) = 0 holds and both (2.6) and (2.9) are satisfied. We denote this
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modified solution by pH(g). The straightforward calculation of the Poisson semigroup
yields that

∥∇ke−x2(−∂2
1)

1
2 g∥L∞

x1
≤ Cx−k

2 ∥g∥∞, k = 0, 1, 2, (2.10)

and

∥∇pH(g)∥Cµ′ ≤ C∥g∥C1+µ , 0 < µ′ < µ < 1. (2.11)

Then for general g ∈ C1+µ(R) we approximate g by gχR with a smooth cut-off χR and
take the limit of pH(gR) at R → ∞. Since gR → g in C1(K) for each compact set
K ⊂ R and supR>0 ∥gR∥C1+µ < ∞, it is not difficult to show that there is a subsequence

of {pH(gR)}R>0 which converges to some pH in C1(K ′) for each compact set K ′ ⊂ R2
+.

It is easy to see that pH solves (2.6) and also satisfies (2.9) by the Lebesgue convergence
theorem. The estimate (2.7) is a consequence of (2.10) and (2.11). To show (2.8) we
observe from (2.9) that

∂1pH(x) =

∫ ∞

0

(−∂21)e−(x2+y2)(−∂2
1)

1
2 g dy2 = −

∫ ∞

0

(−∂21)
1
2∂y2

(
e−(x2+y2)(−∂2

1)
1
2 g
)
dy2

= (−∂21)
1
2 e−x2(−∂2

1)
1
2 g, for x2 > 0.

Hence (2.8) follows from (2.5). The uniqueness of solutions to (2.6) is again reduced to the
classical Liouville theorem for harmonic functions in R2 by a suitable reflection argument.
The details are omitted here. The proof is now complete.

We are now in position to derive the vorticity boundary condition for nondecaying
flows.

Lemma 2.4. Assume that F = (Fij)1≤i,j≤2 ∈ C((−L, 0) × (C2(R2
+))

2×2), Fij(t) =
∂2Fij(t) = 0 on (−L, 0) × ∂R2

+ for each i, j. Let (u, p) be the solution to (2.1)-(2.2)
such that

(C1) sup
−L<t<0

(
∥u(t)∥C2+µ + ∥∂tu(t)∥Cµ

)
<∞ for some µ ∈ (0, 1),

(C2) p = pF + pH , where pF (t) is the solution to (2.3) in Proposition 2.1 with F = F (t)
and pH(t) is the solution to (2.6) in Proposition 2.2 with g = ω(t)|x2=0, respectively.

Then ω satisfies

∂tω −∆ω = −∇⊥ · divF in (−L, 0)× R2
+ (2.12)

with

∂2ω + (−∂21)
1
2ω = −∂1pF on (−L, 0)× ∂R2

+. (2.13)

Proof. It is straightforward to see (2.12). To show (2.13) we first recall the equality
−∆u = ∇⊥ω and then (2.1) yields ∂2ω = −∂tu1 − ∂1p + τ · divF for x2 > 0, where
τ = (1, 0)⊤. Thus we have

lim
x2↓0

∂2ω = − lim
x2↓0

∂tu1 − lim
x2↓0

∂1pF − lim
x2↓0

∂1pH + lim
x2↓0

τ · divF

= −∂1pF |x2=0 − (−∂21)
1
2ω|x2=0 by (2.8).
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The proof is now complete.

Lemma 2.4 leads to the integral equation for the vorticity field, which is useful to
estimate the vorticity directly including near the boundary.

Let G(t, x) = (4πt)−1 exp
(
− |x|2/(4t)

)
be the two-dimensional Gaussian. Then for

each t > 0 we introduce the operator etB defined by

etBf = G(t) ∗ f +G(t) ⋆ f + Γ(t) ⋆ f, (2.14)

where

Γ(t) = 2

∫ ∞

0

(
∂21 + (−∂21)

1
2∂2

)
G(t+ τ) dτ (2.15)

with the notations

f ∗ h(x) =

∫
R2
+

f(x− y)h(y) dy, f ⋆ h(x) =

∫
R2
+

f(x− y∗)h(y) dy, y∗ = (y1,−y2).

For g ∈ C∞
0 (R) we set

etB(gδ∂R2
+
) =

∫
R
K(t, x, y)|y2=0g(y1) dy1,

where K(t, x, y) is the kernel of etB. Due to the pointwise estimate of K(t, x, y) in (3.10),
the term etB(gδ∂R2

+
) makes sense also for g ∈ L∞(R). The operator etB naturally arises

in the vorticity equations. Indeed, if f ∈ C∞
0 (R2

+) then e
tBf satisfies the (homogeneous)

vorticity equations (2.12)-(2.13), i.e., w(t) = e(t+L)Bf solves

∂tw−∆w = 0 in (−L, 0)×R2
+, ∂2w+ (−∂21)

1
2w = 0 on (−L, 0)× ∂R2

+, (2.16)

but with the initial data w(−L) = lim
t→−L

w(t) = f +Γ(0) ⋆ f in Lp(R2
+) for all 1 < p <∞;

see [24, Sections 3,5] for details. Note that Γ(0)⋆ is a singular integral operator. In
particular, we have ∥Γ(0) ⋆ f∥Lp ≤ C∥f∥Lp for all f ∈ Lp(R2

+). If f = −∇⊥ · u with
u ∈ C∞

0,σ(R2
+) then Γ(0) ⋆ f = 0 (see [24, Proposition 3.2]), hence in this case we recover

the initial condition w(−L) = f , as desired. For each t > 0 let us introduce the operator
T (t) : (L∞(R2

+))
2 → L∞(R2

+) as follows:

⟨T (t)v, f⟩L2 = ⟨v1, ∂2etBf⟩L2 − ⟨v2, ∂1etBf⟩L2 for all f ∈ L1(R2
+). (2.17)

Here ⟨, ⟩L2 denote the inner product of L2(R2
+). The operator T (t) is well-defined due to

the estimate ∥∇etBf∥L1 ≤ Ct−1/2∥f∥L1 by [24, Lemma 3.4] and the duality L1(R2
+)

∗ =
L∞(R2

+). In particular, we have

∥T (t)v∥∞ ≤ Ct−
1
2∥v∥∞, t > 0. (2.18)

Lemma 2.5. Assume that the conditions in Lemma 2.4 hold and divF ∈ (L∞(R2
+))

2.
Then ω satisfies the integral equation

ω(t) = T (t− s)u(s) +

∫ t

s

T (t− τ)divF (τ) dτ +

∫ t

s

e(t−τ)B(∂1pF (τ)δ∂R2
+
) dτ (2.19)

for −L < s < t < 0.
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Remark 2.6. There are several solution formulas for the velocity field of the Stokes flows
in the half space with the Dirichlet condition for example in [31, 34]. Ours differs from
those in the literature since it is a convenient form to represent the vorticity field.

Proof of Lemma 2.5. Take any ϕ(τ, x) ∈ C∞
0 ([s, t] × R2

+). Multiplying (2.12) by ϕ and
using the integration by parts, we observe that ω satisfies

⟨ω(t), ϕ(t)⟩L2 =

∫
R2
+

u(s) · ∇⊥ϕ(s) dx+

∫ t

s

∫
R2
+

divF · ∇⊥ϕ(τ) dx dτ

−
∫ t

s

∫
∂R2

+

(ϕ∂2ω − ω∂2ϕ)(τ) dx1 dτ +

∫ t

s

∫
R2
+

ω(∂τϕ+∆ϕ)(τ) dx dτ.

Fix R ≫ 1 and set ϕR(τ, x) := (χRe
(t−τ)Bψ)(x), where ψ ∈ C∞

0 (R2
+) and χR = χR(x) is a

nonnegative smooth cut-off function in R2 such that χR(x) = 1 if |x| ≤ R and χR(x) = 0
if |x| ≥ 2R. We may assume that ∥∇kχR∥∞ ≤ CR−k for k = 0, 1, 2. Then we set

⟨ω(t), ϕR(t)⟩L2 =

∫
R2
+

u(s) · ∇⊥ϕR(s) dx+

∫ t

s

∫
R2
+

divF · ∇⊥ϕR(τ) dx dτ

−
∫ t

s

∫
∂R2

+

(ϕR∂2ω − ω∂2ϕR)(τ) dx1 dτ +

∫ t

s

∫
R2
+

ω(∂τϕR +∆ϕR)(τ) dx dτ

:= I1 + I2 − I3 + I4.

As for I1, we have

I1 =

∫
R2
+

u(s) · ∇⊥(χRe
(t−s)Bψ) dx

=

∫
R2
+

(
u1(s)(∂2χR)e

(t−s)Bψ − u2(s)(∂1χR)e
(t−s)Bψ

)
dx

+

∫
R2
+

χR

(
u1(s)∂2e

(t−s)Bψ − u2(s)∂1e
(t−s)Bψ

)
dx. (2.20)

Thanks to [24, Lemma 3.4] and (C1) we have e(t−s)Bψ ∈ Lp(R2
+) for any 1 < p ≤ ∞, and

the first term of right-hand side of (2.20) converges to zero in the limit R → ∞. As for
the second term of (2.20), we observe from [24, Lemma 3.4] that ∥∇e(t−s)Bψ∥L1 ≤ C(t−
s)−1/2∥ψ∥L1 . Hence the Hölder inequality implies that u1(s)∂2e

(t−s)Bψ − u2(s)∂1e
(t−s)Bψ

belongs to L1(R2
+) for t > s. Thus we have limR→∞ I1 = ⟨T (t − s)u(s), ψ⟩L2 by the

definition of T (t− s). Similarly, by the assumption divF ∈ (L∞(R2
+))

2 and by the Fubini

theorem, we have limR→∞ I2 = ⟨
∫ t

s
T (t− τ)divF (τ) dτ, ψ⟩L2 .
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As for I3, we recall the vorticity boundary condition (2.13). Then it follows that

I3 =

∫ t

s

∫
∂R2

+

(ϕR∂2ω − ω∂2ϕR)(τ) dx1 dτ

=

∫ t

s

∫
∂R2

+

{
− χR

(
∂1pF (τ) + (−∂21)

1
2ω

)
e(t−τ)Bψ

− ω
(
χR∂2e

(t−τ)Bψ + (∂2χR)e
(t−τ)Bψ

)}
dx1 dτ

= −
∫ t

s

∫
∂R2

+

χR

(
∂1pF (τ)e

(t−τ)Bψ + ω(−∂21)
1
2 e(t−τ)Bψ + ω∂2e

(t−τ)Bψ
)
dx1 dτ

−
∫ t

s

∫
∂R2

+

(∂2χR)ωe
(t−τ)Bψ dx1 dτ.

Since (−∂21)
1
2 e(t−τ)Bψ + ∂2e

(t−τ)Bψ = 0 on ∂R2
+, we obtain

lim
R→∞

I3 = − lim
R→∞

∫ t

s

∫
∂R2

+

χR∂1pF (τ)e
(t−τ)Bψ dx1 dτ = −⟨

∫ t

s

e(t−τ)B∂1pF (τ)δ∂R2
+
, ψ⟩L2 .

Finally, we consider I4. It is easy to check that

∂τϕR +∆ϕR = (∆χR)e
(t−τ)Bψ + 2∇χR · ∇e(t−τ)Bψ.

Since ω is bounded in space and time, by using ∥∇kχR∥∞ ≤ CR−k for k = 1, 2 and the
estimate of e(t−τ)Bψ the term I4 is shown to converge to zero as R → ∞. Combining the
above calculations, we have

lim
R→∞

⟨ω(t), ϕR(t)⟩L2 = lim
R→∞

[I1 + I2 − I3 + I4]

= ⟨T (t− s)u(s) +

∫ t

s

T (t− τ)divF (τ) dτ +

∫ t

s

e(t−τ)B
(
∂1pF (τ)δ∂R2

+

)
dτ, ψ⟩L2

Note that ϕR(t) = limτ→t χRe
(t−τ)Bψ = χR(ψ + Γ(0) ⋆ ψ). By the definition of Γ(0) we

have (∂2+(−∂21)1/2)Γ(0) ⋆ψ = 0 in R2
+. Then, together with the divergence free property

of u and u = 0 on ∂R2
+, we observe from the integration by parts and ∥Γ(0) ⋆ ψ∥Lp +

∥∂1(−∂21)−
1
2Γ(0) ⋆ ψ∥Lp ≤ C∥ψ∥Lp that

lim
R→∞

⟨u1, χR∂2Γ(0) ⋆ ψ⟩L2 = − lim
R→∞

⟨u1, χR(−∂21)
1
2Γ(0) ⋆ ψ⟩L2

= − lim
R→∞

⟨∂1u1, χR∂1(−∂21)−
1
2Γ(0) ⋆ ψ⟩L2

= − lim
R→∞

⟨u2, χR∂1(−∂21)−
1
2∂2Γ(0) ⋆ ψ⟩L2

= lim
R→∞

⟨u2, χR∂1Γ(0) ⋆ ψ⟩L2 ,

that is, limR→∞⟨ω(t), χRΓ(0) ⋆ ψ⟩L2 = 0, again from the integration by parts for ω =
∂1u2 − ∂2u1. Thus it follows that

lim
R→∞

⟨ω(t), ϕR(t)⟩L2 = lim
R→∞

⟨ω(t), χRψ⟩L2 + lim
R→∞

⟨ω(t), χRΓ(0) ⋆ ψ⟩L2

= lim
R→∞

⟨ω(t), χRψ⟩L2 = ⟨ω(t), ψ⟩L2 .
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Since ψ is arbitrary the proof is now complete.

As an immediate consequence of Lemmas 2.4 and 2.5, we obtain the vorticity equations
for the full nonlinear problem (1.1)-(1.2).

Proposition 2.7. Let (u, p) be the solution to (1.1)-(1.2) such that

(C1) sup
−∞<t<0

(
∥u(t)∥C2+µ + ∥∂tu(t)∥Cµ

)
<∞ for some µ ∈ (0, 1),

(C2) p = pF + pH , where pF (t) is the solution to (2.3) in Proposition 2.1 with F =
−u(t) ⊗ u(t) and pH(t) is the solution to (2.6) in Proposition 2.2 with g = ω(t)|x2=0,
respectively.

Then ω satisfies

∂tω −∆ω = ∇⊥ · div (u⊗ u) in (−∞, 0)× R2
+ (2.21)

with

∂2ω + (−∂21)
1
2ω = −∂1pF on (−∞, 0)× ∂R2

+. (2.22)

Moreover, ω satisfies the integral equation (2.19) for −∞ < s < t < 0.

3 Liouville type result

In this section we prove Theorem 1.1. As stated in the introduction, the key idea of the
proof is to derive the spatial decay of vorticity fields in the vertical direction and to verify
the relation of the Biot-Savart law between the velocity and the vorticity. More precisely,
the core parts of the proof are the following two lemmas.

Lemma 3.1. Under the conditions (C1), (C2), and (C3) of Theorem 1.1 the vorticity ω
satisfies

sup
(t,x)∈(−∞,0)×R2

+

x1+θ
2 |ω(t, x)| <∞ for all θ ∈ (0, 1). (3.1)

Lemma 3.2. Under the conditions (C1), (C2), and (C3) of Theorem 1.1 the velocity u
is represented as

u(t, x) =
1

2π

∫
R2
+

((x− y)⊥

|x− y|2
− (x− y∗)⊥

|x− y∗|2
)
ω(t, y) dy. (3.2)

Here x⊥ = (−x2, x1)⊤ and y∗ = (y1,−y2)⊤.

Proof of Theorem 1.1. We give a proof of Theorem 1.1 by admitting Lemmas 3.1 and 3.2.
The proofs of these lemmas will be postponed to the latter sections. From (3.1) and (3.2)
we observe that

0 = lim
x2↓0

u1(t, x) =
1

π

∫
R2+

y2
(x1 − y1)2 + y22

ω(t, y) dy, (3.3)

by the Lebesgue convergence theorem. Then (C4) implies that the integrand of the right-
hand side of (3.3) has to be zero, that is, ω(t, x) = 0 in (−∞, 0)×R2

+. Then for all t the
velocity u(t) is harmonic and bounded in R2

+ and vanishes on ∂R2
+. Hence u must be zero

by the classical Liouville theorem for harmonic functions. The proof is now complete.
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3.1 Temporal decay of vorticity

The main result of this section is the following lemma.

Lemma 3.3. Under the conditions (C1), (C2), and (C3) of Theorem 1.1 the vorticity ω
satisfies

∥ω(t)∥∞ ≤ C(−t)−1| log(−t)|2, −∞ < t < −2, (3.4)

∥(−∂21)
1
2ω(t)∥∞ ≤ C(−t)−

3
2 | log(−t)|4, −∞ < t < −2. (3.5)

Lemma 3.3 is proved by estimating the integral equations for the vorticity field in
Proposition 2.7. To this end we first establish the L∞ − L∞ estimates for the operators
in (2.19).

Lemma 3.4. Assume that v ∈ (C(R2
+))

2 with v = 0 on ∂R2
+ and g ∈ BC(R). Then

∥(−∂21)
1
2T (t)v∥∞ ≤ Ct−1∥v∥∞, (3.6)

∥(−∂21)
k
2T (t)∂iv∥∞ ≤ Ct−1− k

2 ∥v∥∞, k = 0, 1, i = 1, 2, (3.7)

∥(−∂21)
k
2 etB(∂l1gδ∂R2

+
)∥∞ ≤ Ct−

1+k+l
2 ∥g∥∞, k, l = 0, 1. (3.8)

Moreover, if F = u⊗ u with u ∈ (C2(R2
+))

2 satisfying div u = 0 in R2
+ and u = 0 on ∂R2

+

then

∥(−∂21)
1
2T (t)divF∥∞ ≤ C∥u∥∞ min{t−1∥ω∥∞, t−

1
2∥∇ω∥∞}. (3.9)

Proof. As in [24, Proposition 5.1], using the Fourier transform, we can derive the pointwise
estimate for the kernel K(t, x, y) of etB such as

|(−∂21)
k
2 ∂l1∂

j
2K(t, x, y)|

≤ Ct−
k+l+2

2

(
1 +

|(x1 − y1)/
√
t|2+k+l

log(e+ |(x1 − y1)/
√
t|2)

+ |(x2 − y2)/
√
t|2+k+l+j

)−1

. (3.10)

Since etB commutes with ∂1, the estimates (3.6) and (3.8) are immediate from (3.10). As
for (3.7), we give a proof only for the case k = 1 and i = 2. The other cases are proved
in the same manner. By the definition of T (t) in (2.17) we have

⟨(−∂21)
1
2T (t)∂2v, f⟩L2 = ⟨∂2v1, ∂2(−∂21)

1
2 etBf⟩L2 − ⟨∂2v2, ∂1(−∂21)

1
2 etBf⟩L2

= −⟨v1, ∂22(−∂21)
1
2 etBf⟩L2 + ⟨v2, ∂1∂2(−∂21)

1
2 etBf⟩L2 .

Here we have used the integration by parts and the boundary condition v = 0 on ∂R2
+.

Since (3.10) implies ∥∂22(−∂21)
1
2 etBf∥1+∥∂22(−∂21)

1
2 etBf∥L1 ≤ Ct−3/2∥f∥L1 , we obtain (3.8)

by the duality argument. Finally we show (3.9). Set v = div F . Note that v vanishes on
the boundary by the assumption. Then again by the definition of T (t) we have

⟨(−∂21)
1
2T (t)divF, f⟩L2 = ⟨v1, ∂2(−∂21)

1
2 etBf⟩L2 − ⟨v2, ∂1(−∂21)

1
2 etBf⟩L2

= ⟨−∇⊥ · v, (−∂21)
1
2 etBf⟩L2

= ⟨u · ∇ω, (−∂21)
1
2 etBf⟩L2 = −⟨uω,∇(−∂21)

1
2 etBf⟩L2 .
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Here we have used the equality −∇⊥ · div (u ⊗ u) = u · ∇ω = ∇ · (uω). By using the

estimates ∥∇k(−∂21)
1
2 etBf∥L1 ≤ Ct−(1+k)/2∥f∥L1 for k = 0, 1, we obtain (3.9) by the

duality argument. The proof is now complete.

Proof of Lemma 3.3. By Proposition 2.7 the vorticity ω satisfies the integral equation
(2.19) for −∞ < s < 2t < t < 0 with F (t) = −u(t)⊗ u(t). We set

I(t, s) = T (t− s)u(s), II(t, s) =

∫ t

s

T (t− τ)divF (τ) dτ,

III(t, s) =

∫ t

s

e(t−τ)B(∂1pF (τ)δ∂R2
+
) dτ.

For I(t, s) we have from (2.18), (3.6), and (C3) that

∥(−∂21)
k
2 I(t, s)∥∞ ≤ C(t− s)−

1+k
2 ∥u(s)∥∞ ≤ C(t− s)−

1+k
2 (−s)−

1
2 → 0 as s→ −∞.

(3.11)

Next we consider the term II(t, s). When τ < t− 1/t2 we apply (3.7) and get

∥T (t− τ)divF (τ)∥∞ ≤ C(t− τ)−1∥u(τ)∥2∞ ≤ C(t− τ)−1(−τ)−1

by (C3), and we also have from (3.9) and (C3) that

∥(−∂21)
1
2T (t− τ)divF (τ)∥∞ ≤ C(t− τ)−1(−τ)−

1
2∥ω(τ)∥∞.

When t− 1/t2 ≤ τ < t we use (2.18), (3.6), and (3.9) to get

∥T (t− τ)divF (τ)∥∞ ≤ C(t− τ)−
1
2∥u(τ) · ∇u(τ)∥∞ ≤ C(t− τ)−

1
2 (−τ)−

1
2

and

∥(−∂21)
1
2T (t− τ)divF (τ)∥∞ ≤ C(t− τ)−

1
2∥u(τ)∥∞∥∇ω(τ)∥∞ ≤ C(t− τ)−

1
2 (−τ)−

1
2 .

Collecting these, for t < −2 we have arrived at

lim
s→−∞

∥II(t, s)∥∞ ≤ C

∫ t− 1
t2

−∞
(t− τ)−1(−τ)−1 dτ + C

∫ t

t− 1
t2

(t− τ)−
1
2 (−τ)−

1
2 dτ

≤ C(−t)−1 log(−t), (3.12)

and

lim
s→−∞

∥(−∂21)
1
2 II(t, s)∥∞ ≤ C

∫ t− 1
t2

−∞
(t− τ)−1(−τ)−

1
2∥ω(τ)∥∞ dτ + C(−t)−

3
2 . (3.13)

Finally we estimate III(t, s). To this end we recall that pF is the restriction of the
function −div div (−∆R2)−1F̃ on R2

+; see the proof of Proposition 2.1 for details and the

definition of F̃ . Then we decompose ∂1pF (τ) as

∂1pF (τ) =
3∑

j=1

∂1pF (τ),j = −
( ∫ 1

τ4

0

+

∫ τ4

1
τ4

+

∫ ∞

τ4

)
∂1div divG(θ) ∗ F̃ (τ) dθ.
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Here G(θ, x) is the two-dimensional Gaussian. Firstly we observe that

∥(−∂21)
k
2 e(t−τ)B(∂1pF (τ),1δ∂R2

+
)∥∞ ≤ C(t− τ)−

1
2
− kκ

2

∫ 1
τ4

0

θ−
1
2
− k(1−κ)

2 ∥div div F̃ (τ)∥∞ dτ

≤ C(t− τ)−
1
2
− kκ

2 (−τ)−2+2k(1−κ)

for k = 0, 1 and κ ∈ (0, 1), where we have applied (3.8) and the interpolation argument
using (−∂21)1/2 = (−∂21)κ/2(−∂21)(1−κ)/2 when k = 1. By taking κ close to 1 we thus obtain

∥
∫ t

−∞
(−∂21)

k
2 e(t−τ)B(∂1pF (τ),1δ∂R2

+
) dτ∥∞ ≤ C(−t)−

3
2 , k = 0, 1, −∞ < t < −2.

(3.14)

The estimate of ∂1pF (τ),3 is easily calculated as

∥(−∂21)
k
2 ∂1pF (τ),3∥∞ ≤ C

∫ ∞

τ4
θ−

3+k
2 dθ∥F̃ (τ)∥∞ ≤ C(−τ)−3, k = 0, 1.

Hence we have from (3.8),

∥
∫ t

−∞
(−∂21)

k
2 e(t−τ)B(∂1pF (τ),3δ∂R2

+
) dτ∥∞ ≤ C(−t)−

3
2 , k = 0, 1, −∞ < t < −2.

(3.15)

Now we consider the term related with ∂1pF (τ),2. By the definition of F̃ in Proposition
2.1 we take the even extension for u1 and the odd extension for u2. Each extension is
denoted by ũi. This extension leads to the odd extension ω̃ of the vorticity ω. Then
it is straightforward to see div F̃ = −ũ⊥ω̃ − ∇|ũ|2/2 with ũ⊥ = (−ũ2, ũ1)⊤, and thus,
div div F̃ = −div (ũ⊥ω̃)−∆|ũ|2/2. Hence we have

∂1pF (τ),2 =

∫ τ4

1
τ4

∂1divG(θ) dθ ∗ (ũ⊥ω̃)(τ) +
1

2

∫ τ4

1
τ4

∂1∆G(θ) dθ ∗ |ũ|2(τ)

=

∫ τ4

1
τ4

∂1divG(θ) dθ ∗ (ũ⊥ω̃)(τ) +
1

2
∂1G(τ

4) ∗ |ũ|2 − 1

2
G(τ−4) ∗ ∂1|ũ|2(τ).

Since ∂1|ũ|2 = 0 on ∂R2
+ we have ∥G(τ−4) ∗ ∂1|ũ|2∥L∞(∂R2

+) ≤ C(−τ)−2∥∂1|ũ|2∥C1 ≤
C(−τ)−2. Hence it follows that

∥∂1pF (τ),2∥L∞(∂R2
+) ≤ C∥ũ(τ)∥∞∥ω̃(τ)∥∞ log(−τ) + C(−τ)−2

≤ C∥ω(τ)∥∞(−τ)−
1
2 log(−τ) + C(−τ)−2. (3.16)

When τ < t− 1/t4 we have from (3.8) that

∥e(t−τ)B(∂1pF (τ),2δ∂R2
+
)∥∞ ≤ C(t− τ)−1

∫ τ4

1
τ4

θ−1∥F̃ (τ)∥∞ dθ ≤ C(t− τ)−1(−τ)−1 log(−τ),
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while (3.16) implies

∥(−∂21)
1
2 e(t−τ)B(∂1pF (τ),2δ∂R2

+
)∥∞ ≤ C(t− τ)−1

(
∥ω(τ)∥∞(−τ)−

1
2 log(−τ) + (−τ)−2

)
.

As for the case t− 1/t4 ≤ τ < t, we have for k = 0, 1,

∥(−∂21)
k
2 e(t−τ)B(∂1pF (τ),2δ∂R2

+
)∥∞ ≤ C(t− τ)−

1
2

∫ τ4

1
τ4

θ−1∥F̃ (τ)∥C2 dθ

≤ C(t− τ)−
1
2 log(−τ).

Combining the above three yields

∥
∫ t

−∞
e(t−τ)B(∂1pF (τ),2δ∂R2

+
) dτ∥∞ ≤ C(−t)−1| log(−t)|2, −∞ < t < −2, (3.17)

and

∥(−∂21)
1
2

∫ t

−∞
e(t−τ)B(∂1pF (τ),2δ∂R2

+
) dτ∥∞

≤ C

∫ t−1/t4

−∞
(t− τ)−1∥ω(τ)∥∞(−τ)−

1
2 log(−τ) dτ + C(−t)−

3
2 , −∞ < t < −2.

(3.18)

The estimates (3.11), (3.12), (3.14), (3.15), (3.17) imply (3.4), and the estimates (3.11),
(3.13), (3.14), (3.15), (3.18) together with (3.4) give (3.5). The proof is complete.

Remark 3.5. The proof of Lemma 3.3 implies that, from (3.4) and (3.16),

∥∂1pF (τ),2∥L∞(∂R2
+) ≤ C(−τ)−

3
2 | log(−τ)|3, −∞ < τ < −2.

Since it is easy to see ∥∂1pF (τ),i∥L∞(∂R2
+) ≤ (−τ)−3/2 for i = 1, 3, we have

∥∂1pF (τ)∥L∞(∂R2
+) ≤ C(−τ)−

3
2 | log(−τ)|3, −∞ < τ < −2. (3.19)

This estimate will be used later.

3.2 Spatial decay of vorticity - proof of Lemma 3.1

In this section we derive spatial decay of the vorticity field and complete the proof of
Lemma 3.1. The key idea is to regard (2.22) as the Neumann boundary condition ∂2ω = g
with the inhomogeneous term g = −(−∂21)1/2ω|x2=0−∂1pF . Then we use a representation
formula of the vorticity in terms of the fundamental solution for the heat-transport oper-
ator ∂t −∆+ ũ · ∇ in R2, whose precise pointwise estimate has already been established
by [6, 27]. Here ũ = (ũ1, ũ2)

⊤ is the extension of u to R2, where ũ1, ũ2 are the even, odd
extensions of u1, u2, respectively. Note that this extension preserves the divergence-free
condition when u2 = 0 on ∂R2

+. The scaling invariant assumption (C3) is essential in
establishing the spatial decay of the vorticity, for it leads to the global Gaussian estimate
for the fundamental solution. We start from the following lemma.
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Lemma 3.6. Under the conditions (C1), (C2), and (C3) of Theorem 1.1 the vorticity ω
is expressed as

ω(t) = Γu(t, s)ω(s)−
∫ t

s

Γu(t, τ)(g(τ)δ∂R2
+
) dτ, −∞ < s < t < 0, (3.20)

with g(τ) = −(−∂21)1/2ω(τ)|x2=0 − ∂1pF (τ). Here Γu(t, s) is the evolution operator defined
by

Γu(t, s)f =

∫
R2
+

(
Γũ(t, x; s, y) + Γũ(t, x; s, y

∗)
)
f(y) dy,

where Γũ(t, x; s, y) is the fundamental solution to the heat-transport equations

∂tw −∆w + ũ · ∇w = 0 in (−∞, 0)× R2. (3.21)

Moreover, it follows that

∥Γu(t, s)f∥p ≤ C(t− s)−
1
q
+ 1

p∥f∥q, −∞ < s < t < 0, 1 ≤ q ≤ p ≤ ∞, (3.22)

0 < Γũ(t, x; s, y) ≤ C1(t− s)−1 exp
(
− C2

|x− y|2

t− s

)
. (3.23)

Here C1 and C2 depend only on M = sup
−∞<t<0

(−t)1/2∥u(t)∥∞.

Remark 3.7. In (3.20) the term Γu(t, τ)(g(τ)δ∂R2
+
) is defined as

Γu(t, τ)(g(τ)δ∂R2
+
)(x) = 2

∫
R
Γũ(t, x; τ, y1, 0)g(τ, y1) dy1. (3.24)

Proof of Lemma 3.6. The existence of fundamental solutions to (3.21) is classical under
the assumption of (C1); cf. [13]. The estimate (3.22) is a consequence of [6, Theorem 1]
and the definition of Γu(t, s). As for (3.23), we have from [6, Theorem 3] that

Γũ(t, x; s, y) ≤
1

4π(t− s)
exp

(
− 1

4(t− s)

(
|x− y| −

∫ t

s

∥u(τ)∥∞ dτ
)2
+

)
. (3.25)

Here (α)+ = max{0, α} for α ∈ R. The condition (C3) yields∫ t

s

∥u(τ)∥∞ dτ ≤M

∫ t

s

(−τ)−
1
2 dτ ≤ 2M |t− s|

1
2 , M = sup

−∞<t<0
(−t)

1
2∥u(t)∥∞.

Hence if |x− y| ≥ 4(t− s)1/2 then (3.25) implies (3.23). On the other hand, if |x− y| ≤
4M(t− s)1/2 then again from (3.25) we have

Γũ(t, x; s, y) ≤
1

4π(t− s)
=

1

4π(t− s)
e

|x−y|2
t−s e−

|x−y|2
t−s ≤ e16M

2

4π(t− s)
e−

|x−y|2
t−s ,

which is the desired estimate. The positivity of Γũ(t, x; s, y) is a consequence of the strong
maximal principle and the details are omitted here. The representation (3.20) is derived
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from the fact that the equation ∂tω−∆ω+u ·∇ω = 0 in (−∞, 0)×R2
+ with the Neumann

boundary condition ∂2ω = g on ∂R2
+ is equivalent with the equation

∂tw̃ −∆w̃ + ũ · ∇w̃ = −2gδ∂R2
+

in (−∞, 0)× R2, (3.26)

where w̃ is the even extension of ω to R2. The proof is complete.

Proof of Lemma 3.1. By (C1), (3.5), and (3.19) the function g(t) = −(−∂21)1/2ω(t)|x2=0−
∂1pF (t) is estimated as

∥g(t)∥L∞(∂R2
+) ≤ C(−t)−

3−ϵ
2 −∞ < t < 0, ϵ ∈ (0, 1). (3.27)

The estimate (3.23) and the representation (3.24) lead to

∥Γu(t, τ)(g(τ)δ∂R2
+
)∥∞ ≤ C(t− τ)−

1
2 (−τ)−

3−ϵ
2

for τ < 0 and ϵ ∈ (0, 1). On the other hand, we have from (3.4) and (3.22) that
∥Γu(t, s)ω(s)∥∞ ≤ C(−s)−1| log(−s)|2 for s ≪ −1. Thus by taking the limit s → −∞ in
(3.20) we arrive at the expression

ω(t, x) = −2

∫ t

−∞

∫
R
Γu(t, x; τ, y1, 0)g(τ, y1) dy1 dτ, t < 0, x ∈ R2

+. (3.28)

Let θ ∈ (0, 1− ϵ). Then from (3.23) and (3.27) we have

x1+θ
2 |ω(t, x)| ≤ C

∫ t

−∞

∫
R
(t− τ)−1+ 1+θ

2 e−c
(x1−y1)

2

t−τ |g(τ, y1)| dy1

≤ C

∫ t

−∞
(t− τ)

θ
2 (−τ)−

3−ϵ
2 dτ ≤ C(−t)−

1−θ−ϵ
2 . (3.29)

It is easy to see that the same argument with (C1) also yields sup
−1<t<0,x∈R2

+

x1+θ
2 |ω(t, x)| <

∞. The proof is complete.

3.3 Representation of solutions by the Biot-Savart law

In this section we give a proof of Lemma 3.2. To this end we denote by v(t, x) the
right-hand side of (3.2), which is well-defined by (3.1) and the estimate∫
R2
+

∣∣(x− y)⊥

|x− y|2
− (x− y∗)⊥

|x− y∗|2
∣∣ (1 + y2)

−1−θ dy ≤ C

∫
R2
+

y2
|x− y||x− y∗|

(1 + y2)
−1−θ dy <∞.

In particular, v is uniformly bounded in (−∞, 0)× R2
+. The goal is thus to show u = v.

Since both u and v satisfy the divergence-free condition and their vorticity fields are given
by the same ω, the difference w = u− v is harmonic in R2

+. Moreover, u and v2 vanishes
on the boundary by the no-slip boundary condition and the definition of v. Hence, due
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to the Liouville theorem for harmonic functions we only need to prove the fact v1 = 0 on
∂R2

+. We first note that v1 is written as

v1(t, ·, x2) = ∂2

∫ x2

0

e−(x2−y2)(−∂2
1)

1
2

∫ ∞

y2

e−(z2−y2)(−∂2
1)

1
2 ω(t, ·, z2) dz2 dy2

=

∫ ∞

x2

e−(y2−x2)(−∂2
1)

1
2 ω(t, ·, y2) dy2

−
∫ x2

0

∫ ∞

y2

(−∂21)
1
2 e−(x2−2y2+z2)(−∂2

1)
1
2 ω(t, ·, z2) dz2 dy2. (3.30)

The last term of the right-hand side of (3.30) vanishes on ∂R2
+, so we focus on the first

term which we will denote by v1,1(t, x). Fix any δ > 0 and let −t > 2δ and x2 > δ. For

sufficiently small ϵ ∈ (0, δ/4) we denote by ωϵ(t, x) =
∫ δ

−∞

∫
R2
+
ηϵ(t− s, x− y)ω(s, y) dy ds

the mollification of ω. The mollifier ηϵ is taken so that supp ηϵ ⊂ {(t, x) ∈ R3 | |t|2+ |x|2 <
ϵ2}. Then ωϵ satisfies

∂tωϵ(t, x) = ∆ωϵ(t, x)−∇ · (uω)ϵ(t, x) + Fϵ(t, x), (3.31)

where

(uω)ϵ(t, x) =

∫ δ

−∞

∫
R2
+

ηϵ(t− s, x− y)uω(s, y) dy ds,

Fϵ(t, x) = −ηϵ(t− δ) ∗ ω(δ)(x)

−
∫ δ

−∞

∫
∂R2

+

(
ηϵ(t− s, x− y)∂2ω(s, y) + ∂2ηϵ(t− s, x− y)ω(s, y)

)
dy1 ds.

By (3.1) and the definition of ηϵ each term in (3.31) has the same spatial decay as ω. Set

v1,1,ϵ(t, ·, x2) =
∫∞
x2
e−(y2−x2)(−∂2

1)
1
2 ωϵ(t, ·, y2) dy2. Then we verify the calculation

∂tv1,1,ϵ(t, ·, x2) =
∫ ∞

x2

e−(y2−x2)(−∂2
1)

1
2
(
∆ωϵ −∇ · (uω)ϵ + Fϵ

)
(t, ·, y2) dy2,

and the integration by pars yields

∂tv1,1,ϵ(t, ·, x2) = −∂2ωϵ(t, ·, x2)− (−∂21)
1
2ωϵ(t, ·, x2)

−
∫ ∞

x2

∇x · e−(y2−x2)(−∂2
1)

1
2 (uω)ϵ(t, ·, y2) dy2

+ (u2ω)ϵ(t, ·, x2) +
∫ ∞

x2

e−(y2−x2)(−∂2
1)

1
2Fϵ(t, ·y2) dy2. (3.32)

From (C1) and (3.1) it is easy to see that the following convergence holds in the limit
ϵ→ 0 uniformly on each compact set of {(t, x) | t < −2δ, x2 > δ}:

−∂2ωϵ(t)− (−∂21)
1
2ωϵ(t) + (u2ω)ϵ(t) → − ∂2ω(t)− (−∂21)

1
2ω(t) + u2ω(t),∫ ∞

x2

∇ · e−(y2−x2)(−∂2
1)

1
2 (uω)ϵ(t, ·, y2) dy2 →

∫ ∞

x2

∇x · e−(y2−x2)(−∂2
1)

1
2 (uω)(t, ·, y2) dy2,∫ ∞

x2

e−(y2−x2)(−∂2
1)

1
2Fϵ(t, ·, y2) dy2 → 0.
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Thus we have for s < t < −2δ and x2 > δ,

v1,1(t)− v1,1(s) =

∫ t

s

(
− ∂2ω(τ)− (−∂21)

1
2ω(τ) + u2ω(τ)

)
dτ

−
∫ t

s

∫ ∞

x2

∇x · e−(y2−x2)(−∂2
1)

1
2 (uω)(τ, ·, y2) dy2 dτ. (3.33)

Since δ > 0 is arbitrary we may take x2 → 0 in (3.33). Then, recalling the definition of
v1,1 and (3.30), we take the trace x2 → 0 and obtain from (2.22) that

v1(t) = v1(s) +

∫ t

s

(
∂1pF (τ) −

∫ ∞

0

∂1e
−y2(−∂2

1)
1
2 (u1ω)(τ, ·, y2) dy2

−
∫ ∞

0

(−∂21)
1
2 e−y2(−∂2

1)
1
2 (u2ω)(τ, ·, y2) dy2

)
dτ (3.34)

on ∂R2
+. Since pF (τ) is the solution given by Proposition 2.1 with F (τ) = −u(τ) ⊗ u(τ),

by using div divF = −div (u⊥ω)−∆|u|2/2 we have the representation

∂1pF (τ) = −∂1
|u(τ)|2

2
+ ∂1πF (τ), (3.35)

where

∂1πF (τ) = e−x2(−∂2
1)

1
2

∫ ∞

0

(
∂1e

−y2(−∂2
1)

1
2 (u1ω)(τ, ·, y2) + (−∂21)

1
2 e−y2(−∂2

1)
1
2 (u2ω)(τ, ·, y2)

)
dy2

+

∫ x2

0

∫ ∞

y2

∂1(−∂21)
1
2 e−(x2−2y2+z2)(−∂2

1)
1
2 (u1ω)(τ, ·, z2) dz2 dy2

−
∫ x2

0

∫ ∞

y2

∂21e
−(x2−2y2+z2)(−∂2

1)
1
2 (u2ω)(τ, ·, z2) dz2 dy2

−
∫ x2

0

e−(x2−y2)(−∂2
1)

1
2 (u1ω)(τ, ·, y2) dy2. (3.36)

Thus (3.34)-(3.36) leads to v1(t) = v1(s) on ∂R2
+ for all −∞ < s < t < 0. Then (3.1) and

(3.4) imply that

v1(t) = lim
s→−∞

v1(s) = lim
s→−∞

∫ ∞

0

e−y2(−∂2
1)

1/2

ω(s, ·, y2) dy2 = 0

on ∂R2
+ by the Lebesgue convergence theorem. The proof is now complete.

4 Application to geometric regularity criterion

We shall extend a geometric regularity criterion [16] of solutions to the Navier-Stokes
equations in R3 to the case when the domain is the half space R3

+ with the Dirichlet con-
dition as an application of the Liouville type result (Theorem 1.1). As already discussed in
[16] when one imposes the Neumann boundary problem (or the slip boundary condition),
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the extension is rather straightforward. This is because the rescaled two-dimensional vor-
ticity equations still enjoy the maximum principle since there is no vorticity production
from the boundary. We shall state our geometric regularity criterion for the Dirichlet
problem in a rigorous way.

We consider the Navier-Stokes equations in the half space R3
+ = {(x1, x2, x3) ∈ R3 |

x3 > 0}

∂tu−∆u+∇ · (u⊗ u) +∇p = 0, div u = 0 in (0, T )× R3
+ (4.1)

with the Dirichlet boundary condition:

u = 0 on (0, T )× ∂R3
+. (4.2)

As mentioned in the introduction, we need to consider a spatially non-decaying solu-
tion to carry out what is called a blow-up argument. However, if one allows non-decaying
solutions, the uniqueness of the initial-boundary value problem for (4.1)-(4.2) fails. In-
deed, the Poiseuille type flow of the form

u = (u1(t, x3), 0, 0), p(t, x1) = −x1f(t), (4.3)

solves (4.1)-(4.2) provided that u1 solves the heat equation

∂tu1 − ∂23u1 = f(t) in (0, T )× {x3 > 0},
u1 = 0 on (0, T )× {x3 = 0}.

with some f depending only on time. Since f can be chosen arbitrary, one is able to
construct various solutions (u, p) to (4.1)-(4.2) of the form (4.3) with the same initial
data. If one assumes that f is bounded and smooth, all such (u, p) is smooth and bounded.
Hence this yields the non-uniqueness of the initial-boundary value problem for (4.1)-(4.2)
when one allows non-decaying solutions.

A simple way to avoid non-uniqueness is to improve a relation between the pressure
and the velocity. Taking the divergence of (4.1), we see

−∆p =
3∑

i,j=1

∂i∂j(uiuj) in R3
+, (4.4)

since div u = 0. Next, taking the inner product of (4.1) with normal n = (0, 0,−1), we
have

∂p

∂n
= −∆u · n on ∂R3

+. (4.5)

It is convenient to decompose p into the sum pH+pF as we did in earlier sections. Namely,
for the harmonic pressure term pH we require

−∆pH = 0 in R3
+, (4.6)

∂pH
∂n

= −∆u · n on ∂R3
+. (4.7)
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and the pressure pF coming from transport term we require

−∆pF =
3∑

i,j=1

∂i∂j(uiuj), F = (uiuj) in R3
+, (4.8)

∂pF
∂n

= 0 on ∂R3
+. (4.9)

Evidently, (4.6)-(4.9) implies (4.4)-(4.5) for p = pH + pF . Note that the ∆u · n =
−div∂R3

+
(ω × n) as noted in [1]. If one imposes smoothness and boundedness for u up to

second derivatives, one can get the uniqueness of ∇p (determined from u) provided that p
is restricted to avoid the linear growth at spatial infinity; see Proposition 2.1 and Propo-
sition 2.2 and also [1]. The unique solution is formally written by using the Helmholtz
projection P to the solenoidal space:

∇p = (I − P)(∆u−∇ · (u⊗ u)) (4.10)

and the solution having this form is called a mild solution. It is not difficult to prove the
uniqueness of the mild solution; see [14] for the whole space and [2] for the half space.

There is a large literature giving a growth condition for pressure so that the solution
is a mild solution which is unique. Such type of result goes back to [10] and has been
developed in the case of the whole space [15] and the half space [25]. A typical criterion
for the whole space case is p ∈ L1((0, T );BMO(R3)) [20]. There are references on this
issue [25], [26] for further relaxation of growth assumptions for the pressure.

In this section we consider the mild solution. We know there is a unique local-in-
time mild solution for the initial-boundary value problem for (4.1)-(4.2) for any bounded

continuous initial velocity u0 i.e., u0 ∈ BC(R3
+) which is solenoidal in the sense that

div u0 = 0 in R3
+ and u0 · n = 0 on ∂R3

+ [32]; see also [2].

We are now in position to prove Theorem 1.2, which is a natural extension of the
geometric regularity criterion of [16]. We shall prove this result by a blow-up argument.
The basic strategy is the same as in [16]. However, to assert uniqueness of the limit
we invoke our Liouville type result (Theorem 1.1). Of course, in some steps it is more
involved because of the presence of the boundary.

Proof of Theorem 1.2. Step 1 (Construction of blow-up sequence). Assume that u blows
up at t = T . Then there exists a sequence {(tk, xk)}∞k=1 ⊂ [0, T )×R3

+ with tk+1 > tk such
that
(i) |u(t, x)| ≤Mk for t ≤ tk, x ∈ R3

+

(ii) Mk = ∥u(tk)∥∞ → ∞, tk ↑ T as k → ∞
(iii) |u(tk, xk)| ≥Mk/2
We rescale u, ω with respect to (tk, xk) i.e.

uk(t, x) = λku(tk + λk
2t, xk + λkx)

ωk(t, x) = λk
2ω(tk + λk

2t, xk + λkx), T − tk > λk
2t > −tk

with λk = 1/Mk. Since (4.1)-(4.2) is scaling invariant under the above rescaling, we see
that uk is a mild solution of (4.1)-(4.2) in (−tkMk

2, 0]× R3
+,−ck

with ck = xk,3Mk, where
xk = (xk,1, xk,2, xk,3) and R3

+,−c = {x = (x1, x2, x3) ∈ R3 | x3 > −c}.
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Step 2 (Compactness). By assumption (i) we have |uk| ≤ 1 in (−tkMk
2, 0]×R3

+,−ck
. Since

uk is a mild solution, we know that ∇uk is also bounded in (−tkMk
2 + 1, 0] × R3

+,−ck
by

a result of [2]. Thus (uk, ωk) ⇁ (ū, ω̄) as k → ∞ *-weakly in L∞ with some (ū, ω̄) such
that |ū| ≤ 1 and |ω̄| ≤ c in (−∞, 0] × R3

+,−c (c = limk→∞ ck) by taking a subsequence.
Moreover, ū is a bounded global mild solution in (−∞, 0]×R3

+,−c. Note that there are two
cases depending upon whether lim ck = ∞ or lim ck < ∞. In the first case R3

+,−c = R3

and the limit ū solves the Navier-Stokes equations in the whole space. In the second case
ū solves the Navier-Stokes equations in the half space R3

+,−c with the Dirichlet condition
(cf. [11]).

We need some compactness to guarantee that uk converges to u at least locally uni-
formly in (−∞, 0]× R3

+,−c to guarantee that uk(0, 0) → ū(0, 0).

In the whole space this can be guaranteed by the estimates of higher-order derivatives
so that all space-time derivatives of uk are bounded in (−tkMk

2+1, 0] uniformly in k (e.g.
[17]). In the case of the Dirichlet problem it seems to be unknown since it is nontrivial to
handle normal derivatives. However, what we need here are local estimates, rather than
global estimates.

We first note that the pressure defined by (4.10) is estimated as

∥p∥Lr(BR(x0)∩R3
+) ≤ C(∥ω∥L∞(∂R3

+) + ∥u∥2L∞(R3
+)) (4.11)

with C depending on R and r ∈ (1,∞) and independent of u and ω, where BR(x0) is a
closed ball of radius R centered at x0 ∈ R3

+. Here we normalize p such that p(x0) = 0.
Decompose p into pH + pF . For pF we have a BMO estimate ∥p∥BMO ≤ C∥u∥2∞. For the
harmonic pressure term, as observed in [1], we have

∥x3∇pH∥L∞(R3
+) ≤ C∥ω∥L∞(∂R3

+).

From these two estimates (4.11) easily follows. The estimate (4.11) enables us to localize
the problem. We cut off u in BR(x0)∩R3

+ with Bogovski type adjustment to apply the Lr

maximal regularity of the Stokes equation problem in a smoothly bounded domain with
the zero boundary condition, e.g. [18]. By (4.11) we observe that the external force has
a local space-time Lr bound depending on u only through the space time sup norm of
u and ∇u. Thus we are able to control all W 2,1

r (I × (BR(x0) ∩ R3
+)) norm of u, where

I is a bounded time interval ⊂ (−∞, 0]. By the Sobolev embedding theorem we have
a Hölder bound on ∇u in Q = I × (BR(x0) ∩ R3

+). This is of course enough to ensure
that uk converges to ū locally uniformly in (−∞, 0] × R̄3

+,−c. By a bootstrap argument
we improve the regularity of the pressure and observe that uk → u locally uniformly for
its all derivatives. Note that without a bound for the pressure one cannot localize the
problem. Since (tk, xk) is taken so that |uk(0, 0)| ≥ 1/2 by Step 1 (iii), we conclude that
|ū(0, 0)| ≥ 1/2.

Step 3 (Characterization of the limit). We now apply the continuous alignment condition
(CA) and our Liouville type result (Theorem 1.1) to conclude that ū must be zero, which
contradict with |ū(0, 0)| ≥ 1/2. Here is a sketch of the proof. We set the vorticity direction
ξk = ωk/|ωk|. Then (CA) implies

|ξk(t, x)− ξk(t, y)| ≤ η(
|x− y|
Mk

) → 0,
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so that ξ̄ = ω̄/|ω̄| is independent of x. By the unique existence theory [2] of the mild
solution ξ̄ must be also constant in time. Thus (ū, ω̄) is a two-dimensional flow in
(−∞, 0) × R3

+,−c. When c = ∞ the problem is reduced to the whole space case, and
it is already proved in [16] that ū = 0, which leads to a desired contradiction. Hence
it suffices to consider the case c < ∞. By a suitable change of coordinates we may as-
sume that ū = (ū1(x1, x2), ū2(x1, x2), 0) with ω̄ = (0, 0, ω̄3), ω̄3 ≥ 0 and ū1 = ū2 = 0 on
(−∞, 0)× ∂R2

+ where R2
+ = {(x1, x2) ∈ R2 | x2 > 0}.

Now we shall apply Theorem 1.1 for (ū, ω̄). The condition (C4) is trivially fulfilled
because ω̄3 ≥ 0. The condition (C3) is inherited from the type I assumption. It remains
to prove (C1) and (C2) for our mild solution ū, but thanks to Proposition 2.1 and 2.2, it
is enough to prove (C1). By the construction of the blow-up sequence we know

sup
−∞<t<0

∥ū(t)∥∞ <∞.

Applying a result of [2], we also know ∥∇ū(t)∥∞ is bounded for all t < 0. Then we have to
estimate the higher-order derivatives to prove (C1), which will be established in Lemma
4.1 below. This is sufficient to derive (C1) so we apply Theorem 1.1 to conclude ū ≡ 0,
and reach a contradiction.

Lemma 4.1. Let u be a mild solution of (4.1)-(4.2) in (0, T ) × R2
+ with initial data

u0 = (u0,1, u0,2) in BC(R2
+). Assume that u0 is solenoidal, i.e. div u0 = 0 in R2

+ and
u0,2 = 0 on ∂R2

+. Assume that there exists T > 0 such that

K = sup
0<t<T

∥u(t)∥∞ <∞.

Then there exists a constant C depending only on K and T such that

sup
0<t<T

(t
m
2 ∥∇mu(t)∥∞ + t1+

l
2∥∇l∂tu(t)∥∞) ≤ C

with m = 1, 2, 3 and l = 0, 1, where ∇0 is interpreters as an identity operator.

Remark 4.2. We need the Hölder norm estimates in (C1), but these are obtained from
a simple interpolation of L∞ bounds in Lemma 4.1; see e.g. [22, Theorem 3.2.1], [33,
Section 3.2].

The idea of the proof of Lemma 4.1 is to estimate the tangential derivatives with up to
one normal derivative as in [13] or [17]. We also need to estimate the time derivative. In
the meanwhile we estimate pH and pF , which enable us to estimate the normal derivatives.
Except for the estimates of the pressure term the argument is rather conventional, so we
give a sketch of the proof instead of giving a full detail. In the argument below we just
use L∞ norm so we simply write ∥f∥ instead of ∥f∥∞.

Sketch of the proof of Lemma 4.1. Step 1 (Tangential derivatives and time derivatives).
We first note that the mild solution solves the integral equation

u(t) = S(t)u0 + w, w = −
∫ t

s

S(t− s)P∇ · (u⊗ u)(s) ds, (4.12)
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where S(t) is the Stokes semigroup. According to [2], we know

∥∇S(t)Pf∥ ≤ C1t
− 1

2∥f∥, ∥S(t)P∇ · f∥ ≤ C2t
− 1

2∥f∥. (4.13)

Taking the derivatives ∇ in (4.12), we obtain, for 0 < ϵ < 1,

∥∇u∥(t) ≤ C0t
− 1

2∥u0∥+
∫ t

t(1−ϵ)

∥∇S(t− s)P∇ · (u⊗ u)(s)∥ ds

+

∫ t(1−ϵ)

0

∥∇S(t− s

2
) · S(t− s

2
)P∇ · (u⊗ u)(s)∥ ds

≤ C0t
− 1

2∥u0∥+ 2KC1

∫ t

t(1−ϵ)

(t− s)−
1
2∥∇u(s)∥ ds+K2C1C2

∫ t(1−ϵ)

0

(t− s)−1 ds.

This yields the estimate ∥∇u(t)∥ ≤ CKt
−1/2, t ∈ (0, T ) by using [13, Lemma 2.4]. Since

the tangential derivative ∂1 commutes with the Stokes semigroup, a similar argument
yields ∥∂m−1

1 ∇u(t)∥ ≤ CKmt
−m/2, t ∈ (0, T ) for all m = 1, 2, · · · . Note that the proof

makes the sense if we know in advance that ∥∂m−1
1 ∇u(t)∥ is finite and locally bounded

in time in (0, T ); however we are able to justify this process by approximating u0 by Lp
σ

vector field, and the details are omitted here.

As for the time derivative, we differentiate (4.12) in t, which gives

∂tu(t) =
dS(t)

dt
u0 −

∫ t

t(1−ϵ)

S(t− s)P∂s∇ · (u⊗ u)(s) ds− S(ϵt)P∇ · (u⊗ u)(t− ϵt)

−
∫ t(1−ϵ)

0

d

dt
S(t− s)P∇ · (u⊗ u)(s) ds.

By using the estimate (4.13) and ∥ dS(t)
dt
f∥ ≤ Ct−1∥f∥ that is obtained from the explicit

formula of the Stokes semigroup in [32, 34], we have

∥∂tu(t)∥ ≤ CKt
−1 +

∫ t

t(1−ϵ)

CK

(t− s)
1
2

∥∂su(s)∥ ds+ CK(ϵt)
− 1

2 +

∫ t(1−ϵ)

0

CK

(t− s)
3
2

ds

≤ CK,T,ϵt
−1 +

∫ t

t(1−ϵ)

CK

(t− s)
1
2

∥∂su(s)∥ ds.

Then by using [13, Lemma 2.4] we have the estimate ∥∂tu(t)∥ ≤ CK,T t
−1. Similarly, we

can also obtain the following estimate.

∥∇∂tu(t)∥ ≤ ∥∇ dS(t)

dt
u0∥+

∫ t

t(1−ϵ)

∥∇S(t− s)P∂s∇ · (u⊗ u)(s)∥ ds

+ ∥∇S(ϵt)P∇ · (u⊗ u)(t− ϵt)∥+
∫ t(1−ϵ)

0

∥∇ d

dt
S(t− s)P∇ · (u⊗ u)(s)∥ ds.

By using (4.13) again, we have

∥∇∂tu(t)∥ ≤ CK,T,ϵt
− 3

2 +

∫ t

t(1−ϵ)

CK

(t− s)
1
2

∥∇∂su(s)∥ ds.
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Hence, by [13, Lemma 2.4] we arrive at ∥∇∂tu(t)∥ ≤ CK,T t
−3/2.

Step 2 (Pressure estimates). In order to estimate the normal derivatives of the solution, we
first consider pF and pH . Recall that pF is expressed as pF =

∫
R2 ∇∇·E(x− y)(ũ⊗ ũ) dy;

see the proof of Proposition 2.1. Hence ∂1pF can be decomposed into
∫
R2 ∇3E(x− y)(ũ⊗

ũ)(1 − χR) dy +
∫
R2 ∇E(x − y)∂1∇ ·

(
ũ ⊗ ũχR

)
dy, where E(x) is the newton potential

and χR = χR(x − y) is a smooth cut-off such that χR(x − y) = 1 for |x − y| ≤ R and
χR(x− y) = 0 for |x− y| ≥ 2R. Then we have

∥∂1pF (t)∥ ≤ R−1∥u(t)∥2 +R
(
∥∂1∇u(t)∥∥u(t)∥+ ∥∇u(t)∥2

)
,

which yields ∥∂1pF∥ ≤ Ct−1/2 by taking R = t1/2, where C depends only on K and T . As
for pH , we see

∥∂1pH∥L∞
x1
(t, x2) ≤

∫ L

x2

∥∂1∂2pH∥L∞
x1
(t, y2) dy2 + ∥∂1pH∥L∞

x1
(t, L).

Since ∂1∂2pH(w) = ∂21e
−x2(−∂2

1)
1/2

(ω|x2=0) = e−x2(−∂2
1)

1/2
(∂21ω|x2=0), we have

∥∂1∂2pH∥L∞
x1
(t, y2) ≤ C∥∂21∇u(t)∥. (4.14)

Furthermore, it follows from (2.7) that ∥∂1pH∥L∞
x1
(t, L) ≤ CL−1∥ω(t)∥. Hence

∥∂1pH∥L∞
x1
(t, x2) ≤ C

(
L∥∂21∇u(t)∥+

1

L
∥ω(t)∥

)
, 0 ≤ x2 ≤ L.

By taking L = t1/2, we have sup0≤x2≤L ∥∂1pH∥L∞
x1
(t, x2) ≤ Ct−1. Then by maximum

principle we obtain ∥∂1pH(t)∥ ≤ Ct−1. The constant C depends only on K and T .
From the similar argument we can extend the estimates to the higher-order tangential
derivatives.

Step 3 (Normal derivatives). By combining the above estimates with the following equa-
tion

∂tu1 −∆u1 + (u,∇)u1 + ∂1p = 0, (4.15)

it is easy to check that ∥∂22u(t)∥ ≤ Ct−1. Finally, by differentiating (4.15) in the normal
direction and by using (4.14), the estimate ∥∂32u1(t)∥ ≤ Ct−3/2 follows. With the aid
of the estimate ∥∂21p(t)∥ ≤ Ct−3/2 and the divergence free property of the solutions, we
finally obtain ∥∂32u2(t)∥ ≤ Ct−3/2 by differentiating (4.15) in the tangential direction. The
proof is now complete.
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