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1. Introduction

We consider the Cauchy problem of the compressible Navier-Stokes-Poisson system in
Rn with n ≥ 2.

∂tρ+ div (ρu) = 0, (t, x) ∈ R+ × Rn,

∂t(ρu) + div (ρu⊗ u) + ∇P (ρ)

= µ∆u+ (µ+ λ)∇div u+ κρ∇ψ, (t, x) ∈ R+ × Rn,

− ∆ψ = ρ− ρ̄, (t, x) ∈ R+ × Rn,

u(0, x) = u0(x), ρ(0, x) = ρ0(x), x ∈ Rn,

(1.1)

where ρ = ρ(t, x), u = u(t, x) and ψ = ψ(t, x) are the unknown fluid density, the velocity
vector and the potential force, respectively. P = P (ρ) is the pressure given by ρ, and u⊗u
denotes the tensor product of velocity vector u. µ, λ are Lamé constants satisfying µ+2λ >
0, κ = ± is a coupling constant and ρ̄ is a given background density. Without losing
generality, we assume that ρ̄ = 1. The system is strongly relevant to the simplified system
of degenerate drift-diffusion equations and the Smoluchowski-Poisson system appeared in
a semiconductor divise models (cf. [16]).

Introducing the perturbed density by a(t, x) ≡ ρ(t, x) − 1 with a0(x) ≡ ρ0(x) − 1, the
problem (1.1) is reduced into the following problem of (a, u):

∂ta+ u · ∇a = −(1 + a)div u,

∂tu− Lu+ ∇(−∆)−1a = − a

1 + a
Lu− u · ∇u−∇(Q(a)),

u(0, x) = u0, a(0, x) = a0.

(1.2)

Here, we denote the elliptic operator L by L = µ∆ + (λ + µ)∇div and Q is a smooth
function determined by P by

Q(a) := −
∫ t

0

P ′((1 + z)−1)
(1 + z)2

dz.

Nash [20] considered the local well-posedness of the compressible Navier-Stokes system for
smooth data away from a vacuum. Itaya [15] also obtained the existence and uniqueness
of the system assuming sufficient smoothness to the data. Matsumura-Nishida [19] proved
the existence of global classical solution provided the initial data with high regularity is
close to the equilibrium state.

1



We recall that the compressible Navier-Stokes system (1.1) has a scaling invariance: For
ν > 0, {

ρν(t, x) = ρ(ν2t, νx),
uν(t, x) = νu(ν2t, νx)

(1.3)

provided the pressure term has been changed accordingly. Extending the classical idea
initiated by Fujita-Kato [11] applied to the incompressible Navier-Stokes system, Danchin
[5], [8] considered the local existence and the uniqueness of the solution for the problem
in the “scaling-critical” homogeneous Besov space. Haspot [14] improved Danchin’s re-
sult [8] to the general Besov space and a larger space for the density by introducing an
effective velocity. In order to consider the critical solvability, we necessarily introduce the
homogeneous Besov spaces. Since the system (1.1) involves the hyperbolic equation for
the density equation, it is required to consider the equation in the suitable space, where
the supremum of the density has to be controlled. To this end, Danchin introduced the
homogeneous Besov space that embedded into L∞(Rn).

Let {φj}j∈Z be the Littlewood-Paley dyadic decomposition of unity satisfying that∑
j∈Z

φ̂j(ξ) = 1

for all ξ 6= 0 and supp φ̂j ⊂ {ξ ∈ Rn| 2j−1 < |ξ| < 2j+1}. For s ∈ R and 1 ≤ p, σ ≤ ∞,
we define the homogeneous Besov space Ḃs

p,σ(Rn) by

Ḃs
p,σ(Rn) = {f ∈ S∗/P; ‖f‖Ḃs

p,σ
<∞}

with the norm

‖f‖Ḃs
p,σ

≡


( ∑

j∈Z
2jsσ‖φj ∗ f‖σ

p

)1/σ
, 1 ≤ σ <∞,

sup
j∈Z

2js‖φj ∗ f‖p, σ = ∞,

(1.4)

where P denotes polynomials (see Triebel [23] for details).
Since our system involves the Poisson term and it brings our problem disturbing the

low frequency in the Fourier spaces. Namely, the inverse operator of the Laplacian gives a
stronger restriction for the low frequency part of the solution (cf. Yukawa potential case
[2]). To handle with low frequency part, we also introduce another homogeneous Besov
space of hybrid type; Ḃs∗

p,σ ⊕ Ḃs∗
p,σ by

‖f‖Ḃs∗
p,σ⊕Ḃs∗

p,σ
≡

∑
j≤0

2σs∗j‖φj ∗ f‖σ
p +

∑
j>0

2σs∗j‖φj ∗ f‖σ
p

1/σ

for all 1 ≤ p, σ ≤ ∞ and s∗, s∗ ∈ R. We note that if s∗ < s∗, then it holds that

Ḃs∗
p,σ ⊕ Ḃs∗

p,σ = Ḃs∗
p,σ ∩ Ḃs∗

p,σ

and hereafter we only use this setting. We define the critical inhomogeneous space as
follows:

a ∈ L∞(0, T ; Ḃ
N
p

p,1), u ∈ L∞(0, T ; Ḃ
N
p
−1

p,1 ), f ∈ L1
loc

(
R+; Ḃ

N
p
−1

p,1

)
.

Zheng [24] used the linearized formulation to (1.1) and solve the system by the way of
integral equations. The key idea is to consider the Poisson term as the linear term and he
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introduced the semi-group

d

dt

(
a
u

)
=

(
0 div

−|∇| − ∇(−∆)−1 L

)(
a
u

)
. (1.5)

Establishing the Lp-Lq type estimate of the semi-group generated by the above operator
he constructed a global solution for small data to (1.1) in the critical Besov space ρ0−1 ∈
Ḃ

n
2
−2

2,1 ⊕ Ḃ
n
p

p,1, u0 ∈ Ḃ
n
2
−2

2,1 ⊕ Ḃ
n
p
−1

p,1 . However the critical case p = n was not treated, since
the product formula necessarily required in the case p = n such as

‖fg‖
Ḃ

n/p−1
p,1

≤ C‖f‖
Ḃ

n/p−1
p,1

‖g‖
Ḃ

n/p+1
p,1

failes in general.
We now recover the local existence result in the critical hybrid Besov spaces.

Theorem 1.1 ([3]). Let n = 3, 1 < p ≤ 3. µ > 0 with µ + 2λ > 0. For any ρ0 − 1 ∈
Ḃ

n
p
−2

p,1 (R3) ⊕ Ḃ
n
p

p,1(R3), u0 ∈ Ḃ
n
p
−2

p,1 (R3) ⊕ Ḃ
n
p
−1

p,1 (R3). Then there exists a weak solution to
(1.1) such that for some T > 0 with I = [0, T ), (ρ, u, ψ): a solution of (1.1) satisfying

ρ− 1 ∈ C
(
I; Ḃ

n
p
−1

p,1 ⊕ Ḃ
n
p

p,1

)
,

u ∈
(
C(I; Ḃ

n
p
−2

p,1 ⊕ Ḃ
n
p
−1

p,1 ) ∩ L1(I; Ḃ
n
p
+1

p,1 )
)N
,

ψ ∈ C
(
I; Ḃ

n
p
+1

p,1 ⊕ Ḃ
n
p
+2

p,1

)
.

(1.6)

2. Key estimates

2.1. The mass conservation equation. To prove the case p = n = 3, we employ the
following proposition. Let (a, u) solves the following equation.{

∂ta+ u · ∇a = −(1 + a)div u, (t, x) ∈ I × Rn,

a(0, x) = a0(x), x ∈ RN ,
(2.1)

where I = [0, T ).

Proposition 2.1. Let a0 ∈ Ḃ−1
3,1(R3), u ∈ L∞(I; Ḃ0

3,1(R3)) ∩ L1(I; Ḃ2
3,1(R3)) and U(t) :=∫ t

0
‖∇u(τ)‖Ḃ1

3,1
dτ . Suppose that a ∈ L∞(I; Ḃ−1

3,1(R3)∩ Ḃ1
3,1(R3)) solves the equation (2.1).

Then there exists a constant C > 0 depending on n and p such that the following inequality
holds.

‖a‖L∞
t (I;Ḃ−1

3,1) ≤ eU(t)

[
‖a0‖Ḃ−1

3,1
+ C

∫ t

0
e−U(τ)(1 + ‖a‖Ḃ1

3,1
)‖u‖Ḃ0

3,1
dτ

]
, (2.2)

for t ∈ [0, T ].

In view of the above estimate (2.2), it is required that the velocity field has to have
maximal regularity in L1 in time variable. This is the key point to show the main theorem.
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2.2. Maximal L1 Regularity. Let u0 be the initial data, and a and h be given functions.
The momentum governed by the following linearized parabolic equation.{

∂tu− µ∆u− (λ+ µ)∇(div u)) = F, (t, x) ∈ I × Rn,

u(0, x) = u0(x), x ∈ Rn.
(2.3)

It is known that the Cauchy problem for the heat equation (2.3) has maximal regularity
in such non-reflexive function spaces. One of the general result can be seen in [21].

Proposition 2.2 ([21]). Let 1 < ρ, σ ≤ ∞ and I = [0, T ) be an interval with T ≤ ∞. For
f ∈ Lρ(I; Ḃ0

1,ρ(Rn)) and u0 ∈ Ḃ
2(1−1/ρ)
1,ρ (Rn), let u be a solution of the Cauchy problem of

the heat equation (2.3). Then we have

‖∂tu‖Lρ(I;Ḃ0
1,ρ) +

∥∥∇2u
∥∥

Lρ(I;Ḃ0
1,ρ)

≤ C(‖u0‖Ḃ
2(1−1/ρ)
1,ρ

+ ‖F‖Lρ(I;Ḃ0
1,ρ)). (2.4)

The above result does not cover the end-point exponent ρ = 1. In general, the end-point
case p = 1 is eliminated in the abstract theory and we need to develop the each cases.
Danchin [6] (see also Haspot [14]) obtained maximal regularity in the homogeneous Besov
space for the case ρ = 1.

Theorem 2.3 ([8], [22]). Let 1 ≤ p ≤ ∞. For F ∈ L1(R+; Ḃ0
p,1(Rn)) and u0 ∈ Ḃ0

p,1(Rn)
there exists a unique solution u to (2.3) which satisfies the estimate:

‖∂tu‖L1(R+;Ḃ0
p,1) +

∥∥∇2u
∥∥

L1(R+;Ḃ0
p,1)

≤ C
(
‖u0‖Ḃ0

p,1
+ ‖F‖L1(R+;Ḃ0

p,1)

)
,

(2.5)

where constant C is depending only on n. Moreover the estimate is optimal for the class
of initial data. Namely if the data is u0 ∈ Lp(RN ) or Ḟ 0

p,1(RN ) the above estimate fails.

Remark 2.1. The upper estimate of (2.5) was obtained by Danchin- Mucha [9, Proposi-
tion 5] with 1 < p < ∞. For p = 1, Danchin essentialy obtained the same estimate even
for the variable coefficient case. Giga-Saal considered time L1 maximal regularity in some
space [12].

If we replace u0 ∈ Ḃ0
p,1(Rn) into u0 ∈ Ḃ0

p,σ(Rn) for 1 < σ ≤ ∞, then maximal regularity
fails since the lower bound by the initial data and the strict inclusion result for the sub-
sufix σ as Ḃ0

p,1(Rn) ( Ḃ0
p,σ(Rn).

To avoid the difficulty on using the limiting case of the bi-linear estimate in the homo-
geneous Besov spaces, we employ the following bi-linear estimate to treat the nonlinear
term of the equation (2.1).

Lemma 2.4. For u ∈ Ḃ0
3,1 ∩ Ḃ2

3,1 and ã ∈ Ḃ−1
3,1 ∩ Ḃ1

3,1 it holds that

‖div (ãu)‖Ḃ−1
3,1

≤ C
(
‖u‖Ḃ0

3,1
‖ã‖Ḃ1

3,1
+ ‖u‖Ḃ2

3,1
‖ã‖Ḃ−1

3,1

)
.
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