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1 Scalar problem

In this talk, we would like to treat mathematical modeling and numerical treatment of
adhesion, exfoliation and collision. Phenomena of adhesion and exfoliation come from
droplet motion on a plane. We describe the surface of droplet by using a graph of scalar
function. For this problem, key words are ’volume constraint’, ’free boundary’ and ’poten-
tial energy’. The constraint produces a non-local term in the partial differential equations.
Hence, we need to introduce variational method to these problems. Lagrangian will be

L(u) =

∫
Ω

(
− χu>0u

2
t + |∇u|2 +Qχu>0

)
dx, (1)

where χu>0 is the characteristic function and Q is a force of adhesion. If the droplet keeps
its volume, we can get the following equation:

χu>0utt = ∆u−Qχ′
u>0 +

( ∫
Ω

[uttu+ |∇u|2] dx
)
χu>0. (2)

2 Shell bouncing problem

The model equation is derived by calculating the energy stored in the shell. The considered
types of energy are stretching energy, bending energy, energy related to the compression
of the enclosed gas, potential energy and kinetic energy. We assume that the strip of
initial radius r0 is bent to radius r and stretched by the ratio µ̃. We adopt the following
form of elastic energy

Ee(p) =
1

24
kh3

∫ 2π

0

(κ− κ0)
2|pθ| dθ +

1

2
kh

∫ 2π

0

( |pθ|
|qθ|

− 1
)2

|qθ| dθ.

Denoting the mass density of the shell in equilibrium by σ, the local mass density of
the shell p becomes σ|qθ|/|pθ| and thus the kinetic energy is given by

Ek(p) =
1

2
h

∫ 2π

0

σ|qθ| |pt|2χp2>0 dθ.

Physically, this corresponds to the assumption of zero reflection and infinite friction be-
tween the shell and the obstacle.

When the shell is closed, it is necessary to take into account also the energy related to
the compression of the gas present inside the shell. The energy stored due to compression
of the enclosed volume V of gas can now be calculated as minus the work done by pressure
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forces:

Eg(p) = −
∫ V

V0

P dV = −
∫ V

V0

{
P0+cg

( 1
V
− 1

V0

)}
dV = −P0(V −V0)−cg

(
1− V

V0

+ln
V

V0

)
.

(3)
The constant cg is the product of the total mass of the gas and the square of the sound
of speed. The equilibrium volume V0 is known and the volume of p(t) is given by

V =
1

2

∫ 2π

0

(p · Apθ)χp2>0 dθ.

In real situations, the impact of a shell is influenced by the action of gravity. Therefore,
we introduce also the gravity potential of the shell

Ep(p) = gh

∫ 2π

0

σ|qθ|p2χp2>0 dθ.

Employing the obtained elastic, kinetic and gas energies, the action integral is written
as

I(p) =

∫ T

0

(
Ee(p) + Eg(p) + Ep(p)− Ek(p)

)
dt. (4)

Applying Hamilton’s principle, the governing equation for the free part of the shell is
obtained from

d

dϵ
I(p+ ϵϕ)

∣∣
ϵ=0

= 0 ∀ϕ ∈
[
C∞

0

(
(0, T )× (0, 2π) ∩ {p2 > 0}

)]2
, (5)

where I is the action functional defined in (4).
In the sequel, we shall use the notation ρ(θ) = |pθ(θ)|/|qθ(θ)| for the local relative

density with respect to the equilibrium state.
Taking into account the influence of the obstacle on the computed energy, one may

expect that the following equation expresses, in a rough approximation, the deformation
of the whole shell:

σχp2>0ptt =
{
− 1

12
kh2ρ(κss +

1
2
κ3)χp2>0 +

1
24
kh2κ2

0ρκ− kρ(ρ− 1)κχp2>0

}
ν

+
ρ

h

(
P0 + cg(

1
V
− 1

V0
)
)
χp2>0ν + kρρsχp2>0τ + gσχp2>0e2. (6)

In our talk, we will explain how to treat the above equation numerically and will show
the numerical result.
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