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Abstract—A random dynamical systems model is stud-
ied to understand coupled dynamics of auditory area and
motor area modulated by external force. We measure trans-
fer entropy of coupled oscillators with the presence of noise
to explain results of human brain wave experiments.

1. Introduction

Why does one feel excited when listening to music? To
consider this problem, we investigate dynamics within our
brain when emotional shifts occur associated with music
perception. This study is also motivated to develop prod-
ucts based on interaction between human motion and emo-
tional response at Yamaha Motor Co., Ltd.

It has been reported that interactions between auditory
area and motor area are involved in musical processing in
human brain [11]. However, there are very few studies on
causal relationship between the two areas associated with
music perception. We therefore investigate this problem by
measuring transfer entropy, which is an alternative entropy
measure to mutual information taking information trans-
port into account [1], in large-scale neural synchrony net-
works mediating music perception by human brain wave
experiments.

Physiological data such as electroencephalography
(EEG: brain wave), heartbeat and respiration have been
studied by using oscillatory systems with coupled oscilla-
tors [2, 3, 4, 5, 8]. Lin et al. investigate the influence of
random external force to a coupled phase oscillator system
and discover shear induced chaos [6], which is explained in
terms of random strange attractors. Sato et al. study a ran-
dom sine circle map to study synchrony between human
heartbeats and pedaling rhythms with music as the exter-
nal modulation [7]. Inspired by these studies, we adopt
randomly perturbed coupled oscillators to model EEG syn-
chrony associated with music perception. We then exam-
ine the transfer entropy both in experimental and modeling
data.

2. Experimental data

Fourteen healthy right-handed volunteers participated in
the music perception experiment. All subjects gave writ-
ten informed consent prior to participation in this study.
The study was approved by the RIKEN Ethical Commit-
tee. In our experimental setting, there were two condi-
tions: (1) resting (without music) and (2) listening to mu-
sic. Each condition lasted for three minutes. We measured
63-channel with a sampling rate of 1,000 Hz. Figure 1
shows an experimental view. The music used in our ex-
periments was Born This Way by Lady Gaga.

Figure 1: Experimental setup.

We extracted instantaneous phase of EEG signals and
analyzed phase dynamics [9, 10]. In our preliminary analy-
ses we found most prominent large-scale neural synchrony
associated with music perception at 8 Hz. We therefore
analyzed information transfer between 8 Hz phase signals
from auditory area (electrode T7) and motor area (electrode
C3) assuming that these areas are involved in music percep-
tion [11]. Figure 2 shows typical EEG phase time series
data from a single subject for electrode T7 and C3 at 8 Hz.



Figure 2: Top: a time series of the phase for T7 (auditory).
Bottom: a time series of the phase for C3 (motor).

The phases of T7 (auditory) and C3 (motor) are de-
scribed with variablesθ1 andθ2, respectively. The transfer
entropy from the auditory area to the motor area for length
N time series data with resolution∆t is represented as

T1→2(τ) =
N∑

n=0

P(θ2,n∆t+τ, θ2,n∆t, θ1,n∆t) log
P(θ2,n∆t+τ|θ2,n∆t, θ1,n∆t)

P(θ2,n∆t+τ|θ2,n∆t)
.

The transfer entropy for the other directionT2→1(τ) is de-
fined similarly.

Figure 3 shows the transfer entropies between T7 and
C3 for the same subject as in Fig. 2, whereτ = 0.125 [s]=

1
8[Hz] under the experimental conditions with and without

music . Note thatT2→1 becomes greater thanT1→2 under
the condition with music. This difference is statistically
significant over the 14 subjects (P < 0.05). Therefore, the
transfer entropy from the motor area to the auditory area is
rather dominant in this case.

Figure 3: Transfer entropy of experimental data.

3. Model simulations

Starting with coupled oscillators as a model of phases
dynamics of EEG in the auditory area and the motor area,
we introduce a common noise term to describe interaction

with other brain areas, which is a white Gaussian random
variableξ. Regarding the effect of music as a random ex-
ternal forceI following a white Gaussian distribution, we
have the following model on the torusT2 = [0,1)× [0,1).

θ̇1 = ω +
c21

2π
sin(2π(θ2 − θ1)) +

ξ

2π
sin(2πθ1)

+
I

2π
sin(2πθ1) (1)

θ̇2 = ω +
c12

2π
sin(2π(θ1 − θ2)) +

ξ

2π
sin(2πθ2) (2)

whereω is the natural frequency of phase oscillators, and
c12 and c21 are the coupling strengths fromθ1 to θ2 and
from θ2 to θ1, respectively.

The natural frequency is normalized to beω = 1, corre-
sponding to 8 Hz frequency filtering of experimental data.
Both coupling strengths are supposed to be weak and iden-
tical, and set to bec12 = c21 = 0.1. The influence of com-
mon noise is supposed to be relatively strong and steady.
The mean ofξ is 0 and the variance of it is 0.5. These pa-
rameters are set to be constant throughout the model simu-
lations. We are interested in the influence of external force
to the system, which is regarded as an open and uncertain
environment for the coupled oscillators. We assume that
the external forceI follows a white Gaussian distribution
with mean 0.1, and its varianceσ is a control parameter.
The open and uncertain environment is modeled as the ex-
ternal noise with fluctuation sizeσ. In particular, the con-
dition without music is modeled by settingσ = 0, and the
condition with music byσ ∼ 2.5.

Figure 4 and 5 show the time series withσ = 0 and with
σ = 2.5 respectively, which are generated with a randomly
chosen initial condition and an external noise realization.

Figure 4: Time series withσ = 0. Top: θ1(t). Bottom:
θ2(t).

One can see that the common noise causes phase modula-
tion in both oscillators even withσ = 0 in Fig. 4. When
the external noise becomes stronger, atσ = 2.5 as in Fig.
5, perturbation to the oscillatorθ1 weakly propagates to the
oscillatorθ2.

In order to compare with the experimental data, we cal-
culate the transfer entropy in our model. The transfer en-
tropy atτ = 1 for σ ∈ [0,10] is depicted in Fig. 6, where



Figure 5: Time series withσ = 2.5. Top: θ1(t). Bottom:
θ2(t).

the calculation is realized by taking an average of transfer
entropies over 20 sets of randomly chosen initial condition
and noise realization for eachσ. Notably, it turns out that

Figure 6: Transfer entropy withσ ∈ [0,10] in the model.
Dotted line:T1→2. Solid line:T2→1.

T2→1 becomes greater thanT1→2 atσ ∼ 2.5. This result is
comparable with the experimental results.

How can we interpret the behavior of transfer entropy?
It would be useful to observe phase portraits to understand
it. Figure 7 shows the phase portraits forσ = 0,2.5 and 6,
together with a deterministic limit cycle in the case that the
random variableξ vanishes andσ = 0.

In general, transfer entropy between two independent
random variables is 0. To the contrary, for totally pre-
dictable dynamics without irregularity, such as oscillation,
transfer entropy is 0 again. In our model, whenσ is around
0, the trajectories still stay close to the deterministic limit
cycle. This means that bothθ1 and θ2 keep small pre-
dictability under presence of common noise. Thus, both
T1→2 andT2→1 remain small, but not 0. However, whenσ
becomes larger aroundσ = 2.5, θ1 becomes unpredictable
because of the external noise, whileθ2 keeps its predictabil-
ity because of the weak coupling. As a result, onlyT2→1

increases because transfer entropy from a predictable vari-
able to an unpredictable variable is larger as long as the
variables are still causally dependent. On the other hand,
whenσ becomes very large aroundσ = 6, T2→1 decreases
again, asθ1 becomes an effectively independent variable
from θ2.

With σ = 2.5, the trajectories are perturbed by the exter-
nal noise but still cope with the deterministic structure in
state space including the limit cycle and its basins of attrac-
tion. However, withσ = 6 trajectories show almost random
behavior independent of the deterministic state space struc-
ture. In this case, transfer entropy becomes smaller again,
but not 0, because of density concentration toθ1 = 0 and
to θ1 = 0.5 based on the random variableI multiplicative
to sin 2πθ1. This can be one of the mechanisms of the ob-
served noise-induced transition of transfer entropy and the
reason why a peak exists inT2→1 curve at a point around
σ = 2.5.
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Figure 7: Phase portrait for eachσ. A typical trajectory of
Eqs. (1) and (2) is depicted with a randomly chosen initial
condition and a noise realization by using Euler-Maruyama
scheme. Parameters are set to (top)σ = 0, (middle)σ =
2.5, and (bottom)σ = 6. For reference, a deterministic
limit cycle in the case that the random variableξ vanishes
andσ = 0, is superimposed as a solid line in each phase
portrait.



In all cases with parametersσ = 0,2.5,6, we eventually
observe noise-induced synchronization for an ensemble of
initial conditions. However, we can say that dynamics with
σ = 2.5 shown in Fig. 7 is the most complex because it
is semi-predictable while dynamics withσ = 0 is almost
predictable and those withσ = 6 is almost unpredictable.
It is thought that this simple model may explain our exper-
imental results of transition of transfer entropy.

Considering further about transfer entropy under pres-
ence of noise-induced phenomena in nonlinear dynamics,
such as stochastic resonance [12], noise-induced synchro-
nization [13], or noise-induced chaos [14], external noise
typically alters predictability of observed systems. In some
cases, large noise rather enhances predictability, but in
other cases, small noise causes significant unpredictabil-
ity. Thus, one can find that, in general, it is far from trivial
to compute transfer entropy in noised dynamical systems,
apart from the problem whether causality is measurable.

4. Conclusions and Discussions

We investigated the effect of music from the viewpoint of
brain wave synchrony in auditory-motor interactions. We
extracted the time series of phase from EEG data and cal-
culated the information flow by using the transfer entropy.
As a result, we confirmed that transfer entropy from the
motor area to the auditory area becomes greater than those
with reversed direction under the condition with music. We
constructed a model with two randomly coupled phase os-
cillators to explain the experimental data. The characteris-
tics of this model is to have two stochastic terms: One is
the external noise which expresses an uncertain input such
as music, the other is the internal noise which expresses in-
teraction with other brain areas. The behavior of transfer
entropy is consistent with the experimental results.

In our experiments, transfer entropy from the motor area
to the auditory area becomes dominant by the effect of mu-
sic. Yet one might think that it looks contradictory, because
the upstream auditory area receiving music is supposed to
drive the downstream motor area. In this sense, music en-
ables the direction of dominant transfer entropy to be re-
versed, which may imply that information transport from
humans to external environments is measured and observed
with this entropy measure. Going back to the original moti-
vation of this study, we would like to develop exciting prod-
ucts which lead to dynamic change of information flow.
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