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Abstract. A general anisotropic curvature flow equation with singular in-
terfacial energy and spatially inhomogeneous driving force is considered for

a curve given by the graph of a periodic function. We prove that the initial
value problem admits a unique global-in-time viscosity solution for a general
periodic continuous initial datum. The notion of a viscosity solution used here
is the same as proposed by Giga, Giga and Rybka, who established a compar-

ison principle. We construct the global-in-time solution by careful adaptation
of Perron’s method.

1. Introduction

In this paper we study a one-dimensional nonlinear degenerate parabolic equa-
tion whose diffusion effect is very strong at particular slopes of unknown functions.
We are in particular interested in an equation, where the driving force term is
spatially inhomogeneous. A typical example is a quasilinear equation

(1.1) ut = a(ux)[(W
′(ux))x + σ(t, x)],

where W is a given convex function on R but may not be of class C 1(R) so that
its derivative W ′ may have jump discontinuities and σ is a given Lipschitz function
depending on the space variable x as well as the time variable t; here a is a given
nonnegative continuous function, and ut and ux denote the time and the space
derivative of an unknown function u = u(t, x).

In order to explain the motivation of this work, let us consider an evolution law
of a curve Γt ⊂ R2 moved by an anisotropic curvature flow

(1.2) V =M0(n)(κγ0 + σ) on Γt,

where V is the normal velocity of the evolving curve in the direction of the normal
vector n and let the mobility M0 and the surface energy density γ0 be positive
functions on the unit circle; the term κγ0 called a nonlocal curvature is the first
variation of surface energy. We note that if γ0 is the constant 1, then κγ0 is nothing
but usual curvature κ; the quantity κγ0 formally equals ((γ0)θθ + γ0)κ if one writes
γ0 as a function of the argument θ of n = (cos θ, sin θ). The equation (1.2) appears
in crystal growth as an equation to describe the interface of two phases; see, e.g.,
[2].
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If the curve Γt is given as a graph of a function u = u(t, x), the equation (1.2)
then becomes of the form (1.1) with

a(p) =M(p,−1), M(p, q) =
√
p2 + q2M0

(
(p, q)√
p2 + q2

)
,

W (p) = γ(p,−1), γ(p, q) =
√
p2 + q2γ0

(
(p, q)√
p2 + q2

)
.

Assume that the Frank diagram F :=
{
(p, q) ∈ R2 | γ(p, q) ≤ 1

}
is convex so that

W is a convex function. If F has a smooth (C 2) boundary ∂F , the theory of (1.2)
is well developed [6], [9], [16]. Indeed, since W is C 2(R), we are able to apply the
classical theory of viscosity solutions [7] to the equation (1.1). We are concerned
with the case that ∂F is of class C 2 except finitely many points. A typical example
of F is a polygon so that W is a piecewise linear function. For examples if γ is a
crystalline energy of the form

γ(p, q) = |p|+ |q|,

then W ′′(p) is twice the Dirac delta function δ and so the equation (1.1) formally
becomes

ut = a(ux)[2δ(ux)uxx + σ],

which is not a classical partial differential equation.
Admissible curves such as polygons moving by a crystalline energy with no driv-

ing force have been studied by Taylor [19, 20] and by Angenent and Gurtin [1]. For
the evolution law of graphs (1.1) a notion of solutions is introduced by adapting
the subdifferential theory [10] (σ = 0) and [11]. Elliott, Gardiner and Schätzle [8]
study relationship between the solutions in the sense of [10] and admissible curves.
When σ is independent of x, the theory of viscosity solutions to (1.1) and (1.2) is
established in a series of papers [12], [13], [14].

The goal of this paper is to establish a global-in-time existence theorem of a
viscosity solution for a class of equations including (1.1) with a given continuous
periodic initial condition. Our result is a generalization of [12, Section 8, 9] to the
equation with spatially inhomogeneous driving force. Notion of viscosity solutions
to (1.1) with σ depending on x is introduced in [15], where a comparison theorem
is established. The authors of [15] also show some existence results by showing that
a special semi-explicit variational solution studied in [17] is a viscosity solution but
their initial data is very restrictive. We also point out that in a recent paper by
Chambolle and Novaga [4] the authors establish short-time existence for (1.2) by
time-discrete implicit scheme, which is introduced in [5], [3]. Our argument based
on the theory of viscosity solutions is completely different from theirs and can be
applied to a fully nonlinear equation.

Following [15], let us consider an energy functional which formally equals

Φ[f ] =

∫
T

(W (fx)− σf)dx

for a smooth function f ; we assumed a periodic boundary condition so that T =
R/ωZ with ω > 0. Let ∂0Φ[f ] be the canonical restriction of the subdifferential
∂Φ[f ] in the Hilbert space H := L2(T), i.e.

∂0Φ[f ] = arg min {∥λ∥H | λ ∈ ∂Φ[f ]} .
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As mentioned in [11], the above minimizing problem is equivalent to an obstacle
problem: The condition λ ∈ −∂Φ[f ] holds if and only if λ is of the form λ = ξ′ such
that ξ ∈ ∂W (fx) + Z a.e. on T, where Z is a primitive function of σ, i.e. Zx = σ.
Therefore, we minimize

(1.3)

{∫
T

|ξ′|2dx | ξ ∈ ∂W (fx) + Z a.e. on T

}
.

There might be a chance that there is no such ξ satisfying ξ ∈ ∂W (fx) +Z a.e. on
T. We need to require special structure to guarantee the existence of such ξ. A
sufficient condition is that f is flat (facet) on a nontrivial interval (called a faceted
region) containing each fixed point x whenever ∂W has a jump at fx(x). Such
a function f is called a faceted function and we see that (1.3) admits a unique
minimizer ξ̄ for a faceted function f since the problem is convex. It is natural to
guess that ξ̄′ gives a candidate for the value of the nonlocal curvature

Λσ
W (f)(x) = (W ′(fx))x + σ(x).

Based on this observation we establish a notion of viscosity solutions to (1.1).
We prove the existence theorem by Perron’s method, which is standard in the

theory of viscosity solutions for regular equations; we refer the reader to [18], [7].
In our problem, however, it is necessary to modify a smooth faceted test function
keeping its property. In the previous work [12] it suffices to modify the test function
outside the faceted region. However, this method heavily relies on the fact that the
nonlocal curvature Λσ

W (f) is constant on a faceted region when σ is independent of
x.

The main idea to solve this problem is to find a small effective region which
determines the quantity of the nonlocal curvature. We construct a modification as
in the previous work [12] using the effective region instead of the faceted region.
Then the argument works well for our setting with the spatially inhomogeneous
driving force term σ.

This paper is organized as follows. In Section 2 we recall the definition of faceted
functions and the nonlocal curvature Λσ

W and define generalized solutions for the
equations. In Section 3 we describe how to construct an effective region and modi-
fications for test functions. In Section 4 we prove Perron type existence theorems
and Section 5 is devoted to proving the existence theorem for periodic initial data.

2. Definitions of generalized solutions

In this section we recall some notions of functions and the nonlocal curvature
Λσ
W introduced in [15, Section 2] and define generalized solutions for fully nonlinear

equations of the form

(2.1) ut + F (t, ux,Λ
σ
W (u)) = 0 in Q := (0, T )× Ω,

where T > 0 and Ω is an open set in R. We assume the following conditions
throughout this paper.

(W) Assume W is a convex function on R with values in R of class C 2 outside
a closed discrete set P and that its second derivative W ′′ is bounded in any
compact set except all points in P .

(S) The continuous function σ = σ(t, x) on [0, T ] × Ω is Lipschitz continuous
in x uniformly with respect to t, i.e. there exists a constant L such that

|σ(t, x)− σ(t, y)| ≤ L|x− y| for all t ∈ [0, T ), x, y ∈ Ω.
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(F1) F is continuous on [0, T ]×R×R with values in R.
(F2) F (t, p,X) ≤ F (t, p, Y ) for all t ∈ [0, T ], p ∈ R, X ≥ Y .

The discrete set P in (W) is either a finite set or a countable set having no accu-
mulation point in R. If P is nonempty, P is of form {pj}mj=1, {pj}∞j=1, {pj}

−∞
j=−1 or

{pj}∞j=−∞, where {pj} is a strictly increasing sequence pj < pj+1 with limj→∞ pj =
∞ and limj→−∞ pj = −∞, and m is a positive integer. We often let σ(t) denote
the function σ(t)(x) = σ(t, x) for t ∈ [0, T ). We say that a family of a func-
tions σt on Ω is equi-Lipschitz continuous if there exists a constant L such that
|σt(x)− σt(y)| ≤ L|x− y| for all t and x, y ∈ Ω. Our assumption (S) is equivalent
to saying that σ(t) on Ω is equi-Lipschitz continuous.

2.1. Faceted functions. We first define a notion of a faceted function.

Definition 2.1 (Faceted function). A function f ∈ C 1(Ω) is faceted at a point
x̂ ∈ Ω with slope p ∈ R (or p-faceted at x̂) if there exists a closed nontrivial finite
interval I = [cl, cr] ⊂ Ω containing x̂ (i.e. cl, cr ∈ Ω satisfy cl < cr and cl ≤ x̂ ≤ cr)
such that

f ′(x) = p for all x ∈ I,

f ′(x) ̸= p for all x ∈ J \ I

with some neighborhood J = (bl, br) ⊂ Ω of I. The closed interval I is called a
faceted region of f containing x̂. We say that a function f is P -faceted at x̂ if f is
p-faceted at x̂ for some p ∈ P and let

C 2
P (Ω) :=

{
f ∈ C 2(Ω) | f is P -faceted at x̂ whenever f ′(x̂) ∈ P

}
.

We also define the left transition number χl = χl(f, x̂) and the right transition
number χr = χr(f, x̂) for a p-faceted function f at x̂ by

χl =

{
+1 if f ′ < p on (bl, cl),

−1 if f ′ > p on (bl, cl),

χr =

{
+1 if f ′ > p on (cr, br),

−1 if f ′ < p on (cr, br).

Let R(f, x̂) = [cl, cr] denote a maximal closed interval containing x̂ on which f ′

is constant, i.e.

cl := inf{x ∈ Ω | f ′(y) = f ′(x̂) for all y ∈ [x, x̂]},
cr := sup{x ∈ Ω | f ′(y) = f ′(x̂) for all y ∈ [x̂, x]}.

The interval R(f, x̂) is nothing but the faceted region if f is a P -faceted function
at x̂.

Remark 2.2. We note that a p-faceted function f at x̂ agrees with an affine function

ℓp(x) := p(x− x̂) + f(x̂)
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on I = R(f, x̂) and that

χl =

{
+1 if f > ℓp on (bl, cl),

−1 if f < ℓp on (bl, cl),

χr =

{
+1 if f > ℓp on (cr, br),

−1 if f < ℓp on (cr, br).

2.2. Nonlocal curvature with a nonuniform driving force. We next recall
the definition of the nonlocal curvature for a smooth faceted function. Assume (W)
and that

(2.2) σ is a Lipschitz function on Ω.

For f ∈ C 2
P (Ω) and x̂ ∈ Ω define the nonlocal curvature Λσ

W (f)(x̂) as below.
On one hand, if f ′(x̂) /∈ P , we set

Λσ
W (f)(x̂) =W ′′(f ′(x̂))f ′′(x̂) + σ(x̂)

as expected. On the other hand, if p := f ′(x̂) ∈ P , i.e. f is p-faceted at x̂, the
definition is more involved since it is based on the obstacle problem (1.3).

Let Z be a primitive function of σ and let

∆ = |∂W (p)| = lim
q↓p

W ′(q)− lim
q↑p

W ′(q).

We also take the faceted region I = R(f, x̂) = [cl, cr] and the transition numbers
χl = χl(f, x̂), χr = χr(f, x̂). We note that

(2.3) Z ∈ C 1,1(I), ∆ > 0, I is a nontrivial closed interval and χl, χr ∈ [−1, 1].

For later convenience we have defined K for χl, χr whose values are in [−1, 1] not
necessarily in {±1}. Let K = KZ,∆,I

χlχr
be the set of all ξ ∈ H 1(I) satisfying an

obstacle condition

Z(x)−∆/2 ≤ ξ(x) ≤ Z(x) + ∆/2 for all x ∈ I

and a boundary condition

ξ(cl) = Z(cl)− χl∆/2, ξ(cr) = Z(cr) + χr∆/2.

We now consider the functional J = JZ,∆,I
χlχr

on L2(I) defined by

J [ξ] =

{∫
I
|ξ′(x)|2dx if ξ ∈ K,

∞ otherwise.

It is easy to see that K is a closed convex set with respect to H 1 norm and thus J
admits a unique minimizer denoted by ξ̄ = ξZ,∆,I

χlχr
.

An equivalent condition to being a minimizer of the obstacle problem is known.
Assume (2.3). For ξ ∈ K define the upper coincidence set D+ and the lower
coincidence set D− by

D± = D±(ξ) = {x ∈ I | ξ(x) = Z(x)±∆/2}.

We say that ξ satisfies concave-convex condition if ξ is concave outside the upper
coincidence set D+ and convex outside the lower coincidence set D−.

Proposition 2.3 (Characterization of minimizer). A function ξ ∈ K is the mini-
mizer of J if and only if ξ satisfies the concave-convex condition.
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This proposition is proved in the same way as in [15, Proposition 2.2], which
shows the equivalence with the assumption χl, χr = ±1, and so we omit it. Noting
that Proposition 2.3 in particular implies that the minimizer of the obstacle problem
ξ̄ belongs to C 1,1(I), so we define

ΛZ′

χlχr
(x; I,∆) = ξ̄′(x) for x ∈ I.

The reason we write Z ′ instead of Z is that the derivative ξ̄′ depends on Z only
through its derivative. Proposition 2.3 also shows that restriction of ξ̄ is also a
minimizer of an obstacle problem on the restricted domain:

Corollary 2.4. Let M = [cl, cr] ⊂ I be a nontrivial closed interval. Then,

ξZ,∆,I
χlχr

= ξZ,∆,M
χ′
lχ

′
r

on M .

with
χ′
l = 2(ξ̄(cl)− Z(cl))/∆, χ′

r = 2(ξ̄(cr)− Z(cr))/∆.

Definition 2.5 (Nonlocal curvature). Assume (W) and (2.2). Let f ∈ C 2
P (Ω) and

x̂ ∈ Ω.

(i) If f ′(x̂) /∈ P , then define

Λσ
W (f)(x̂) =W ′′(f ′(x̂))f ′′(x̂) + σ(x̂).

(ii) If f is P -faceted at x̂, then define

Λσ
W (f)(x̂) = Λσ

χlχr
(x̂; I,∆)

with ∆ = |∂W (p)|, I = R(f, x̂), χl = χl(f, x̂), χr = χr(f, x̂).

We prepare several propositions on the nonlocal curvature.

Proposition 2.6 (Comparison). Assume (W) and (2.2). Let f, g ∈ C 2
P (Ω) and

x̂ ∈ Ω. If maxΩ(f − g) = (f − g)(x̂), then

Λσ
W (f)(x̂) ≤ Λσ

W (g)(x̂).

Proposition 2.7 (Continuity with respect to σ and x). Assume (W) and let f ∈
C 2

P (Ω) and x̂ ∈ Ω. Let y, yk ∈ R(f, x̂) and equi-Lipschitz continuous functions σ,
σk on Ω satisfy yk → y and σk → σ uniformly. Then

Λσk

W (f)(yk) → Λσ
W (f)(y).

Proposition 2.8 (Continuity with respect to I). Assume (2.2), χl, χr = ±1,
∆ > 0. Let nontrivial intervals I = [cl, cr], I

k = [ckl , c
k
r ] of Ω satisfy Ik → I, i.e.

ckl → cl and c
k
r → cr, and let y ∈ I, yk ∈ Ik satisfy yk → y. Then

Λσ
χlχr

(yk; Ik,∆) → Λσ
χlχr

(y; I,∆).

Proposition 2.6–2.8 are immediate consequence of [15, Theorem 2.8, 2.9, 2.12].

2.3. Admissible functions and definition of a generalized solution. We
recall a natural class of test function.

Definition 2.9 (Admissible function). Let I and J be open intervals in R. An
admissible function on Q := J × I is a function φ of the form

(2.4) φ(t, x) = f(x) + g(t) on Q
with some functions f ∈ C 2

P (I) and g ∈ C 1(J). Let AP (Q) be the set of all
admissible functions on Q.
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We are now able to define a generalized solution in the viscosity sense for the
singular parabolic equation (2.1). For a real-valued function u recall the upper
semicontinuous envelope and the lower semicontinuous envelope

u∗(t, x) := lim
ε↓0

sup{u(s, y) | (s, y) ∈ Q, |s− t|+ |y − x| < ε},

u∗(t, x) := lim
ε↓0

inf{u(s, y) | (s, y) ∈ Q, |s− t|+ |y − x| < ε}

for (t, x) ∈ Q.

Definition 2.10 (Viscosity solution). A real-valued function u on Q is a viscosity
subsolution of (2.1) in Q if u∗ <∞ in [0, T )× Ω and

(2.5) φt(t̂, x̂) + F (t̂, φx(t̂, x̂),Λ
σ(t̂)
W (φ(t̂, ·))(x̂)) ≤ 0

whenever (t̂, x̂) ∈ Q and φ ∈ AP (Q) satisfy

(2.6) max
Q

(u∗ − φ) = (u∗ − φ)(t̂, x̂).

A real-valued function u on Q is a viscosity supersolution of (2.1) in Q if u∗ > −∞
in [0, T )× Ω and

(2.7) φt(t̂, x̂) + F (t̂, φx(t̂, x̂),Λ
σ(t̂)
W (φ(t̂, ·))(x̂)) ≥ 0

whenever (t̂, x̂) ∈ Q and φ ∈ AP (Q) satisfy

(2.8) min
Q

(u∗ − φ) = (u∗ − φ)(t̂, x̂).

If u is both a subsolution and a supersolution, u is called a viscosity solution.

Hereafter we suppress the word “viscosity”. A function φ satisfying (2.6) or (2.8)
is called a test function of u at (t̂, x̂).

The following propositions are easily derived.

Proposition 2.11 (Smooth solution and viscosity solution). We assume (W), (S),
(F2). If φ ∈ AP (Q) of the form (2.4) with f ∈ C 2

P (Ω) and g ∈ C 1(0, T ) satisfies

(2.5) (resp. (2.7)) for each (t̂, x̂) ∈ Q, then φ is a subsolution (resp. supersolution)
of (2.1) in Q.

Proof. We only show that φ is a subsolution. Fix ψ ∈ AP (Q) of the form

ψ(t, x) = f̃(x) + g̃(t) on Q

with f̃ ∈ C 2
P (Ω) and g̃ ∈ C 1(0, T ), and suppose that

φ(t, x)− ψ(t, x) = f(x)− f̃(x) + g(t)− g̃(t)

attains a maximum at a point (x̂, t̂) ∈ Q. We then see that f ′(x̂) = f̃ ′(x̂) and
g′(t̂) = g̃′(t̂). Moreover, Proposition 2.6 yields

Λ
σ(t̂)
W (f)(x̂) ≤ Λ

σ(t̂)
W (f̃)(x̂).

Therefore, we have

g̃′(t̂) + F (t̂, f̃ ′(x̂),Λ
σ(t̂)
W (f̃)(x̂)) ≤ g′(t̂) + F (t̂, f ′(x̂),Λ

σ(t̂)
W (f)(x̂)) ≤ 0

by (F2) and (2.5). □
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Proposition 2.12 (Addition by affine functions). Let u be a subsolution (resp.
supersolution) of (2.1) in Q and a, b ∈ R. Then v(t, x) = u(t, x) − ax − b is a
subsolution (resp. supersolution) of

vt + F (t, vx + a,Λσ
Wa

(v)) = 0 in Q,

where Wa(p) =W (p+ a).

In order to show the existence of a solution by Perron’s method we define a
local version of the notion of solutions. We say that a function φ ∈ C (Q) is locally
admissible at a point (t̂, x̂) ∈ Q if φ is admissible on J×I with some bounded open
intervals I and J such that t̂ ∈ J ⊂ (0, T ) and x̂ ∈ I ⊂ Ω.

Definition 2.13. A real-valued function u on Q is a subsolution in the local sense
of (2.1) in Q if u∗ < ∞ in [0, T ) × Ω and (2.5) holds for all locally admissible
φ ∈ C (Q) at (t̂, x̂) ∈ Q satisfying (2.6). A supersolution in the local sense is
defined by replacing u∗ < ∞ by u∗ > −∞, the inequality (2.5) by (2.7) and the
equality (2.6) by (2.8) as before.

Lemma 2.14. A real-valued function u on Q is a subsolution (resp. supersolution)
of (2.1) in Q if and only if u is a subsolution (resp. supersolution) in the local sense
of (2.1) in Q.

These facts can be shown by the same argument as in [12, Section 6].

3. Effective region and canonical modification

In this section we construct an upper and lower modification f#,ε and f#,ε

for a faceted function f and a small number ε > 0. These modifications play an
important role in order to prove a Perron type existence theorem in the next section.

Definition 3.1. Let f ∈ C (Ω) ∩ C 2
P (Ω1) satisfy f ′(x̂) = 0 with an open interval

Ω1 = (al, ar) ⊂ Ω and x̂ ∈ Ω1. Let

p1 = sup{p ∈ P ∪ {−∞} | p < 0} ∈ [−∞, 0),

p2 = inf{p ∈ P ∪ {∞} | p > 0} ∈ (0,∞].

Consider the case (i) f ′(x̂) = 0 /∈ P . We then define M = [dl, dr] by

dl = dr = x̂, i.e. M = {x̂}
and set

f#,ε(x) = f#(x) = f(x) + (x− x̂)4 for x ∈ Ω.

Let us note that there exists an open neighborhood Ω2 = (bl, br) ⊂ Ω1 of x̂ such
that

(3.1)
p1
2
< f ′(x) <

p2
2

for all x ∈ Ω2,

(3.2) dl +
3
√
p1

2
≤ bl < dl, dr < br ≤ dr +

3
√
p2

2
.

Consider the case (ii) f ′(x̂) = 0 ∈ P , i.e. f is P -faceted at x̂. Take the faceted
region [cl, cr] = R(f, x̂) and the minimizer of the obstacle problem ξ. Define M =
[dl, dr] by

dl = max{x ≤ x̂ | x ∈ D−(ξ) ∪ {cl}},
dr = min{x ≥ x̂ | x ∈ D+(ξ) ∪ {cr}}.
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Take an open interval Ω2 = (bl, br) ⊂ Ω1 ∩ J such that (3.1) and (3.2) hold, where
J is the neighborhood of R(f, x̂) appearing in Definition 2.1. Define f#,ε for each
ε > 0 as below: First set

f#,ε(x) = f(x) = f(x̂) for x ∈M = [dl, dr].

If dl ∈ D−(ξ), set

f#,ε(x) = f(x) + (x− dl)
4 for x ∈ Ω, x ≤ dl.

If dl /∈ D−(ξ), that is dl = cl and dl ∈ D+(ξ), set

f#,ε(x) =


f(dl) = f(x̂) for x ∈ [dl − ε, dl],

f(x+ ε) for x ∈ [bl, dl − ε],

f(x) + f(bl + ε)− f(bl) for x ∈ Ω, x ≤ bl.

If dr ∈ D+(ξ), set

f#,ε(x) = f(x) + (x− dr)
4 for x ∈ Ω, x ≥ dr.

If dr /∈ D+(ξ), that is dr = cr and dr ∈ D−(ξ), set

f#,ε(x) =


f(dr) = f(x̂) for x ∈ [dr, dr + ε],

f(x− ε) for x ∈ [dr + ε, br],

f(x) + f(br − ε)− f(br) for x ∈ Ω, x ≥ br.

We call the function f#,ε an upper canonical modification of f at x̂ with an
effective region M and a canonical neighborhood Ω2. By a similar way we are able
to construct a lower canonical modification f#,ε with an effective region M and a
canonical neighborhood Ω2: Let −f#,ε be an upper canonical modification of −f
at x̂.

The figures below illustrate how to construct the effective regionM and the upper
canonical modification f# = f#,ε when f is P -faceted at x̂ and χl = χr = −1.
While Figure 1 indicates the case dl ∈ D−(ξ) and dr ∈ D+(ξ), Figure 2 shows the
cases dl ∈ D−(ξ) and dr /∈ D+(ξ).

The upper and lower canonical modification fulfills

Proposition 3.2. Assume (W). Let Ω1 = (al, ar) ⊂ Ω be an open interval. For
f ∈ C (Ω) ∩ C 2

P (Ω1) and x̂ ∈ Ω1 satisfying f ′(x̂) = 0, let fε be an upper canonical
modification f#,ε (resp. lower canonical modification f#,ε) with effective region
M = [dl, dr] and a canonical neighborhood Ω2 = (bl, br) and let s = 1 (resp. s =
−1). Let y, yε ∈ M , yk ∈ Ω and equi-Lipschitz functions σ, σk satisfy yε → y,
yk → y and σk → σ uniformly. Then the conditions

(3.3) fε ∈ C (Ω) ∩ C 2
P (Ω2),

(3.4) sfε > sf on Ω \M ,

(3.5) inf
Ω\Ω2

s(fε − f) > 0,

(3.6) fε(y) = f(y) = f(x̂),

(3.7) lim
k
(fε)′(yk) = (fε)′(y),

(3.8) (fε)′(y) = f ′(y) = f ′(x̂) = 0,
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(3.9) lim sup
k

sΛσk

W (fε)(yk) ≤ sΛσ
W (fε)(y)

hold for all ε > 0 small enough, and

(3.10) Λσ
W (fε)(yε) → Λσ

W (f)(y) as ε→ 0,

(3.11) sΛσ
W (f)(y) ≤ sΛσ

W (f)(x̂)

hold.

Proof. We only consider the case fε = f#,ε and s = 1. Since it is easy to verify
the conditions (3.3)–(3.11) in the case (i) f ′(x̂) = 0 /∈ P , we only consider the case
(ii) f is P -faceted at x̂. The conditions (3.3)–(3.8) are shown by the definition of
the canonical modification.

Show (3.9). Take a subsequence kj such that

Λ
σkj

W (f#,ε)(ykj ) → lim sup
k

Λσk

W (f#,ε)(yk).

Since Proposition 2.7 implies

Λ
σkj

W (f#,ε)(ykj ) → Λσ
W (f#,ε)(y)

provided that ykj ∈ Rε = [cεl , c
ε
r] := R(f#,ε, x̂) for each j, we may assume that

ykj /∈ Rε. Also it is enough to consider the case ykj < cεl . Hence,

Λ
σkj

W (f#,ε)(ykj ) =W ′′((f#,ε)′(ykj ))(f
#,ε)′′(ykj ) + σkj (ykj )

→ σ(y).

f#

x̂

M

f

ξ

R

Z +∆/2

Z −∆/2

f

Figure 1. Construction of M and f# = f#,ε (case dl ∈ D−(ξ)
and dr ∈ D+(ξ))
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f#

x̂

M

f

ξ

R

Z +∆/2

Z −∆/2

f

Figure 2. Construction of M and f# = f#,ε (case dl ∈ D−(ξ)
and dr /∈ D+(ξ))

Since ykj → y ∈M ⊂ Rε, we observe that

y = cεl = dl ∈ D−(ξ
ε),

where ξε is the minimizer of the obstacle problem ξZ,∆,Rε

χ′
lχ

′
r

with a primitive Z of σ,

∆ = |∂W (0)|, Rε =, χ′
l = χl(f

#,ε, x̂), χ′
r = χr(f

#,ε, x̂). Noting that ξε − Z +∆/2
attains zero minimum at y, we have

σ(y) ≤ Λσ
W (f#,ε)(y),

and hence

lim sup
k

Λσk

W (fε)(yk) = lim
j

Λ
σkj

W (fε)(ykj ) ≤ Λσ
W (f#,ε)(y).

Show (3.10). Write R = R(f, x̂), χl = χl(f, x̂), χr = χr(f, x̂) so that ξ = ξZ,∆,R
χlχr

.
Also note that χ′

l and χ
′
r are independent of ε. It follows from Corollary 2.4 that

Λσ
W (f)(y) = Λσ

χlχr
(y;R,∆) = Λσ

χ′
lχ

′
r
(y;M,∆).

Since Rε →M as ε→ 0, we see by Proposition 2.8 that

Λσ
W (f#,ε)(yε) = Λσ

χ′
lχ

′
r
(yε;R

ε,∆) → Λσ
χ′
lχ

′
r
(y;M,∆) = Λσ

W (f)(y).

Since y /∈ D−(ξ) for all y ∈ [x̂, dr), we see that ξ is concave on [x̂, dr] by the
concave-convex condition of ξ. By a similar argument we see that ξ is convex on
[dl, x̂]. Therefore we obtain (3.11) for all y ∈M . □
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4. Perron type existence theorem

In this section we show Perron type existence theorem. Let Ω be an open set in
R and Q = (0, T )× Ω.

Theorem 4.1 (Perron type existence). Assume (W), (S), (F1), (F2). Let u− and
u+ respectively be a subsolution and a supersolution of (2.1) satisfying

(4.1) u− ≤ u+ in Q, (u−)∗ > −∞, (u+)∗ <∞ on [0, T )× Ω.

(1) Then, there exists a solution u of (2.1) satisfying

(4.2) u− ≤ u ≤ u+ in Q.

(2) Moreover, if

(4.3) σ(t, x+ ω) = σ(t, x)

(4.4) u−(t, x+ ω) = u−(t, x), u+(t, x+ ω) = u+(t, x)

for all (t, x) ∈ Q with ω > 0 and Ω = R, then there exists a solution u of
(2.1) satisfying (4.2) and

(4.5) u(t, x+ ω) = u(t, x) for all (t, x) ∈ Q.

We divide the main part of the proof into two lemmas.

Lemma 4.2. Assume (W), (S), (F1), (F2). Let S be a nonempty family of sub-
solutions (resp. supersolutions) of (2.1). Define

u(t, x) = sup{v(t, x) | v ∈ S} (resp. v(t, x) = inf{v(t, x) | v ∈ S})

for (t, x) ∈ Q. Assume that u∗ < ∞ (resp. v∗ > −∞) in [0, T ) × Ω. Then u is a
subsolution (resp. supersolution) of (2.1).

Lemma 4.3. Assume (W), (S), (F1), (F2). Let S be the set of all subsolutions u
of (2.1) satisfying v ≤ u+ in Q with a supersolution u+ of (2.1). If u ∈ S is not
a supersolution of (2.1) and satisfies u∗ > −∞ in [0,∞) × Ω, then there exist a
function v ∈ S and a point (s, y) ∈ Q such that u(s, y) < v(s, y).

We first show the Perron type existence theorems under the assumption that
Lemma 4.2 and 4.3 hold.

Proof of Theorem 4.1. we shall show the part (1). Let S be the set of all subsolu-
tions v of (2.1) satisfying v ≤ u+ in Q. Note that S is not empty since u− ∈ S.
Define

u(t, x) = sup{v(t, x) | v ∈ S} for (t, x) ∈ Q.

We then have u− ≤ u ≤ u+ in Q, which implies u∗ ≥ (u−)∗ > −∞ and u∗ ≤
(u+)∗ <∞ on [0, T )×Ω. We hence see that u is a subsolution by Proposition 4.2.
We next claim that u is a supersolution. If u were not a supersolution, Proposition
4.3 would imply that there exist v ∈ S and (s, y) ∈ Q such that u(s, y) < v(s, y),
which contradicts the maximality of u. Therefore, we conclude that u is a solution.

It remains to show (4.5). Note that for v ∈ S the periodicity conditions (4.3)
and (4.4) imply that ṽ(t, x) = v(t, x± ω) ∈ S. Hence, we see that

u(t, x+ ω) = sup{v(t, x+ ω) | v ∈ S} = sup{v(t, x) | v ∈ S} = u(t, x).

The proof is now complete. □
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We next show the lemmas. We note that being a subsolution is equivalent to
being a subsolution in the local sense by Lemma 2.14.

Proof of Lemma 4.2. We only show that u is a subsolution (in the local sense). Fix
a point (t̂, x̂) ∈ Q and a locally admissible test function φ ∈ C (Q) at (t̂, x̂) such
that (2.6) holds. Our goal is to show (2.5). Since φ is locally admissible, there exist
f ∈ C 2

P (Ω1) and g ∈ C 1(I) with open intervals Ω1 and J such that

(4.6)
φ(t, x) = f(x) + g(t) on Q1 := J × Ω1,

R(f, x̂) ⊂ Ω1 ⊂ Ω, t̂ ∈ J ⊂ (0, T ).

We may assume that

(u∗ − φ)(t̂, x̂) = 0, φx(t̂, x̂) = 0

Therefore, the desired inequality (2.5) becomes

(4.7) g′(t̂) + F (t̂, 0,Λ
σ(t̂)
W (f)(x̂)) ≤ 0,

which we should show.
We now let ψ ∈ C (Q) be an AP (Q2) function such that

(4.8) ψ = φ on K, ψ > φ on Q \K, inf
Q\Q2

(ψ − φ) > 0

with a closed set K and an open set Q2 satisfying

(x̂, t̂) ∈ K ⊂ Q2 ⊂ Q.
The function ψ is to be determined later. By the definition of the upper semicon-
tinuous envelope there exists a sequence {(tk, sk)}k∈N ⊂ Q2 such that

(tk, xk, u(tk, xk)) → (t̂, x̂, u∗(t̂, x̂)) as k → ∞.

By the definition of u there exists {vk}k∈N ⊂ S such that

vk(tk, xk) > u(tk, xk)− 1/k

and so

vk(tk, xk) → u∗(t̂, x̂) as k → ∞.

Taking a maximizer (sk, yk) of v
∗
k − ψ on Q2, we observe that

((vk)
∗ − ψ)(tk, xk) ≤ ((vk)

∗ − ψ)(sk, yk) ≤ (u∗ − ψ)(sk, yk)

for each k. Sending k → ∞ yields

(u∗ − ψ)(t̂, x̂) ≤ (u∗ − ψ)(s̄, ȳ),

where

(s̄, ȳ) = lim
k→∞

(sk, yk) ∈ Q2

by taking a subsequence if necessary. We see that (s̄, ȳ) ∈ K and (sk, yk) ∈ Q2 for
sufficiently large k. We also note that

max
Q

((vk)
∗ − ψ) = ((vk)

∗ − ψ)(sk, yk),

i.e. ψ is a test function of vk at (sk, yk) by the last inequality of (4.8).
Let f#,ε be an upper canonical modification of f at x̂ with effective region M

and canonical neighborhood Ω2 ⊂ Ω1 for ε > 0. We then see that

ψ(x, t) = f#,ε(x) + g(t) + (t− t̂)2
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is an admissible function on a set Q2 = J × Ω2 ⊂ Q1 and that (4.8) holds with
K = {t̂} ×M by Proposition 3.2. By the above argument we have vεk ∈ S and
(sεk, y

ε
k) ∈ Q2 such that

(sεk, y
ε
k) → (t̂, yε) ∈ {t̂} ×M as k → ∞

and ψ is a test function of vεk at (sεk, y
ε
k). Since v

ε
k is a subsolution, we have

(4.9) g′(sεk) + 2(sεk − t̂) + F (sεk, (f
#,ε)′(yεk),Λ

σ(sεk)
W (f#,ε)(yεk)) ≤ 0.

Proposition 3.2 implies that

lim
k→∞

(f#,ε)′(yεk) = f ′(x̂),

lim
ε→0

lim sup
k→∞

Λ
σ(sεk)
W (f#,ε)(yεk) ≤ Λ

σ(t̂)
W (f)(x̂).

Therefore, it follows from (4.9) that (4.7) holds by (F1) and (F2).
We conclude that u is a subsolution. □

Proof of Lemma 4.3. Since u is not a supersolution, there exist (x̂, t̂) ∈ Q and a
locally admissible test function φ ∈ C (Q) at (t̂, x̂) such that (2.6) and

(4.10) φt(t̂, x̂) + F (t̂, φx(t̂, x̂),Λ
σ(t̂)
W (φ(t̂, ·))(x̂)) < 0

hold. Since φ is locally admissible, there exist f ∈ C 2
P (Ω1) and g ∈ C 1(J) with

open intervals Ω1 and J such that (4.6) holds with Q1 := J ×Ω1. We may assume
that

(u∗ − φ)(t̂, x̂) = 0, φx(t̂, x̂) = 0

by Proposition 2.12 with a = φx(t̂, x̂) = f ′(x̂) and b = u∗(x̂, t̂)− f ′(x̂)x̂. Therefore,
the inequality (4.10) becomes

(4.11) g′(t̂) + F (t̂, 0,Λ
σ(t̂)
W (f)(x̂)) < 0.

Take a lower canonical modification f#,ε of f at x̂ for ε > 0 with effective region
M and canonical neighborhood Ω2 ⊂ Ω1. Set

ψ(x, t) = f#,ε(x) + g(t)− (t− t̂)2.

We now claim that

(4.12) ψt(t, x) + F (t, ψx(t, x),Λ
σ(t)
W (φ(t, ·))(x)) < 0,

i.e.

(4.13) g′(t)− 2(t− t̂) + F (t, (f#,ε)
′(x),Λ

σ(t)
W (f#,ε)(x)) < 0

for all (t, x) in some neighborhood of K := {t̂} × M choosing ε small enough.
Indeed, since Proposition 3.2 implies that

λε(t, x) := Λ
σ(t)
W (f#,ε)(x)

is lower semicontinuous at each point of the compact set K, we see that for every
m > 0 there exists an open set Q3 ⊃ K on which the inequality

λε(t, x) > min
K

λε −m

holds. Choose yε ∈M such that (t̂, yε) is a minimum point of λε on K = {t̂}×M .
Proposition 3.2 implies that

Λ
σ(t)
W (f#,ε)(x) > Λ

σ(t̂)
W (f)(x̂)−m
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for all (t, x) ∈ Q3 with small ε and m. Since Proposition 3.2 also implies that

|(f#,ε)
′(x)| < m,

it follows from (4.9) that (4.13) and so (4.12) holds on Q3 by (F1) and (F2).
We next claim that ψ < (u+)∗ in Q3. First note that ψ ≤ φ ≤ u ≤ u+ and so

ψ ≤ (u+)∗. If ψ(t, x) = (u+)∗(t, x) at some point (t, x) ∈ Q3, then ψ would be a
test function of the supersolution u+ at (t, x). Hence,

ψt(t, x) + F (t, ψx(t, x),Λ
σ(t)
W (ψ(t, ·))(x)) ≥ 0,

which contradicts to (4.12).
Take a bounded open set Q4 such that K ⊂ Q4 and Q4 ⊂ Q3. Letting σ1 =

infQ4((u
+)∗ − ψ) > 0, we have

ψ + σ1 ≤ (u+)∗ in Q4.

Since f#,ε < f on Ω2 \M by Proposition 3.2, we also have

ψ + σ2 ≤ u∗ in Q3 \ Q4

with σ2 = infQ3\Q4
(u∗ − ψ) > 0. Define a function v by

v(t, x) =

{
max{ψ(t, x) + σ, u(t, x)} for (t, x) ∈ Q3,

u(t, x) for (t, x) /∈ Q3.

with σ = min{σ1, σ2}. We show that this function v is a desirable function in the
statement of this lemma.

Note that v ≥ u. In addition, since (u∗ − ψ)(t̂, x̂) = 0, there exists (s, y) ∈ Q4

such that (u− ψ)(s, y) < σ, which implies

v(s, y) > u(s, y).

Since

ψ(t, x) + σ ≤

{
(u+)∗(t, x) if (t, x) ∈ Q4,

u∗(t, x) if (t, x) ∈ Q3 \ Q4,

and u ≤ u+ in Q, we have

v = u on Q \ Q4,

v ≤ u+ in Q.

Noting that ψ is a subsolution of (2.1) in Q3, we see that v is a subsolution of (2.1)
in Q3 by Lemma 2.12 and 4.2. Therefore, if we admit the next lemma, we have
w ∈ S and so the proof is finished. □

Lemma 4.4. Assume (W), (S), (F1), (F2). Let u be a subsolution of (2.1) in Q.
Let w be a function defined on Q such that w ≥ u in Q, w = u in Q \N2, and w
is a subsolution of (2.1) in N1 with open rectangle sets N1 = J1 × I1, N2 = J2 × I2
satisfying N2 ⊂ N1, N1 ⊂ Q. Then w is a subsolution of (2.1) in Q.

In the classical setting, say P = ∅, this is easy to prove; if a function is a solution
in two domains, then it is a solution in their union. However, this assertion on
locality of solutions is not true for our equation (2.1) in general.
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Proof. Fix a point (t̂, x̂) ∈ Q and a locally admissible test function φ ∈ C (Q) of w
at (t̂, x̂), i.e. maxQ(w

∗ − φ) = (w∗ − φ)(t̂, x̂). Since φ is locally admissible, there
exist f ∈ C 2

P (Ω1) and g ∈ C 1(J) with open intervals Ω1 and J such that (4.6)
holds. We may assume that

(w∗ − φ)(t̂, x̂) = 0, φx(t̂, x̂) = 0

by Proposition 2.12 with a = φx(t̂, x̂) = f ′(x̂) and b = w∗(x̂, t̂)−f ′(x̂)x̂. We should
show (4.7).

It is enough to consider the case

(t̂, x̂) ∈ N2, φ(t̂, x̂) > u(t̂, x̂);

otherwise, φ is a test of the subsolution u and so we have (4.7). We may also
assume that f is P -faceted at x̂ and R(f, x̂) is not contained by I1; otherwise, (4.7)
holds since w is a subsolution in N1.

Let f# = f#,ε be a upper canonical modification of f at x̂ with effective region
M and canonical neighborhood Ω2 ⊂ Ω1. Set

ψ(x, t) = f#(x) + g(t) + (t− t̂)2.

We then observe that

ψ > φ ≥ w∗ ≥ u∗ in Q \ {t̂} ×M .

Let us assume for the moment that ψ(t̂, x0) = u∗(t̂, x0) at some x0 ∈ M . Then,
since ψ is a test function of the subsolution u at (t̂, x0), we have

g′(t̂) + F (t̂, (f#)′(x0),Λ
σ(t̂)
W (f#)(x0)) ≤ 0.

Proposition 3.2 yields (4.7) by (F2). Therefore, we have

(4.14) ψ > u∗ in Q
We now take a faceted function whose faceted region is contained in I1; set

f̃#(x) =


f#(x) + k|x− cl|3(|x− cl| − 1) for x ∈ Ω, x ≤ cl

f#(x) for x ∈ [cl, cr]

f#(x) + k|x− cr|3(|x− cr| − 1) for x ∈ Ω, x ≥ cr,

where I2 ⊂ [cl, cr] ⊂ I1 and k > 0. Note that

ψ̃(t, x) := f̃#(x) + g(t) + (t− t̂)2

is locally admissible in N1. Taking k small enough, we have

ψ̃ > u∗ for (t, x) ∈ Q
by (4.14). Noting that

w = u in Q \N2, ψ̃ = ψ in I1 × [cl, cr] ⊃ N2,

we see that maxQ(w
∗ − ψ̃) = (w∗ − ψ̃)(t̂, x̂). Since ψ̃ is a test function,

g′(t̂) + F (t̂, (f̃#)′(x̂),Λ
σ(t̂)
W (f̃#)(x̂)) ≤ 0.

Note that Proposition 2.6 yields

Λ
σ(t̂)
W (f̃#)(x̂) ≤ Λ

σ(t̂)
W (f#)(x̂).

Therefore, we have

g′(t̂) + F (t̂, (f#)′(x̂),Λ
σ(t̂)
W (f#)(x̂)) ≤ 0,
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which gives (4.7). □

5. Existence theorem for periodic initial data

In this section we prove an existence theorem for the equation (2.1) with periodic
boundary condition and initial condition. In order to utilize the Perron type ex-
istence theorem (Theorem 4.1) we construct a subsolution u− and a supersolution
u+ with given initial data; for a general strategy; see [16].

Lemma 5.1 (Existence of sub- and supersolutions). Assume (W), (S), (F1), (F2)
with Ω = R. Also assume that u0 is a bounded and uniformly continuous function
on R and σ is bounded. Then, there exist an upper semicontinuous function u+

and an lower semicontinuous function u− on Q such that u+ and u− respectively
are a supersolution and a subsolution of (2.1) in Q and

u−(0, x) = u0(x) = u+(0, x), u−(t, x) ≤ u0(x) ≤ u+(t, x)

holds for all (t, x) ∈ Q. Moreover, if

(5.1) u0(x+ ω) = u0(x),

then u± can be taken so that it is spatially periodic with period ω, i.e. (4.4) holds.

We show this existence theorem as in [12, Section 9].

Lemma 5.2 ([12, Lemma 9.5]). For each δ ∈ (0, 1/2) and M > 0 there exists
V = Vδ,M ∈ C 2

P (R) such that

(5.2) V ≥ 0, V ′′ ≥ 0 in R, V (0) = 0, V (x) ≥M for |x| > δ,

(5.3) V ′(x) =

{
q for x ≤ −1,

q′ for x ≥ 1

with some q, q′ /∈ P .

We need to show

Lemma 5.3. Let V ∈ C 2
P (R) be such that V ′′ ≥ 0 and (5.3) holds with some

q, q′ /∈ P . Then for B ∈ R large enough

(5.4) V +(t, x) = Bt+ V (x)

is a supersolution of (2.1) in (0, T )×R.

Proof. We first claim that

(5.5) C := sup
{
|Λσ(t)

W (V )(x)| | (t, x) ∈ Q
}
<∞.

Note that V ′(x) ∈ [q, q′] for x ∈ R and

sup
R

|V ′′| = sup
[−1,1]

|V ′′| <∞.

Moreover, we have

sup
p∈[q,q′]\P

|W ′′(p)| <∞, sup
Q

|σ| <∞.
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Therefore, for each (t, x) ∈ Q with V ′(x) /∈ P we observe that

(5.6)
|Λσ(t)

W (V )(x)| ≤ |W ′′(V ′(x))||V ′′(x)|+ |σ(t, x)|
≤ sup

p∈[q,q′]\P
|W ′′(p)| sup

R
|V ′′|+ sup

Q
|σ| <∞.

We shall show that

cp := sup
{
|Λσ(t)

W (V )(x)| | (t, x) ∈ Q, V ′(x) = p
}
<∞

for each p ∈ P . Indeed, since a faceted region R = {x ∈ R | V ′(x) = p} is a bounded
closed interval, Proposition 2.7 implies that (t, x) 7→ Λ

σ(t)
W (V )(x) is continuous on

[0, T ] × R, and so cp < ∞. We note that the number of faceted regions of V is
finite, i.e. P ∩ [q, q′] is finite by (W). Hence we have

(5.7) sup
{
|Λσ(t)

W (V )(x)| | (t, x) ∈ Q, V ′(x) ∈ P
}
= sup

p∈P∩[q,q′]

cp <∞.

Combining (5.6) and (5.7), we obtain (5.5). Moreover, we see that

F (t, V ′(x),Λ
σ(t)
W (V )(x)) ≥ inf

[0,T ]×[q,q′]×[−C,C]
F =: −B0 > −∞.

Therefore, V + in (5.4) is a supersolution of (2.1) for B ≥ B0. □
Proof of Lemma 5.1. Let δ be a modulus of continuity of u0; δ is a continuous
nondecreasing function on [0,∞) with δ(0) = 0 such that

|u0(x)− u0(y)| ≤ δ(|x− y|) for x, y ∈ R.

By Lemma 5.2 and 5.3 take Vδ = Vδ,M ∈ C 2
P (R) and Bδ ≥ 0 for small δ and M =

maxu0−minu0 satisfying (5.2) and that V +
δ (t, x) = Bδt+Vδ(x) is a supersolution

of (2.1). Define
u+ε,ξ(t, x) := V +

δ(ε)(t, x− ξ) + u0(ξ) + ε

for small ε > 0 and ξ ∈ R. Note that u+ε,ξ is a supersolution of (2.1) and

u+ε,ξ(t, x) ≥ Vδ(ε)(x− ξ) + u0(ξ) + ε.

On the case |ξ − x| ≤ δ(ε) we observe that

u+ε,ξ(t, x) ≥ u0(ξ) + ε ≥ u0(x);

on the other case
u+ε,ξ(t, x) ≥M + u0(ξ) ≥ u0(x).

Therefore, Lemma 4.2 implies that

u+(t, x) := inf
ε>0,ξ∈R

u+ε,ξ(t, x)

is an upper semicontinuous supersolution of (2.1) satisfying u+ ≥ u0. Moreover,
since

u+ε,x(0, x) = u0(x) + ε→ u0(x) as ε→ 0,

we have u+(0, x) = u0(x) for all x ∈ R. Under the assumption that u0 is periodic
we see that

u+(t, x+ ω) = inf
ε>0,ξ∈R

(V +
δ(ε)(t, x+ ω − ξ) + u0(ξ) + ε)

= inf
ε>0,ξ∈R

(V +
δ(ε)(t, x− ξ) + u0(ξ + ω) + ε) = u+(t, x).

The same proof is valid for existence of a subsolution u−. □
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Combining Theorem 4.1 and 5.1 we have

Theorem 5.4 (Existence theorem for periodic initial data). Assume (W), (S),
(F1), (F2) and (4.3) with Ω = R and ω > 0. Let u0 be a continuous function
satisfying (5.1). Then there exists a solution u of (2.1) satisfying (4.5) and

u(0, x) = u(x) for all x ∈ R.
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