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Almost global solutions of semilinear wave equations
with the critical exponent in high dimensions ∗

Hiroyuki Takamura †

Department of Complex and Intelligent Systems
Faculty of Systems Information Science, Future University Hakodate

116-2 Kamedanakano-cho, Hakodate, Hokkaido 041-8655, Japan.
e-mail : takamura@fun.ac.jp

1 General theory for nonlinear wave equations

First we consider the initial value problem for fully nonlinear wave equations,{
utt − ∆u = H(u,Du,DxDu) in Rn × [0,∞),
u(x, 0) = εf(x), ut(x, 0) = εg(x),

(1)

where u = u(x, t) is a scalar unknown function of space-time variables,

Du = (ux0 , ux1 , · · · , uxn), x0 = t,
DxDu = (uxixj

, i, j = 0, 1, · · · , n, i + j ≥ 1),

f, g ∈ C∞
0 (Rn) and ε > 0 is a “small” parameter. Set

λ̂ = (λ; (λi), i = 0, 1, · · · , n; (λij), i, j = 0, 1, · · · , n, i + j ≥ 1).

Suppose that the nonlinear term H = H(λ̂) is a sufficiently smooth function with

H(λ̂) = O
(
|λ̂|1+α

)
in a neighbourhood of λ̂ = 0,

where α ≥ 1 is an integer. Let us define the lifespan T (ε) by

T (ε) = sup{t > 0 : ∃classical solution u of (1) for arbitrarily fixed (f, g).}.

In this talk we assume n ≥ 2 for the simplicity.
According to Chapter 2 of Li and Chen [3], we have long histories on the estimate for

T (ε). All the lower bounds of T (ε) are summarized in the following table.
∗In memory of Professor Rentaro Agemi (1937-2012). This is a joint work with Kyouhei Wakasa,

the 2nd year of Graduate School of Systems Information Science, Future University Hakodate, 116-2
Kamedanakano-cho, Hakodate, Hokkaido 041-8655, Japan. e-mail : g2111045@fun.ac.jp. This talk is
presented in The 37th Sapporo Symposium on Partial Differential Equations at Hokkaido University on
August 26, 2012.

†The speaker is partly supported by Grant-in-Aid for Scientific Research (C)(No.24540183), Japan
Society for the Promotion of Science.
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T (ε) ≥ α = 1 α = 2 α ≥ 3

n = 2

ca(ε)
in general case,

cε−1

if
∫
R2 g(x)dx = 0,

cε−2

if ∂2
uH(0) = 0

cε−6

in general case,
exp(cε−2)

if ∂b
uH(0) = 0 (b = 3, 4)

∞

n = 3

cε−2

in general case,
exp(cε−1)

if ∂2
uH(0) = 0

∞ ∞

n = 4

exp(cε−2)
in general case,

∞
if ∂2

uH(0) = 0

∞ ∞

n ≥ 5 ∞ ∞ ∞

Here c stands for a positive constant independent of ε and a = a(ε) is a number satisfying
a2ε2 log(a+1) = 1. We note that the result in the case where n = 4 and α = 1 is exp(cε−1)
for general case in [3] in which we can find all the references on the whole history. But later,
Li and Zhou [4] improved this part. It is also remarkable that [3] states “all these lower
bounds are known to be sharp except for (n, α) = (4, 1)” by studying model equations
H = |u|p, or |ut|p. See also another table in Li [2] in which the author notes that the
case where (n, α) = (2, 2) has an open sharpness. For this case, it seems that b = 4 is
a technical condition which may be removed. Recently, Zhou and Han [8] have obtained
the sharpness for b = 3 in (n, α) = (2, 2) by studying H = u3

t .

2 The final problem and related result

In the sense of the first section, the final open problem on the optimality of the general
theory for fully nonlinear wave equations can be established by model problem;{

utt − ∆u = u2 in R4 × [0,∞),
u(x, 0) = εf(x), ut(x, 0) = εg(x).

(2)

We note that this is an extended problem of John [5] to high dimensional case which has
the “critical” exponent of Strauss’ conjecture [6]. The lifespan T (ε) of the solution of (2)
should have an estimate of the form;

exp(cε−2) ≤ T (ε) ≤ exp(Cε−2). (3)

This final problem on the upper bound was solved by our previous work, Takamura and
Wakasa [7]. In its proof, the analysis on ∥u(·, t)∥2

L2(R4) is a key because we cannot use any
pointwise esimate of the solution due to so-called derivative loss in fundamental solutions
in high dimensions.

Therefore one may have questions;
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• Do we have any possibility to get T (ε) = ∞ if the nonlinear term is not single while
it includes u2?

• Do we have any possibility to get a pointwise positivity of the solution for some
special nonlinear term?

For these questions, we get the following partial answer.

Theorem Even if the right-hand side of the equation in (2) additionally has an integral
term of the form;

− 1

π2

∫ t

0

dτ

∫
|ξ|≤1

(utu)(x + (t − τ)ξ, τ)√
1 − |ξ|2

dξ, (4)

there is no change on the estimate the lifespan (3).

In the proof of this theorem, the key is the analysis on u(x, t) itself. This observa-
tion already appeared in Agemi, Kubota and Takamura [1] in which a global solution is
obtained for the “super-critical” case.
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ASYMPTOTIC EXPANSION OF SOLUTIONS TO THE DISSIPATIVE
EQUATION WITH ANOMALOUS DIFFUSION

Masakazu Yamamoto1

1. Introduction

The following Cauchy problem for the linear dissipative equation is studied by many authors:

(1.1)
{

∂tu − ∆u + a(t, x)u = 0, t > 0, x ∈ Rn,

u(0, x) = u0(x), x ∈ Rn,

where n ∈ N and the coefficient a : (0,∞)× Rn → R and the initial data u0 : Rn → R are given
functions. Upon the suitable condition for a(t, x) and u0(x), the well-posedness, the global in
time existence and the decay of solutions to (1.1) are shown. Moreover the asymptotic expansion
of the solution to (1.1) as t → ∞ is derived (cf [6]). Here we consider those problems when the
dissipative effect on the equation is provided by “the anomalous diffusion”. In this manuscript,
we define the Fourier transform and the Fourier inverse transform by

F [ϕ](ξ) := (2π)−n/2

∫
Rn

e−ix·ξϕ(x)dx and F−1[ϕ](x) := (2π)−n/2

∫
Rn

eix·ξϕ(ξ)dξ.

Then, for θ > 0, the fractional Laplacian is given by

(−∆)θ/2ϕ(x) = F−1
[
|ξ|θF [ϕ]

]
(x).

The fractional Laplacian with θ = 2 is the positive Laplacian. On the other hand, when
1 < θ < 2, this operator provides the anomalous diffusion on dissipative equations (see [2, 8]).
Namely, for the fundamental solution of ∂tu + (−∆)θ/2u = 0, we see the following property.

Lemma 1.1 ([1]). Let n ∈ Z, θ > 0, Cθ := θ2θ−1π−n
2
−1 sin θπ

2 Γ
(

n+θ
2

)
Γ

(
θ
2

)
and

(1.2) Gθ(t, x) := F−1[e−t|ξ|θ ](x).

Then the following property holds:

|x|n+θGθ(t, x) → Cθt as |x| → ∞

for any t > 0.

Here we remark that Gθ(t, x) is the fundamental solution of ∂tu+(−∆)θ/2u = 0. When θ = 2,
the fundamental solution of ∂tu−∆u = 0 is given by the Gaussian G(t, x) = (4πt)−n/2e−|x|2/(4t).
This satisfies

|x|MG(t, x) → 0 as |x| → ∞
for any t > 0 and M > 0. This property and Lemma 1.1 are not contradictory. Indeed, when
θ = 2, we see that Cθ = 0 in Lemma 1.1. When 1 < θ < 2, Lemma 1.1 immediately gives that

∥xαGθ(t)∥1 = +∞
1Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan.

E-mail: yamamoto@cc.hirosaki-u.ac.jp
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Uniqueness and non-degeneracy of ground
states of quasilinear Schrödinger equations

Tatsuya Watanabe (Kyoto Sangyo University) 1

1 Introduction

We consider the following quasilinear elliptic problem:

−∆u+ λu− κ∆(|u|α)|u|α−2u = |u|p−1u in RN , (1)

where λ > 0, κ > 0, α > 1, p > 1 and N ≥ 1. Equation (1) can be obtained
as a stationary problem of the following modified Schrödinger equation:

i
∂z

∂t
= −∆z − κ∆(|z|α)|z|α−2z − |z|p−1z, (t, x) ∈ (0,∞)× RN . (2)

Equation (2) appears in the study of plasma physics. See [7], [10] for the
derivation and the background. Especially if we consider the standing wave
of (2) of the form z(t, x) = u(x)eiλt, then u(x) satisfies (1).

Equation (1) has a variational structure, that is, one can obtain solutions
of (1) as critical points of the associated functional I defined by

I(u) =
1

2

∫
RN

|∇u|2(1 + ακ|u|2α−2) + λu2 dx− 1

p+ 1

∫
RN

|u|p+1 dx.

We remark that nonlinear functional

∫
RN

|∇u|2|u|2α−2 dx is not defined on

all H1(RN) except for N = 1. Thus the natural function space for N ≥ 2 is
given by

X := {u ∈ H1(RN);

∫
RN

|∇u|2|u|2α−2 dx < ∞}.

Existence of a solution of (1) has been studied in [1], [8], [11], [12], [14].
We are interested in the ground state of (1). We define the ground state
energy level and the set of ground states by

m := inf{I(u); I ′(u) = 0, u ∈ X \ {0}},

G := {u ∈ X \ {0}; I(u) = m, I ′(u) = 0}.
As to the existence of a ground state, we have the following result.

1This talk is based on joint works [2], [3], [4] with Shinji Adachi (Shizuoka University)
and Masataka Shibata (Tokyo Institute of Technology).
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Theorem 1.1. ([2], [9]) Let λ > 0, κ > 0, α > 1 and 1 < p < (2α−1)N+2
N−2

for
N ≥ 3, 1 < p < ∞ for N = 1, 2. Then G ̸= ∅. Moreover any ground state
w ∈ G is of the class C2(RN), positive, radially symmetric and decreasing
with respect to r = |x| (up to translation).

We note that the ground state of (1) exists even if p is H1-supercritical

because (2α−1)N+2
N−2

> N+2
N−2

. We can also see that p = (2α−1)N+2
N−2

is the critical
exponent for (1) by the Pohozaev type identity.

Remark 1.2. As to the existence of a ground state, we have more general
result. More precisely, we consider the following equation:

−∆u− κ∆(|u|α)|u|α−2u = g(u) in RN . (3)

We impose the following conditions on the nonlinear term g:
(g1) g(s) is real-valued and locally Hölder continuous on [0,∞).

(g2) −∞ < lim inf
s→0

g(s)

s
≤ lim sup

s→0

g(s)

s
= −λ < 0 for some λ > 0.

(g3) lim
s→∞

|g(s)|

s
(2α−1)N+2

N−2

= 0.

(g4) There exists s0 > 0 such that G(s0) > 0, where G(s) =

∫ s

0

g(t) dt.

Under (g1)-(g4), we can prove the existence of a ground state of (3).

On the other hand, the uniqueness and the non-degeneracy of the ground
state are less investigated. When N = 1, Ambrosetti and Wang [5] showed
that there exists κ∗ > 0 such that the non-degeneracy holds for any κ > −κ∗,
λ > 0 and p > 1. In [9], the authors studied the case N = 1, κ = 1 and proved
that the uniqueness holds for any λ > 0 and p > 1. Their argument is based
on the ODE analysis. The aim of this talk is to give the uniqueness and
non-degeneracy in the higher dimensional case. We believe it is important
for applications, for example, the stability of the standing wave.

2 Main results

Theorem 2.1. (Uniqueness for large κ)

Suppose N ≥ 3, α > 1 and 1 < p < (2α−1)N+2
N−2

if 1 < α ≤ 2, α− 1 ≤ p <
(2α−1)N+2

N−2
if α > 2. There exists c0 = c0(p, α) > 0 such that if κλ

2α−2
p−1 ≥ c0,

then (1) has at most one positive radial solution w and hence the ground state
of (1) is unique up to translation. In other words, it follows that

G = {w(· − y); y ∈ RN}.

2



Remark 2.2. For a solution u of (1), we rescale ũ(x) as u(x) = λ
1

p−1 ũ(λ
1
2x).

Then we can see that (1) is reduced to

−∆ũ+ ũ− κλ
2α−2
p−1 ∆(|ũ|α)|ũ|α−2ũ = |ũ|p−1ũ in RN .

Thus it seem to be natural to describe the condition for the uniqueness in

terms of κλ
2α−2
p−1 .

Theorem 2.3. Suppose N = 2, α > 1 and 2α − 1 ≤ p < ∞. There exists

c1 = c1(p, α) > 0 such that if κλ
2α−2
p−1 ≥ c1, then the ground state of (1) is

unique up to translation.

Theorem 2.4. (Non-degeneracy for large κ)

Suppose N ≥ 3, α > 1 and 2α − 1 ≤ p < (2α−1)N+2
N−2

. Assume further

κλ
2α−2
p−1 ≥ c0 where c0 is given in Theorem 2.1. Then w is non-degenerate in

H1
rad(RN), that is, if Lw(ϕ) = 0 in RN and ϕ ∈ H1

rad(RN), then ϕ ≡ 0.
Here Lw is the linearized operator of (1) defined by

Lw(ϕ) = −∆ϕ+ λϕ− pwp−1ϕ− κ div(αw2α−2
κ ∇ϕ)

− κ(2α(α− 1)w2α−3
κ ∆wκ + α(α− 1)(2α− 3)w2α−4

κ |∇wκ|2)ϕ.

Theorem 2.5. (Uniqueness and non-degeneracy for small κ)
Suppose N ≥ 2, α > 1 and 1 < p < N+2

N−2
if N ≥ 3, 1 < p < ∞ if N = 2.

There exists c2(p, α) > 0 such that if 0 < κλ
2α−2
p−1 ≤ c2, then the ground state

of (1) is unique up to translation and non-degenerate in H1
rad(RN).

Here we briefly explain the ideas of the proof. Firstly we adapt the dual
variational formulation. Let f be a unique solution of the following ODE:

f ′(s) =
1√

1 + ακf(s)2α−2
on s ∈ [0,∞), f(0) = 0.

Using the function f , we consider the following semilinear problem:

−∆v + λf(v)f ′(v) = |f(v)|p−1f(v)f ′(v) in RN . (4)

The functional associated to (4) is defined by

J(v) =
1

2

∫
RN

|∇v|2 + λf(v)2 dx− 1

p+ 1

∫
RN

|f(v)|p+1 dx.

3



Lemma 2.6. It follows
(i) X = f(H1(RN)), that is, X = {f(v); v ∈ H1(RN)}.
(ii) For any v ∈ H1(RN), we put u = f(v). Then it follows

I(u) = J(v), I ′(u)u = J ′(v)
f(v)

f ′(v)
.

By Lemma 2.6, we can see that the set of ground states G has one-to-one
correspondence to that of the semilinear problem (4). This enables us to
apply the uniqueness and non-degeneracy result [6], [13], [15] for semilinear

elliptic equations. We require that κλ
2α−2
p−1 is large in order to guarantee some

monotonicity condition on the nonlinear term.
On the other hand if we fix λ and put κ = 0, (1) becomes

−∆u+ λu = |u|p−1u in RN . (5)

Then for 1 < p < N+2
N−2

, it is well-known that the ground state is unique
up to translation. Moreover the corresponding linearized operator L0 =

−∆+λ−pup−1 satisfies Ker L0 = span
{

∂u
∂xi

}
. The uniqueness and the non-

degeneracy for small κ follows by applying the implicit function theorem if
we could treat the linearized operator Lw as a perturbation of L0. To this
aim, we have to show L∞-norm of the ground state is uniformly bounded
with respect to κ. The proof of uniform boundedness is based on the Moser
type iteration. We also need to show the following uniform estimate whose
proof is given by the ODE analysis.

Lemma 2.7. Suppose N ≥ 2, α > 1 and 1 < p < N+2
N−2

if N ≥ 3, 1 < p < ∞
if N = 2. Let λ > 0 be given. There exist κ0 > 0 and C > 0 independent of
κ ∈ (0, κ0) such that

∥∇(logw)∥L∞(RN ) =
∥∥∥∇w

w

∥∥∥
L∞(RN )

≤ C for all κ ∈ (0, κ0).

References

[1] S. Adachi, T. Watanabe, G-invariant positive solutions for a quasilinear
Schrödinger equation, Adv. Diff. Eqns. 16 (2011), 289-324.

[2] S. Adachi, T. Watanabe, Uniqueness of the ground state solutions of
quasilinear Schrödinger equations, Nonlinear Anal. 75 (2012), 819-833.

[3] S. Adachi, T. Watanabe, Asymptotic properties of ground states of quasi-
linear Schrödinger equations with H1-subcritical exponent, Adv. Nonlin-
ear Stud. 12 (2012), 255-279.

4



[4] S. Adachi, M. Shibata, T. Watanabe, Asymptotic behavior of positive
solutions for a class of quasilinear elliptic equations with general non-
linearities, preprint.

[5] A. Ambrosetti and Z. Q. Wang, Positive solutions to a class of quasi-
linear elliptic equations on R, Disc. Cont. Dyn. Syst. 9 (2003), 55-68.

[6] P. Bates, J. Shi, Existence and instability of spike layer solutions to
singular perturbation problems, J. Funct. Anal. 196 (2002), 429–482.

[7] L. Brizhik, A. Eremko, B. Piette, W. J. Zakrzewski, Electron self-
trapping in a discrete two-dimensional lattice, Physica D 159 (2001),
71–90.

[8] M. Colin, L. Jeanjean, Solutions for a quasilinear Schrödinger equation:
a dual approach, Nonlinear Anal. TMA. 56 (2004), 213–226.

[9] M. Colin, L. Jeanjean, M. Squassina, Stability and instability results for
standing waves of quasi-linear Schrödinger equations, Nonlinearity. 23
(2010), 1353-1385.

[10] S. Kurihara, Large-amplitude quasi-solitons in superfluid films, J. Phys.
Soc. Japan 50 (1981), 3262–3267.

[11] J.-Q. Liu, Y.-Q. Wang, Z.-Q. Wang, Soliton solutions for quasilinear
Schrödinger equations II, J. Diff. Eqns. 187 (2003), 473-493.

[12] J.-Q. Liu, Y.-Q. Wang, Z.-Q. Wang, Solutions for quasi-linear
Schrödinger equations via the Nehari method, Comm. PDE 29 (2004),
879–901.

[13] K. Mcleod, J. Serrin, Uniqueness of positive radial solutions of ∆u +
f(u) = 0 in RN , Arch. Rat. Mech. Anal. 99 (1987), 115–145.

[14] M. Poppenberg, K. Schmitt, Z.-Q. Wang, On the existence of soliton so-
lutions to quasilinear Schrödinger equations, Calc. Var. PDE 14 (2002),
329–344.

[15] J. Serrin, M. Tang, Uniqueness of ground states for quasilinear elliptic
equations, Indiana Univ. Math. J. 49 (2000), 897–923.

5



A spectral theory of linear operators on Gelfand
triplets and its applications to infinite dimensional
dynamical systems

Hayato Chiba

Institute of Mathematics for Industry, Kyushu University, Japan
[chiba@imi.kyushu-u.ac.jp]

Abstract

The dynamics of systems of large populations of coupled oscillators have been
of great interest because collective synchronization phenomena are observed in a
variety of areas. The Kuramoto model is often used to investigate such phenomena,
which is a system of differential equations of the form

dθk

dt
= ωk +

K

N

N∑

j=1

f(θj − θk), k = 1, · · · , N. (1)

In this talk, an infinite dimensional Kuramoto model is considered, and the Ku-
ramoto’s conjecture on a bifurcation diagram of the system, which is open since
1985, will be proved.

It is well known that the spectrum (eigenvalues) of a linear operator determines
a local dynamics of a system of differential equations. Unfortunately, the infinite
dimensional Kuramoto model has the continuous spectrum on the imaginary axis,
so that the usual spectral theory does not say anything about the dynamics. To
handle such continuous spectra, a new spectral theory of linear operators based
on Gelfand triplets is developed. Basic notions in the usual spectral theory, such
as eigenspaces, algebraic multiplicities, point/continuous/residual spectra, Riesz
projections are extended to those defined on a Gelfand triplet. They prove to have
the same properties as those of the usual spectral theory.

The results are applied to the Kuramoto model to prove the Kuramoto’s con-
jecture. A center manifold theorem will be given with the aid of the Gelfand triplet
and the generalized spectrum. Even if there exists the continuous spectrum on the
imaginary axis, it is proved that there exists a finite dimensional center manifold
on a certain space of distributions. This determines a bifurcation diagram of the
Kuramoto model.
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POSITIVE p-HARMONIC FUNCTIONS WITH ZERO
BOUNDARY DATA ON CONE DOMAINS

TSUBASA ITOH

1. Introduction

Let 1< p < ∞ and letD be a domain inC. The Euler-Lagrange equation
for the problem of minimizing thep-Dirichlet integral

∫
D
|∇u|pdx over a

suitable function class is written in weak form as

(1.1)
∫

D
|∇u|p−2∇u · ∇η = 0,

which must hold at least for allη ∈ C∞0 (D). If u ∈ C2(D), this implies that

(1.2) ∆pu = div(|∇u|p−2∇u) = 0

in D. This equation is equivalent to

(1.3) (p− 2)
2∑

i, j=1

uxi ux j uxi x j + |∇u|2∆u = 0.

Either of the three equations is called thep-harmonic equation and the so-
lutions are calledp-harmonic functions.

Let 0< ϕ < π. We denote a cone of apertureϕ by

Dϕ = {z ∈ C : |argz| < ϕ}.
In this paper we find positivep-harmonic functionsu(z) on Dϕ with the
boundary condition,

(1.4) u(z) =

0 for | argz| = ϕ andz= 0,

∞ for z= ∞,
or

(1.5) u(z) =

0 for | argz| = ϕ andz= ∞,
∞ for z= 0.

We consider the formu(z) = rk f (θ) for z = reiθ, k , 0. Aronsson [1]
determined allp-harmonic functions inC of the formu(z) = rk f (θ), assum-
ing p > 2. Here, forp > 1, we determine all positivep-harmonic functions

Research Fellow of the Japan Society for the Promotion of Science .
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2 TSUBASA ITOH

in Dϕ of the formu(z) = rk f (θ) satisfying the boundary condition (1.4) or
(1.5).

If u(z) satisfy the boundary condition (1.4), thenk > 0. Thisk is denoted
by kp

+. If u(z) satisfy the boundary condition (1.5), thenk < 0. Thisk is
denoted bykp

−. Let β = π/(2ϕ). For p = 2, it is easy to calculatek2
+, k2

−, and
f (θ). We see that  k2

+ = β,

k2
− = −β.

and
f (θ) = C cosβθ,

whereC is a arbitrary positive constant. For generalp > 1, we obtain the
following theorems.

Theorem 1.1.Letα = (p− 2)/(p− 1) andβ = π/(2ϕ). If

kp
+ =

2β2 − α(β − 1)2 + (β − 1)
√

4β2 − 4αβ2 + α2(β − 1)2

2(2β − 1)
,

then there exists f(θ) such that u(z) = rkp
+ f (θ) is p-harmonic in Dϕ and

satisfy the boundary condition(1.4).

Theorem 1.2.Letα = (p− 2)/(p− 1) andβ = π/(2ϕ). If

kp
− =
−2β2 + α(β + 1)2 − (β + 1)

√
4β2 − 4αβ2 + α2(β + 1)2

2(2β + 1)
,

then there exists f(θ) such that u(z) = rkp
− f (θ) is p-harmonic in Dϕ and

satisfy the boundary condition(1.5).

These theorems are main results of this paper.

2. Separation equation

In this section we give the representation formula forf (θ). See [1] for
these accounts.

We observe thatu(z) = rk f (θ) satisfies (1.3) if and only if f (θ) satisfies
the separation equation
(2.1)
[(p−1)( f ′)2+k2 f 2] f ′′+ (2kp−3k− p+2)k f( f ′)2+ (kp−k− p+2)k3 f 3 = 0.

Hence we findf (θ) satisfying the separation equation (2.1) with the condi-
tion

(2.2)

 f (θ) > 0 for −ϕ < θ < ϕ,
f (±ϕ) = 0.
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Lemma 2.1.Let I be an open interval and f(θ) ∈ C2(I ). Assume that f(θ) >
0 and f′(θ) , 0 on I. Putα = (p−2)/(p−1) and g(θ) = f ′(θ)2+(k−α)k f(θ)2.
(1) If f (θ) satisfies the separation equation(2.1) on I, then either (i) or (ii)
holds:

(i) g , 0 on I, and there is a constantC1 > 0 such that

(2.3) [( f ′)2 + k2 f 2]k = C2
1|g|k−1.

(ii) g ≡ 0 on I. Further, f(θ) = Ce±µθ whereµ =
√

(α − k)k.
(2) Conversely, if either (i) or (ii) holds, then f(θ) satisfies the separation
equation(2.1) on I.

Proof. Puts= k2 f (θ)2 > 0. Let J = s(I ). We consider the inverse mapping
F : J ∋ s 7→ θ ∈ I . Obviously,F ∈ C2(J). Define a functionw(s) for s ∈ J
by

w(s) =
f ′(F(s))2

s
+ 1.

We observe thatw(s) ∈ C1(J) and

(w− 1)+ s
dw
ds
=

f ′′

k2 f
.

Hence,f (θ) satisfies the separation equation (2.1) if and only if w(s) satis-
fies the ordinary differential equation(

w− α
k

)
w = −s(w− α)dw

ds
,

whereα = (p − 2)/(p − 1). If f (θ) satisfies the separation equation (2.1),
thenw− αk is , 0 or≡ 0 onJ. On the other hand, we have

w− α
k
=

f ′(θ)2 + k2 f (θ)2

k2 f (θ)2
− α

k
=

g(θ)
k2 f (θ)2

.

Henceg is , 0 or≡ 0 on I . Let us consider three cases.
Case 1:g(θ) > 0. The separation equation (2.1) is equivalent to

dw
ds

( k
w
− k− 1

w− αk

)
+

1
s
= 0, or

d
ds

[
logwk − log

(
w− α

k

)k−1

+ log s
]
= 0.

This holds if and only if

wks= C2
1

(
w− α

k

)k−1

for all s ∈ J, for someC1 > 0. Thus we obtain

[( f ′)2 + k2 f 2]k = C2
1gk−1.
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Case 2:g(θ) < 0. The separation equation (2.1) is equivalent to

dw
ds

( k
w
− 1− k
α
k − w

)
+

1
s
= 0, or

d
ds

[
logwk + log

(
α

k
− w
)1−k

+ log s
]
= 0.

This holds if and only if

wks= C2
1

(
α

k
− w
)k−1

for all s ∈ J, for someC1 > 0. Thus we obtain

[( f ′)2 + k2 f 2]k = C2
1(−g)k−1.

Case 3:g(θ) ≡ 0. Then we have

f ′(θ)2 + (k− α)k f(θ)2 ≡ 0.

Since f ′(θ) , 0, we see (k − α)k < 0. Putµ =
√

(α − k)k. Then we
have f ′(θ) = ±µ f (θ). Thus, f (θ) = Ce±µθ. Conversely, if (k − α)k < 0
and f (θ) = Ce±µθ whereµ =

√
(α − k)k, then f (θ) ,obviously, satisfies the

separation equation (2.1). �

Lemma 2.2. Let I be an open interval and f(θ) ∈ C2(I ). Put α = (p −
2)/(p−1) and g(θ) = f ′(θ)2+(k−α)k f(θ)2. Assume that f(θ) > 0, f ′(θ) , 0,
and g(θ) , 0 on I. If there is a constant C1 > 0 satisfying(2.3), then f(θ)
has a parametric representation, given by f (t) = C1

k

∣∣∣1− αk cos2 t
∣∣∣ k−1

2 · cost,

θ(t) = θ∗ +
∫ t

t∗
1−α cos2 t′

k−α cos2 t′dt′.

Proof. Assume thatg(θ) > 0. We introduce polar coordinates in the plane:

(2.4)

 k f = ρ cost,

− f ′ = ρ sint (, 0).

We see thatρ = ρ(θ) andt = t(θ) are inC1(I ). The equation (2.3) gives

ρ2k = C2
1

[
ρ2
(
1− α

k
cos2 t

)]k−1

.

Then

(2.5) ρ = C1

(
1− α

k
cos2 t

)(k−1)/2

.

Thus we have

f =
C1

k

(
1− α

k
cos2 t

) k−1
2

· cost
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Next we give a representation ofθ = θ(t). Sincek f = ρ cost and f ′(θ) ,
0, we see thatθ = θ(t) ∈ C1. By (2.4), we have

k =
dt
dθ
− 1
ρ tant

dρ
dθ
.

Then
dt
dθ

(
1− 1

tant
d(logρ)

dt

)
= k.

By (2.5), we get
d(logρ)

dt
= (k− 1)

α sint cost
k− α cos2 t

.

Then
dθ
dt
=

1− α cos2 t
k− α cos2 t

.

This implies the representation formula in the caseg(θ) > 0.
In the caseg(θ) < 0, the representation formula follows by a similar

argument. Thus the lemma is proved. �

The following lemma is proved by easy computations. See [1].

Lemma 2.3. Let I be a maximal open interval such thatα cos2 t , k for
t ∈ I. We consider the mapping t7→ ( f , θ) defined by f (t) =

∣∣∣1− αk cos2 t
∣∣∣ k−1

2 · cost

θ(t) =
∫ t

t∗
1−α cos2 t′

k−α cos2 t′dt′

for t ∈ I. Then f(θ) satisfies the separation equation(2.1).

3. Proof of Theorem 1.1and Theorem 1.2

In this section we prove Theorem1.1 and Theorem1.2. Assume that
p , 2. Let us cinsider the following four cases:

(i) p > 2 andk > 0,
(ii) 1 < p < 2 andk > 0,
(iii) p > 2 andk < 0,
(iv) 1 < p < 2 andk < 0.

Putα = (p− 2)/(p− 1) andβ = π/(2ϕ). For simplicity, we let

λ =

√
|k− α|

√
|k| +

√
|α|

and

µ =

√
|k|

√
|α| + |k|

.
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3.1. The casep > 2 and k > 0. We observe that ifk ≤ α, then there is
no function f (θ) satisfying the separation equation (2.1) with the condition
(2.2) (see [1]). Hence we assume thatk > α. Theng(θ) = f ′(θ)2 + (k −
α)k f(θ)2 > 0. Since Lemma2.2, all solutions of the separation equation
(2.1) are given by  f (t) = C

k

(
1− αk cos2 t

) k−1
2 · cost

θ(t) = t − t∗ + (1− k)
∫ t

0
dt′

k−α cos2 t′

for −∞ < t < ∞. We see thatθ(t) is strictly increasing. By the condition
(2.2), we have−π/2 ≤ t ≤ π/2, t∗ = 0, andθ(π/2) = ϕ. Easy computations
gives

θ(t) = t − k− 1
√

(k− α)k
[arctan(λ tan

t
2

) + arctan(λ−1 tan
t
2

)]

for −π/2 ≤ t ≤ π/2. Sinceθ(π/2) = ϕ, we have

(3.1)
π

2
− k− 1
√

(k− α)k
· π

2
= ϕ.

If ϕ = π/2, thenk = 1. We assume thatϕ , π/2. Squaring and rewriting
gives

(2β − 1)k2 − [2β2 − α(β − 1)2]k+ β2 = 0.
The roots of this equation are

k1 =
2β2 − α(β − 1)2 + |β − 1|

√
4β2 − 4αβ2 + α2(β − 1)2

2(2β − 1)
and

k2 =
2β2 − α(β − 1)2 − |β − 1|

√
4β2 − 4αβ2 + α2(β − 1)2

2(2β − 1)
.

We observe thatα < k2 < 1 < k1 and (3.1) has only one root. If 0< ϕ < π/2,
thenβ < 1 and onlyk2 satisfies (3.1). If π/2 < ϕ < π, thenβ > 1 and only
k1 satisfies (3.1). Thus, the following theorem is obtained.

Theorem 3.1.Let p> 2. Put

kp
+ =

2β2 − α(β − 1)2 + (β − 1)
√

4β2 − 4αβ2 + α2(β − 1)2

2(2β − 1)
.

Let f(θ) be a function given by
f (t) = C(1− α

kp
+

cos2 t)
k
p
+−1
2 cost

θ(t) = t − kp
+−1√

(kp
+−α)k

p
+

[arctan(λ tan t
2) + arctan(λ−1 tan t

2)]

for −π/2 < t < π/2, where C is a arbitrary positive constant. Then f(θ)
satisfies the separation equation(2.1) with the condition(2.2).
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3.2. The case1 < p < 2 and k > 0. We obtain the following theorem by a
similar argument of the casep > 2 andk > 0.

Theorem 3.2.Let1 < p < 2. Put

kp
+ =

2β2 − α(β − 1)2 − (β − 1)
√

4β2 − 4αβ2 + α2(β − 1)2

2(2β − 1)
.

Let f(θ) be a function given by
f (t) = C(1− α

kp
+

cos2 t)
k
p
+−1
2 cost

θ(t) = t − kp
+−1√

(kp
+−α)k

p
+

tan−1(µ tant)

for −π/2 < t < π/2, where C is a arbitrary positive constant. Then f(θ)
satisfies the separation equation(2.1) with the condition(2.2).

Thus Theorem3.1and Theorem3.2 imply Theorem1.1.

Remark3.3. If ϕ = π/2, thenkp
+ = 1 and f (θ) = C cosθ for all 1 < p < ∞.

In fact,u(z) = x for z = x+ iy is a positivep-harmonic function inDϕ and
satisfy the boundary condition (1.4).

3.3. The casep > 2 and k < 0. Theng(θ) = f ′(θ)2 + (k − α)k f(θ)2 > 0.
Since Lemma2.2, all solutions of the separation equation (2.1) are given by f (t) = C

k

(
1− αk cos2 t

) k−1
2 · cost

θ(t) = t − t∗ + (1− k)
∫ t

0
dt′

k−α cos2 t′

for −∞ < t < ∞. We see thatθ(t) is strictly decreasing. By the condition
(2.2), we have−π/2 ≤ t ≤ π/2, t∗ = 0, andθ(π/2) = −ϕ. Easy computations
gives

θ(t) = t − 1− k
√

(k− α)k
arctan(µ tant)

for −π/2 ≤ t ≤ π/2. Sinceθ(π/2) = −ϕ, we have

(3.2)
π

2
− 1− k
√

(k− α)k
· π

2
= −ϕ.

Squaring and rewriting gives

(2β + 1)k2 + [2β2 − α(β + 1)2]k− β2 = 0.

The roots of this equation are

k1 =
−2β2 + α(β + 1)2 − (β + 1)

√
4β2 − 4αβ2 + α2(β + 1)2

2(2β + 1)
and

k2 =
−2β2 + α(β + 1)2 − (β + 1)

√
4β2 − 4αβ2 + α2(β + 1)2

2(2β + 1)
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We see thatα < k2 ≤ 1 ≤ k1 and onlyk2 satisfies (3.2). Thus, the following
theorem is obtained.

Theorem 3.4.Let p> 2. Put

kp
− =
−2β2 + α(β + 1)2 − (β + 1)

√
4β2 − 4αβ2 + α2(β + 1)2

2(2β + 1)
.

Let f(θ) be a function given by
f (t) = C(1− α

kp
−

cos2 t)
k
p
−−1
2 cost

θ(t) = t − 1−kp
−√

(kp
−−α)k

p
−

tan−1(µ tant)

for −π/2 < t < π/2, where C is a arbitrary positive constant. Then f(θ)
satisfies the separation equation(2.1) with the condition(2.2).

3.4. The case1 < p < 2 and k < 0. We obtain the following theorem by a
similar argument of the casep > 2 andk < 0.

Theorem 3.5.Let1 < p < 2. Put

kp
− =
−2β2 + α(β + 1)2 − (β + 1)

√
4β2 − 4αβ2 + α2(β + 1)2

2(2β + 1)
.

Let f(θ) be a function given by
f (t) = C(1− α

kp
−

cos2 t)
k
p
−−1
2 cost

θ(t) = t − 1−kp
−√

(kp
−−α)k

p
−
[arctan(λ tan t

2) + arctan(λ−1 tan t
2)]

for −π/2 < t < π/2, where C is a arbitrary positive constant. Then f(θ)
satisfies the separation equation(2.1) with the condition(2.2).

Thus Theorem3.4and Theorem3.5 imply Theorem1.2.
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1. The model

In this talk, we consider a free boundary problem of incompressible two-phase
flows with phase transitions in the framework of Lp-theory with nearly flat interface
represented as a graph over Rn�1, namely in the regions

⌦±(t) = {(x0, xn) 2 Rn�1 ⇥ R : xn ? h(t, x), t � 0}

with interface

�(t) = {(x0, xn) 2 Rn�1 ⇥ R : xn = h(t, x), t � 0}.

We set ⌦0 = ⌦+(0) [ ⌦�(0) and ⌫0 be the outer normal of ⌦�(0).
Let u denote the velocity field, ⇡ the pressure field, T (u,⇡, ✓) the stress tensor,

D(u) = (ru + [ru]T)/2 the rate of deformation tensor, ✓ the (absolute) temper-
ature field, ⌫� the outer normal of ⌦�(t), u� the interface velocity, V� = u� · ⌫�
the normal velocity of �(t), H� = H(�(t)) = �div�⌫� the curvature of �(t), j the
phase flux, and

[[v]] =
�
v|⌦+(t) � v|⌦�(t)

���
�(t)

the jump of a quantity v across �(t).
Let ⇢± > 0 denote the densities of ⌦±(t). In order to economize our notation,

we set
⇢ = ⇢+�⌦+(t) + ⇢��⌦�(t),

where �D denotes the indicator function of a set D, and this notation is employed
for µ, , d, etc. as well. We just keep in mind that the coe�cients depend on the
phases.

By an Incompressible Two-Phase Flow with Phase Transition we mean the fol-
lowing problem: Find a family of closed hypersurfaces {�(t)}t�0 and appropriately

This talk is based on a joint work with Jan Prüss (Institut für Mathematik Martin-Luther-
Universität Halle-Wittenberg, Germany).
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smooth functions u : R+ ⇥ ⌦̄ ! Rn, and ⇡, ✓ : R+ ⇥ ⌦̄ ! R satisfy (1.1) - (1.3):

⇢(@tu + u ·ru)� div T (u,⇡, ✓) = 0 in ⌦(t), t > 0,

T (u,⇡, ✓) = 2µ(✓)D(u)� ⇡I, div u = 0 in ⌦(t), t > 0,

[[
1
⇢
]]j2⌫� � [[T (u,⇡, ✓)⌫�]]� �H�⌫� = 0 on �(t), t > 0,

[[u]]� [[
1
⇢
]]j⌫� = 0 on �(t), t > 0,

u(0) = u0 in ⌦0,

9>>>>>>>>>=
>>>>>>>>>;

(1.1)

⇢(✓)(@t✓ + u ·r✓)� div(d(✓)r✓)� 2µ(✓)|D(u)|22 = 0 in ⌦(t), t > 0,

l(✓)j + [[d(✓)@⌫�✓]] = 0 on �(t), t > 0,

[[✓]] = 0 on �(t), t > 0,

✓(0) = ✓0 in ⌦0,

9>>>>=
>>>>;
(1.2)

[[ (✓)]] + [[
1

2⇢2
]]j2 � [[

T (u,⇡, ✓)⌫� · ⌫�
⇢

]] = 0 on �(t), t > 0,

V� � u · ⌫� +
1
⇢
j = 0 on �(t), t > 0,

�(0) = {x 2 Rn | xn = h0(x)}.

9>>>>=
>>>>;

(1.3)

Several quantities are derived from the specific free energy  ±(✓) in ⌦±(t) as
follows.

• ✏±(✓) :=  ±(✓) + ✓⌘±(✓) the internal energy,
• ⌘±(✓) := � 0±(✓) the entropy,
• ±(✓) := ✏0±(✓) = �✓ 00±(✓) > 0 the heat capacity,
• l(✓) := ✓[[ 0(✓)]] = �✓[[⌘(✓)]] the latent heat.

Further d±(✓) > 0 denotes the coe�cient of heat conduction in Fourier’s law,
µ±(✓) > 0 the viscosity in Newton’s law, and � > 0 the constant coe�cient of
surface tension.

Concerning the second equation of (1.3), we remind that balance of mass across
�(t) requires [[⇢(u� u�)]] · ⌫� = 0, which implies

j = ⇢+(u+ � u�) · ⌫� = ⇢�(u� � u�) · ⌫�,

and so
u+ · ⌫� �

1
⇢+

j = u� · ⌫� �
1
⇢�

j.

Therefore this equation is well-defined on �(t).
This model is derived from balance of mass, balance of momentum, balance

of energy under the assumption of no entropy production on the interface and of
constitutive laws, which is explained in more detail in [12]. It has been recently
proposed by Anderson et al. [1], see also the monographs by Ishii [7] and Ishii and
Takashi [8], and it is thermodynamically consistent in the sense that in absence
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of exterior forces and heat sources, the total energy is preserved and the total
entropy is nondecreasing, see [12]. It is in some sense the simplest sharp interface
model for incompressible Newtonian two-phase flows taking into account phase
transitions driven by temperature.

Note that in the case of equal densities, since [[⇢]] = [[1/⇢]] = 0, the phase flux
j does not enter (1.1). So in this case we obtain essentially a Stefan problem
with surface tension, which is only weakly coupled to the standard two-phase
Navier-Stokes problem via temperature dependent viscosities. We call this case
temperature dominated. But in the case of di↵erent densities, the phase flux j
causes a jump in the velocity field on the interface, which leads to so called Stefan
currents which are convections driven by phase transitions. In this situation it
turns out that the heat problem (1.2) is only weakly coupled to (1.1) and (1.3), we
call this case velocity dominated. The resulting two-phase Navier-Stokes problem
is non-standard, therefore it requires a new analysis.

The analytical properties of the problem appear to be di↵erent in these two
cases. The spaces for well-posedness are not the same. In the temperature dom-
inated case the phase flux j can be eliminated by solving the second equation in
(1.2) for j. This yields

j = �[[d(✓)@⌫✓]]/l(✓),

as long as l(✓) 6= 0; this is the essential well-posedness condition in this case. Then
the equation describing the evolution of the interface becomes

V� = u� · ⌫� + [[d(✓)@⌫✓]]/⇢l(✓).

On the other hand, in the velocity determined case [[⇢]] 6= 0 we can eliminate j by
taking the inner product of the fourth equation in (1.1) with ⌫� to the result

j = [[u · ⌫�]]/[[1/⇢]].

In this case the equation for V� becomes

V� = [[⇢u · ⌫�]]/[[⇢]],

which does not contain temperature, in contrast to the first case. Therefore the
analysis for these two cases necessarily is di↵erent, too.

There is a large literature on isothermal incompressible Newtonian two-phase
flows without phase transitions, and also on the two-phase Stefan problem with
surface tension modeling temperature driven phase transitions. On the other hand,
mathematical work on two-phase flow problems including phase transitions are
rare. In this direction, we only know the papers by Ho↵mann and Starovoitov
[5, 6] dealing with a simplified two-phase flow model, and Kusaka and Tani [10, 11]
which is two-phase for temperature but only one phase is moving. The papers of
Di Benedetto and Friedman [2] and Di Benedetto and O’Leary[3] deal with weak
solutions of conduction-convection problems with phase change. However, none of
these papers considers models which are consistent with thermodynamics.
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2. Results

2.1. The case of equal densities. In this case, the equilibrium state is

u1 = 0, ✓1 = const., ⇡1 = const., [[⇡1]] = 0, j = 0,

[[ (✓1)]] = 0, �1 = {x 2 Rn | xn = 0}.
The main result in the case of equal densities is the local well-posedness of

(1.1)-(1.3) close to the equilibrium state.

Theorem 2.1. Let p > n + 2, � > 0, ⇢+ = ⇢� > 0 be constants, and suppose
 ± 2 C3(0,1), µ±, d± 2 C2(0,1) such that

±(s) = �s 00±(s) > 0, µ±(s) > 0, d±(s) > 0, s 2 (0,1).

Let the initial interface �0 be given by a graph x 7! (x, h0(x)) and let ✓1 be the
constant temperature at infinity.

Then given any finite interval J = [0, T ], there exists ⌘ > 0 such that (1.1)-(1.3)
admits a unique Lp-solution on J provided the smallness conditions:

ku0kW 2�2/p
p (⌦0)

+ k✓0 � ✓1kW 2�2/p
p (⌦0)

+ kh0kW 4�3/p
p (Rn�1)

 ⌘,

the compatibility conditions1:
div u0 = 0 in ⌦0,

[[u0]] = [[✓0]] = 0, P�0 [[µ(✓0)D(u0)⌫0]] = 0 on �0,

[[ (✓0)]] + �H�0 = 0 on �0,

[[d(✓0)@⌫0✓0]] 2 W 2�6/p
p (�0),

and the well-posedness conditions:

l(✓1) 6= 0 on �0 and ✓1 > 0 on Rn

are satisfied.

For a proof of this result we show maximal regularity for the linear part of
the problem and finally employ the contraction mapping principle to solve the
nonlinear problem.

We set Ṙn = Rn
+ [ Rn

� and ⌫ = en = (0, . . . , 0, 1)T. The principal part of the
linearization of (1.1)-(1.3) reads as follows.

⇢@tu� µ1�u +r⇡ = fu in Ṙn, t > 0,

div u = fd in Ṙn, t > 0,

�2[[µ1D(u)⌫]] + [[⇡]]⌫ � �(�x0h)⌫ = gu on Rn�1, t > 0,

[[u]] = 0 on Rn�1, t > 0

u(0) = u0 in Ṙn,

9>>>>>>>=
>>>>>>>;

(2.1)

1P�0 = I � ⌫0 ⌦ ⌫0 denotes the projection onto the tangent bundle of �0.
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⇢1@t✓ � d1�✓ = f✓ in Ṙn, t > 0,

[[✓]] = 0 on Rn�1, t > 0,

✓(0) = ✓0 in Ṙn,

9>>=
>>; (2.2)

(l1/✓1)✓ + (�/⇢)�x0h = g✓ on Rn�1, t > 0

@th� [[d1@n✓]]/⇢l1 = gh on Rn�1, t > 0,

h(0) = h0 on Rn�1.

9>=
>; (2.3)

Here µ1± = µ±(✓1), d1± = d±(✓1), 1± = ±(✓1), l1 = l(✓1) are constants.
Observe that the term u · ⌫� in the equation for h is of lower order as it enjoys
more regularity than the trace of ✓ on Rn�1. Since u does neither appear in (2.2)
nor in (2.3), (2.1) decouples from the remaining problem. (2.1) is the two-phase
Stokes problem with surface tension which was studied by Prüss and Simonett
[14, 15] and Shibata and Shimizu [17]. The latter system comprises the linearized
Stefan problem with surface tension which has been studied by Prüss, Simonett
and Zacher [16]. Therefore the linearized problem (2.1)-(2.3) has the property of
maximal Lp-regularity.

Before stating maximal regularity results of linear problems, let us introduce
the relevant function spaces. Let ⌦ ⇢ Rm be open and X be an arbitrary Banach
space.By Lp(⌦; X) and Hs

p(⌦; X), for 1  p  1, s 2 R, we denote the X-valued
Lebesgue and the X-valued Bessel potential spaces of order s, respectively. We will
also make use of the fractional Sobolev-Slobodeckij spaces W s

p (⌦; X), 1  p < 1,
s > 0, s 62 N with norm

kgkW s
p (⌦;X) = kgk

W [s]
p (⌦;X)

+
X

|↵|=[s]

✓Z
⌦

Z
⌦

k@↵g(x)� @↵g(y)kp
X

|x� y|m+(s�[s])p
dxdy

◆1/p

,

where [s] denotes the largest integer smaller than s. We remind that Hk
p = W k

p

for k 2 N and 1 < p < 1, and that W s
p = Bs

pp for s > 0, s 62 N.
For s 2 R and 1 < p < 1, Ḣs

p(Rn) denotes the homogeneous Bessel-potentianl
spaces. For s 2 R \ Z, the homogeneous Sobolev-Slobodeckij spaces Ẇ s

p (Rn) of
fractional order can be obtained by real interpolation as

Ẇ s
p (Rn) := (Ḣk

p (Rn), Ḣk+1
p (Rn))s�k,p, k < s < k + 1,

where (·, ·)✓,p is the real interpolation functor.
To state the result we introduce appropriate function spaces. We set

Eu(J) = H1
p (J ;Lp(Rn))n \ Lp(J ;H2

p (Ṙn))n

\ {[[un]] 2 H1
p (J ; Ẇ�1/p

p (Rn�1))} \ {[[u]] = 0},
E⇡(J) = Lp(J ; Ḣ1

p (Ṙn)),

E�⇡(J) = W 1/2�1/2p
p (J ;Lp(Rn�1))2 \ Lp(J ;W 1�1/p

p (Rn�1))2,

E✓(J) = H1
p (J ;Lp(Rn)) \ Lp(J ;H2

p (Ṙn)) \ {[[✓]] = 0},
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Eh(J) = W 3/2�1/2p
p (J ;Lp(Rn�1)) \W 1�1/2p

p (J ;H2
p (Rn�1))

\ Lp(J ;W 4�1/p
p (Rn�1)),

and define the solution space for (2.1)-(2.3) as

E(J) = Eu(J)⇥ E⇡(J)⇥ E�⇡(J)⇥ E✓(J)⇥ Eh(J).

We denote by �⇡ the two one-sided traces of ⇡ on Rn�1. E(J) is a Banach
space with its natural norm, and the generic elements of E(J) are functions
(u,⇡, �⇡, ✓, h). Moreover we set

Fu(J) := Lp(J ;Lp(Rn))n,

Fd(J) := H1
p (J ; Ḣ�1

p (Rn)) \ Lp(J ;H1
p (Ṙn)),

Gu(J) := W 1/2�1/2p
p (J ;Lp(Rn�1)n \ Lp(J ;W 1�1/p

p (Rn�1))n,

F✓(J) := Lp(J ;Lp(Rn)),

G✓(J) := W 1�1/2p
p (J ;Lp(Rn�1)) \ Lp(J ;W 2�1/p

p (Rn�1)),

Gh(J) := W 1/2�1/2p
p (J ;Lp(Rn�1)) \ Lp(J ;W 1�1/p

p (Rn�1)),

and define the regularity of the data space for (2.4)-(2.6) as

F(J) := Fu(J)⇥ Fd(J)⇥Gu(J)⇥ F✓(J)⇥G✓(J)⇥Gh(J).

F(J) is a Banach space with its natural norm, and the generic elements of F(J)
are functions (fu, fd, gu, f✓, g✓, gh). Finally, we define the time trace space X� of
E(J) as

X� := W 2�2/p
p (Ṙn)n ⇥W 2�2/p

p (Ṙn)⇥W 4�3/p
p (Rn�1).

Then the main result on the linearized problem (2.1)-(2.3) is stated as

Theorem 2.2. Let 1 < p < 1, p 6= 3/2, 3 and assume that � > 0, ⇢+ = ⇢� > 0,
µ1±, d1± 1± > 0. Then the linear problem (2.1)-(2.3) admits a unique solution
(u,⇡, �⇡, ✓, h) 2 E(J) if and only if the data (u0, ✓0, h0) and (fu, fd, gu, f✓, g✓, gh)
satisfy the regularity conditions:

(u0, ✓0, h0) 2 X� , (fu, fd, gu, f✓, g✓, gh) 2 F(J),

and the compatibility conditions:

div u0 = fd(0) in Ṙn,

[[u0]] = 0, �PRn�1 [[µ1(ru0 + [ru0]T)⌫]] = PRn�1gu(0), on Rn�1,

[[✓0]] = 0, (l1/✓1)✓0 + ��x0h0 = g✓(0) on Rn�1

gh(0) + [[d1@n✓0]]/⇢l1 2 W 2�6/p
p (Rn�1),

and the well-posedness conditions:

l1 6= 0 on Rn�1 and ✓1 > 0 on Rn.

The solution map [(u0, ✓0, h0, fu, fd, gu, f✓, g✓, gh) 7! (u,⇡, �⇡, ✓, h)] is continuous
between the corresponding spaces.
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2.2. The case of non-equal densities. The equilibrium state is the same as the
equal density case except

[[ (✓1)]] + [[⇡1/⇢]] = 0

replaces [[ (✓1)]] = 0.
The main result in the case of non-equal densities is the local well-posedness of

(1.1)-(1.3) close to the equilibrium state.

Theorem 2.3. Let p > n + 2, ⇢+, ⇢�,� > 0 be constant, ⇢+ 6= ⇢�, and suppose
 ± 2 C3(0,1), µ±, d± 2 C2(0,1) are such that

±(s) = �s 00±(s) > 0, µ±(s) > 0, d±(s) > 0 s 2 (0,1).

Let the initial interface �0 be given by a graph x 7! (x0, h0(x0)), and let ✓1 > 0 be
the constant temperature at infinity.

Then given any finite interval J = [0, T ], there exists ⌘ > 0 such that (1.1)-(1.3)
admits a unique Lp-solution on J provided the smallness conditions:

ku0kW 2�2/p
p (⌦0)

+ k✓0 � ✓1kW 2�2/p
p (⌦0)

+ kh0kW 3�2/p
p (Rn�1)

 ⌘,

and the compatibility conditions:

div u0 = 0 in ⌦0,

P�0 [[µ(✓0)D(u0)⌫0]] = 0, P�0 [[u0]] = 0 on �0,

[[✓0]] = 0, (l(✓0)/[[1/⇢]])[[u0 · ⌫0]] + [[d(✓0)@⌫0✓0]] = 0 on �0,

are satisfied.

For a proof of this result we show maximal regularity for the linear part of
the problem and finally employ the contraction mapping principle to solve the
nonlinear problem.

The principal part of the linearized problem in the case of a nearly flat initial
interface reads as follows

⇢@tu� µ1�u +r⇡ = fu in Ṙn, t > 0,

div u = fd in Ṙn, t > 0,

�2[[µ1D(u)⌫]] + [[⇡]]⌫ � �(�xh)⌫ = gu on Rn�1, t > 0,

[[u0]] = gj on Rn�1, t > 0,

u(0) = u0 in Ṙn,

9>>>>>>>=
>>>>>>>;

(2.4)

⇢1@t✓ � d1�✓ = f✓ in Ṙn, t > 0,

�[[d1@n✓]] = g✓ on Rn�1, t > 0,

[[✓]] = 0 on Rn�1, t > 0,

✓(0) = ✓0 in Ṙn,

9>>>>=
>>>>;

(2.5)
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�2[[
µ1D(u)⌫ · ⌫

⇢
]] + [[

⇡

⇢
]] = g⇡ on Rn�1, t > 0,

@th� [[⇢un]]/[[⇢]] = gh on Rn�1, t > 0,

h(0) = h0 on Rn�1,

9>>>=
>>>;

(2.6)

where µ1, d1, 1, are positive constants and ⌫ = en. We assume in this subsec-
tion [[⇢]] = ⇢+ � ⇢� 6= 0. Apparently, (2.5) decouples from the remaining problem
and it is well-known that this problem has maximal Lp-regularity (cf. Escher,
Prüss and Simonett [4]), we concentrate on the remaining one. The resulting two-
phase Navier-Stokes problem is non-standard, it requires a new analysis. There-
fore the analysis of the coupled system (2.4) and (2.6) is the most important part
through this work.

To state the result we introduce appropriate function spaces. We set

Eu(J) = H1
p (J ;Lp(Rn))n \ Lp(J ;H2

p (Ṙn))n \ {[[un]] 2 H1
p (J ; Ẇ�1/p

p (Rn�1))},
E⇡(J) = Lp(J ; Ḣ1

p (Ṙn)),

E�⇡(J) = W 1/2�1/2p
p (J ;Lp(Rn�1))2 \ Lp(J ;W 1�1/p

p (Rn�1))2,

E✓(J) = Hp(J ;Lp(Rn) \ Lp(J ;H2
p (Ṙn)) \ {[[✓]] = 0},

Eh(J) = W 2�1/2p
p (J ;Lp(Rn�1)) \H1

p (J ;W 2�1/p
p (Rn�1))

\ Lp(J ;W 3�1/p
p (Rn�1)),

and define the solution space for (2.4)-(2.6) as

E(J) := Eu(J)⇥ E⇡(J)⇥ E�⇡(J)⇥ E✓(J)⇥ Eh(J).

We denote by �⇡ the two one-sided traces of ⇡ on Rn�1. E(J) is a Banach
space with its natural norm, and the generic elements of E(J) are functions
(u,⇡, �⇡, ✓, h). Moreover we set

Fu(J) := Lp(J ;Lp(Rn))n,

Fd(J) := H1
p (J ; Ḣ�1

p (Rn)) \ Lp(J ;H1
p (Ṙn)),

Gu(J) := W 1/2�1/2p
p (J ;Lp(Rn�1)n \ Lp(J ;W 1�1/p

p (Rn�1))n,

Gj(J) := W 1�1/2p
p (J ;Lp(Rn�1))n�1 \ Lp(J ;W 2�1/p

p (Rn�1))n�1,

F✓(J) := Lp(J ;Lp(Rn)),

G✓(J) := W 1/2�1/2p
p (J ;Lp(Rn�1)) \ Lp(J ;W 1�1/p

p (Rn�1)),
G⇡(J) := G✓(J),

Gh(J) := W 1�1/2p
p (J ;Lp(Rn�1)) \ Lp(J ;W 2�1/p

p (Rn�1)),

and define the regularity of the data space for (2.4)-(2.6) as

F(J) := Fu(J)⇥ Fd(J)⇥Gu(J)⇥Gj(J)⇥ F✓(J)⇥G✓(J)⇥G⇡(J)⇥Gh(J).

F(J) is a Banach space with its natural norm, and the generic elements of F(J)
are functions (fu, fd, gu, gj , f✓, g✓, g⇡, gh). Finally, we define the time trace space
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X� of E(J) as

X� := W 2�2/p
p (Ṙn)n ⇥W 2�2/p

p (Ṙn)⇥W 3�2/p
p (Rn�1).

We obtain the maximal Lp regularity results of (2.4) and (2.6) as the following
way. Let � and ⇠0 be dual parameters of the Laplace transform w.r.t. t and of
the Fourier transform w.r.t.x0, respectively. Solving the coupled system (2.4) and
(2.6), we express the second equation of (2.6) by

s(�, |⇠0|)ĥ = ĝh.

We set ⌧ = |⇠0|. The boundary symbol s(�, ⌧) is written by

s(�, ⌧) = �+
�⌧

[[⇢]]2
m(z)

with z = �/⌧2, where the holomorphic function m(z) satisfies

|m(z)|  M

1 + |z| , z 2 ⌃� [Br(0)

for each �  ⇡/2 + ⌘ and some r > 0. If �0 is chosen large enough, the boundary
symbol is estimated as

c⌘(|�| + |⌧ |)  |s(�, ⌧)|  C⌘(|�| + |⌧ |), � 2 ⌃⇡/2+⌘, ⌧ 2 ⌃⌘, |�| � �0.

By this estimte, the operator-valued H1-calculus allows for an application of the
Kalton and Weis theorem [9, Theorem 4.4], which shows Sh = gh has a unique
solution in the right regularity class.

The main result on the linearized problem (2.4)-(2.6) now can be stated as

Theorem 2.4. Let 1 < p < 1 be fixed, p 6= 3/2, 3, and assume that ⇢+ 6=
⇢� and µ1±, 1±, d1± > 0. Then the linear problem (2.4)-(2.6) admits a
unique solution (u,⇡, �⇡, ✓, h) 2 E(J) if and only if the data (u0, ✓0, h0) and
(fu, fd, gu, gj , f✓, g✓, g⇡, gh) satisfy the regularity conditions:

(u0, ✓0, h0) 2 X� , (fu, fd, gu, gj , f✓, g✓, g⇡, gh) 2 F(J),

and the compatibility conditions:

div u0 = fd(0) in Ṙn,

�PRn�1 [[µ1(ru0 + [ru0]T)⌫]] = PRn�1gu(0), [[u00]] = gj(0) on Rn�1,

[[✓0]] = 0, �[[d1@n✓0]] = g✓(0) on Rn�1.

The solution map [(fu, fd, gu, gj , f✓, g✓, g⇡, gh, u0, ✓0, h0) 7! (u,⇡, �⇡, ✓, h)] is con-
tinuous between the corresponding spaces.



10 S. SHIMIZU

References

[1] D.M. Anderson, P. Cermelli, E. Fried, M.E. Gurtin, G.B. McFadden, General dynamical
sharp-interface conditions for phase transformations in viscous heat-conducting fluids. J.
Fluid Mech. 581 (2007), 323–370.

[2] E. DiBenedetto, A. Friedman, Conduction-convection problems with change of phase, J.
Di↵erential Equations 62 (1986), no. 2, 129–185.

[3] E. DiBenedetto, M. O’Leary, Three-dimensional conduction-convection problems with
change of phase, Arch. Rational Mech. Anal. 123 (1993), no. 2, 99–116.

[4] J. Escher, J. Prüss, G. Simonett, Analytic solutions for a Stefan problem with Gibbs-
Thomson correction. J. reine angew. Math. 563 (2003), no. 1, 1–52.

[5] K.-H. Ho↵mann, V.N. Starovoitov, The Stefan problem with surface tension and convection
in Stokes fluid, Adv. Math. Sci. Appl. 8 (1998), no. 1, 173–183.

[6] K.-H. Ho↵mann, V.N. Starovoitov, Phase transitions of liquid-liquid type with convection,
Adv. Math. Sci. Appl. 8 (1998), no. 1, 185–198.

[7] M. Ishii, Thermo-Fluid Dynamic Theory of Two-Phase Flow Collection de la Direction des
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1 Introduction

We consider the following Neumann boundary value problem for a semilinear
elliptic equation: 



− ε2∆u+ u− up = 0 in Ωε,

∂u

∂ν
= 0 on ∂Ωε,

(1)

where ε > 0 and p > 1, Ωε is a (bounded or unbounded) domain in R2

which may depend on ε. We assume that the boundary ∂Ωε is smooth, and
ν denotes the outer unit normal to ∂Ωε. If Ωε is bounded, then this problem
is related to a stationary problem for activator-inhibitor systems modeling
biological pattern formation which was proposed by Gierer and Meinhardt
[4]. There are already many papers which studies (1) for the case Ωε is
independent of ε, which have revealed the richness of the solution set when
ε is sufficiently small. For example, the existence of solutions with spike-
layers on the boundary, as well as in the interior of the domain (see, e.g.,
[8, 9, 12, 6]). In particular, in [8, 9] it is proved that for ε sufficiently small
there exist “least-energy solutions” and the least-energy solution has only
one local maximum point Pε ∈ ∂Ωε. Moreover, the mean curvature of ∂Ωω

at Pε approaches its maximum over ∂Ωε as ε→ 0. In [12] Wei proved that if
P ∈ ∂Ωε is a nondegenerate critical point of the mean curvature, then there
exists a solution which has its peak near P for ε sufficiently small. These
results concerning the least-energy solutions are based on the properties of
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function w, where w is a solution of the boundary value problem

{
∆w − w + wp = 0 and w > 0 in Rn,
lim|x|→+∞w(x) = 0, w(0) = maxx∈Rn w(x).

(2)

It is well-known that the problem (2) has a unique solution ([5, 7]) and the
solution w is spherically symmetric about the origin and decays exponentially
in r = |x| ([5]). On the other hand, very little is known about solutions of
(2) which don’t decay in all directions. Dancer [3] first showed that there
are solutions which are periodic in one direction and decay in all the other
directions.

All these results which we have denoted above are concerns with domains
which are independent of the diffusion coefficient ε. In this paper, we explore
the case where the domain Ωε depends on ε. In such a case, we would like to
understand what governs the location of the peak. Concerning the case where
Ωε depends on ε, Berestyski and Wei [1] considered (1) in a thin domain in
R2:

Ωε = R× (0, εL),

where L > 0. They have shown that there exists L∗ > 0 satisfying the
following: (i) if L 6 L∗, then the least energy solution uε(x, y) of (1) is
independent of y. More precisely, uε(x, y) = Φ(x/ε), where Φ(x) is a unique
solution of

{
−Φ′′ + Φ− Φp = 0 and Φ > 0 in R,
limx2→+∞Φ(x) = 0, Φ(0) = maxx∈R Φ(x),

(3)

and (ii) if L > L∗, then the least energy solution depends on y. Therefore, if
the domain depends on ε, the least energy solution does not always concen-
trate on a single point. See also a related result by Terracini, Tzvetkov and
Visciglia [11] for the case Rn ×M , where M compact Riemannian manifold.
On the other hand, in [10], it was considered the case where a domain Ωε ⊂ R2

shrinks to a Jordan curve as ε ↓ 0 more slowly, that is, Ωε is a domain of
constant width ε`ε, where `ε is a smooth function of ε and satisfies

lim
ε→0

ε`ε = 0, lim
ε→0

`ε = +∞, lim sup
ε→0

3
√

2

`ε
log

1

ε
< 1.

Then, it was shown in [10] that solutions have the same properties as those
in the case where Ω is not depend on ε. Especially, the least-energy solution
has only one maximum point Pε which lies on the boundary, and the mean
curvature of ∂Ωε at Pε approaches its maximum over ∂Ωε as ε ↓ 0.
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Motivated by these facts, we study (1) in a domain Ωε ⊂ R2 which shrinks
quickly to a straight line in the plane as ε ↓ 0. We prove the existence of the
least-energy solution, and investigate the asymptotic form of the least-energy
solution in such a domain. By [1], it is natural to think that the least energy
solution converges to Φ in some sense. However it is not clear that where
the “concentration line” locates. We will show that the least energy solution
concentrates to the shortest line which goes across the shrinking domain.
Further, if there are several shortest line, we show the least energy solution
concentrates at the “flattest” place.

This paper is organized as follows. In section 2, we state our result. In
section 3, we introduce a change of coordinates which is essential for the
proof of Theorem 2 which is given in section 2. In section 4, we give an
upper bound of the energy of the least energy solution which implies the
convergence to Φ.

2 Statement of main results

Let f(X) ∈ C∞(R;R) be a function satisfying the following conditions:

f(X + L) = f(X), min
X∈R

f(X) = f(0) = 1, min
f(X)=1

f ′′(X) = f ′′(0), (4)

for some L > 0. For δ > 0, we define a domain Ω̃δ as

Ω̃δ = {(X, Y ) ∈ R2 | X ∈ R, 0 < Y < δf(X)}. (5)

We consider the following Neumann problem:



− ε2∆u+ u− up = 0 in Ω̃εlε ,

∂u

∂ν
= 0 on ∂Ω̃εlε ,

(6)

where ε > 0, p > 1, lε > 0 and lε → 0 as ε→ 0. For u ∈ H1(Ω̃εlε), we define

functionals J̃ε and Ĩε by

J̃ε(u) :=
1

2

∫

Ω̃εlε

(
ε2|∇u|2 + |u|2) dXdY − 1

p+ 1

∫

Ω̃εlε

|u|p+1 dXdY,

Ĩε(u) :=

∫

Ω̃εlε

(
ε2|∇u|2 + |u|2) dXdY −

∫

Ω̃εlε

|u|p+1 dXdY.

Definition 1 (Least energy solution). We call uε a least-energy solution of

(6) if uε is positive, solve (6) and has the smallest energy J̃ε among all the

positive solutions to (6). The critical value cε = J̃ε(uε) is called the least-
energy for the Neumann problem (6).
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Since a solution uε of (6) satisfies Ĩε(uε) = 0, we can obtain a least-energy
solution by the following minimizing problem:

Minimize{J̃ε(v) | v ∈ H1
N(Ω̃εlε) \ {0}, Ĩε(v) = 0},

where

H1
N(Ω) := {u ∈ C∞(Ω̄) ∩H1(Ω) | ∂u/∂ν = 0 on ∂Ω}H

1

.

For the case where f ≡ 1, it was shown in [1] that, for 0 < ε � 1, the
least-energy solution uε satisfies uε(x, y) = Φ(x/ε), where Φ is the solution
of (3).

The existence of the least-energy solution of (6) can proved by a standard
argument using concentration compactness lemma by Lions.

Theorem 1. For ε > 0 sufficiently small, there exists a least-energy solution
of (6).

Next, we study the asymptotic form of the least-energy solution as ε ↓ 0.
Rescale the coordinate system as follows: (X, Y ) 7→ (εx, εy). Then, the
problem (6) becomes




−∆u+ u− up = 0 in Ωlε ,

∂u

∂ν
= 0 on ∂Ωlε ,

(7)

where

Ωlε := {(x, y) ∈ R2 | x ∈ R, 0 < y < lεf(εx)}.
Furthermore, the rescaled energy Jε and Nehari function Iε becomes

Jε(u) :=
1

2

∫

Ωlε

(|∇u|2 + |u|2) dxdy − 1

p+ 1

∫

Ωlε

|u|p+1 dxdy, (8)

Iε(u) :=

∫

Ωlε

(|∇u|2 + |u|2) dxdy −
∫

Ωlε

|u|p+1 dxdy. (9)

We denote the set of least-energy solutions of the rescaled problem (7) by
Gε.

For u, v ∈ H1(Ωlε), we set

〈u, v〉 =

∫

R

∫ lεf(εx)

0

(∇u · ∇v + uv) dxdy,

and ‖u‖2
H1(Ωlε ) = 〈u, u〉. Our second result is the following.
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Theorem 2. There exists xε ∈ R such that the least-energy solution uε(x, y)
of (7) satisfies

uε(x− xε, y) < Ce−λ|x|,

where C > 0 and λ > 0 are independent of ε. Furthermore, we have

lim
ε→0

l−1
ε ||u− Φ(· − xε)||2H1(Ωlε ) = 0.

The concentration line xε converges to the set

Σ =

{
x ∈ R | f(x) = 1, f ′′(x) = min

f(x̃)=1
f ′′(x̃)

}
.

3 Local coordinate system

In this section we make a change of coordinates to make the domain Ωε to
be straight. We will be careful to preserve the Neumann boundary condition
after the change of coordinates.

3.1 New coordinates in the macro scale

Let δ > 0 and let Ω̃δ be the domain given in (5). Let G(Y ; ξ̃) be the solution
of the following initial value problem:

∂YG(Y ; ξ̃) = −Y F (G(Y ; ξ̃)), G(0; ξ̃) = ξ̃, (10)

where F (u) = f ′(u)/f(u). By the local wellposedness of (10), we have the
following.

Proposition 1. Let Y (ξ̃) > 0 be the maximal existence time of the solu-
tion G(Y ; ξ̃) of (10). Then, there exists δ0 > 0 such that for δ ∈ (0, δ0),
inf ξ̃∈R Y (ξ̃) > δ supX∈R f(X).

Since for δ ∈ (0, δ0) the domain Ω̃δ is written in the form

Ω̃δ = {(X, η̃f(X)) | X ∈ R, η̃ ∈ (0, δ)},
we see

Ω̃δ ⊂ {(X, Y ) ∈ R2 | ∃ξ̃ ∈ R s.t. 0 < Y < Y (ξ̃), X = G(Y ; ξ̃)}
= {(G(Y ; ξ̃), Y ) | ξ̃ ∈ R, 0 < Y < Y (ξ̃)}.

Using the above property of Ω̃δ, we introduce a new coordinate system. For
(X, Y ) ∈ Ω̃δ, we define (η̃, ξ̃) as
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(i) η̃ = η̃(X,Y ) = Y/f(X),

(ii) ξ̃ = ξ̃(X, Y ) is an initial data of a solution of (10), and

X = G(Y ; ξ̃) for 0 < Y < Y (ξ̃).

The definition of ξ̃ is implicit. However it is well-defined because we have
the uniqueness of the solution to (10) and the construction of the domain

Ω̃δ. The transformation (X,Y ) 7→ (ξ̃, η̃) maps the region Ω̃δ to

Vδ = {(ξ̃, η̃) ∈ R2 | ξ̃ ∈ R, η̃ ∈ (0, δ)}. (11)

Now, we investigate several properties of G(Y ; ξ̃). By direct computation,
we have the following estimates.

Lemma 1. There exists δ1 ∈ (0, δ0) such that we see, for 0 < Y < δ1, that

sup
ξ̃∈R
|∂ξG(Y ; ξ̃)− 1| ≤ CY 2,

sup
ξ̃∈R
|∂ξ∂YG(Y ; ξ̃)| ≤ CY

sup
ξ̃∈R
|∂2
ξG(Y ; ξ̃)| ≤ CY 2.

where C is a positive constants.

We show that the new coordinate system (ξ̃, η̃) is useful to consider the

Neumann problem. From (11), the boundary ∂Ω̃δ is transformed to ∂Vδ =
∂0Vδ ∪ ∂δVδ, where ∂0Vδ = {η̃ = 0} and ∂δVδ = {η̃ = δ}.
Proposition 2. The unit outer normal vector to ∂0Vδ becomes (0,−1), and
the unit outer normal to ∂δVδ becomes (0, 1).

3.2 New coordinate in the micro scale

For (X, Y ) ∈ Ω̃εlε , we put

X = εx, Y = εy. (12)

Then, the transformation (12) maps Ω̃εlε to the folowing domain:

Ωlε = {(x, y) ∈ R2 | x ∈ R, y ∈ (0, lεf(εx))}.
On the other hand, for (ξ̃, η̃) ∈ Vδ, we define (ξ, η) as

ξ̃ = εξ, η̃ = εη. (13)

Since we have a map from (X, Y ) to (ξ̃, η̃), we see
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(i) η = y/f(εx),

(ii) εx = G(εy; εξ), that is, G(εy; εξ)/ε is a solution of the following prob-
lem and ξ is its initial data:

∂ygε(y; ξ) = −εyf
′ (εgε(y; ξ))

f (εgε(y; ξ))
, gε(0, ξ) = ξ. (14)

We note that the solution gε(y; ξ) of (14) satisfies

(1, εηf ′(εx)) · (∂ygε(y; ξ), 1) = 0. (15)

It is easy to see that (ξ, η) is in

Vlε = {(ξ, η) ∈ R2 | ξ ∈ R, η ∈ (0, lε)}.

The Jachobian and the Laplacian in the new coordinates can be expressed
as follows.

det
∂(x, y)

∂(ξ, η)
= f(εx)(1 + ε2η2f ′(εx)2)−1∂ξG(εy, εη),

∆ =
(
1 + ε2η2f ′(εx)2

)(
∂ξG(εy, εξ)−2∂2

ξ +
1

f(εx)2
∂2
η

)

+ε∂ξG(εy, εξ)−3

(
f ′(εx)

f(εx)
∂ξG(εy, εξ)2 − ∂2

ξG(εt, εξ)
(
1 + ε2η2f ′(εx)2

)

−εηf ′(εx)∂ξG(εy, εξ)∂Y ∂ξG(εy, εξ)) ∂ξ

+ε2η

(
2
f ′(εx)2

f(εx)2
− f ′′(εx)

f(εx)

)
∂η

Further, using Lemma 1, we can show the difference between x and ξ are
“small”. That is, we can show

|εξ − εx| ≤ Cε2l2ε ,

for some constant C > 0.

4 Upper bound of the energy of least energy

solution

First, (without proof), we claim that it is enough to compute all quantities
up to ε2lε order. So, we ignore the o(ε2lε) terms. If we do so, then the
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Jachobian and Laplacian will be

det
∂(x, y)

∂(ξ, η)
∼ f(εξ), (16)

∆ ∼ ∂2
ξ +

1

f(εξ)2
∂2
η + ε

f ′(εξ)
f(εξ)

∂ξ. (17)

For u ∈ H1(R), we set

J0(u) =
1

2

∫

R

(|∇u|2 + |u|2) dx− 1

p+ 1

∫

R
|u|p+1 dx.

Lemma 2. Let uε be a least-energy solution of (7). Then, we have

Jε(uε) ≤ lεJ0(Φ) + Cpf
′′(0)lεε

2 + o(lεε
2),

where Cp is an absolute constant which depends only on p. In particular

Cp =
1

4

(∫

R
Φp(ξ) dξ +

p− 1

p+ 1

∫

R
Φp+1(ξ)ξ2 dξ

)

Proof. We use the transformation from (x, y) to (ξ, η), where we note

(ξ, η) ∈ Vlε =
{

(ξ, η) ∈ R2 | ξ ∈ R, η ∈ (0, lε)
}
.

We first calculate Iε(Φ(ξ)), where Φ is a solution of the problem (3), and the
definition of Iε(·) is (9). The function Φ is spherically symmetric about the
origin and decays exponentially in r = |ξ|. It follows from (16) and (17) that

Iε(Φ(ξ)) =

∫ lε

0

∫

R

(
−
(
∂2
ξ +

1

f(εξ)2
∂2
η + ε

f ′(εξ)
f(εξ)

∂ξ

)
Φ + Φ− Φp

)
Φ f(εξ)

+ o(ε2lε).

Since Φ is the solution of (3) and do not depend on η, we obtain

Iε(Φ(ξ)) = −ε2lε
f ′′(0)

2
Mp + o(ε2lε).

Here, we putMp =
∫
R Φ(ξ)2 dξ. Now, we find tε > 0 which satisfies Iε(tεΦ(ξ)) =

0. Then, such tε is given by

tε = 1 + ε2 f ′′(0)

2(p− 1)

Mp

Np

+ o(ε2), (18)
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where Np =
∫
R Φ(ξ)p+1 dξ. Since uε is the least-energy solution, it is clear

that Jε(uε) 6 Jε(tεΦ). We calculate Jε(tεΦ) and have

Jε(tεΦ) = Iε(tεΦ) +

(
1

2
− 1

p+ 1

)
tp+1
ε

∫ lε

0

∫

R
Φp+1(ξ)f(εξ) dξdη

=
p− 1

2(p+ 1)
lεt

p+1
ε

∫

R
Φp+1(ξ)

(
1 +

1

2
f ′′(0)ε2ξ2

)
dξ + o(ε2lε).

Substituting (18), we have

Jε(tεΦ) =
p− 1

2(p+ 1)
lε

∫

R
Φp+1(ξ) dξ + ε2lε

f ′′(0)

4

Mp

Np

∫

R
Φp+1(ξ) dξ

+ε2lε
p− 1

4(p+ 1)
f ′′(0)

∫

R
Φp+1(ξ)ξ2 dξ + o(ε2lε)

=
p− 1

2(p+ 1)
lε

∫

R
Φp+1(ξ) dξ + ε2lε

f ′′(0)

4

[
Mp +

p− 1

p+ 1

∫

R
Φp+1(ξ)ξ2 dξ

]

+o(ε2lε).

Note that

J0(Φ) =
p− 1

2(p+ 1)

∫

R
Φp+1(ξ) dξ.

Therefore, Jε(tεΦ) satisfies

Jε(tεΦ) = lεJ0(Φ) + ε2lε
f ′′(0)

4

[
Mp +

p− 1

p+ 1

∫

R
Φp+1(ξ)ξ2 dξ

]
+ o(ε4lε),

which has finished a proof of Lemma 2.

The proof of the remaing part of Theorem 2 can be shown by two steps.
First, we show the strong convergence of the least energy solution to Φ and
the exponential decay in the x direction. Next, computing the energy as-
suming that the concentration line converges to the wrong place we have a
contradiction with Lemma 2.
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Immersed, Free Boundaries in Complex Fluids

Hector D. Ceniceros
Department of Mathematics, University of California at Santa Barbara

The interaction of flexible free-to-move boundaries with non-Newtonian (complex) fluids
is receiving increased attention. Accurately capturing the coupled dynamics of this intri-
cate flow-structure interaction poses challenging mathematical and computational problems.
First, the dynamics of the microstructure, responsible for the non-Newtonian (viscoelastic)
behavior, couples to the macroscopic flow and consequently increases the dimensionality of
the system. Second, a flexible fiber or boundary in a viscoelastic flow can experience large
normal stresses (absent in Newtonian fluids) which introduce additional difficulties to the
computation of the motion of non-extensible immersed boundaries.

The Immersed Boundary (IB) Method, introduced by Peskin [4], offers a flexible frame-
work for the modeling and simulation of this type of systems. It combines a Lagrangian
representation of the immersed structures with an Eulerian flow description. The immersed
structures often have very stiff components and as a consequence strong forces are generated,
which in turn induce severe time-step restrictions for explicit discretization [6, 5].

We will describe in this work two recent advances to IB method as well as the application
of these new techniques to the investigation of some free boundary problems. First, we will
focus on the 2D case and introduce two ideas which allow for a fast and robust computation
free of high order stability constraints [3]. After this we will consider the 3D case, for which
a straightforward generalization is not possible and new ideas had to be developed. One
of these ideas is the use of treecode strategy for the fast evaluation of the flow-structure
interaction [1]. Specifically, we will show that the flow-structure operator can be seen as a
multipole summation with a suitable choice of potential. Using the Singular Value Decom-
position and a new, efficient, iterative algorithm we compute L2-optimal far field expansions
of this potential to be used in an effective treecode strategy. This treecode approach allows
for a very fast evaluation of the flow-structure operator. With that in hand, we solve the
implicit system for the interface configuration with a Krylov subspace method, employing
the treecode evaluation at every iteration.

We apply these new computational advances to the investigation of peristalsis in a viscoelas-
tic flow [2]. Peristalsis is a mechanism for transporting fluid or immersed particles in a
channel by waves of contraction. It occurs in many biological organisms as well as in several
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human designed systems. In this study, we investigate numerically the peristaltic pump-
ing of an incompressible viscoelastic fluid using the simple Oldroyd-B model coupled to the
Navier-Stokes equations. The pump’s walls are assumed to be massless immersed fibers
whose prescribed periodic motion and flow interaction is handled by our new IB Method.
This allows us to explore an unprecedented range of parameter regimes, nearly all possible
occlusion ratios and Weissenberg numbers in excess of 100. Our numerical investigation
reveals rich, highly concentrated stress structures and new, striking dynamics. The inves-
tigation also points to the limitations of the Oldroyd B model, with a potential finite time
blow-up, and to the role of numerical regularization.

Time permitting, we will also report on our progress on the modeling and simulation of free
swimmers in viscoelastic flows, for both Oldroyd B and FENE models.
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Evolution of spirals by an eikonal-curvature flow equation with
a single level set formulation
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1. Introduction

Burton, Cabrera and Frank [BCF51] proposed a theory of crystal growth with aid of screw
dislocations. They pointed out that screw dislocations supply spiral steps to a crystal surface
when the screw dislocations appear on the surface. Steps evolve catching adatoms as they climb
a spiral staircase, and thus the surface evolves. Burton et al. calculated the step velocity with
Gibbs-Thomson effect, and derived an eikonal-curvature flow of the form

V = v∞(1 � ρcκ) (1)

by regarding the evolution of steps as evolution of curves on the plane, where v∞ is the velocity
of straight line steps, ρc is the critical radius reflecting the Gibbs-Thomson effect, V is the
normal velocity of the curve which denotes the location of steps, and κ is the curvature of the
curve with opposite direction of V . Note that we shall use the words ‘step’, ‘curve’, and ‘spiral’
interchangeably because of the above background. One can �nd a complex spiral patterns on
the growing crystal surface, which is caused by the evolution of spiral steps and collision with
each other. Several models for this phenomena are proposed by [KP98], [Kob10] with phase
�eld models, and by [Sme00] and [Oht03] with level set methods.

In this talk we consider the evolution of spiral curves by an eikonal-curvature flow with the
level set formulation by [Oht03], and investigate behavior of spirals with mathematical results
of the formulation. In particular, two characteristic problems are considered; one is behavior
of a bunch of steps, which corresponds to variety of heights of the steps. In this problem one
can �nd the crucial difference between phase �eld models and our formulations. The other is on
the stationary solutions caused by an ‘inactive pair’, which corresponds to the stationary curve
under an eikonal-curvature flow equation. Formally, the circle whose radius is ρc does not evolve
under (1), and it is unstable. In this talk we shall �nd stable stationary curves like as the above.

Results on §2.2 are partly joint work with Shun’ichi Goto and Maki Nakagawa, and those
on §2.3 and §3 are joint work with Yen-Hsi Richard Tsai and Yoshikazu Giga.

2. Formulation and basic properties

We here introduce a level set formulation with a single auxiliary function for evolving spirals
by an eikonal-curvature flow equation. Its crucial difficulty lies in the fact that a spiral curve
generally does not divide a domain into two subdomains so that the usual level set formulation
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{x; u(t, x) = 0} does not work well. To overcome this difficulty, we combine a level set method
and a sheet structure function due to Kobayashi [Kob10] or Karma and Plapp [KP98] in their
phase �eld models.

2.1. Level set formulation for evolving spirals

Let Ω ⊂ R2 be a bounded domain with smooth boundary. We assume that there exist N(� 1)
spiral centers denoted by a1, . . . , aN ∈ Ω, and each center may have multiple spirals. In this talk
we also regard an open neighborhood Uj of aj as a j-th center of spirals interchangeably with
aj . Set W = Ω \ (

∪N
j=1 U j), and we here consider evolving spirals �t at time t � 0 on W having

the direction n of the evolution, where n : �t → S1 is a continuous unit normal vector �eld of
�t. The evolution equation is the rescaled equation of (1) on time of the form

V = C � κ on �t (2)

with a constant C, and also impose that the end points of �t always stay on ∂W with the
orthogonality condition

�t ⊥ ∂W. (3)

For multiplicity of spirals let mj ∈ Z \ {0} be a constant denoting the number and rotational
orientation of spirals associated with aj : |mj |-spirals go around aj with anti-clockwise (resp.
clockwise) rotation if mj � 0 (resp. mj < 0) provided that spirals have positive velocity in the
direction of n. We shall discuss in detail how to determine mj from physical situation in §2.3.

In [Oht03] the author propose a level set formulation for spirals �t for t � 0 as

�t = {x ∈ W ; u(t, x) � �(x) ≡ 0 mod 2�Z}, n = � ∇(u � �)
|∇(u � �)|

(4)

with a sheet structure function

�(x) =
N∑

j=1

mj arg(x � aj).

The function � is introduced by Kobayashi [Kob10] in his phase �eld model. Karma and Plapp
[KP98] also introduce �(x) = arg x for a single spiral, i.e., for the case N = 1, a1 = 0 and m1 = 1.
The function � denotes helical layer structure of atoms in a crystal with screw dislocations. From
the theory of dislocation and linear elasticity the surface height h(t, x) satis�es

�h = �h0divδΓtn,

where h0 is a unit height of steps (see [HL68]). One can �nd h = (h0/2�)� whose discontinuity
is only on �t satis�es the above from straightforward calculation.

Our formulation is regarded interior and exterior of the crystal as the place where z < h(t, x)
and z > h(t, x), respectively, provided that ‘z = (h0/2�)

∑N
j=1 mj arg(x � aj)’. To describe the

above exactly we now introduce the covering space X as in [Oht03] of the form

X := {(x, �) ∈ W � RN ;
x � aj

|x � aj |
= (cos �j , sin �j) for j = 1, . . . , N},
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where �i is such that � = (�1, . . . , �N ). Then, the interior Ĩt or the exterior Õt and thus the steps
�̃t at time t � 0 is described by

Ĩt = {(x, �) ∈ X; u(t, x) �
N∑

j=1

mj�j > 0}, Õt = {(x, �) ∈ X; u(t, x) �
N∑

j=1

mj�j < 0},

�̃t = {(x, �) ∈ X; u(t, x) �
N∑

j=1

mj�j = 0}

with an auxiliary function u : [0,∞) � W → R. Then we obtain (4) from this formulation and
inequalities describing the interior and exterior. The above formulae play very important role
in mathematical analysis, in particular, when we investigate behavior of spirals.

Naturally the sheet structure function should be a multi-valued function in our formulation,
but locally our formulation is same as the usual level set of u � �. Then from straightforward
calculation in the usual level set method we derive

V =
ut

|∇(u � �)|
, κ = �div

∇(u � �)
|∇(u � �)|

,

and thus we obtain the level set equation of the form

ut � |∇(u � �)|
{

div
∇(u � �)
|∇(u � �)|

+ C

}
= 0 in (0, T ) � W, (5)

〈~�,∇(u � �)〉 = 0 on (0, T ) � ∂W (6)

from (2)–(3), where ~� is the outer unit normal vector �eld of ∂W , and 〈�, �〉 is the usual inner
product in R2 (see [Gig06] for detail).

2.2. Basic properties

The equation (5)–(6) is represented by

ut + F (∇(u � �),∇2(u � �)) = 0 in (0, T ) � W,

B(x,∇(u � �)) = 0 on (0, T ) � ∂W

with F : (R2 \ {0}) � S2 → R, B : ∂W � R → R and functions F̃ and B̃ of the form

F (p, x) = �trace
{(

I � p ⊗ p

|p|2

)
X

}
� C|p|,

B(x, p) = 〈~�, p〉,

where S2 is the space of 2 � 2 real symmetric matrices.
Note that F is degenerate elliptic, and then we consider solutions of (4)–(6) in usual viscosity

solution sense (see [CGG91], [CIL92] or [Gig06] for detail). The author obtained the comparison
principle, and the existence and uniqueness of viscosity solutions globally in time for a continuous
initial data.
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Theorem 1 ([Oht03]). Let u, v : [0, T )�W → R be a viscosity sub- and supersolution of (5)–(6)
on (0, T ) � W . If u∗ � v∗ on {0} � W , then u∗ � v∗ on (0, T ) � W , where u∗ (resp. v∗) is an
upper (resp. lower) semicontinuous envelope of u (resp. v) of the form

u∗(t, x) = lim
r→0

sup{u(s, y); |(t, x) � (s, y)| < r}

(resp. v∗(t, x) = lim
r→0

inf{v(s, y); |(t, x) � (s, y)| < r}).

Theorem 2 ([Oht03]). For u0 ∈ C(W ) there exists a viscosity solution u ∈ C([0,∞) � W ) on
(0,∞) � W with u|t=0 = u0.

In the above analysis, in particular on the comparison, we attempt to consider w = u � � and
apply the results by [GS93] and [Sat94] directly, but it does not work well since � is a multi-
valued function. To overcome this difficulty we estimate ũ∗ � ṽ∗ in [0, T )�X instead of u∗ � v∗,
where

ũ(t, x, �) := u(t, x) �
N∑

j=1

mj�j , (7)

and ṽ is similar as the above. Note that ũ∗(t, x, �) = u∗(t, x) �
∑N

j=1 mj�j and ṽ∗(t, x, �) =
v∗(t, x) �

∑N
j=1 mj�j . Then, we derive the above results by revising the proofs in [GS93] or

[Sat94] with ũ and ṽ instead of u � � and v � �, respectively.

2.3. Properties on the presented level set method

To describe an evolution of spirals we execute the followings;

(i) From given �0 and n, we construct u0 ∈ C(W ) and �(x) =
∑N

j=1 mj arg(x� aj) satisfying

�0 = {x ∈ W ; u0(x) � �(x) ≡ 0 mod 2�Z}. (8)

(ii) Solve (5)–(6) with an initial data u|t=0 = u0.

(iii) Draw �t de�ned by (4) (and construct the height function h(t, x) from u if necessary).

It remains two problems to complete the above.

(Q1) (Construction of initial configuration) How to construct u0 ∈ C(W ) and determine
mj from given �0?

(Q2) (Uniqueness of level sets) Is �t uniquely determined from �0?

Uniqueness of level sets is come from the fact that u0 ∈ C(W ) satisfying (8) is not unique for
given �0. However, Chen, Giga and Goto [CGG91], or Evans and Spruck [ES91] obtained the
uniqueness of level sets for geometric evolution equation. Although our equation is not geometric
for u, Goto, Nakagawa and the author also derived the uniqueness result with revision of the
proof of [CGG91] since our equation presented is geometric for ‘u � �’.

4



Theorem 3 ([GNO08]). Let u, v : [0, T ) � W → R be a viscosity sub- and supersolution of
(5)–(6) in (0, T ) � W . Assume that

{(x, �) ∈ X; ũ∗(0, x, �) > 0} ⊂ {(x, �) ∈ X; ṽ∗(0, x, �) > 0}
(resp. {(x, �) ∈ X; ũ∗(0, x, �) < 0} ⊃ {(x, �) ∈ X; ṽ∗(0, x, �) < 0}),

where ũ∗(t, x, �) = u∗(t, x) �
∑N

j=1 mj�j and ṽ∗(t, x, �) = v∗(t, x) �
∑N

j=1 mj�j. Then,

{(x, �) ∈ X; ũ∗(t, x, �) > 0} ⊂ {(x, �) ∈ X; ṽ∗(t, x, �) > 0}
(resp. {(x, �) ∈ X; ũ∗(t, x, �) < 0} ⊃ {(x, �) ∈ X; ṽ∗(t, x, �) < 0}),

for t ∈ (0, T ).

The result in [GNO08] is obtained for continuous solutions u and v. Fortunately, their result is
extended to our statement with a little revision for semicontinuous solutions.

The basic strategy of the proof of Theorem 3 is based on [CGG91], i.e., modify v to w =
G(v∗��)+� with lower semicontinous and nondecreasing function G to enjoy Theorem 1 between
u and w with {(x, �) ∈ X; ṽ∗(t, x, �) > 0} ⊃ {(x, �) ∈ X; w̃(t, x, �) > 0}. The function G is
de�ned similarly as in [CGG91] with a little revision for our problem. Although w includes the
multi-valued function �, however we also obtain G(s + 2�) = G(s) + 2� for sufficiently large s
with the revision to our problem, and thus w is well-de�ned in some sense.

For the problem of initial con�guration Goto, Nakagawa and the author [GNO08] proved the
existence of mj and u0 ∈ C(W ) for suitable �0, and clarify class of �0.

It is convenient for the initial con�guration to classify spirals as in [GNO08] into two kind
of spirals depending on the feature whether or not it touches ∂Ω. In the following argument let
�0 := {P (s); s ∈ [0, `]} be smooth enough, and s be an arclength parameter.

Definition 4. (i) For a given a ∈ Ω let U ⊂⊂ Ω be its neighborhood, and set W = Ω \ U .
We say �0 is a simple spiral on W associated with a if P (s) satis�es

(S1) P (s) is a simple arc and |Ṗ (s)| = |(dP/ds)(s)| 6= 0 for s ∈ [0, `],

(S2) P (0) ∈ ∂U , P (`) ∈ ∂Ω and P (s) ∈ W for s ∈ (0, `).

(ii) For a given a1, a2 ∈ Ω let Ui ⊂⊂ Ω be a neighborhood of ai for i = 1, 2, and set W =
Ω \ (U1 ∪U2). Assume that U1 ∩U2 = ∅. We say �0 is a connecting spiral on W between
a1 and a2 if P (s) satis�es (S1) and

(S2)’ P (0) ∈ ∂U1, P (`) ∈ ∂U2 and P (s) ∈ W for s ∈ (0, `).

In the previous section we pointed out that mj ∈ Z \ {0} is a number of rotational orientation
for spirals associated with aj . It is de�ned as follows.

Definition 5. Let �0 be associated with a center a at s = 0. We say �0 is anti-clockwise (resp.
clockwise) rotational orientation (with respect to a) if

n(P (s)) =
(

0 �1
1 0

)
Ṗ (s)

(
resp. n(P (s)) =

(
0 1
�1 0

)
Ṗ (s)

)
.
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The signed number mj ∈ Z \ {0} of spirals associated with aj is de�ned by

mj = m+
j � m�

j ,

where m+
j ,m�

j ∈ N are numbers of anti-clockwise and clockwise rotational orientations of spirals
associated with aj , respectively.

Then, Goto, Nakagawa and the author obtained the existence of a continuous initial data for a
given suitable �0.

Theorem 6 ([GNO08]). Let �0 be a union of single and connecting spirals with a continuous
unit normal vector �eld n on �t. Then, there exists mj ∈ Z \ {0} and u0 ∈ C(W ) satisfying (8).

It is obtained from the existence of a branch of � whose discontinuity is only on �0.

Lemma 7 ([GNO08]). Under the same hypothesis in Theorem 6, there exists �Γ0 : W \ �0 → R
which is a smooth branch of �(x) =

∑N
j=1 mj arg(x � aj).

Let us consider a tubular neighborhood of �0 of the form

�δ
0 := {x ∈ W ; inf

y∈Γ0

|x � y| < δ}.

Then, the signed distance function from �0 is well-de�ned in �δ
0, and thus we construct u0 with

�Γ0 on W \ �δ
0, and a linear interpolation between �Γ0 and �Γ0 + 2� using the signed distance

function on �δ
0.

However, the above way, in particular the construction of �Γ0 and a tubular neighborhood of
�0 are impractical. For practicability we now introduce an additive way from initial data with
less centers and multiplicity of spirals. Let �0,1 and �0,2 be a part of �0 satisfying �0,1∩�0,2 = ∅
and �0,1 ∪ �0,2 = �0, and they are described by

�0,i = {x ∈ W ; ui(x) � �i(x) ≡ 0 mod 2�Z},

with auxiliary functions ui ∈ C(W ) and �i(x) =
∑Ni

k=1 mi,k arg(x�ai,k) for i = 1, 2. To construct
u0 ∈ C(W ) describing �0 we �rst modify ui as

vi(x) = Θi(x) + 2�ki(x) + �H1(λi(ui � (Θi(x) + 2�ki(x))))

with suitable constants λi > 1/� determined later, where Θi(x) =
∑Ni

k=1 mi,kΘi,k(x), Θi,k : W →
[0, 2�) is a principal value of arg(x � ai,k), ki : W → Z is a function satisfying

�� � ui(x) � (Θi(x) + 2�ki(x)) < � for x ∈ W

for i = 1, 2, and H1 is a function de�ned as

H1(σ) =


�1 if σ < �1,
σ if |σ| � 1,
1 if σ > 1.

6



The coefficients λi for i = 1, 2 is chosen such that

2∩
i=1

{x ∈ W ; |vi(x) � (Θi(x) + 2�ki(x))| < �} = ∅.

Note that vi still describes �0,i as (4) for i = 1, 2, and vi �Θi(x) ≡ � mod 2�Z on �0,j if i 6= j.
Thus we set

u0(x) := v1(x) + v2(x) + �,

then we have obtained a desired function describing �0 by (4). Note that simple and connecting
straight lines are given by constant functions as follows;

{ai + r(cos �, sin �) ∈ W ; r > 0} = {x ∈ W ; � � arg(x � ai) ≡ 0 mod 2�Z},
{σai + (1 � σ)aj ∈ W ; σ ∈ (0, 1)}

= {x ∈ W ; � � (arg(x � ai) � arg(x � aj)) ≡ 0 mod 2�Z}.

Here we have assumed that each spirals are anti-clockwise rotational orientations with respect
to ai. From the above formulae and additive way we obtain u0 ∈ C(W ) for �0 which is a union
of straight lines.

3. Behavior of spirals from phenomena

Our level set formulation, in particular the results of comparison in Theorem 1 and Theorem
3 enables us to study behavior of spirals. As their applications we investigate two kinds of
behavior of spirals in this talk, one is related to heights of steps, and the other is on stationary
solutions.

3.1. Stability of bunched steps

There is a difference on height of steps between the theory and physical experiments. Although
we consider evolution of unit step (whose height is the diameter of an atom) in the theory, we
also observe steps whose height is O(10) or O(100) by number of atoms in experiments. For
simulations describing more exact situations the height of steps should be implied in formulations
of spirals.

One of simple way to express the multiple height of steps is considering evolution of bunched
steps. From this view point, it is important to investigate the stability of a bunch of steps.

For this problem we assume that there exists only one center at the origin, and W = BR(0)\
Bρ(0), where Bρ(a) is an open disc whose center is a and radius is ρ. Assume that there
exist m(� 1) evolving spirals with anti-clockwise rotational orientations. This con�guration is
described by

ut � |∇(u � m�0)|
{

div
∇(u � m�0)
|∇(u � m�0)|

+ C

}
= 0 in (0, T ) � W, (9)

〈~�,∇(u � m�0)〉 = 0 on (0, T ) � ∂W, (10)

where �0(x) = arg(x).
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Ogiwara and Nakamura [ON03] obtained a negative result with a phase �eld model by
Kobayashi [Kob10] and a same con�guration of the domain. They proved the existence of a so-
lution describing rotating m spirals with 1/m-times rotational symmetric pattern. In particular,
any solutions converges to the above rotating spirals with a rotation if necessary.

However, we obtain the following stability results on a bunch of steps in our formulation.

Theorem 8. Let u be a solution of (9)–(10) in (0,∞) � W . Assume that there exists ζ0 ∈
C([ρ,R]) and � > 0 such that, for j = 0, 1, . . . , m � 1, there exists kj ∈ Z such that

{(x, �) ∈ X; u(0, x) � m� = 2�j} ⊂ {(x, �) ∈ X; |� � (ζ0(|x|) + 2�kj)| < �}. (11)

Then, there exists ζ ∈ C([0,∞) � [ρ,R]) such that w(t, x) = ζ(t, |x|) is a viscosity solution of
(9)–(10) with m = 1 satisfying w(0, x) = ζ0(|x|), and

{(x, �) ∈ X; u(t, x) � m� = 2�j} ⊂ {(x, �) ∈ X; |� � (ζ(t, |x|) + 2�kj)| < �}
for t > 0 and j = 0, 1, . . . , m � 1.

(12)

Note that �t,j := {x ∈ W ; u(t, x) � m� = 2�j} denotes one of continuous spiral curves in �t.
Thus (11) means that all curves in �0 is between C±�

0 of the form

C±�
0 := {r(cos(ζ0(r) ± �), sin(ζ0(r) ± �)); r ∈ [ρ,R]},

which is the rotation with the angles ±� of the curve C0 := {r(cos ζ0(r), sin ζ0(r)); r ∈ [ρ,R]}.
Consequently, Theorem 8 means that �t cannot escape from the place between C±�

t of the form

C±�
t := {r(cos(ζ(t, r) ± �), sin(ζ(t, r) ± �)); r ∈ [ρ,R]}

for t > 0, and consequently we obtain the stability in the sense of Lyapunov. Moreover, the
curve Ct := {r(cos ζ(t, r), sin ζ(t, r)); r ∈ [ρ,R]} evolves by V = C � κ, and thus the bunch of
spirals can be regarded as an evolving spiral by the same equation.

The crucial difference between our formulation and a phase �eld model is the type of equa-
tions; our equation is degenerate parabolic, and the phase �eld model is uniformly parabolic.
This implies that all spiral curves evolve with the same equation since vj(t, x) := (u(t, x) �
2�j)/m satis�es (9)–(10) with m = 1, and

�t,j = {x ∈ W ; vj(t, x) � �0(x) ≡ 0 mod 2�Z}

for j = 0, 1, . . . , m � 1.
The existence of ζ is derived from the rotation invariance of (9)–(10). In fact, we observe

that
C0 = {x ∈ W ; ζ0(|x|) � �0(x) ≡ 0 mod 2�Z}.

Let w(t, x) be a viscosity solution of (9)–(10) with m = 1 and w(0, x) = ζ0(|x|). Then we obtain
w(t, x) = w(t, |x|e)(=: ζ(t, |x|)) for some e ∈ S1 because of the uniqueness and w(0, Rx) =
w(0, x) for all rotation matrix R. This implies Ct and also C±�

t are solutions of (2)–(3) in the
level set sense. Consequently, Theorem 8 is derived by the comparison of interior and exterior
(cf. Theorem 3) between the each curves �t,j and C±�

t .
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3.2. Inactive pair

Burton, Cabrera and Frank [BCF51] pointed out that, if a pair of centers with opposite rotational
orientations is closer together than the critical distance 2/C, then this pair has no influence to
the evolution of the crystal surface. They call such a pair an inactive pair. We now demonstrate
the existence of an inactive pair.

For this problem we assume that N = 2, a1 = (��, 0), a2 = (�, 0) with � ∈ (0, 1/C),
Ui = Bρ(a1) with ρ ∈ (0, �), and �(x) = arg(x � a1) � arg(x � a2). Assume that Ω is large
enough (its sense is clari�ed later), and set W = Ω \ (U1 ∪ U2).

Note that the circle whose radius is 1/C is a stationary solution of V = C � κ. Thus the
curves satisfying the following condition should be a stationary solution of our problem.

(R1) It is a part of the circle whose radius is 1/C.

(R2) It satis�es the right angle condition between ∂Bρ(a1) and ∂Bρ(a2).

We now give such curves explicitly. Set

p1(σ) = a1 + ρ(cos σ, sin σ), p2(σ) = a2 + ρ(� cos σ, sin σ),

q1(σ) = p1(σ) +
1
C

(sin σ,� cos σ), q2(σ) = p2(σ) +
1
C

(� sin σ,� cos σ)

Then there exists � > 0 and σ1, σ2 such that 0 < σ1 < σ2 < � and

b1 = (0,��) = q1(σ1) = q2(σ1), b2 = (0, �) = q1(σ2) = q2(σ2).

We now de�ne

Ri =
{

ri(σ) = bi +
1
C

(
cos

(�

2
+ σ

)
, sin

(�

2
+ σ

))
; σ ∈ [�σi, σi]

}
for i = 1, 2. The sense of the assumption ‘Ω is large enough’ means that Ri ⊂ Ω \ (U1 ∪ U2).
Then, Ri is a connecting spiral between a1 and a2 satisfying (R1)–(R2), and consequently Ri

is our desired curve for i = 1, 2. Note that there are two stationary curves in our problems in
general.

To demonstrate that Ri is a stationary curve for i = 1, 2 we have to �nd a solution u
describing Ri in our level set formulation. However, in usual evolution of a closed curve (i.e., W =
Ω and � ≡ 0), there are no continuous solutions describing the stationary circle. Accordingly,
we �nd discontinuous a viscosity solution of (5)–(6) describing Ri for i = 1, 2.

Theorem 9. Let Ri be given on above for i = 1, 2. Then, �Ri : W → R which is a branch of
�(x) = arg(x � a1) � arg(x � a2) whose discontinuity is only on Ri is a viscosity solution of
(5)–(6).

For all u0 ∈ C(W ) there exists k ∈ Z such that �Ri + 2�k � u0 on W , which implies that
�Ri + 2�k � u on [0,∞) � W from Theorem 1, where u is a viscosity solution of (5)–(6) with
u|t=0 = u0. From the above and Theorem 3 the curves Ri plays a role of ‘upper bound’ for all
evolution of spirals in the con�guration of an inactive pair.
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Decay estimates of the Oseen flow in

two-dimensional exterior domains

Toshiaki Hishida∗

Graduate School of Mathematics, Nagoya University
Nagoya 464-8602 Japan

1 Introduction

Let Ω be an exterior domain in R2 with smooth boundary ∂Ω. We consider the
Navier-Stokes system

∂tu+ u · ∇u = ∆u−∇p, div u = 0 in Ω,

u|∂Ω = 0,

u→ u∞ as |x| → ∞
(1.1)

which describes a motion of a viscous incompressible fluid past an obstacle
R2 \Ω (rigid body) that moves with translational velocity −u∞, where u(x, t) =
(u1, u2) and p(x, t) respectively denote unknown velocity and pressure of the
fluid, while u∞ ∈ R2 \ {0} is a given uniform velocity. Because of the Stokes
paradox, we do need to consider the problem around u∞, so that the Oseen
linearization works well as an approximation of the Navier-Stokes system. Since
the Navier-Stokes system is rotationally invariant, without loss of generality, one
may take

u∞ = −2αe1 with α ∈ R \ {0} (Oseen parameter) (1.2)

where one can regard |α| as the Reynolds number. Then, by denoting u − u∞
by the same symbol u, (1.1) is reduced to

∂tu+ u · ∇u = ∆u + 2α∂1u−∇p, div u = 0 in Ω,

u|∂Ω = 2αe1,

u→ 0 as |x| → ∞.

(1.3)

It is an open question to clarify the large time behavior of solutions to the initial
value problem for (1.3) even when α ∈ R \ {0} is small enough. Toward better
understanding of this problem, it is important to study: (i) steady flows with
fine decay/summability for |x| → ∞; (ii) decay properties of solutions to the
Oseen initial value problem, see (1.5) below, for t → ∞. Concerning the first

∗Supported in part by Grant-in-Aid for Scientific Research, 24540169, from JSPS
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issue (i), it was proved by Finn and Smith [7], [8], [20] and, later on, refined
by Galdi [9], [10], that if |α| is nonzero but sufficiently small, then (1.3) admits
a steady flow (called a physically reasonable solution), u(x) = (u1, u2) that
satisfies u(x) = O(|x|−1/2) as |x| → ∞ and exhibits a parabolic wake region
behind the body like the Oseen fundamenatal solution. To be precise, such an
anisotropic decay structure with wake is found only for u1, while u2 has no
wake; as a consequence, we have

u1 ∈ Lq(Ω) for ∀q > 3; u2 ∈ Lr(Ω) for ∀r > 2. (1.4)

So far, the stability/instablity of this flow is unsolved, while we know the sta-
bility of physically reasonable solutions in 3D exterior domains, see [18] and the
references therein. The diffculty in 2D is due to less summability (1.4), that is
not enough to show the stablity.

This presentation is concerned with the second issue (ii) above, that is, the
large time behavior of solutions to the initial value problem for the Oseen system

∂tu−∆u− 2α∂1u+∇p = 0, div u = 0 in Ω× (0,∞)

u|∂Ω = 0,

u→ 0 as |x| → ∞,

u(·, 0) = f.

(1.5)

We use the standard Lq spaces, 1 < q <∞, of solenoidal vector fields

Lq
σ(Ω) = completion of C∞

0,σ(Ω) in L
q(Ω)

= {u ∈ Lq(Ω); div u = 0, ν · u|∂Ω = 0}

where C∞
0,σ(Ω) consists of all smooth and divergence free vector fields with com-

pact support, ν is the outer unit normal to the boundary ∂Ω and ν ·u|∂Ω denotes
the normal trace of u. It is well known that the space Lq(Ω) of vector fields ad-
mits the Helmholtz decomposition Lq(Ω) = Lq

σ(Ω)⊕
{
∇p ∈ Lq(Ω); p ∈ Lq

loc(Ω)
}

which was proved by Miyakawa [16], and Simader and Sohr [19]. By using the
projection P : Lq(Ω) → Lq

σ(Ω), the Oseen operator L = Lα is defined by

{
D(L) = {u ∈W 2,q(Ω) ∩ Lq

σ(Ω); u|∂Ω = 0},
Lu = −P [∆u+ 2α∂1u].

As in [16], by a perturbation argument from the Stokes operator L0 = −P∆, it
is easily verified that the Oseen operator generates an analytic semigroup (the
Oseen semigroup) {e−tL}t≥0 in Lq

σ(Ω). Thus the solution of (1.5) is given by
u(·, t) = e−tLf .

Our aim is to show the Lq-Lr estimates

‖e−tLf‖r ≤ C t−(n/q−n/r)/2‖f‖q (1 < q ≤ r ≤ ∞, q 6= ∞) (1.6)

‖∇e−tLf‖r ≤ C t−(n/q−n/r)/2−1/2‖f‖q (1 < q ≤ r ≤ n) (1.7)

for t > 0, where n ≥ 2 is the space dimension and ‖ · ‖q stands for the Lq-
norm. For the Stokes semigroup (case α = 0), these estimates were deduced
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by Iwashita [13] (n ≥ 3), Dan and Shibata [3], [4] (n = 2), and Maremonti
and Solonnikov [15] (n ≥ 2). We cannot avoid the restriction r ≤ n for (1.7),
see [15] and [12] (while it is not clear whether the same restriction is essential
for the case α ∈ R \ {0}). As for the Oseen semigroup (case α ∈ R \ {0}),
(1.6) and (1.7) were established by Kobayashi and Shibata [14] (n = 3) and
Enomoto and Shibata [5], [6] (n ≥ 3), except for the case of plane exterior
domains (n = 2), where the constant C > 0 above can be taken uniformly with
respect to small α ∈ R \ {0}; that is, for each M > 0, we have C = C(M ; p, q)
provided 0 < |α| ≤ M . This is important in the proof of stability of 3D steady
flows as an application of (1.6)–(1.7), see [18]. Unfortunately, our main result
on the Oseen semigroup in 2D, see Theorem 2.1 below, does not porivide such
desirable situation although I have made efforts to show the dependence of the
constant C > 0 on the parameter α as less singlar as possible. This is because
I cannot find the best way to overcome, among others, the following difficulty
yet, but I believe the theorem will have to be improved in the future. The most
difficulty in 2D is to control both parameters λ (spectral parameter) and α, see
(1.2), in asymptotics of the Oseen resolvent. In fact, the fundamental solution
in R2, see (5.3) below, involves the modified Bessel function of the second kind
(order 0), and its leading term near the origin is given by log(

√
λ+ α2|x|),

whose convergence to log(|α||x|) as λ → 0 is not uniform with respect to small
α ∈ R \ {0}, unlike 3D case.

2 L
q-Lr estimate

The main result on Lq-Lr estimate of the Oseen semigroup in 2D exterior do-
mains reads as follows.

Theorem 2.1 Let α ∈ R \ {0}. For {q, r} specified below and arbitrary small

ε > 0, there are positive constants Cα = Cα(q, r, ε), C
′
α = C′

α(q, ε) and C′′
α =

C′′
α(q, r, ε) such that

‖e−tLf‖r ≤ Cα t
−1/q+1/r‖f‖q (1 < q ≤ r <∞) (2.1)

‖e−tLf‖∞ ≤ C′
α t

−1/q (log t)‖f‖q (1 < q < r = ∞) (2.2)

‖∇e−tLf‖r ≤ C′′
α t

−1/q+1/r−1/2‖f‖q (1 < q ≤ r < 2 = n) (2.3)

‖∇e−tLf‖2 ≤ C′′
α t

−1/q (log t)‖f‖q (1 < q ≤ r = 2 = n) (2.4)

for t ≥ 2 and f ∈ Lq
σ(Ω), where Cα, C

′
α and C′′

α behave as

Cα =

{
O(|α|−1−ε) 1/q − 1/r ≤ 1/2
O(|α|−2−ε) 1/q − 1/r > 1/2

C′
α =

{
O(|α|−1−ε) q > 2
O(|α|−2−ε) q ≤ 2

C′′
α =

{
O(|α|−1−ε) q = r
O(|α|−2−ε) q < r

(2.5)

when α → 0.
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For the marginal cases, the rate of decay given in (2.2) and (2.4) is not sharp.
In fact, the Stokes semigroup e−tL0 satisfies

‖e−tL0f‖∞ ≤ C t−1/q‖f‖q (1 < q <∞) (2.6)

‖∇e−tL0f‖2 ≤ C t−1/q‖f‖q (1 < q ≤ 2) (2.7)

for t > 0 and f ∈ Lq
σ(Ω), see [3], [4]. It is worth while noting that (2.7) with

q = 2 can be deduced by a simple weighted energy method. One can also apply
the energy method to the Oseen system (1.5) to obtain

‖∇e−tLf‖2 ≤ C
(
|α|1/2t−1/4 + t−1/2

)
‖f‖2 (2.8)

with some C > 0 independent of α.
Set BR = {x ∈ R2; |x| < R}. We fix R0 > 0 such that R2 \ Ω ⊂ BR0 . As in

[13] and [14], the essential step for the proof of Theorem 2.1 is to derive local
energy decay properties in ΩR = Ω ∩ BR for R ≥ R0, see (3.2)–(3.4) below.
And then, we combine (3.4) in ΩR with decay estimates in Ω \ΩR = {|x| ≥ R}.
The latter can be deduced by means of cut-off technique with the aid of Lq-Lr

estimate of the Oseen semigroup in the whole plane R2, that is of the explicit
form

(
U(t)f

)
(x) =

∫

R2

G(x+ 2αte1 − y, t)f(y) dy (2.9)

where G(x, t) denotes the heat kernel

G(x, t) =
1

4πt
e−|x|2/4t. (2.10)

3 Local energy decay

For 1 < q <∞ and d ≥ R0 we set

Lq
[d](Ω) = {f ∈ Lq(Ω); f(x) = 0 a.e. |x| ≥ d} (3.1)

from which the initial data are taken in the following key proposition.

Proposition 3.1 Let α ∈ R \ {0}, 2 ≤ q < ∞, M > 0, R ≥ R0, d ≥ R0 and

0 ≤ θ ≤ 1. Then there is a positive constant C = C(q,M,R, d, θ) such that

‖e−tLPf‖W 1,q(ΩR) ≤
C

|α|1+2θ
t−(1+θ) (log t)2θ‖f‖q (3.2)

for t ≥ 2, f ∈ Lq
[d](Ω) and |α| ∈ (0,M ].

For the Stokes semigroup (case α = 0), the rate of local energy decay derived
by Dan and Shibata [3] is t−1 (log t)−2. Therefore, one can expect no singularity
with respect to α in (3.2) at least for the case θ = 0, however, we could not
remove |α|−1. When we fix α ∈ R \ {0} and take θ = 1 in Proposition 3.1, we
find that the rate of local energy decay of the Oseen semigroup is t−2 (log t)2,
which is better than that of the Stokes semigroup.
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The reason why we have the restricttion q ∈ [2,∞) is that we are forced to
employ L2 theory in a part of the proof. But, even for the case 1 < q < 2, it is
obvious that

‖e−tLPf‖W 1,q(ΩR) ≤
C

|α|1+2θ
t−(1+θ) (log t)2θ‖f‖2 (3.3)

for f ∈ L2
σ(Ω), which is enough to proceed to the next stage on account of the

smoothing effect of analytic semigroups.
In the next step, we still consider the local energy decay, however, for general

data from Lq
σ(Ω). By using (3.2)–(3.3) with arbirary small θ > 0 together

with Lq-Lr estimate of (2.9) in the whole plane R2, a certain cut-off procedure
provides the following decay property.

Proposition 3.2 Let α ∈ R \ {0}, 1 < q < ∞, M > 0, R ≥ R0, and suppose

ε > 0 is arbitrarily small. Then there is a constant C = C(q,M,R, ε) such that

‖e−tLf‖W 1,q(ΩR) ≤
C

|α|1+ε
t−1/q‖f‖q (3.4)

for t ≥ 2, f ∈ Lq
σ(Ω) and |α| ∈ (0,M ].

In view of (1.6) with n = 2 and r = ∞, one finds that the decay rate t−1/q

is reasonable. We note that this rate cannot be improved even though we use
(3.2)–(3.3) with θ = 1. On the other hand, if we used (3.2)–(3.3) with θ = 0,
the decay rate in (3.4) would be t−1/q log t.

4 Strategy

For the proof of Proposition 3.1 we need the spectral analysis. We always
consider estimates of (λ + L)−1Pf as well as e−tLPf in W 1,q(ΩR) under the
condition f ∈ Lq

[d](Ω). We have the Dunford integral representation formula of

the semigroup in terms of the resolvent (λ + L)−1. The spectrum of the Oseen
operator is contained in {λ ∈ C; 4α2Re λ + (Im λ)2 ≤ 0}, and thus it seems
to be impossible to take the same path of integration as in [3] for the Stokes
semigroup. What we need is to study the asymptotic behavior of ∂λ(λ+L)

−1Pf
as λ → 0 (and α → 0 as well), which ensures its summability near the origin.
This enables us to justify the representation formula (which was used in [14] as
well)

e−tLPf =
−1

2πit

∫ ∞

−∞

eiτt ∂τ (iτ + L)−1Pf dτ (4.1)

when we perform integration by parts and then move the path of integration
to the imaginary axis. When we derive faster decay than t−1, we have to study
further regularity of ∂λ(λ + L)−1Pf near λ = 0.

In order to carry out this strategy, we construct a parametrix of solutions
to the Oseen resolvent problem

{
λu −∆u− 2α∂1u+∇p = f, div u = 0 in Ω
u|∂Ω = 0

(4.2)
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where Re λ ≥ 0 (λ 6= 0). We fix a cut-off function ψ ∈ C∞(R2; [0, 1]) such that
ψ(x) = 1 for |x| ≤ R0 + 1 and ψ(x) = 0 for |x| ≥ R0 +2, and use the Bogovskii
operator B in the annulus {R0 + 1 < |x| < R0 + 2}, see [1], [2] and [9]. We
define {Aα

λ ,Π} by (4.9) the solution operator of

λu−∆u− 2α∂1u+∇p = f, div u = 0 in R2 (4.3)

and let {Mα
λ , N

α
λ } be that of

{
λu−∆u− 2α∂1u+∇p = f, div u = 0 in ΩR0+3

u|∂ΩR0+3 = 0
(4.4)

with the side condition

∫

R0+1<|x|<R0+2

p(x) dx = c0 (4.5)

for given c0 ∈ C. We set

{
v = Rα

λf := (1 − ψ)Aα
λf + ψMα

λ f +B [(Aα
λf −Mα

λ f) · ∇ψ]
σ = Qα

λf := (1− ψ)Πf + ψNα
λ f

(4.6)

where f is understood as its zero extension/restriction and the pressure Nα
λ f is

chosen in such a way that c0 =
∫
R0+1<|x|<R0+2(Πf)(x) dx in (4.4)–(4.5). Then

a pair {v, σ} should obey

{
λv −∆v − 2α∂1v +∇σ = f + Tα

λ f, div v = 0 in Ω
v|∂Ω = 0

(4.7)

and the operator Tα
λ is compact from Lq

[d](Ω) into itself provided d ≥ R0 + 2,

see (3.1). Since I + Tα
λ is injective by the uniqueness for (4.2), the Fredholm

alternative yields the existence of (1+Tα
λ )

−1 as a bounded operator, so that we
obtain a representation of the resolvent

(λ+ L)−1Pf = Rα
λ (1 + Tα

λ )
−1f. (4.8)

But the compactness argument above provides us little information about the
dependence of (λ + L)−1Pf on λ and α. Thus one needs reconstruction of
(1 + Tα

λ )
−1 especially near λ = 0. To this end, we have to have a precise look

at the resolvent Aα
λf in the whole plane R2, which is the dominant part of the

remaining term Tα
λ f when λ → 0 and α → 0. Here, the solution operator of

(4.3) is given by

u = Aα
λf = Eα

λ ∗ f, p = Πf =
x

2π|x|2 ∗ f (4.9)

where Eα
λ (x) is the fundamental solution that is analyzed in the next section.
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5 Fundamental solution

The fundamenatal solution of (4.3) is given by

Eα
λ (x) = F−1

[ |ξ|2I− ξ ⊗ ξ

(λ+ |ξ|2 − 2αiξ1)|ξ|2
]
(x)

=

∫ ∞

0

e−λt(G I+H)(x+ 2αte1, t) dt

(5.1)

where G(x, t) is the heat kernel, see (2.10), and

H(x, t) =

∫ ∞

t

∇2G(x, s) ds =

∫ ∞

t

e−|x|2/4s

4πs

(
x⊗ x

4s2
− I

2s

)
ds

=
−(x⊗ x)e−|x|2/4t

4πt|x|2 +
1

π|x|2
(
x⊗ x

|x|2 − I

2

) (
1− e−|x|2/4t

)
.

(5.2)

Note that G I+H is the fundamental solution of unsteady Oseen system. By a
lengthy calculation we obtain

Eα
λ (x) =

I

2π
e−αx1 K0

(√
λ+ α2 |x|

)

− I

4π

∫ 1

0

e−αx1s K0

(√
s(λ+ α2s) |x|

)
ds

+
x⊗ x

4π|x|

∫ 1

0

e−αx1s
√
s(λ+ α2s) K1

(√
s(λ+ α2s) |x|

)
ds

+
α(x⊗ e1 + e1 ⊗ x)

4π

∫ 1

0

se−αx1s K0

(√
s(λ+ α2s) |x|

)
ds

+
α2|x|e1 ⊗ e1

4π

∫ 1

0

s2e−αx1s

√
s(λ+ α2s)

K1

(√
s(λ+ α2s) |x|

)
ds

(5.3)

for Re λ ≥ 0 and α ∈ R, except for (λ, α) = (0, 0), where

K0(z) =
1

2

∫ ∞

0

exp

[−z
2

(
t+

1

t

)]
dt

t

K1(z) = −K ′
0(z) =

1

2

∫ ∞

0

exp

[−z
2

(
t+

1

t

)]
dt

t2

(5.4)

are modified Bessel functions of the second kind (order 0/order 1, respectively)
for z ∈ C+ = {Re λ > 0}. The representation (5.3) for the case λ = 0 was
derived by Guenther and Thomann [11]; in this case, another representation of
Eα

0 (x) without s-integral is also available, see for instance Okamura, Shibata
and Yamaguchi [17]. By making use of asymptotic expansion of the modified
Bessel functions ([17])

K0(z) = − log z + log 2− γ + (log z)O(z2)

K1(z) =
1

z
+
z

2

(
log z − log 2 + γ − 1

2

)
+ (log z)O(z3)

(5.5)
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as C+ ∋ z → 0, where γ = lim
m→∞

( m∑

k=1

1

k
− logm

)
is the Euler constant, one can

find the following structure of the fundamental solution:

Eα
λ (x) = E0

0(x) +
1

4π

[(
log

1

|α|

)
I+ J

]
+ Fα(x)

︸ ︷︷ ︸
=Eα

0 (x)

+Sα
λ (x) (5.6)

where

E0
0(x) =

1

4π

[(
log

1

|x|

)
I+

x⊗ x

|x|2
]

(5.7)

is the Stokes fundamental solution in R2,

I = (δjk)1≤j,k≤2 , J = (log 2− γ − 1) I+ (e1 ⊗ e1)

are constant matrices, and

sup
|x|≤R

|Fα(x)| = O(α log |α|) as α→ 0,

sup
|x|≤R

|Sα
λ (x)| ≤ ρ

( |λ|
α2

)
, |α| ∈ (0,M ], Re λ ≥ 0,

(5.8)

with some function ρ = ρM satisfying ρ(ε) = O(ε log ε) as ε → 0, where R > 0
and M > 0 are arbitralily fixed.

6 Sketch of Proof

We fix M > 0 and let |α| ∈ (0,M ]. We go back to the consideration of the
remaining term Tα

λ f in (4.7). By (5.6) one can write Aα
λf = Aα

0 f + Sα
λ ∗ f with

Aα
0 f = E0

0 ∗ f +
1

4π

[(
log

1

|α|

)
I+ J

]
Γf +Fα ∗ f, Γf =

∫

R2

f(y) dy (6.1)

Since we have the logarithmic singularity only in the degenerate part of Aα
0 ,

it is possible to show that ‖(1 + Tα
0 )

−1‖L(Lq

[d]
(Ω)) ≤ CM , where CM > 0 is

independent of |α| ∈ (0,M ], along the same idea as in [3]. Note that indeed
1+T 0

0 is not injective (unlike 3D case), but dimker(1+T 0
0 ) ≤ 2. We then regard

1 + Tα
λ as

1 + Tα
λ =

[
1 + (Tα

λ − Tα
0 )(1 + Tα

0 )
−1

]
(1 + Tα

0 ). (6.2)

By (5.8)2 there is a constant δ = δ(M) > 0 such that if |λ| ≤ δα2 (as well
as |α| ∈ (0,M ]), then ‖(Tα

λ − Tα
0 )(1 + Tα

0 )
−1‖L(Lq

[d]
(Ω)) ≤ 1

2 which yields a

reconstruction of (4.8) via

(1 + Tα
λ )

−1 = (1 + Tα
0 )

−1
[
1 + (Tα

λ − Tα
0 )(1 + Tα

0 )
−1

]−1

= (1 + Tα
0 )

−1
∞∑

k=0

{
−(Tα

λ − Tα
0 )(1 + Tα

0 )
−1

}k
.

(6.3)
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This combined with the relation

∂τ (iτ + L)−1Pf

= (∂τR
α
iτ )(1 + Tα

iτ )
−1Pf −Rα

iτ (1 + Tα
iτ )

−1(∂τT
α
iτ )(1 + Tα

iτ )
−1f

(6.4)

by use of

sup
|x|≤R

|∂λEα
λ (x)| ≤ C

(
1

|λ+ α2| +
1

α2

∣∣∣∣log
(
1 +

α2

λ

)∣∣∣∣ +
1

|α|

)
(6.5)

for Re λ ≥ 0, 0 < |λ| ≤ Λ and |α| ∈ (0,M ] implies

∫

|τ |≤δα2

‖∂τ (iτ + L)−1f‖W 1,q(ΩR) dτ ≤ C
(∣∣ log |α|

∣∣ + 1
)
. (6.6)

We take a cut-off function η ∈ C∞(R; [0, 1]) such that η(τ) = 1 for |τ | ≤ 1
and η(τ) = 0 for |τ | ≥ 2, and divide the integral of (4.1) into

−1

2πit

∫ ∞

−∞

eiτt η(τ)∂τ (iτ + L)−1Pf dτ (6.7)

and the other part which decays like t−2 by integration by parts once more. It
remains, however, to estimate the integral for δα2 ≤ |τ | ≤ 2 in which we are
forced to employ L2-theory:

‖∂τ (iτ + L)−1f‖W 1,q(ΩR) ≤ C‖∂τ (iτ + L)−1f‖H2(ΩR)

≤ C

(
1

|τ | +
α2

|τ |2
)3/2

‖f‖2
(6.8)

so that the only estimate I have obtained is

∫

δα2≤|τ |≤2

‖∂τ (iτ + L)−1f‖W 1,q(ΩR) dτ ≤ C

|α| (6.9)

which is somehow worse than (6.6).
Set g(τ) := η(τ)∂τ (iτ + L)−1Pf . For further decay of (6.7), we use

∥∥∥∥
∫ ∞

−∞

eiτtg(τ) dτ

∥∥∥∥
W 1,q(ΩR)

≤ C

∫ ∞

−∞

∥∥∥∥g
(
τ +

1

t

)
− g(τ)

∥∥∥∥
W 1,q(ΩR)

dτ (6.10)

for t ≥ 2, to which we apply the following estimate for |h| ≤ 1/2:

∫ ∞

−∞

‖g(τ + h)− g(τ)‖W 1,q(ΩR)dτ

≤C
[∣∣ log |α|

∣∣ + 1

α2
log

(
1 +

α2

2|h|

)
+

1

α2

{
log

(
1 +

α2

2|h|

)}2

+
1

|α|3

]
|h| ‖f‖q

9



References
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Decay and scattering of small solutions of power

NLS with a potential

Vladimir Georgiev

July 16, 2012

Abstract

The talk is based on the joint work [2] with Scipio Cuccagna and Nicola
Visciglia.

We consider

(i∂t +△V )u+ λ|u|p−1u = 0 for t ≥ 1, x ∈ R and u(1) = u0 (1)

with △V := △− V (x) and △ := ∂2
x and λ ∈ R\{0}. In this talk we focus

on exponents 3 < p < 5. V is a real valued Schwartz function and △V is
taken without eigenvalues.

It is well known that for 2 ≤ p < 5 the initial value problem in (1)
is globally well posed in H1(R). Our goal is to study the asymptotic
behavior of solutions with initial data u(1) = u0 of size ǫ in a suitable
Sobolev norm, with ǫ sufficiently small. It is natural to ask whether such
solutions are asymptotically free and satisfy

‖u(t)‖L∞

x ([1,∞)) ≤ C0t
−

1
2 ǫ, (2)

that is have the decay rate of the solution to the linear Schrödinger equa-
tion.

We recall some of the results for V = 0. For spatial dimension d,
McKean and Shatah [11] answered positively to our question for 1 + 2

d
<

p < 1 + 4
d
. The case p ≥ 1 + 4

d
and p < 1 + 4

d−1
for d ≥ 3 was answered

positively byW. Strauss [14]. W. Strauss [13] proved that the zero solution
is the only asymptotically free solution when 1 < p ≤ 2

d
for d ≥ 2, and

when 1 < p ≤ 2 for d = 1. This result was extended to the case 1 < p ≤ 3
and d = 1 by J. Barab [1], using an idea of R. Glassey [8]. The exponent
p = 1 + 2

d
is critical and particularly interesting. The existence and the

form of the scattering operator was obtained by Ozawa [12] for d = 1 and
by Ginibre and Ozawa [6] for d ≥ 2. The completeness of the scattering
operator and the decay estimate were obtained by Hayashi and Naumkin
[9]. Completeness of the scattering operator and decay estimate, not only
for small solutions, for d = 1 and λ < 0, where obtained by Deift and
Zhou [4, 5].

Our goal in the present paper is to extend the result of McKean and
Shatah [11] to the case V 6= 0 and d = 1, which to our knowledge is open.
For V we assume the following hypothesis, where we refer to [3] for the
definition of the transmission coefficient T (τ ).
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(H) The potential V is a real valued Schwartz function such that for the
spectrum we have σ(△V ) = (−∞, 0]. Furthermore, V is generic,
that is the transmission coefficient T (τ ) satisfies T (0) = 0.

We denote by Σs the Hilbert space defined as the closure of C∞

0 (R) func-
tions with respect to the norm

‖u‖2Σs
:= ‖u‖2Hs(R) + ‖ |x|su‖2L2(R).

Our main result is the following

Theorem 1. Assume that V satisfies (H), s > 1/2 and p > 3. Then there
exist constants ǫ0 > 0 and C0 > 0 such that for ǫ ∈ (0, ǫ0) and ‖u(1)‖Σs ≤
ǫ the solution to (1) satisfies the decay inequality (2). Furthermore there
exists u+ ∈ L2(R) such that

lim
t→+∞

‖u(t)− eit△u+‖L2(R) = 0. (3)

The hypothesis σ(△V ) = (−∞, 0] is necessary since otherwise for any
s > 1/2 there are periodic solutions u(t, x) = eiλtφλ(x) of arbitrarily small
Σs norm. The interesting case is for p ∈ (3, 5) since the case p ≥ 5 follows
from [7, 16]. The case V = 0 is due to [11].

If σ(△V ) = (−∞, 0], the existence of wave operators intertwining △V

and △ and of Strichartz and dispersive estimates for eit△V is well known,
see [7, 16, 17]. Such estimates are not sufficient to prove Theorem 1 even
in the case V = 0.

The argument in [11] is based on the introduction of homogeneous
Ḣk(t) norms, defined substituting the standard derivative ∂

∂xj
with op-

erators Jj(t). In [11] it is proved almost invariance of these norms and,
by a form of the Sobolev embedding theorem, the dispersion (2). Such
use of invariant norms goes back to the work on the wave equation by
Klainerman, see for example [10].

The development of a theory of invariant norms in the case of non
translation invariant equations such as (1) is an important technical prob-
lem. Here our main goal is to adapt the framework of [11] for d = 1 and
to introduce appropriate surrogates |JV (t)|s for the operators |J(t)|s.

To be more precise, let’s describe the definition of the perturbed gener-
ators for the perturbed Schrödinger equation. First we recall the definition
for unperturbed case

(i∂t +△)u = 0.

Recall that the fundamental solution is given by eit△(x, y) = e
i
(x−y)2

4t

(4πit)
d
2

for

t > 0.
Consider the Fourier transform F and its inverse:

Ff(x) = (2π)−
d
2

∫

Rd

eix·yf(y)dy, (4)

F−1f(x) = (2π)−
d
2

∫

Rd

e−ix·yf(y)dy.
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We introduce also the dilation operator D(t)ψ(x) = (2it)−
d
2 ψ(x

t
) and the

multiplier operator M(t)ψ(x) = e
ix2

4t ψ(x). Then we have the following
well known formula

eit△ =M(t)D(t)F−1M(t).

Let g(x) be a function and denote by g(q) the multiplier operator g(q)ψ(x) :=
g(x)ψ(x). We set pj := i∂xj

and p = (p1, ..., pd). More generally, set
g(p) := F−1g(q)F . The following identity is well-known:

eit△g(q)e−it△ = M(t)g(2tp)M(−t). (5)

for any g(x). With an abuse of notation we will denote the operator g(q)
by g(x). Notice that we have

[

i∂t +△, eit△g(x)e−it△
]

=

eit△ [−△, g(x)] e−it△ + eit△ [△, g(x)] e−it△ = 0,

so obviously the same commutation rule holds for the r.h.s. of (5). In
particular for g(x) = xj we get on the r.h.s. of (5) the operators Jj =

2tie
ix2

4t ∂xj
e−

ix2

4t = 2ti∂xj
+ xj and we have

[i∂t +△, Jj ] = 0.

We introduce for any s ≥ 0 the following two operators:

|J(t)|s :=M(t)(−t2△)
s
2M(−t) (6)

|JV (t)|s :=M(t)(−t2△V )
s
2M(−t). (7)

The operators |JV (t)|s are used to define homogeneous spaces Ḣs
V (t)

which are then shown to be almost invariant.
The argument is more complicated than in [11] because of the presence

of an additional commutator. But we can show that if △V is generic, in
the sense of Hypothesis (H), then the commutator can be treated by a
bootstrap argument.

Another complication is that the |JV (t)|s do not enjoy Leibnitz rule
type properties like |J(t)|s, which play a key role in [11]. Nonetheless, we
are able to treat |JV (t)|s by switching from |JV (t)|s to |J(t)|s, by using
the Leibnitz rule for |J(t)|s, and by going back to |JV (t)|s.

In the part of the argument on the Leibnitz rule, an essential role is
played by the observation that ‖ · ‖

Ḣ
s
V

(t) ≈ ‖ · ‖
Ḣ

s(t) with fixed constants

independent of t when 0 ≤ s < 1/2. The proof of this equivalence is based
on Paley-Littlewood decompositions associated to phase spaces both of
△ and △V . We are able to prove this equivalence when the transmission
coefficient T (τ ) is such that either T (0) = 0 (the generic case) or T (0) = 1.
Notice incidentally that the inclusion of this non generic case is natural,
since the fact that T (0) = 1 makes △V more similar to △ than the case
when T (0) = 0 (recall that T (0) = 1 for △).
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Control of blow-up set by spatial inhomogeneous
coefficient for a semilinear parabolic equation

Masahiko Shimojo (Hokkaido Univ.)，Jong-Shenq Guo (Tamkang Univ.）
Yung-Jen Lin Guo (National Taiwan Normal Univ.) and

Chang-Shou Lin (National Taiwan Univ.)

We study the blow-up phenomena for the following initial boundary value
problem: ⎧⎪⎨

⎪⎩
ut = Δu + q(x)up x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω̄,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

(1)

where Ω is bounded smooth domain, q is Hölder continuous in Ω̄, q(x) ≥ 0,
q(x) �≡ 0, p > 1 and u0 ≥ 0, u0 �≡ 0 is a smooth function with u0|∂Ω = 0. We
assume all zeros of q(x) are included in Ω. Our aim is to consider any zero point
of q(x) is a blow-up point or not.

It is known that for each initial datum u0 as above, (1) has a nonnegative
classical solution u for t ∈ [0, T ) for some maximal existence time T ∈ (0,∞]. If
T < ∞, then we have

lim sup
t→T

‖u(·, t)‖L∞(Ω) = ∞
and we say that the solution u blows up in finite time with the blow-up time T .
For a given solution u that blows up at t = T < ∞, a point a ∈ Ω̄ is called a
blow-up point if there exists a sequence {(xn, tn)} in QT := Ω × (0, T ) such that
xn → a, tn ↑ T and u(xn, tn) → ∞ as n → ∞. The set of all blow-up points is
called the blow-up set.

Our first theorem claims that any zero of q is not blow-up point if the solution
is sufficiently large ([2]).

Theorem . Assume that ut(x, 0) ≥ 0 for all x ∈ Ω. Then T < ∞ and u satisfies

‖u(x, t)‖L∞(Ω) ≤ K(T − t)−
1

p−1 for some K = K(p, q, Ω, T ) > 0. Moreover, any
zero point of q(x) is not a blow-up point.

For non blow-up at any zero of potential q(x), we construct supersolution that
does not blow-up at any zero point of q(x). The method can be applied to much
general q(x) and the proof is much simpler than that in [1] for quenching problem.
This argument was generalized to parabolic systems and a single equation with

nonlinear memory ([4]) as ut = Δu + q(x)

∫ t

0

up(x, s)ds.

In the following, let us consider a spatially inhomogeneous equation:

ut = Δu + |x|σup, x ∈ Ω, t > 0, (2)

where p > 1 and σ > 0. We assume the same boundary condition as (1).
For this initial boundary value problem, we also establish several conditions

that ensure the origin is not a blow-up point ([3]).



Theorem . Let Ω = BR, N ≥ 4 and σ > (p−1)(N −1)/2. We assume that u is
a radially symmetric solution of (2) that blows up in finite time T . Then x = 0
is not a blow-up point of u.

u(·, T )

u0

ut = Δu + up

u(·, T )

u0

ut = Δu + |x|σup (σ > 0)

These results imply that the zero points of inhomogeneous term can control
the blow-up point. Now our question is such points always can not be a blow-up
point or not ? The following surprising result contradicts our intuition, since the
reaction is freezed at the origin and it seems to be impossible that blow-up occurs
at the origin. Our strategy is to construct the (threshold) solution that blows up
at the zero point of |x|σ. For such solution diffusion and reaction antagonize and
the maximum point is attracting to the origin ([2]).

Theorem . Let N = 3, p > 5 + 2σ and Ω = BR := {x ∈ R
N , |x| ≤ R}. Let uμ

be the radially symmetric solution of (2) with initial value μg, where μ > 0 and
g is a bounded positive function. Then there exists μ∗ such that the solution u∗

of (2) with the initial value u0 = μ∗g exists globally as the minimal L1-solution
but u∗ blows up in finite time and the origin is a blow-up point.
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for any t > 0 and α ∈ Zn
+ with |α| ≥ 2. We study the following linear dissipative equation with

anomalous diffusion:

(1.3)
{

∂tu + (−∆)θ/2u + a(t, x)u = 0, t > 0, x ∈ Rn,

u(0, x) = u0(x), x ∈ Rn,

where n ∈ N, 1 < θ ≤ 2. When θ = 2, this and (1.1) are equivalent. We assume the following
assumption for the coefficient:

(1.4) ∥xαa(t)∥p ≤ C(1 + t)−µ+
|α|
θ

+ n
θp

for any α ∈ Zn
+ with |α| < ν, n/(ν − |α|) < p ≤ ∞ and t > 0, where C is a positive constant,

and µ > 1 + 1/θ and ν > 0 are some parameters. For example, if a(t, x) satisfies the inequality

|a(t, x)| ≤ C(1 + t)−µ
〈
(1 + t)−1/θx

〉−ν

for some C > 0 and any (t, x) ∈ (0,∞) × Rn, then the condition (1.4) is satisfied. Here we
have used the notation 〈x〉 :=

√
1 + |x|2. We assume that the solution to (1.3) is well-posed in

Lp(Rn) with some 1 ≤ p ≤ ∞ and satisfies

(1.5) ∥xαu(t)∥p ≤ C(1 + t)−
n
θ
(1− 1

p
)+

|α|
θ

for any t > 0, α ∈ Zn
+ with |α| < n + θ and n/(n + θ − |α|) < p ≤ ∞. Indeed, for some

problems, we obtain this inequality. We should remark that the anomalous diffusion causes
∥xαu(t)∥1 = +∞ when |α| ≥ 2. Namely a moment of the solution with high-order diverges to
infinity. We consider the large-time behavior of the solution to (1.3). Especially we give the
estimate on the difference between the solution and its asymptotic expansion as t → ∞. For
(1.1) (namely, for (1.3) with θ = 2), Ishige, Ishiwata and Kawakami [6] derived the large-time
behavior of the solution completely. In their asymptotic expansion, the coefficients contain the
moments of the solution. Unfortunately we cannot extend this idea to our problem since the
moments of the solution cannot be defined. We provide the other way to reach our goal. For
some (l, β) ∈ Z+ × Zn

+, we introduce the following notation:

Ul,β(t, x) :=
∂l

t∇βGθ(1 + t, x)
l!β!

(∫
Rn

(−1)l(−y)βu0(y)dy

−
∫ t

0

∫
Rn

(−1 − s)l(−y)β(au)(s, y)dyds

)
,

(1.6)

where Gθ(t) is defined by (1.2). Then we see the following proposition.

Proposition 1.2. Let n ∈ N, 1 < θ ≤ 2, µ > 1+1/θ and ν > 0. Let (1.4) and (1.5) be satisfied.
Assume that u0 ∈ L1

N (Rn) ∩ L∞(Rn) for N := max{m ∈ Z+ | m < (µ − 1)θ, ν + θ} and u(t) is
the solution to (1.3), where

(1.7) L1
N (Rn) :=

{
ϕ ∈ L1(Rn)

∣∣ |x|Nϕ ∈ L1(Rn)
}

.

Let

(1.8) Λ̄N :=
{
(l, β) ∈ Z+ × Zn

+

∣∣ θl + |β| ≤ N
}
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and the functions {Ul,β(t)}(l,β)∈Λ̄N
be given by (1.6). Then the following estimate holds:∥∥∥∥u(t) −

∑
(l,β)∈Λ̄N

Ul,β(t)
∥∥∥∥

p

= o
(
t
−n

θ
(1− 1

p
)−N

θ

)
as t → ∞

for 1 ≤ p ≤ ∞.

When θ = 2, the asymptotic expansion of solution of this type was firstly observed by Es-
cobedo and Zuazua. In [4], they derived the asymptotic expansion of solutions to the heat-
convection equation. For the solution of the Navier-Stokes equation, the asymptotic expansion
was provided by Carpio [3], and Fujigaki and Miyakawa [5]. The large-time behavior of the so-
lution to the Keller-Segel equation in Lp(Rn) was considered by Nagai, Syukuinn and Umesako
[9], Kato [7], and Nagai and Yamada [10].

Since the conditions (1.4), (1.5) and N < min{(µ − 1)θ, ν + θ} are assumed, the coefficient∫ ∞
0

∫
Rn(−1 − s)l(−y)β(au)(s, y)dyds is uniformly integrable when (l, β) ∈ Λ̄N holds. Hence,

under this assumption, the asymptotic expansion (1.6) is well-defined. However, when N ≥
(µ − 1)θ or N ≥ ν + θ is satisfied, some coefficients in the asymptotic expansion diverge to
infinity. Thus, in this case, we cannot define the higher-order asymptotic expansion by the form
as (1.6). Before proceeding next step, we study the decay-rates of the solution as |x| → ∞.
Then we obtain the following proposition.

Proposition 1.3. Let n ∈ N, 1 < θ ≤ 2, µ > 1+1/θ and ν > 0. Let (1.4) and (1.5) be satisfied.
Assume that u0 ∈ L1

N (Rn) ∩ L∞(Rn) for N := max{m ∈ Z+ | m < (µ − 1)θ, ν + θ} and u(t) is
the solution to (1.3), where L1

N (Rn) is defined by (1.7). Let

(1.9) ΛN :=
{
(l, β) ∈ Z+ × Zn

+

∣∣ θl + |β| < N
}

and

(1.10) UΛN
(t, x) :=

∑
(l,β)∈ΛN

Ul,β(t, x),

where the functions {Ul,β(t)}(l,β)∈ΛN
be defined by (1.6). Then u(t) − UΛN

(t) ∈ L1
N (Rn) holds

for any t > 0. Moreover there exists a positive constant C such that

∥xα (u(t) − UΛN
(t))∥1 ≤ C(1 + t)−

N−|α|
θ

for any t > 0 and α ∈ Zn
+ with |α| ≤ N .

We should remark that, for any α ∈ Zn
+ with |α| ≥ 2, the function UΛN

(t) in Proposition
1.3 satisfies ∥xαUΛN

(t)∥1 = ∞. Thus this function gives the approximation of the solution as
|x| → ∞. Proposition 1.2 and 1.3 state that the asymptotic expansion of the solution as t → ∞
and the approximation of the solution as |x| → ∞ are given by the same form. We derive the
higher-order asymptotic expansion of the solution by employing this proposition.
Notation. Throughout this manuscript, we use the following notation. For any x = (x1, . . . , xn)
and y = (y1, . . . , yn) ∈ Rn, we denote x · y :=

∑n
j=1 xjyj , |x|2 := x · x and 〈x〉 :=

√
1 + |x|2. For

1 ≤ p ≤ ∞ and θ > 0, Lp(Rn) denotes the Lebesgue spaces and W θ,p(Rn) denotes the Sobolev
spaces. The norm of Lp(Rn) is represented by ∥ · ∥p. For s > 0, we define the weighted L1(Rn)
space by L1

s(Rn) := {ϕ ∈ L1(Rn) | ∥ϕ∥L1
s

:=
∫

Rn〈x〉s|ϕ(x)|dx < ∞}. For f = f(x) and g = g(x),
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we denote the convolution by f ∗ g(x) :=
∫

Rn f(x− y)g(y)dy. The gamma function Γ = Γ(p) for
p > 0 is provided by Γ(p) :=

∫ ∞
0 e−ttp−1dt. Varias constants are simply denoted by C.

2. Preliminaries

Before stating our results, we study some basic properties of Gθ(t) := F−1[e−t|ξ|θ ].

Lemma 2.1. For any l ∈ Z+ and α ∈ Zn
+, there exists a positive constant C > 0 such that∣∣∣∂l

t∇αGθ(t, x)
∣∣∣ ≤ Ct−

n
θ
−l− |α|

θ

〈
t−1/θx

〉−n−θ−θl−|α|

for any (t, x) ∈ (0,∞) × Rn.

Proof. This lemma is proved by employing [11, Theorem 3.1.]. Here we omit the proof. ¤

By applying Taylor’s formula, Lemma 2.1 and Hausdorf-Young’s inequality, we obtain the
following lemma.

Lemma 2.2. Let N ∈ Z+ and u0 ∈ L1
N (Rn). Then the following estimate holds for any

1 ≤ p ≤ ∞:∥∥∥∥Gθ(t) ∗ u0 −
∑

(l,β)∈Λ̄N

∂l
t∇βGθ(1 + t)

l!β!

∫
Rn

(−1)l(−y)βu0(y)dy

∥∥∥∥
p

= o
(
t
−n

θ
(1− 1

p
)−N

θ

)
as t → ∞, where Λ̄N is defined by (1.8).

When we study the decay of Gθ(t) ∗ u0(x) as |x| → ∞, we obtain the approximation of this
by the same form as in Lemma 2.2.

Lemma 2.3. Let N ∈ Z+ and u0 ∈ L1
N (Rn). Then the following inequality holds for any t > 0

and α ∈ Zn
+ with |α| ≤ N :∥∥∥∥xα

(
Gθ(t) ∗ u0 −

∑
(l,β)∈ΛN

∂l
t∇βGθ(1 + t)

l!β!

∫
Rn

(−1)l(−y)βu0(y)dy

)∥∥∥∥
1

≤C(1 + t)−
N−|α|

θ ,

where C is a positive constant and ΛN is defined by (1.9).

3. Main Results

In order to derive the asymptotic expansion of the solution, we introduce the following corre-
sponding integral equation:

(3.1) u(t) = Gθ(t) ∗ u0 −
∫ t

0
Gθ(t − s) ∗ (au)(s)ds.

The solution to (3.1) is called the mild solution of (1.3). Generally speaking a mild solution
solves an original Cauchy problem if it has sufficiently high regularity. Hereafter we consider the
mild solution for deriving the asymptotic expansion of the solution of (1.3). For N = min{m ∈
Z+ | m < (µ − 1)θ, ν + θ}, the nonlinear term on the right hand side of (3.1) is split as∫ t

0
Gθ(t − s) ∗ (au)(s)ds =

∑
(l,β)∈ΛN

Jl,β(t) +
∫ t

0
Gθ(t − s) ∗ (a(u − UΛN

)) (s)ds,
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where

(3.2) Jl,β(t, x) :=
∫ t

0
Gθ(t − s) ∗ (aUl,β)(s)ds

for (l, β) ∈ ΛN and Ul,β(t) is defined by (1.6). We introduce the function Ũl,β = Ũl,β(t, x) by

Ũl,β(t, x) :=
∂l

t∇βGθ(1 + t, x)
l!β!

(∫
Rn

(−1)l(−y)βu0(y)dy

−
∫ t

0

∫
Rn

(−1 − s)l(−y)β (a(u − UΛN
)) (s, y)dyds

)(3.3)

for some (l, β) ∈ Z+ × Zn
+, where UΛN

(t) is defined by (1.10). By employing the assumption
(1.4) and Proposition 1.3, we see that Ũl,β(t) is well-defined when (l, β) ∈ Λ̄2N holds, where Λ̄2N

is defined as (1.8). Then we give our main result in the following theorems.

Theorem 3.1. Let n ∈ N, 1 < θ ≤ 2, µ > 1 + 1/θ and ν > 0. Let (1.4) and (1.5) be satisfied.
Assume that u0 ∈ L1

2N (Rn) ∩ L∞(Rn) for N := max{m ∈ Z+ | m < (µ − 1)θ, ν + θ} and u(t)
is the solution to (1.3), where L1

2N (Rn) is defined as (1.7). Let ΛN and Λ̄2N be defined as (1.8)
and (1.9), and the functions {Jk,α(t)}(k,α)∈ΛN

and {Ũl,β(t)}(l,β)∈Λ̄2N
be given by (3.2) and (3.3).

Then the following estimate holds:∥∥∥∥u(t) −
∑

(k,α)∈ΛN

Jk,α(t) −
∑

(l,β)∈Λ̄2N

Ũl,β(t)
∥∥∥∥

p

= o
(
t
−n

θ
(1− 1

p
)− 2N

θ

)
as t → ∞

for 1 ≤ p ≤ ∞.

Theorem 3.2. Let n ∈ N, 1 < θ ≤ 2, µ > 1 + 1/θ and ν > 0. Let (1.4) and (1.5) be satisfied.
Assume that u0 ∈ L1

2N (Rn) ∩ L∞(Rn) for N := max{m ∈ Z+ | m < (µ − 1)θ, ν + θ} and u(t)
is the solution to (1.3), where L1

2N (Rn) is defined as (1.7). Let ΛN and Λ2N be defined as (1.9)
and the functions {Jk,α(t)}(k,α)∈ΛN

and {Ũl,β(t)}(l,β)∈Λ2N
be given by (3.2) and (3.3). Then

u(t) −
∑

(k,α)∈ΛN

Jk,α(t) −
∑

(l,β)∈Λ2N

Ũl,β(t) ∈ L1
2N (Rn)

holds for any t > 0. Moreover there exists a positive constant C such that:∥∥∥∥xα

(
u(t) −

∑
(k,α)∈ΛN

Jk,α(t) −
∑

(l,β)∈Λ2N

Ũl,β(t)
)∥∥∥∥

1

≤ C(1 + t)−
2N−|α|

θ

for any t > 0 and α ∈ Zn
+ with |α| ≤ 2N .

For N := max{m ∈ Z+ | m < (µ − 1)θ, ν + θ}, Proposition 1.2 and 1.3 give the Nth-order
asymptotic expansion of the solution. Theorem 3.1 and 3.2 provide the 2Nth-order asymptotic
expansion. We prove those theorems by employing Proposition 1.2 and 1.3. Similarly, by
applying Theorem 3.1 and 3.2, we obtain a 3Nth-order asymptotic expansion. By repeating
this procedure, we can derive an mNth-order asymptotic expansion for arbitrary large m ∈ Z+.
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