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1. Introduction

Burton, Cabrera and Frank [BCF51] proposed a theory of crystal growth with aid of screw
dislocations. They pointed out that screw dislocations supply spiral steps to a crystal surface
when the screw dislocations appear on the surface. Steps evolve catching adatoms as they climb
a spiral staircase, and thus the surface evolves. Burton et al. calculated the step velocity with
Gibbs-Thomson effect, and derived an eikonal-curvature flow of the form

V = v∞(1 − ρcκ) (1)

by regarding the evolution of steps as evolution of curves on the plane, where v∞ is the velocity
of straight line steps, ρc is the critical radius reflecting the Gibbs-Thomson effect, V is the
normal velocity of the curve which denotes the location of steps, and κ is the curvature of the
curve with opposite direction of V . Note that we shall use the words ‘step’, ‘curve’, and ‘spiral’
interchangeably because of the above background. One can find a complex spiral patterns on
the growing crystal surface, which is caused by the evolution of spiral steps and collision with
each other. Several models for this phenomena are proposed by [KP98], [Kob10] with phase
field models, and by [Sme00] and [Oht03] with level set methods.

In this talk we consider the evolution of spiral curves by an eikonal-curvature flow with the
level set formulation by [Oht03], and investigate behavior of spirals with mathematical results
of the formulation. In particular, two characteristic problems are considered; one is behavior
of a bunch of steps, which corresponds to variety of heights of the steps. In this problem one
can find the crucial difference between phase field models and our formulations. The other is on
the stationary solutions caused by an ‘inactive pair’, which corresponds to the stationary curve
under an eikonal-curvature flow equation. Formally, the circle whose radius is ρc does not evolve
under (1), and it is unstable. In this talk we shall find stable stationary curves like as the above.

Results on §2.2 are partly joint work with Shun’ichi Goto and Maki Nakagawa, and those
on §2.3 and §3 are joint work with Yen-Hsi Richard Tsai and Yoshikazu Giga.

2. Formulation and basic properties

We here introduce a level set formulation with a single auxiliary function for evolving spirals
by an eikonal-curvature flow equation. Its crucial difficulty lies in the fact that a spiral curve
generally does not divide a domain into two subdomains so that the usual level set formulation
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{x; u(t, x) = 0} does not work well. To overcome this difficulty, we combine a level set method
and a sheet structure function due to Kobayashi [Kob10] or Karma and Plapp [KP98] in their
phase field models.

2.1. Level set formulation for evolving spirals

Let Ω ⊂ R2 be a bounded domain with smooth boundary. We assume that there exist N(≥ 1)
spiral centers denoted by a1, . . . , aN ∈ Ω, and each center may have multiple spirals. In this talk
we also regard an open neighborhood Uj of aj as a j-th center of spirals interchangeably with
aj . Set W = Ω \ (

∪N
j=1 U j), and we here consider evolving spirals Γt at time t ≥ 0 on W having

the direction n of the evolution, where n : Γt → S1 is a continuous unit normal vector field of
Γt. The evolution equation is the rescaled equation of (1) on time of the form

V = C − κ on Γt (2)

with a constant C, and also impose that the end points of Γt always stay on ∂W with the
orthogonality condition

Γt ⊥ ∂W. (3)

For multiplicity of spirals let mj ∈ Z \ {0} be a constant denoting the number and rotational
orientation of spirals associated with aj : |mj |-spirals go around aj with anti-clockwise (resp.
clockwise) rotation if mj ≥ 0 (resp. mj < 0) provided that spirals have positive velocity in the
direction of n. We shall discuss in detail how to determine mj from physical situation in §2.3.

In [Oht03] the author propose a level set formulation for spirals Γt for t ≥ 0 as

Γt = {x ∈ W ; u(t, x) − θ(x) ≡ 0 mod 2πZ}, n = − ∇(u − θ)
|∇(u − θ)|

(4)

with a sheet structure function

θ(x) =
N∑

j=1

mj arg(x − aj).

The function θ is introduced by Kobayashi [Kob10] in his phase field model. Karma and Plapp
[KP98] also introduce θ(x) = arg x for a single spiral, i.e., for the case N = 1, a1 = 0 and m1 = 1.
The function θ denotes helical layer structure of atoms in a crystal with screw dislocations. From
the theory of dislocation and linear elasticity the surface height h(t, x) satisfies

∆h = −h0divδΓtn,

where h0 is a unit height of steps (see [HL68]). One can find h = (h0/2π)θ whose discontinuity
is only on Γt satisfies the above from straightforward calculation.

Our formulation is regarded interior and exterior of the crystal as the place where z < h(t, x)
and z > h(t, x), respectively, provided that ‘z = (h0/2π)

∑N
j=1 mj arg(x − aj)’. To describe the

above exactly we now introduce the covering space X as in [Oht03] of the form

X := {(x, ξ) ∈ W × RN ;
x − aj

|x − aj |
= (cos ξj , sin ξj) for j = 1, . . . , N},
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where ξi is such that ξ = (ξ1, . . . , ξN ). Then, the interior Ĩt or the exterior Õt and thus the steps
Γ̃t at time t ≥ 0 is described by

Ĩt = {(x, ξ) ∈ X; u(t, x) −
N∑

j=1

mjξj > 0}, Õt = {(x, ξ) ∈ X; u(t, x) −
N∑

j=1

mjξj < 0},

Γ̃t = {(x, ξ) ∈ X; u(t, x) −
N∑

j=1

mjξj = 0}

with an auxiliary function u : [0,∞) × W → R. Then we obtain (4) from this formulation and
inequalities describing the interior and exterior. The above formulae play very important role
in mathematical analysis, in particular, when we investigate behavior of spirals.

Naturally the sheet structure function should be a multi-valued function in our formulation,
but locally our formulation is same as the usual level set of u − θ. Then from straightforward
calculation in the usual level set method we derive

V =
ut

|∇(u − θ)|
, κ = −div

∇(u − θ)
|∇(u − θ)|

,

and thus we obtain the level set equation of the form

ut − |∇(u − θ)|
{

div
∇(u − θ)
|∇(u − θ)|

+ C

}
= 0 in (0, T ) × W, (5)

〈~ν,∇(u − θ)〉 = 0 on (0, T ) × ∂W (6)

from (2)–(3), where ~ν is the outer unit normal vector field of ∂W , and 〈·, ·〉 is the usual inner
product in R2 (see [Gig06] for detail).

2.2. Basic properties

The equation (5)–(6) is represented by

ut + F (∇(u − θ),∇2(u − θ)) = 0 in (0, T ) × W,

B(x,∇(u − θ)) = 0 on (0, T ) × ∂W

with F : (R2 \ {0}) × S2 → R, B : ∂W × R → R and functions F̃ and B̃ of the form

F (p, x) = −trace
{(

I − p ⊗ p

|p|2

)
X

}
− C|p|,

B(x, p) = 〈~ν, p〉,

where S2 is the space of 2 × 2 real symmetric matrices.
Note that F is degenerate elliptic, and then we consider solutions of (4)–(6) in usual viscosity

solution sense (see [CGG91], [CIL92] or [Gig06] for detail). The author obtained the comparison
principle, and the existence and uniqueness of viscosity solutions globally in time for a continuous
initial data.
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Theorem 1 ([Oht03]). Let u, v : [0, T )×W → R be a viscosity sub- and supersolution of (5)–(6)
on (0, T ) × W . If u∗ ≤ v∗ on {0} × W , then u∗ ≤ v∗ on (0, T ) × W , where u∗ (resp. v∗) is an
upper (resp. lower) semicontinuous envelope of u (resp. v) of the form

u∗(t, x) = lim
r→0

sup{u(s, y); |(t, x) − (s, y)| < r}

(resp. v∗(t, x) = lim
r→0

inf{v(s, y); |(t, x) − (s, y)| < r}).

Theorem 2 ([Oht03]). For u0 ∈ C(W ) there exists a viscosity solution u ∈ C([0,∞) × W ) on
(0,∞) × W with u|t=0 = u0.

In the above analysis, in particular on the comparison, we attempt to consider w = u − θ and
apply the results by [GS93] and [Sat94] directly, but it does not work well since θ is a multi-
valued function. To overcome this difficulty we estimate ũ∗ − ṽ∗ in [0, T )×X instead of u∗ − v∗,
where

ũ(t, x, ξ) := u(t, x) −
N∑

j=1

mjξj , (7)

and ṽ is similar as the above. Note that ũ∗(t, x, ξ) = u∗(t, x) −
∑N

j=1 mjξj and ṽ∗(t, x, ξ) =
v∗(t, x) −

∑N
j=1 mjξj . Then, we derive the above results by revising the proofs in [GS93] or

[Sat94] with ũ and ṽ instead of u − θ and v − θ, respectively.

2.3. Properties on the presented level set method

To describe an evolution of spirals we execute the followings;

(i) From given Γ0 and n, we construct u0 ∈ C(W ) and θ(x) =
∑N

j=1 mj arg(x− aj) satisfying

Γ0 = {x ∈ W ; u0(x) − θ(x) ≡ 0 mod 2πZ}. (8)

(ii) Solve (5)–(6) with an initial data u|t=0 = u0.

(iii) Draw Γt defined by (4) (and construct the height function h(t, x) from u if necessary).

It remains two problems to complete the above.

(Q1) (Construction of initial configuration) How to construct u0 ∈ C(W ) and determine
mj from given Γ0?

(Q2) (Uniqueness of level sets) Is Γt uniquely determined from Γ0?

Uniqueness of level sets is come from the fact that u0 ∈ C(W ) satisfying (8) is not unique for
given Γ0. However, Chen, Giga and Goto [CGG91], or Evans and Spruck [ES91] obtained the
uniqueness of level sets for geometric evolution equation. Although our equation is not geometric
for u, Goto, Nakagawa and the author also derived the uniqueness result with revision of the
proof of [CGG91] since our equation presented is geometric for ‘u − θ’.
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Theorem 3 ([GNO08]). Let u, v : [0, T ) × W → R be a viscosity sub- and supersolution of
(5)–(6) in (0, T ) × W . Assume that

{(x, ξ) ∈ X; ũ∗(0, x, ξ) > 0} ⊂ {(x, ξ) ∈ X; ṽ∗(0, x, ξ) > 0}
(resp. {(x, ξ) ∈ X; ũ∗(0, x, ξ) < 0} ⊃ {(x, ξ) ∈ X; ṽ∗(0, x, ξ) < 0}),

where ũ∗(t, x, ξ) = u∗(t, x) −
∑N

j=1 mjξj and ṽ∗(t, x, ξ) = v∗(t, x) −
∑N

j=1 mjξj. Then,

{(x, ξ) ∈ X; ũ∗(t, x, ξ) > 0} ⊂ {(x, ξ) ∈ X; ṽ∗(t, x, ξ) > 0}
(resp. {(x, ξ) ∈ X; ũ∗(t, x, ξ) < 0} ⊃ {(x, ξ) ∈ X; ṽ∗(t, x, ξ) < 0}),

for t ∈ (0, T ).

The result in [GNO08] is obtained for continuous solutions u and v. Fortunately, their result is
extended to our statement with a little revision for semicontinuous solutions.

The basic strategy of the proof of Theorem 3 is based on [CGG91], i.e., modify v to w =
G(v∗−θ)+θ with lower semicontinous and nondecreasing function G to enjoy Theorem 1 between
u and w with {(x, ξ) ∈ X; ṽ∗(t, x, ξ) > 0} ⊃ {(x, ξ) ∈ X; w̃(t, x, ξ) > 0}. The function G is
defined similarly as in [CGG91] with a little revision for our problem. Although w includes the
multi-valued function θ, however we also obtain G(s + 2π) = G(s) + 2π for sufficiently large s
with the revision to our problem, and thus w is well-defined in some sense.

For the problem of initial configuration Goto, Nakagawa and the author [GNO08] proved the
existence of mj and u0 ∈ C(W ) for suitable Γ0, and clarify class of Γ0.

It is convenient for the initial configuration to classify spirals as in [GNO08] into two kind
of spirals depending on the feature whether or not it touches ∂Ω. In the following argument let
Γ0 := {P (s); s ∈ [0, `]} be smooth enough, and s be an arclength parameter.

Definition 4. (i) For a given a ∈ Ω let U ⊂⊂ Ω be its neighborhood, and set W = Ω \ U .
We say Γ0 is a simple spiral on W associated with a if P (s) satisfies

(S1) P (s) is a simple arc and |Ṗ (s)| = |(dP/ds)(s)| 6= 0 for s ∈ [0, `],

(S2) P (0) ∈ ∂U , P (`) ∈ ∂Ω and P (s) ∈ W for s ∈ (0, `).

(ii) For a given a1, a2 ∈ Ω let Ui ⊂⊂ Ω be a neighborhood of ai for i = 1, 2, and set W =
Ω \ (U1 ∪U2). Assume that U1 ∩U2 = ∅. We say Γ0 is a connecting spiral on W between
a1 and a2 if P (s) satisfies (S1) and

(S2)’ P (0) ∈ ∂U1, P (`) ∈ ∂U2 and P (s) ∈ W for s ∈ (0, `).

In the previous section we pointed out that mj ∈ Z \ {0} is a number of rotational orientation
for spirals associated with aj . It is defined as follows.

Definition 5. Let Γ0 be associated with a center a at s = 0. We say Γ0 is anti-clockwise (resp.
clockwise) rotational orientation (with respect to a) if

n(P (s)) =
(

0 −1
1 0

)
Ṗ (s)

(
resp. n(P (s)) =

(
0 1
−1 0

)
Ṗ (s)

)
.
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The signed number mj ∈ Z \ {0} of spirals associated with aj is defined by

mj = m+
j − m−

j ,

where m+
j ,m−

j ∈ N are numbers of anti-clockwise and clockwise rotational orientations of spirals
associated with aj , respectively.

Then, Goto, Nakagawa and the author obtained the existence of a continuous initial data for a
given suitable Γ0.

Theorem 6 ([GNO08]). Let Γ0 be a union of single and connecting spirals with a continuous
unit normal vector field n on Γt. Then, there exists mj ∈ Z \ {0} and u0 ∈ C(W ) satisfying (8).

It is obtained from the existence of a branch of θ whose discontinuity is only on Γ0.

Lemma 7 ([GNO08]). Under the same hypothesis in Theorem 6, there exists θΓ0 : W \ Γ0 → R
which is a smooth branch of θ(x) =

∑N
j=1 mj arg(x − aj).

Let us consider a tubular neighborhood of Γ0 of the form

Γδ
0 := {x ∈ W ; inf

y∈Γ0

|x − y| < δ}.

Then, the signed distance function from Γ0 is well-defined in Γδ
0, and thus we construct u0 with

θΓ0 on W \ Γδ
0, and a linear interpolation between θΓ0 and θΓ0 + 2π using the signed distance

function on Γδ
0.

However, the above way, in particular the construction of θΓ0 and a tubular neighborhood of
Γ0 are impractical. For practicability we now introduce an additive way from initial data with
less centers and multiplicity of spirals. Let Γ0,1 and Γ0,2 be a part of Γ0 satisfying Γ0,1∩Γ0,2 = ∅
and Γ0,1 ∪ Γ0,2 = Γ0, and they are described by

Γ0,i = {x ∈ W ; ui(x) − θi(x) ≡ 0 mod 2πZ},

with auxiliary functions ui ∈ C(W ) and θi(x) =
∑Ni

k=1 mi,k arg(x−ai,k) for i = 1, 2. To construct
u0 ∈ C(W ) describing Γ0 we first modify ui as

vi(x) = Θi(x) + 2πki(x) + πH1(λi(ui − (Θi(x) + 2πki(x))))

with suitable constants λi > 1/π determined later, where Θi(x) =
∑Ni

k=1 mi,kΘi,k(x), Θi,k : W →
[0, 2π) is a principal value of arg(x − ai,k), ki : W → Z is a function satisfying

−π ≤ ui(x) − (Θi(x) + 2πki(x)) < π for x ∈ W

for i = 1, 2, and H1 is a function defined as

H1(σ) =


−1 if σ < −1,
σ if |σ| ≤ 1,
1 if σ > 1.
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The coefficients λi for i = 1, 2 is chosen such that

2∩
i=1

{x ∈ W ; |vi(x) − (Θi(x) + 2πki(x))| < π} = ∅.

Note that vi still describes Γ0,i as (4) for i = 1, 2, and vi −Θi(x) ≡ π mod 2πZ on Γ0,j if i 6= j.
Thus we set

u0(x) := v1(x) + v2(x) + π,

then we have obtained a desired function describing Γ0 by (4). Note that simple and connecting
straight lines are given by constant functions as follows;

{ai + r(cos α, sin α) ∈ W ; r > 0} = {x ∈ W ; α − arg(x − ai) ≡ 0 mod 2πZ},
{σai + (1 − σ)aj ∈ W ; σ ∈ (0, 1)}

= {x ∈ W ; π − (arg(x − ai) − arg(x − aj)) ≡ 0 mod 2πZ}.

Here we have assumed that each spirals are anti-clockwise rotational orientations with respect
to ai. From the above formulae and additive way we obtain u0 ∈ C(W ) for Γ0 which is a union
of straight lines.

3. Behavior of spirals from phenomena

Our level set formulation, in particular the results of comparison in Theorem 1 and Theorem
3 enables us to study behavior of spirals. As their applications we investigate two kinds of
behavior of spirals in this talk, one is related to heights of steps, and the other is on stationary
solutions.

3.1. Stability of bunched steps

There is a difference on height of steps between the theory and physical experiments. Although
we consider evolution of unit step (whose height is the diameter of an atom) in the theory, we
also observe steps whose height is O(10) or O(100) by number of atoms in experiments. For
simulations describing more exact situations the height of steps should be implied in formulations
of spirals.

One of simple way to express the multiple height of steps is considering evolution of bunched
steps. From this view point, it is important to investigate the stability of a bunch of steps.

For this problem we assume that there exists only one center at the origin, and W = BR(0)\
Bρ(0), where Bρ(a) is an open disc whose center is a and radius is ρ. Assume that there
exist m(≥ 1) evolving spirals with anti-clockwise rotational orientations. This configuration is
described by

ut − |∇(u − mθ0)|
{

div
∇(u − mθ0)
|∇(u − mθ0)|

+ C

}
= 0 in (0, T ) × W, (9)

〈~ν,∇(u − mθ0)〉 = 0 on (0, T ) × ∂W, (10)

where θ0(x) = arg(x).
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Ogiwara and Nakamura [ON03] obtained a negative result with a phase field model by
Kobayashi [Kob10] and a same configuration of the domain. They proved the existence of a so-
lution describing rotating m spirals with 1/m-times rotational symmetric pattern. In particular,
any solutions converges to the above rotating spirals with a rotation if necessary.

However, we obtain the following stability results on a bunch of steps in our formulation.

Theorem 8. Let u be a solution of (9)–(10) in (0,∞) × W . Assume that there exists ζ0 ∈
C([ρ,R]) and α > 0 such that, for j = 0, 1, . . . , m − 1, there exists kj ∈ Z such that

{(x, ξ) ∈ X; u(0, x) − mξ = 2πj} ⊂ {(x, ξ) ∈ X; |ξ − (ζ0(|x|) + 2πkj)| < α}. (11)

Then, there exists ζ ∈ C([0,∞) × [ρ,R]) such that w(t, x) = ζ(t, |x|) is a viscosity solution of
(9)–(10) with m = 1 satisfying w(0, x) = ζ0(|x|), and

{(x, ξ) ∈ X; u(t, x) − mξ = 2πj} ⊂ {(x, ξ) ∈ X; |ξ − (ζ(t, |x|) + 2πkj)| < α}
for t > 0 and j = 0, 1, . . . , m − 1.

(12)

Note that Γt,j := {x ∈ W ; u(t, x) − mξ = 2πj} denotes one of continuous spiral curves in Γt.
Thus (11) means that all curves in Γ0 is between C±α

0 of the form

C±α
0 := {r(cos(ζ0(r) ± α), sin(ζ0(r) ± α)); r ∈ [ρ,R]},

which is the rotation with the angles ±α of the curve C0 := {r(cos ζ0(r), sin ζ0(r)); r ∈ [ρ,R]}.
Consequently, Theorem 8 means that Γt cannot escape from the place between C±α

t of the form

C±α
t := {r(cos(ζ(t, r) ± α), sin(ζ(t, r) ± α)); r ∈ [ρ,R]}

for t > 0, and consequently we obtain the stability in the sense of Lyapunov. Moreover, the
curve Ct := {r(cos ζ(t, r), sin ζ(t, r)); r ∈ [ρ,R]} evolves by V = C − κ, and thus the bunch of
spirals can be regarded as an evolving spiral by the same equation.

The crucial difference between our formulation and a phase field model is the type of equa-
tions; our equation is degenerate parabolic, and the phase field model is uniformly parabolic.
This implies that all spiral curves evolve with the same equation since vj(t, x) := (u(t, x) −
2πj)/m satisfies (9)–(10) with m = 1, and

Γt,j = {x ∈ W ; vj(t, x) − θ0(x) ≡ 0 mod 2πZ}

for j = 0, 1, . . . , m − 1.
The existence of ζ is derived from the rotation invariance of (9)–(10). In fact, we observe

that
C0 = {x ∈ W ; ζ0(|x|) − θ0(x) ≡ 0 mod 2πZ}.

Let w(t, x) be a viscosity solution of (9)–(10) with m = 1 and w(0, x) = ζ0(|x|). Then we obtain
w(t, x) = w(t, |x|e)(=: ζ(t, |x|)) for some e ∈ S1 because of the uniqueness and w(0, Rx) =
w(0, x) for all rotation matrix R. This implies Ct and also C±α

t are solutions of (2)–(3) in the
level set sense. Consequently, Theorem 8 is derived by the comparison of interior and exterior
(cf. Theorem 3) between the each curves Γt,j and C±α

t .
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3.2. Inactive pair

Burton, Cabrera and Frank [BCF51] pointed out that, if a pair of centers with opposite rotational
orientations is closer together than the critical distance 2/C, then this pair has no influence to
the evolution of the crystal surface. They call such a pair an inactive pair. We now demonstrate
the existence of an inactive pair.

For this problem we assume that N = 2, a1 = (−α, 0), a2 = (α, 0) with α ∈ (0, 1/C),
Ui = Bρ(a1) with ρ ∈ (0, α), and θ(x) = arg(x − a1) − arg(x − a2). Assume that Ω is large
enough (its sense is clarified later), and set W = Ω \ (U1 ∪ U2).

Note that the circle whose radius is 1/C is a stationary solution of V = C − κ. Thus the
curves satisfying the following condition should be a stationary solution of our problem.

(R1) It is a part of the circle whose radius is 1/C.

(R2) It satisfies the right angle condition between ∂Bρ(a1) and ∂Bρ(a2).

We now give such curves explicitly. Set

p1(σ) = a1 + ρ(cos σ, sin σ), p2(σ) = a2 + ρ(− cos σ, sin σ),

q1(σ) = p1(σ) +
1
C

(sin σ,− cos σ), q2(σ) = p2(σ) +
1
C

(− sin σ,− cos σ)

Then there exists β > 0 and σ1, σ2 such that 0 < σ1 < σ2 < π and

b1 = (0,−β) = q1(σ1) = q2(σ1), b2 = (0, β) = q1(σ2) = q2(σ2).

We now define

Ri =
{

ri(σ) = bi +
1
C

(
cos

(π

2
+ σ

)
, sin

(π

2
+ σ

))
; σ ∈ [−σi, σi]

}
for i = 1, 2. The sense of the assumption ‘Ω is large enough’ means that Ri ⊂ Ω \ (U1 ∪ U2).
Then, Ri is a connecting spiral between a1 and a2 satisfying (R1)–(R2), and consequently Ri

is our desired curve for i = 1, 2. Note that there are two stationary curves in our problems in
general.

To demonstrate that Ri is a stationary curve for i = 1, 2 we have to find a solution u
describing Ri in our level set formulation. However, in usual evolution of a closed curve (i.e., W =
Ω and θ ≡ 0), there are no continuous solutions describing the stationary circle. Accordingly,
we find discontinuous a viscosity solution of (5)–(6) describing Ri for i = 1, 2.

Theorem 9. Let Ri be given on above for i = 1, 2. Then, θRi : W → R which is a branch of
θ(x) = arg(x − a1) − arg(x − a2) whose discontinuity is only on Ri is a viscosity solution of
(5)–(6).

For all u0 ∈ C(W ) there exists k ∈ Z such that θRi + 2πk ≥ u0 on W , which implies that
θRi + 2πk ≥ u on [0,∞) × W from Theorem 1, where u is a viscosity solution of (5)–(6) with
u|t=0 = u0. From the above and Theorem 3 the curves Ri plays a role of ‘upper bound’ for all
evolution of spirals in the configuration of an inactive pair.
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