View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by EPrint Series of Department of Mathematics, Hokkaido University

POSITIVE p-HARMONIC FUNCTIONS WITH ZERO
BOUNDARY DATA ON CONE DOMAINS

TSUBASA ITOH

1. INTRODUCTION

Let1< p < oo and letD be a domain irC. The Euler-Lagrange equation
for the problem of minimizing thep-Dirichlet integralfD |[VulPdx over a
suitable function class is written in weak form as

(1.1) f IVUlP2Vu -V = 0,

D
which must hold at least for afl € C3*(D). If u € C(D), this implies that
(1.2) Apu = div(VulP?Vu) = 0

in D. This equation is equivalent to

2
(1.3) (p-2) Z Uy, Uy, Uy, + IVUPAU = 0.
ij=1
Either of the three equations is called gxharmonic equation and the so-
lutions are calleg-harmonic functions.
Let 0 < ¢ < n. We denote a cone of apertupdy
Dy ={zeC:|argZ < ¢}.

In this paper we find positive-harmonic functionsi(z) on D, with the
boundary condition,

0 for|largg =¢andz=0,
1.4 =
(1.4) u@ { for z = oo,
or

0 for|argZ = ¢ andz = oo,
1. =
(.5) u@ {oo forz=0.

We consider the fornu(z) = r«f(6) for z = re’, k # 0. Aronsson []
determined alp-harmonic functions ir© of the formu(z) = r*f (), assum-
ing p > 2. Here, forp > 1, we determine all positivp-harmonic functions
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in D, of the formu(z) = rkf(¢) satisfying the boundary conditior.¢) or
(1.5.

If u(2) satisfy the boundary conditiod @), thenk > 0. Thisk is denoted
by kP. If u(2) satisfy the boundary conditiori ), thenk < 0. Thisk is
denoted by”. Lets = n/(2¢). Forp = 2, it is easy to calculate?, k?, and

f(0). We see that
ke = .
k? = -p.

f(6) = C cospd,
whereC is a arbitrary positive constant. For genepal 1, we obtain the
following theorems.

Theorem 1.1.Leta = (p-2)/(p— 1) andg = n/(2¢). If
_ 2B - a(B- 1P+ (B-1) V452 - dap? + aP(B - 1)
- 2(28-1) ’

then there exists (f) such that (z) = r"ff(e) is p-harmonic in ) and
satisfy the boundary conditigii.4).

Theorem 1.2.Leta = (p-2)/(p— 1) andB = n/(2¢). If
=282+ aB+ 1P - (B+1)\4B? — 4ap? + (B + 1)
- 2(28 + 1) ’

then there exists (f) such that (z) = r"ff(e) is p-harmonic in [} and
satisfy the boundary conditigii.5).

and

k?

kP

These theorems are main results of this paper.

2. SEPARATION EQUATION

In this section we give the representation formula f¢#). See [ for
these accounts.

We observe thati(z) = r*f(0) satisfies {.3) if and only if f(6) satisfies
the separation equation
(2.1)
[(p—1)(f)2+K2F2 " + (2kp-3k— p+2)k f(f)?+(kp—k—-p+2)k3f3 = 0.
Hence we findf (0) satisfying the separation equaticgh) with the condi-
tion
2.2) {um>o for—¢ < 6 < ¢,

f(+g) = O.
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Lemma 2.1.Let | be an open interval and() € C3(l). Assume that(p) >
Oand f(6) # 0on|. Puta = (p—2)/(p-1)and g6) = f'(6)*+(k—a)k f(6)>.
(1) If f(0) satisfies the separation equati@hl) on I, then either (i) or (ii)
holds:

() g # 0on |, and there is a consta@; > 0 such that

(2.3) [(1)% +K*f2]* = CRgl ™.

(i) g = 0on |. Further, f(#) = Ce*? whereu = V(o — K)k.
(2) Conversely, if either (i) or (ii) holds, then(d) satisfies the separation
equation(2.1) on I.

Proof. Puts = k2f(6)? > 0. LetJ = 5(I). We consider the inverse mapping
F:J> s 6¢cl. Obviously,F € C?(J). Define a functiorw(s) for s € J

by
’ 2

w(s) = @ + 1.
We observe that(s) € C1(J) and
d_VV_ fN
ds k2f’
Hence,f (0) satisfies the separation equati@lj if and only if w(s) satis-
fies the ordinary dierential equation

w-1)+s

wherea = (p-2)/(p - 1). If f(0) satisfies the separation equati@lj,
thenw — ¢ is # 0 or= 0 onJ. On the other hand, we have

@ f/(6)? + k?f ()2 )
k k2f(0)2 k  k2f(0)?
Hencegis # 0 or= 0 onl. Let us consider three cases.

Case 1g(0) > 0. The separation equatioB.{) is equivalent to
dw/k k-1y\ 1
—(— - )+ -=0, or
ds\w w-¢

S
d a k-1
ES[IogWk - Iog(w— E) +log s] =0.
This holds if and only if

k-1
Wrs = Cf(w -~ %)

for all se J, for someC; > 0. Thus we obtain
[(f/)Z + k2f2]k — C%gk_l.
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Case 2g(0) < 0. The separation equatioB.{) is equivalent to
dW( Kk o 1- k) 1

—(= +-=0, or
ds\w W S

d WK « 1-k
d—s[log + Iog(E - W) + log s] =0.

This holds if and only if
a k-1
Wes = Cf(E -~ W)
for all se J, for someC; > 0. Thus we obtain
[(f)? + K2 F2 = Ci(-g) ™.
Case 3g(0) = 0. Then we have
/(6)? + (k — @)k f(6)? = 0.
Since f'(6) # 0, we seeK — a)k < 0. Puty = +(a-Kkk Then we
have f'(§) = +uf(d). Thus, f(9) = Ce*. Conversely, if Kk — a)k < 0
and f(0) = Ce™? whereu = +(a — K)k, then f(#) ,obviously, satisfies the
separation equatior2 (1). O
Lemma 2.2. Let | be an open interval and(#) € C%(1). Puta = (p -
2)/(p-1)and ¢6) = f'(0)>+(k—a)kf(6)?. Assume that(®) > 0, f'(6) # O,
and g#) # Oon I. If there is a constant C> 0 satisfying(2.3), then f(6)
has a parametric representation, given by

c k=1
{ f(t) = £|1- 2cogt| ? - cost,

% t —a P
o) = 6" + |, Lacodt gy

Proof. Assume thag(6) > 0. We introduce polar coordinates in the plane:

kf = pcost,
2.4
(2:4) { —f’ =psint (% 0).

We see thap = p(f) andt = t(6) are inC%(l). The equationZ.3) gives
p = C%[pz(l - % cog t)]k_l.

Then

(2.5) o= 01(1 - C—; cog t)(k_l)/2

Thus we have

=

-1

N

Cl (04
f= ?(1— T co§t) . cost
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Next we give a representation &&= 9(t). Sincekf = pcost and f’(0) #
0, we see that = 6(t) € C. By (2.4), we have

_dt 1 do
“ds ptantds’
Then
g(l 1 d(logp)) )
de tant dt '
By (2.5), we get
d(logp) (k-1 )asmtcost
dt acogt’

Then
do0  1-acost

dt  k-acogt’
This implies the representation formula in the cg&g > 0.
In the caseg(d) < O, the representation formula follows by a similar
argument. Thus the lemma is proved. O

The following lemma is proved by easy computations. Sge [

Lemma 2.3. Let | be a maximal open interval such thatost # k for
t € I. We consider the mapping+b (f, 6) defined by

ft)=1]1-¢ cos’-t| - cost
a(t) = ft 1- acoszt l-acot qy

k—aco@t
fort € I. Then () satisfies the separation equati¢hl).

3. ProoF oF THEOREM 1.1 AND THEOREM 1.2

In this section we prove Theorefinl and Theorenil.2 Assume that
p # 2. Let us cinsider the following four cases:
(i) p>2andk >0,
(i) 1< p<2andk >0,
(i) p>2andk <0,
(iv) 1< p<2andk<O.
Puta = (p-2)/(p-1) andB = n/(2¢). For simplicity, we let

1. _Vk=a
VK + Vial
and
VIKI
M
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3.1. The casep > 2 and k > 0. We observe that ik < «, then there is
no functionf () satisfying the separation equatidhl) with the condition
(2.2) (see [l]). Hence we assume thit> a. Theng(d) = f'(6)* + (k -
a)kf(#)? > 0. Since Lemma.2, all solutions of the separation equation
(2.2) are given by

f(t)=F1-4¢ co§t)k;21 - cost
o) =t—t +(1-K f) =2

k—a co2t/
for —o < t < co. We see tha#(t) is strictly increasing. By the condition
(2.2, we have-n/2 <t < n/2,t" = 0, andd(r/2) = ¢. Easy computations
gives
o(t) =t — L[arctanatani) +arctan* tanE)]
V(k — a)k 2 2

for —n/2 <t < n/2. Sinced(n/2) = ¢, we have

G 2 Vieak 2 Y

If ¢ = n/2, thenk = 1. We assume that # /2. Squaring and rewriting
gives

(28 — 1)k? — [28% — (B — 1]k + % = 0.

The roots of this equation are

26% - (B — 17 + |8 — 1| /452 — 4af? + 0?(B — 1P

= 25 - 1)

and
o o BB 1P - - U4 —4ap? + P17
2 2(28- 1) '

We observe that < k; < 1 < k; and @.1) has only one root. If & ¢ < /2,
theng < 1 and onlyk; satisfies 8.1). If 7/2 < ¢ < &, theng > 1 and only
k; satisfies 8.1). Thus, the following theorem is obtained.

Theorem 3.1.Let p> 2. Put

_ 22— a(B-1F + (8- 1)46° — 4ap® + a?(B - 1)
- 2(28-1) ‘

k?
Let f(0) be a function given by

KP-1
f(t) = C(1 - $ cost) = cost
o) = t — KL

VE-a)k?
for —-n/2 < t < n/2, where C is a arbitrary positive constant. The()f
satisfies the separation equati@h 1) with the condition(2.2).

[arctani tan3) + arctang* tan3)]
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3.2. The casel < p< 2andk > 0. We obtain the following theorem by a
similar argument of the cage> 2 andk > 0.

Theorem 3.2.Letl < p < 2. Put

_ 28 —a(B- 1)~ (B~ 1) VA — 4o + a2(B — 17

- 2(28-1) '

k?
Let f(0) be a function given by

KP-1
f(t) = C(1 - $ cost)z cost

kP-1 1
=1 - — n
o) =t T tarm*(u tant)

for —-n/2 < t < n/2, where C is a arbitrary positive constant. The(p)f
satisfies the separation equati¢h 1) with the condition2.2).
Thus Theoren3.1and Theoren8.2imply Theoreml.1

Remark3.3. If ¢ = /2, thenk? = 1 andf(#) = Ccosf forall 1 < p < co.
In fact,u(z) = xfor z = x + iy is a positivep-harmonic function irD, and
satisfy the boundary conditiord ).

3.3. The casep > 2and k < 0. Theng(d) = f'(0)? + (k — a)kf(F)?> > O.
Since Lemma&.2, all solutions of the separation equati@lj are given by

k=1
f(t) = £(1-2cogt) ? - cost
t ,
o) =t =t +(1-K) | roozr
for —o < t < c0o. We see thafi(t) is strictly decreasing. By the condition
(2.2, we have-n/2 <t <n/2,t* =0, andd(n/2) = —¢. Easy computations
gives

o) =t - ik arctanf tant)
- VK=o
for —n/2 <t < n/2. Sinced(n/2) = —¢, we have

2 T__ =% T__,
5.2 2 Vieok 2 ¢
Squaring and rewriting gives

(28 + 1)K* + [28% — a(B + 1]k — % = 0.

The roots of this equation are

=282+ a(B+ 12— (B+ 1) 4B — dap? + o?(B + 1Y
B 2(26 + 1)

ke

and

=287+ aB+ 1P - (B+1)\4B? — 4o + (B + 1)

ko 2(28 + 1)




8 TSUBASA ITOH

We see thatr < k; < 1 < k; and onlyk; satisfies 8.2). Thus, the following
theorem is obtained.

Theorem 3.4.Let p> 2. Put

=282+ B+ 1P — (B+ 1) A2 — 4o + o?(B + 1)

2(28+1)
Let f(0) be a function given by

kP

P
f(t) = C(1- & cos t)k'T cost

_ 1-kP 1
o(t) =t - ——=tam-(utant)

(KP—a)kP
for —n/2 < t < /2, where C is a arbitrary positive constant. The(®)f
satisfies the separation equati¢h 1) with the condition(2.2).

3.4. The casel < p < 2andk < 0. We obtain the following theorem by a
similar argument of the cage> 2 andk < 0.

Theorem 3.5.Letl < p < 2. Put
e —282 + a(f + 1) — (B + 1) 462 — 4a? + a2(B + 1)

- 2(28+1)
Let f(0) be a function given by

kP-1
f(t) = C(1- 5 cos't) = cost
ot 1-kP t -1 t
o) =t By ramen [arctan@ tan3) + arctang ™ tans)]

for —-n/2 < t < n/2, where C is a arbitrary positive constant. The(p)f
satisfies the separation equati¢ 1) with the condition(2.2).

Thus Theoren3.4and Theoren3.5imply Theoreml.2
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