
POSITIVE p-HARMONIC FUNCTIONS WITH ZERO
BOUNDARY DATA ON CONE DOMAINS

TSUBASA ITOH

1. Introduction

Let 1< p < ∞ and letD be a domain inC. The Euler-Lagrange equation
for the problem of minimizing thep-Dirichlet integral

∫
D
|∇u|pdx over a

suitable function class is written in weak form as

(1.1)
∫

D
|∇u|p−2∇u · ∇η = 0,

which must hold at least for allη ∈ C∞0 (D). If u ∈ C2(D), this implies that

(1.2) ∆pu = div(|∇u|p−2∇u) = 0

in D. This equation is equivalent to

(1.3) (p− 2)
2∑

i, j=1

uxi ux j uxi x j + |∇u|2∆u = 0.

Either of the three equations is called thep-harmonic equation and the so-
lutions are calledp-harmonic functions.

Let 0< ϕ < π. We denote a cone of apertureϕ by

Dϕ = {z ∈ C : |argz| < ϕ}.
In this paper we find positivep-harmonic functionsu(z) on Dϕ with the
boundary condition,

(1.4) u(z) =

0 for | argz| = ϕ andz= 0,

∞ for z= ∞,
or

(1.5) u(z) =

0 for | argz| = ϕ andz= ∞,
∞ for z= 0.

We consider the formu(z) = rk f (θ) for z = reiθ, k , 0. Aronsson [1]
determined allp-harmonic functions inC of the formu(z) = rk f (θ), assum-
ing p > 2. Here, forp > 1, we determine all positivep-harmonic functions
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in Dϕ of the formu(z) = rk f (θ) satisfying the boundary condition (1.4) or
(1.5).

If u(z) satisfy the boundary condition (1.4), thenk > 0. Thisk is denoted
by kp

+. If u(z) satisfy the boundary condition (1.5), thenk < 0. Thisk is
denoted bykp

−. Let β = π/(2ϕ). For p = 2, it is easy to calculatek2
+, k2

−, and
f (θ). We see that  k2

+ = β,

k2
− = −β.

and
f (θ) = C cosβθ,

whereC is a arbitrary positive constant. For generalp > 1, we obtain the
following theorems.

Theorem 1.1.Letα = (p− 2)/(p− 1) andβ = π/(2ϕ). If

kp
+ =

2β2 − α(β − 1)2 + (β − 1)
√

4β2 − 4αβ2 + α2(β − 1)2

2(2β − 1)
,

then there exists f(θ) such that u(z) = rkp
+ f (θ) is p-harmonic in Dϕ and

satisfy the boundary condition(1.4).

Theorem 1.2.Letα = (p− 2)/(p− 1) andβ = π/(2ϕ). If

kp
− =
−2β2 + α(β + 1)2 − (β + 1)

√
4β2 − 4αβ2 + α2(β + 1)2

2(2β + 1)
,

then there exists f(θ) such that u(z) = rkp
− f (θ) is p-harmonic in Dϕ and

satisfy the boundary condition(1.5).

These theorems are main results of this paper.

2. Separation equation

In this section we give the representation formula forf (θ). See [1] for
these accounts.

We observe thatu(z) = rk f (θ) satisfies (1.3) if and only if f (θ) satisfies
the separation equation
(2.1)
[(p−1)( f ′)2+k2 f 2] f ′′+ (2kp−3k− p+2)k f( f ′)2+ (kp−k− p+2)k3 f 3 = 0.

Hence we findf (θ) satisfying the separation equation (2.1) with the condi-
tion

(2.2)

 f (θ) > 0 for −ϕ < θ < ϕ,
f (±ϕ) = 0.
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Lemma 2.1.Let I be an open interval and f(θ) ∈ C2(I ). Assume that f(θ) >
0 and f′(θ) , 0 on I. Putα = (p−2)/(p−1) and g(θ) = f ′(θ)2+(k−α)k f(θ)2.
(1) If f (θ) satisfies the separation equation(2.1) on I, then either (i) or (ii)
holds:

(i) g , 0 on I, and there is a constantC1 > 0 such that

(2.3) [( f ′)2 + k2 f 2]k = C2
1|g|k−1.

(ii) g ≡ 0 on I. Further, f(θ) = Ce±µθ whereµ =
√

(α − k)k.
(2) Conversely, if either (i) or (ii) holds, then f(θ) satisfies the separation
equation(2.1) on I.

Proof. Puts= k2 f (θ)2 > 0. Let J = s(I ). We consider the inverse mapping
F : J ∋ s 7→ θ ∈ I . Obviously,F ∈ C2(J). Define a functionw(s) for s ∈ J
by

w(s) =
f ′(F(s))2

s
+ 1.

We observe thatw(s) ∈ C1(J) and

(w− 1)+ s
dw
ds
=

f ′′

k2 f
.

Hence,f (θ) satisfies the separation equation (2.1) if and only if w(s) satis-
fies the ordinary differential equation(

w− α
k

)
w = −s(w− α)dw

ds
,

whereα = (p − 2)/(p − 1). If f (θ) satisfies the separation equation (2.1),
thenw− αk is , 0 or≡ 0 onJ. On the other hand, we have

w− α
k
=

f ′(θ)2 + k2 f (θ)2

k2 f (θ)2
− α

k
=

g(θ)
k2 f (θ)2

.

Henceg is , 0 or≡ 0 on I . Let us consider three cases.
Case 1:g(θ) > 0. The separation equation (2.1) is equivalent to

dw
ds

( k
w
− k− 1

w− αk

)
+

1
s
= 0, or

d
ds

[
logwk − log

(
w− α

k

)k−1

+ log s
]
= 0.

This holds if and only if

wks= C2
1

(
w− α

k

)k−1

for all s ∈ J, for someC1 > 0. Thus we obtain

[( f ′)2 + k2 f 2]k = C2
1gk−1.
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Case 2:g(θ) < 0. The separation equation (2.1) is equivalent to

dw
ds

( k
w
− 1− k
α
k − w

)
+

1
s
= 0, or

d
ds

[
logwk + log

(
α

k
− w
)1−k

+ log s
]
= 0.

This holds if and only if

wks= C2
1

(
α

k
− w
)k−1

for all s ∈ J, for someC1 > 0. Thus we obtain

[( f ′)2 + k2 f 2]k = C2
1(−g)k−1.

Case 3:g(θ) ≡ 0. Then we have

f ′(θ)2 + (k− α)k f(θ)2 ≡ 0.

Since f ′(θ) , 0, we see (k − α)k < 0. Putµ =
√

(α − k)k. Then we
have f ′(θ) = ±µ f (θ). Thus, f (θ) = Ce±µθ. Conversely, if (k − α)k < 0
and f (θ) = Ce±µθ whereµ =

√
(α − k)k, then f (θ) ,obviously, satisfies the

separation equation (2.1). �

Lemma 2.2. Let I be an open interval and f(θ) ∈ C2(I ). Put α = (p −
2)/(p−1) and g(θ) = f ′(θ)2+(k−α)k f(θ)2. Assume that f(θ) > 0, f ′(θ) , 0,
and g(θ) , 0 on I. If there is a constant C1 > 0 satisfying(2.3), then f(θ)
has a parametric representation, given by f (t) = C1

k

∣∣∣1− αk cos2 t
∣∣∣ k−1

2 · cost,

θ(t) = θ∗ +
∫ t

t∗
1−α cos2 t′

k−α cos2 t′dt′.

Proof. Assume thatg(θ) > 0. We introduce polar coordinates in the plane:

(2.4)

 k f = ρ cost,

− f ′ = ρ sint (, 0).

We see thatρ = ρ(θ) andt = t(θ) are inC1(I ). The equation (2.3) gives

ρ2k = C2
1

[
ρ2
(
1− α

k
cos2 t

)]k−1

.

Then

(2.5) ρ = C1

(
1− α

k
cos2 t

)(k−1)/2

.

Thus we have

f =
C1

k

(
1− α

k
cos2 t

) k−1
2

· cost
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Next we give a representation ofθ = θ(t). Sincek f = ρ cost and f ′(θ) ,
0, we see thatθ = θ(t) ∈ C1. By (2.4), we have

k =
dt
dθ
− 1
ρ tant

dρ
dθ
.

Then
dt
dθ

(
1− 1

tant
d(logρ)

dt

)
= k.

By (2.5), we get
d(logρ)

dt
= (k− 1)

α sint cost
k− α cos2 t

.

Then
dθ
dt
=

1− α cos2 t
k− α cos2 t

.

This implies the representation formula in the caseg(θ) > 0.
In the caseg(θ) < 0, the representation formula follows by a similar

argument. Thus the lemma is proved. �

The following lemma is proved by easy computations. See [1].

Lemma 2.3. Let I be a maximal open interval such thatα cos2 t , k for
t ∈ I. We consider the mapping t7→ ( f , θ) defined by f (t) =

∣∣∣1− αk cos2 t
∣∣∣ k−1

2 · cost

θ(t) =
∫ t

t∗
1−α cos2 t′

k−α cos2 t′dt′

for t ∈ I. Then f(θ) satisfies the separation equation(2.1).

3. Proof of Theorem 1.1and Theorem 1.2

In this section we prove Theorem1.1 and Theorem1.2. Assume that
p , 2. Let us cinsider the following four cases:

(i) p > 2 andk > 0,
(ii) 1 < p < 2 andk > 0,
(iii) p > 2 andk < 0,
(iv) 1 < p < 2 andk < 0.

Putα = (p− 2)/(p− 1) andβ = π/(2ϕ). For simplicity, we let

λ =

√
|k− α|

√
|k| +

√
|α|

and

µ =

√
|k|

√
|α| + |k|

.



6 TSUBASA ITOH

3.1. The casep > 2 and k > 0. We observe that ifk ≤ α, then there is
no function f (θ) satisfying the separation equation (2.1) with the condition
(2.2) (see [1]). Hence we assume thatk > α. Theng(θ) = f ′(θ)2 + (k −
α)k f(θ)2 > 0. Since Lemma2.2, all solutions of the separation equation
(2.1) are given by  f (t) = C

k

(
1− αk cos2 t

) k−1
2 · cost

θ(t) = t − t∗ + (1− k)
∫ t

0
dt′

k−α cos2 t′

for −∞ < t < ∞. We see thatθ(t) is strictly increasing. By the condition
(2.2), we have−π/2 ≤ t ≤ π/2, t∗ = 0, andθ(π/2) = ϕ. Easy computations
gives

θ(t) = t − k− 1
√

(k− α)k
[arctan(λ tan

t
2

) + arctan(λ−1 tan
t
2

)]

for −π/2 ≤ t ≤ π/2. Sinceθ(π/2) = ϕ, we have

(3.1)
π

2
− k− 1
√

(k− α)k
· π

2
= ϕ.

If ϕ = π/2, thenk = 1. We assume thatϕ , π/2. Squaring and rewriting
gives

(2β − 1)k2 − [2β2 − α(β − 1)2]k+ β2 = 0.
The roots of this equation are

k1 =
2β2 − α(β − 1)2 + |β − 1|

√
4β2 − 4αβ2 + α2(β − 1)2

2(2β − 1)
and

k2 =
2β2 − α(β − 1)2 − |β − 1|

√
4β2 − 4αβ2 + α2(β − 1)2

2(2β − 1)
.

We observe thatα < k2 < 1 < k1 and (3.1) has only one root. If 0< ϕ < π/2,
thenβ < 1 and onlyk2 satisfies (3.1). If π/2 < ϕ < π, thenβ > 1 and only
k1 satisfies (3.1). Thus, the following theorem is obtained.

Theorem 3.1.Let p> 2. Put

kp
+ =

2β2 − α(β − 1)2 + (β − 1)
√

4β2 − 4αβ2 + α2(β − 1)2

2(2β − 1)
.

Let f(θ) be a function given by
f (t) = C(1− α

kp
+

cos2 t)
k
p
+−1
2 cost

θ(t) = t − kp
+−1√

(kp
+−α)k

p
+

[arctan(λ tan t
2) + arctan(λ−1 tan t

2)]

for −π/2 < t < π/2, where C is a arbitrary positive constant. Then f(θ)
satisfies the separation equation(2.1) with the condition(2.2).
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3.2. The case1 < p < 2 and k > 0. We obtain the following theorem by a
similar argument of the casep > 2 andk > 0.

Theorem 3.2.Let1 < p < 2. Put

kp
+ =

2β2 − α(β − 1)2 − (β − 1)
√

4β2 − 4αβ2 + α2(β − 1)2

2(2β − 1)
.

Let f(θ) be a function given by
f (t) = C(1− α

kp
+

cos2 t)
k
p
+−1
2 cost

θ(t) = t − kp
+−1√

(kp
+−α)k

p
+

tan−1(µ tant)

for −π/2 < t < π/2, where C is a arbitrary positive constant. Then f(θ)
satisfies the separation equation(2.1) with the condition(2.2).

Thus Theorem3.1and Theorem3.2 imply Theorem1.1.

Remark3.3. If ϕ = π/2, thenkp
+ = 1 and f (θ) = C cosθ for all 1 < p < ∞.

In fact,u(z) = x for z = x+ iy is a positivep-harmonic function inDϕ and
satisfy the boundary condition (1.4).

3.3. The casep > 2 and k < 0. Theng(θ) = f ′(θ)2 + (k − α)k f(θ)2 > 0.
Since Lemma2.2, all solutions of the separation equation (2.1) are given by f (t) = C

k

(
1− αk cos2 t

) k−1
2 · cost

θ(t) = t − t∗ + (1− k)
∫ t

0
dt′

k−α cos2 t′

for −∞ < t < ∞. We see thatθ(t) is strictly decreasing. By the condition
(2.2), we have−π/2 ≤ t ≤ π/2, t∗ = 0, andθ(π/2) = −ϕ. Easy computations
gives

θ(t) = t − 1− k
√

(k− α)k
arctan(µ tant)

for −π/2 ≤ t ≤ π/2. Sinceθ(π/2) = −ϕ, we have

(3.2)
π

2
− 1− k
√

(k− α)k
· π

2
= −ϕ.

Squaring and rewriting gives

(2β + 1)k2 + [2β2 − α(β + 1)2]k− β2 = 0.

The roots of this equation are

k1 =
−2β2 + α(β + 1)2 − (β + 1)

√
4β2 − 4αβ2 + α2(β + 1)2

2(2β + 1)
and

k2 =
−2β2 + α(β + 1)2 − (β + 1)

√
4β2 − 4αβ2 + α2(β + 1)2

2(2β + 1)
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We see thatα < k2 ≤ 1 ≤ k1 and onlyk2 satisfies (3.2). Thus, the following
theorem is obtained.

Theorem 3.4.Let p> 2. Put

kp
− =
−2β2 + α(β + 1)2 − (β + 1)

√
4β2 − 4αβ2 + α2(β + 1)2

2(2β + 1)
.

Let f(θ) be a function given by
f (t) = C(1− α

kp
−

cos2 t)
k
p
−−1
2 cost

θ(t) = t − 1−kp
−√

(kp
−−α)k

p
−

tan−1(µ tant)

for −π/2 < t < π/2, where C is a arbitrary positive constant. Then f(θ)
satisfies the separation equation(2.1) with the condition(2.2).

3.4. The case1 < p < 2 and k < 0. We obtain the following theorem by a
similar argument of the casep > 2 andk < 0.

Theorem 3.5.Let1 < p < 2. Put

kp
− =
−2β2 + α(β + 1)2 − (β + 1)

√
4β2 − 4αβ2 + α2(β + 1)2

2(2β + 1)
.

Let f(θ) be a function given by
f (t) = C(1− α

kp
−

cos2 t)
k
p
−−1
2 cost

θ(t) = t − 1−kp
−√

(kp
−−α)k

p
−
[arctan(λ tan t

2) + arctan(λ−1 tan t
2)]

for −π/2 < t < π/2, where C is a arbitrary positive constant. Then f(θ)
satisfies the separation equation(2.1) with the condition(2.2).

Thus Theorem3.4and Theorem3.5 imply Theorem1.2.
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