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1. Introduction

The following Cauchy problem for the linear dissipative equation is studied by many authors:

(1.1)
{

∂tu − ∆u + a(t, x)u = 0, t > 0, x ∈ Rn,

u(0, x) = u0(x), x ∈ Rn,

where n ∈ N and the coefficient a : (0,∞)× Rn → R and the initial data u0 : Rn → R are given
functions. Upon the suitable condition for a(t, x) and u0(x), the well-posedness, the global in
time existence and the decay of solutions to (1.1) are shown. Moreover the asymptotic expansion
of the solution to (1.1) as t → ∞ is derived (cf [6]). Here we consider those problems when the
dissipative effect on the equation is provided by “the anomalous diffusion”. In this manuscript,
we define the Fourier transform and the Fourier inverse transform by

F [ϕ](ξ) := (2π)−n/2

∫
Rn

e−ix·ξϕ(x)dx and F−1[ϕ](x) := (2π)−n/2

∫
Rn

eix·ξϕ(ξ)dξ.

Then, for θ > 0, the fractional Laplacian is given by

(−∆)θ/2ϕ(x) = F−1
[
|ξ|θF [ϕ]

]
(x).

The fractional Laplacian with θ = 2 is the positive Laplacian. On the other hand, when
1 < θ < 2, this operator provides the anomalous diffusion on dissipative equations (see [2, 8]).
Namely, for the fundamental solution of ∂tu + (−∆)θ/2u = 0, we see the following property.

Lemma 1.1 ([1]). Let n ∈ Z, θ > 0, Cθ := θ2θ−1π−n
2
−1 sin θπ

2 Γ
(

n+θ
2

)
Γ

(
θ
2

)
and

(1.2) Gθ(t, x) := F−1[e−t|ξ|θ ](x).

Then the following property holds:

|x|n+θGθ(t, x) → Cθt as |x| → ∞

for any t > 0.

Here we remark that Gθ(t, x) is the fundamental solution of ∂tu+(−∆)θ/2u = 0. When θ = 2,
the fundamental solution of ∂tu−∆u = 0 is given by the Gaussian G(t, x) = (4πt)−n/2e−|x|2/(4t).
This satisfies

|x|MG(t, x) → 0 as |x| → ∞
for any t > 0 and M > 0. This property and Lemma 1.1 are not contradictory. Indeed, when
θ = 2, we see that Cθ = 0 in Lemma 1.1. When 1 < θ < 2, Lemma 1.1 immediately gives that

∥xαGθ(t)∥1 = +∞
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for any t > 0 and α ∈ Zn
+ with |α| ≥ 2. We study the following linear dissipative equation with

anomalous diffusion:

(1.3)
{

∂tu + (−∆)θ/2u + a(t, x)u = 0, t > 0, x ∈ Rn,

u(0, x) = u0(x), x ∈ Rn,

where n ∈ N, 1 < θ ≤ 2. When θ = 2, this and (1.1) are equivalent. We assume the following
assumption for the coefficient:

(1.4) ∥xαa(t)∥p ≤ C(1 + t)−µ+
|α|
θ

+ n
θp

for any α ∈ Zn
+ with |α| < ν, n/(ν − |α|) < p ≤ ∞ and t > 0, where C is a positive constant,

and µ > 1 + 1/θ and ν > 0 are some parameters. For example, if a(t, x) satisfies the inequality

|a(t, x)| ≤ C(1 + t)−µ
〈
(1 + t)−1/θx

〉−ν

for some C > 0 and any (t, x) ∈ (0,∞) × Rn, then the condition (1.4) is satisfied. Here we
have used the notation 〈x〉 :=

√
1 + |x|2. We assume that the solution to (1.3) is well-posed in

Lp(Rn) with some 1 ≤ p ≤ ∞ and satisfies

(1.5) ∥xαu(t)∥p ≤ C(1 + t)−
n
θ
(1− 1

p
)+

|α|
θ

for any t > 0, α ∈ Zn
+ with |α| < n + θ and n/(n + θ − |α|) < p ≤ ∞. Indeed, for some

problems, we obtain this inequality. We should remark that the anomalous diffusion causes
∥xαu(t)∥1 = +∞ when |α| ≥ 2. Namely a moment of the solution with high-order diverges to
infinity. We consider the large-time behavior of the solution to (1.3). Especially we give the
estimate on the difference between the solution and its asymptotic expansion as t → ∞. For
(1.1) (namely, for (1.3) with θ = 2), Ishige, Ishiwata and Kawakami [6] derived the large-time
behavior of the solution completely. In their asymptotic expansion, the coefficients contain the
moments of the solution. Unfortunately we cannot extend this idea to our problem since the
moments of the solution cannot be defined. We provide the other way to reach our goal. For
some (l, β) ∈ Z+ × Zn

+, we introduce the following notation:

Ul,β(t, x) :=
∂l

t∇βGθ(1 + t, x)
l!β!

(∫
Rn

(−1)l(−y)βu0(y)dy

−
∫ t

0

∫
Rn

(−1 − s)l(−y)β(au)(s, y)dyds

)
,

(1.6)

where Gθ(t) is defined by (1.2). Then we see the following proposition.

Proposition 1.2. Let n ∈ N, 1 < θ ≤ 2, µ > 1+1/θ and ν > 0. Let (1.4) and (1.5) be satisfied.
Assume that u0 ∈ L1

N (Rn) ∩ L∞(Rn) for N := max{m ∈ Z+ | m < (µ − 1)θ, ν + θ} and u(t) is
the solution to (1.3), where

(1.7) L1
N (Rn) :=

{
ϕ ∈ L1(Rn)

∣∣ |x|Nϕ ∈ L1(Rn)
}

.

Let

(1.8) Λ̄N :=
{
(l, β) ∈ Z+ × Zn

+

∣∣ θl + |β| ≤ N
}
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and the functions {Ul,β(t)}(l,β)∈Λ̄N
be given by (1.6). Then the following estimate holds:∥∥∥∥u(t) −

∑
(l,β)∈Λ̄N

Ul,β(t)
∥∥∥∥

p

= o
(
t
−n

θ
(1− 1

p
)−N

θ

)
as t → ∞

for 1 ≤ p ≤ ∞.

When θ = 2, the asymptotic expansion of solution of this type was firstly observed by Es-
cobedo and Zuazua. In [4], they derived the asymptotic expansion of solutions to the heat-
convection equation. For the solution of the Navier-Stokes equation, the asymptotic expansion
was provided by Carpio [3], and Fujigaki and Miyakawa [5]. The large-time behavior of the so-
lution to the Keller-Segel equation in Lp(Rn) was considered by Nagai, Syukuinn and Umesako
[9], Kato [7], and Nagai and Yamada [10].

Since the conditions (1.4), (1.5) and N < min{(µ − 1)θ, ν + θ} are assumed, the coefficient∫ ∞
0

∫
Rn(−1 − s)l(−y)β(au)(s, y)dyds is uniformly integrable when (l, β) ∈ Λ̄N holds. Hence,

under this assumption, the asymptotic expansion (1.6) is well-defined. However, when N ≥
(µ − 1)θ or N ≥ ν + θ is satisfied, some coefficients in the asymptotic expansion diverge to
infinity. Thus, in this case, we cannot define the higher-order asymptotic expansion by the form
as (1.6). Before proceeding next step, we study the decay-rates of the solution as |x| → ∞.
Then we obtain the following proposition.

Proposition 1.3. Let n ∈ N, 1 < θ ≤ 2, µ > 1+1/θ and ν > 0. Let (1.4) and (1.5) be satisfied.
Assume that u0 ∈ L1

N (Rn) ∩ L∞(Rn) for N := max{m ∈ Z+ | m < (µ − 1)θ, ν + θ} and u(t) is
the solution to (1.3), where L1

N (Rn) is defined by (1.7). Let

(1.9) ΛN :=
{
(l, β) ∈ Z+ × Zn

+

∣∣ θl + |β| < N
}

and

(1.10) UΛN
(t, x) :=

∑
(l,β)∈ΛN

Ul,β(t, x),

where the functions {Ul,β(t)}(l,β)∈ΛN
be defined by (1.6). Then u(t) − UΛN

(t) ∈ L1
N (Rn) holds

for any t > 0. Moreover there exists a positive constant C such that

∥xα (u(t) − UΛN
(t))∥1 ≤ C(1 + t)−

N−|α|
θ

for any t > 0 and α ∈ Zn
+ with |α| ≤ N .

We should remark that, for any α ∈ Zn
+ with |α| ≥ 2, the function UΛN

(t) in Proposition
1.3 satisfies ∥xαUΛN

(t)∥1 = ∞. Thus this function gives the approximation of the solution as
|x| → ∞. Proposition 1.2 and 1.3 state that the asymptotic expansion of the solution as t → ∞
and the approximation of the solution as |x| → ∞ are given by the same form. We derive the
higher-order asymptotic expansion of the solution by employing this proposition.
Notation. Throughout this manuscript, we use the following notation. For any x = (x1, . . . , xn)
and y = (y1, . . . , yn) ∈ Rn, we denote x · y :=

∑n
j=1 xjyj , |x|2 := x · x and 〈x〉 :=

√
1 + |x|2. For

1 ≤ p ≤ ∞ and θ > 0, Lp(Rn) denotes the Lebesgue spaces and W θ,p(Rn) denotes the Sobolev
spaces. The norm of Lp(Rn) is represented by ∥ · ∥p. For s > 0, we define the weighted L1(Rn)
space by L1

s(Rn) := {ϕ ∈ L1(Rn) | ∥ϕ∥L1
s

:=
∫

Rn〈x〉s|ϕ(x)|dx < ∞}. For f = f(x) and g = g(x),
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we denote the convolution by f ∗ g(x) :=
∫

Rn f(x− y)g(y)dy. The gamma function Γ = Γ(p) for
p > 0 is provided by Γ(p) :=

∫ ∞
0 e−ttp−1dt. Varias constants are simply denoted by C.

2. Preliminaries

Before stating our results, we study some basic properties of Gθ(t) := F−1[e−t|ξ|θ ].

Lemma 2.1. For any l ∈ Z+ and α ∈ Zn
+, there exists a positive constant C > 0 such that∣∣∣∂l

t∇αGθ(t, x)
∣∣∣ ≤ Ct−

n
θ
−l− |α|

θ

〈
t−1/θx

〉−n−θ−θl−|α|

for any (t, x) ∈ (0,∞) × Rn.

Proof. This lemma is proved by employing [11, Theorem 3.1.]. Here we omit the proof. ¤

By applying Taylor’s formula, Lemma 2.1 and Hausdorf-Young’s inequality, we obtain the
following lemma.

Lemma 2.2. Let N ∈ Z+ and u0 ∈ L1
N (Rn). Then the following estimate holds for any

1 ≤ p ≤ ∞:∥∥∥∥Gθ(t) ∗ u0 −
∑

(l,β)∈Λ̄N

∂l
t∇βGθ(1 + t)

l!β!

∫
Rn

(−1)l(−y)βu0(y)dy

∥∥∥∥
p

= o
(
t
−n

θ
(1− 1

p
)−N

θ

)
as t → ∞, where Λ̄N is defined by (1.8).

When we study the decay of Gθ(t) ∗ u0(x) as |x| → ∞, we obtain the approximation of this
by the same form as in Lemma 2.2.

Lemma 2.3. Let N ∈ Z+ and u0 ∈ L1
N (Rn). Then the following inequality holds for any t > 0

and α ∈ Zn
+ with |α| ≤ N :∥∥∥∥xα

(
Gθ(t) ∗ u0 −

∑
(l,β)∈ΛN

∂l
t∇βGθ(1 + t)

l!β!

∫
Rn

(−1)l(−y)βu0(y)dy

)∥∥∥∥
1

≤C(1 + t)−
N−|α|

θ ,

where C is a positive constant and ΛN is defined by (1.9).

3. Main Results

In order to derive the asymptotic expansion of the solution, we introduce the following corre-
sponding integral equation:

(3.1) u(t) = Gθ(t) ∗ u0 −
∫ t

0
Gθ(t − s) ∗ (au)(s)ds.

The solution to (3.1) is called the mild solution of (1.3). Generally speaking a mild solution
solves an original Cauchy problem if it has sufficiently high regularity. Hereafter we consider the
mild solution for deriving the asymptotic expansion of the solution of (1.3). For N = min{m ∈
Z+ | m < (µ − 1)θ, ν + θ}, the nonlinear term on the right hand side of (3.1) is split as∫ t

0
Gθ(t − s) ∗ (au)(s)ds =

∑
(l,β)∈ΛN

Jl,β(t) +
∫ t

0
Gθ(t − s) ∗ (a(u − UΛN

)) (s)ds,
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where

(3.2) Jl,β(t, x) :=
∫ t

0
Gθ(t − s) ∗ (aUl,β)(s)ds

for (l, β) ∈ ΛN and Ul,β(t) is defined by (1.6). We introduce the function Ũl,β = Ũl,β(t, x) by

Ũl,β(t, x) :=
∂l

t∇βGθ(1 + t, x)
l!β!

(∫
Rn

(−1)l(−y)βu0(y)dy

−
∫ t

0

∫
Rn

(−1 − s)l(−y)β (a(u − UΛN
)) (s, y)dyds

)(3.3)

for some (l, β) ∈ Z+ × Zn
+, where UΛN

(t) is defined by (1.10). By employing the assumption
(1.4) and Proposition 1.3, we see that Ũl,β(t) is well-defined when (l, β) ∈ Λ̄2N holds, where Λ̄2N

is defined as (1.8). Then we give our main result in the following theorems.

Theorem 3.1. Let n ∈ N, 1 < θ ≤ 2, µ > 1 + 1/θ and ν > 0. Let (1.4) and (1.5) be satisfied.
Assume that u0 ∈ L1

2N (Rn) ∩ L∞(Rn) for N := max{m ∈ Z+ | m < (µ − 1)θ, ν + θ} and u(t)
is the solution to (1.3), where L1

2N (Rn) is defined as (1.7). Let ΛN and Λ̄2N be defined as (1.8)
and (1.9), and the functions {Jk,α(t)}(k,α)∈ΛN

and {Ũl,β(t)}(l,β)∈Λ̄2N
be given by (3.2) and (3.3).

Then the following estimate holds:∥∥∥∥u(t) −
∑

(k,α)∈ΛN

Jk,α(t) −
∑

(l,β)∈Λ̄2N

Ũl,β(t)
∥∥∥∥

p

= o
(
t
−n

θ
(1− 1

p
)− 2N

θ

)
as t → ∞

for 1 ≤ p ≤ ∞.

Theorem 3.2. Let n ∈ N, 1 < θ ≤ 2, µ > 1 + 1/θ and ν > 0. Let (1.4) and (1.5) be satisfied.
Assume that u0 ∈ L1

2N (Rn) ∩ L∞(Rn) for N := max{m ∈ Z+ | m < (µ − 1)θ, ν + θ} and u(t)
is the solution to (1.3), where L1

2N (Rn) is defined as (1.7). Let ΛN and Λ2N be defined as (1.9)
and the functions {Jk,α(t)}(k,α)∈ΛN

and {Ũl,β(t)}(l,β)∈Λ2N
be given by (3.2) and (3.3). Then

u(t) −
∑

(k,α)∈ΛN

Jk,α(t) −
∑

(l,β)∈Λ2N

Ũl,β(t) ∈ L1
2N (Rn)

holds for any t > 0. Moreover there exists a positive constant C such that:∥∥∥∥xα

(
u(t) −

∑
(k,α)∈ΛN

Jk,α(t) −
∑

(l,β)∈Λ2N

Ũl,β(t)
)∥∥∥∥

1

≤ C(1 + t)−
2N−|α|

θ

for any t > 0 and α ∈ Zn
+ with |α| ≤ 2N .

For N := max{m ∈ Z+ | m < (µ − 1)θ, ν + θ}, Proposition 1.2 and 1.3 give the Nth-order
asymptotic expansion of the solution. Theorem 3.1 and 3.2 provide the 2Nth-order asymptotic
expansion. We prove those theorems by employing Proposition 1.2 and 1.3. Similarly, by
applying Theorem 3.1 and 3.2, we obtain a 3Nth-order asymptotic expansion. By repeating
this procedure, we can derive an mNth-order asymptotic expansion for arbitrary large m ∈ Z+.
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