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1 Introduction

We consider the following quasilinear elliptic problem:

−∆u+ λu− κ∆(|u|α)|u|α−2u = |u|p−1u in RN , (1)

where λ > 0, κ > 0, α > 1, p > 1 and N ≥ 1. Equation (1) can be obtained
as a stationary problem of the following modified Schrödinger equation:

i
∂z

∂t
= −∆z − κ∆(|z|α)|z|α−2z − |z|p−1z, (t, x) ∈ (0,∞)× RN . (2)

Equation (2) appears in the study of plasma physics. See [7], [10] for the
derivation and the background. Especially if we consider the standing wave
of (2) of the form z(t, x) = u(x)eiλt, then u(x) satisfies (1).

Equation (1) has a variational structure, that is, one can obtain solutions
of (1) as critical points of the associated functional I defined by

I(u) =
1

2

∫
RN

|∇u|2(1 + ακ|u|2α−2) + λu2 dx− 1

p+ 1

∫
RN

|u|p+1 dx.

We remark that nonlinear functional

∫
RN

|∇u|2|u|2α−2 dx is not defined on

all H1(RN) except for N = 1. Thus the natural function space for N ≥ 2 is
given by

X := {u ∈ H1(RN);

∫
RN

|∇u|2|u|2α−2 dx < ∞}.

Existence of a solution of (1) has been studied in [1], [8], [11], [12], [14].
We are interested in the ground state of (1). We define the ground state
energy level and the set of ground states by

m := inf{I(u); I ′(u) = 0, u ∈ X \ {0}},

G := {u ∈ X \ {0}; I(u) = m, I ′(u) = 0}.
As to the existence of a ground state, we have the following result.

1This talk is based on joint works [2], [3], [4] with Shinji Adachi (Shizuoka University)
and Masataka Shibata (Tokyo Institute of Technology).
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Theorem 1.1. ([2], [9]) Let λ > 0, κ > 0, α > 1 and 1 < p < (2α−1)N+2
N−2

for
N ≥ 3, 1 < p < ∞ for N = 1, 2. Then G ̸= ∅. Moreover any ground state
w ∈ G is of the class C2(RN), positive, radially symmetric and decreasing
with respect to r = |x| (up to translation).

We note that the ground state of (1) exists even if p is H1-supercritical

because (2α−1)N+2
N−2

> N+2
N−2

. We can also see that p = (2α−1)N+2
N−2

is the critical
exponent for (1) by the Pohozaev type identity.

Remark 1.2. As to the existence of a ground state, we have more general
result. More precisely, we consider the following equation:

−∆u− κ∆(|u|α)|u|α−2u = g(u) in RN . (3)

We impose the following conditions on the nonlinear term g:
(g1) g(s) is real-valued and locally Hölder continuous on [0,∞).

(g2) −∞ < lim inf
s→0

g(s)

s
≤ lim sup

s→0

g(s)

s
= −λ < 0 for some λ > 0.

(g3) lim
s→∞

|g(s)|

s
(2α−1)N+2

N−2

= 0.

(g4) There exists s0 > 0 such that G(s0) > 0, where G(s) =

∫ s

0

g(t) dt.

Under (g1)-(g4), we can prove the existence of a ground state of (3).

On the other hand, the uniqueness and the non-degeneracy of the ground
state are less investigated. When N = 1, Ambrosetti and Wang [5] showed
that there exists κ∗ > 0 such that the non-degeneracy holds for any κ > −κ∗,
λ > 0 and p > 1. In [9], the authors studied the case N = 1, κ = 1 and proved
that the uniqueness holds for any λ > 0 and p > 1. Their argument is based
on the ODE analysis. The aim of this talk is to give the uniqueness and
non-degeneracy in the higher dimensional case. We believe it is important
for applications, for example, the stability of the standing wave.

2 Main results

Theorem 2.1. (Uniqueness for large κ)

Suppose N ≥ 3, α > 1 and 1 < p < (2α−1)N+2
N−2

if 1 < α ≤ 2, α− 1 ≤ p <
(2α−1)N+2

N−2
if α > 2. There exists c0 = c0(p, α) > 0 such that if κλ

2α−2
p−1 ≥ c0,

then (1) has at most one positive radial solution w and hence the ground state
of (1) is unique up to translation. In other words, it follows that

G = {w(· − y); y ∈ RN}.
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Remark 2.2. For a solution u of (1), we rescale ũ(x) as u(x) = λ
1

p−1 ũ(λ
1
2x).

Then we can see that (1) is reduced to

−∆ũ+ ũ− κλ
2α−2
p−1 ∆(|ũ|α)|ũ|α−2ũ = |ũ|p−1ũ in RN .

Thus it seem to be natural to describe the condition for the uniqueness in

terms of κλ
2α−2
p−1 .

Theorem 2.3. Suppose N = 2, α > 1 and 2α − 1 ≤ p < ∞. There exists

c1 = c1(p, α) > 0 such that if κλ
2α−2
p−1 ≥ c1, then the ground state of (1) is

unique up to translation.

Theorem 2.4. (Non-degeneracy for large κ)

Suppose N ≥ 3, α > 1 and 2α − 1 ≤ p < (2α−1)N+2
N−2

. Assume further

κλ
2α−2
p−1 ≥ c0 where c0 is given in Theorem 2.1. Then w is non-degenerate in

H1
rad(RN), that is, if Lw(ϕ) = 0 in RN and ϕ ∈ H1

rad(RN), then ϕ ≡ 0.
Here Lw is the linearized operator of (1) defined by

Lw(ϕ) = −∆ϕ+ λϕ− pwp−1ϕ− κ div(αw2α−2
κ ∇ϕ)

− κ(2α(α− 1)w2α−3
κ ∆wκ + α(α− 1)(2α− 3)w2α−4

κ |∇wκ|2)ϕ.

Theorem 2.5. (Uniqueness and non-degeneracy for small κ)
Suppose N ≥ 2, α > 1 and 1 < p < N+2

N−2
if N ≥ 3, 1 < p < ∞ if N = 2.

There exists c2(p, α) > 0 such that if 0 < κλ
2α−2
p−1 ≤ c2, then the ground state

of (1) is unique up to translation and non-degenerate in H1
rad(RN).

Here we briefly explain the ideas of the proof. Firstly we adapt the dual
variational formulation. Let f be a unique solution of the following ODE:

f ′(s) =
1√

1 + ακf(s)2α−2
on s ∈ [0,∞), f(0) = 0.

Using the function f , we consider the following semilinear problem:

−∆v + λf(v)f ′(v) = |f(v)|p−1f(v)f ′(v) in RN . (4)

The functional associated to (4) is defined by

J(v) =
1

2

∫
RN

|∇v|2 + λf(v)2 dx− 1

p+ 1

∫
RN

|f(v)|p+1 dx.
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Lemma 2.6. It follows
(i) X = f(H1(RN)), that is, X = {f(v); v ∈ H1(RN)}.
(ii) For any v ∈ H1(RN), we put u = f(v). Then it follows

I(u) = J(v), I ′(u)u = J ′(v)
f(v)

f ′(v)
.

By Lemma 2.6, we can see that the set of ground states G has one-to-one
correspondence to that of the semilinear problem (4). This enables us to
apply the uniqueness and non-degeneracy result [6], [13], [15] for semilinear

elliptic equations. We require that κλ
2α−2
p−1 is large in order to guarantee some

monotonicity condition on the nonlinear term.
On the other hand if we fix λ and put κ = 0, (1) becomes

−∆u+ λu = |u|p−1u in RN . (5)

Then for 1 < p < N+2
N−2

, it is well-known that the ground state is unique
up to translation. Moreover the corresponding linearized operator L0 =

−∆+λ−pup−1 satisfies Ker L0 = span
{

∂u
∂xi

}
. The uniqueness and the non-

degeneracy for small κ follows by applying the implicit function theorem if
we could treat the linearized operator Lw as a perturbation of L0. To this
aim, we have to show L∞-norm of the ground state is uniformly bounded
with respect to κ. The proof of uniform boundedness is based on the Moser
type iteration. We also need to show the following uniform estimate whose
proof is given by the ODE analysis.

Lemma 2.7. Suppose N ≥ 2, α > 1 and 1 < p < N+2
N−2

if N ≥ 3, 1 < p < ∞
if N = 2. Let λ > 0 be given. There exist κ0 > 0 and C > 0 independent of
κ ∈ (0, κ0) such that

∥∇(logw)∥L∞(RN ) =
∥∥∥∇w

w

∥∥∥
L∞(RN )

≤ C for all κ ∈ (0, κ0).
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