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Abstract—A random dynamics with two stochastic
terms is modeled based on a time series of physiologi-
cal experimental data to study synchrony between human
heartbeats and pedaling rhythms modulated by music. We
investigate reproduced time series, rotation numbers, and
invariant densities in the model to explain transitory stag-
nation motion of synchrony in the experiments.

1. Introduction

It is common to model biological systems as oscillatory
systems in order to extract characteristic rhythms from ex-
perimental data [1, 2, 3]. Schäfer et al. address the interac-
tion between cardiovascular and respiratory systems in hu-
mans [4]. They report that there are synchronous regimes
of different orders n : m and transitions between them un-
der free running conditions. As well, there are some studies
on interactions between heartbeats and music under resting
conditions [5] and interactions between cardiac and loco-
motor rhythms under running and cycling conditions [6].
In [6], subjects performed exercises at a high exercise in-
tensity (heart rate: 150 bpm) because they focused on dif-
ference of cardiac-locomotor synchronization between ex-
ercise modes (running and cycling). It is, however, pointed
out that destructive stimuli such as music become less ef-
fective at higher exercise intensities[7, 8].

In this paper, we consider the effect of music from the
viewpoint of the interaction between human heartbeats and
pedaling rhythms under cycling conditions with moder-
ate exercise intensities. These experiments are motivated
by a product development at YAMAHA Motor Co., Ltd.
for controlling human physiological rhythms by a music
player. A random dynamics with two stochastic terms is
given based on a time series of a physiological experimen-
tal data (see the method in [9]). We observe time series,
rotation number and invariant density by model simulation
to explain transitory stagnation motion of synchrony in the
experiments.

2. Experiments

We performed non-invasive examinations with healthy
volunteers (the data we analyzed is generated by a volun-
teer who is male and 29 years). The subject carried out

pedaling exercises in a laboratory with and without listen-
ing a music (Rêverie, Debussy, a classic music). The bi-
cycle used in the experiment was fixed by a bicycle trainer
(RealPower, Elite). We set the load of the trainer at a mid-
dle degree (7% grade) and its running distance at 1 km in
each condition in order to set the exercise intensity to be
medium for the subject.
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Figure 1: Top: the experimental environment. Bottom left:
ECG. The circles represent the R peaks. Bottom right:
crank signal. The circles represent the top dead centers
(TDCs) for the right pedal.

We measured the electrocardiogram (ECG) and the
crank signal. Both signals were digitized with a sampling
rate of 1,000 Hz. A typical data are shown in Fig.1, bot-
tom. The subject freely performed the exercises both with
and without music. In the case without music, the aver-
aged heart rate and cadence were 97.3 (±5.7) bpm and 55.4
(±3.0) rpm, respectively. Meanwhile, in the case with mu-
sic, those were 100.4 (±6.4) bpm and 54.0 (±2.2) rpm, re-
spectively.
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Figure 2: The time series of phase difference in the ex-
periments. Top: a time series without music modulation.
Bottom: a time series with music modulation.

The ratio of heart rate to cadence is roughly 2 to 1 in both
conditions and there are, thus, two heart beats during one
cycle of pedaling. However, the ratio of heart rate to ca-
dence could change depending on subjects or experimental
conditions. To extract rhythms, we define the phase differ-
ence θn as follows;

θn =
Rm − Pn

Rm+1 − Rm
+ 0.5 if |Rm − Pn| ≤ |Pn − Rm+1|,

=
Rm+1 − Pn

Rm+1 − Rm
+ 0.5 otherwise, (1)

where Rm and Pn are respectively the time of appearance
of the m-th R peak and the n-th top dead centers (TDC) for
the right pedal, and Pn satisfies Rm ≤ Pn < Rm+1.

Only one heartbeat occurs during one cycle of pedaling
with this normalization. The time series of phase differ-
ence with and without music are shown in Fig.2. With mu-
sic modulation, stagnation motion around synchrony and
the transitory synchronies between heartbeats and pedaling
rhythms emerge, while only random phase drift is observed
without music modulation.

3. Random return maps from time series

We construct return plots from time series of the phase
difference θn,. The return map without music modulation
is modeled by the following random rotation map,

θn+1 = θn + ω + ξn (mod 1), (2)

where the phase parameter ω ∼ 0.22 and the rotation num-
ber ρ ∼ 0.22. Both are estimated by the experimental data.
The random variable ξn is an independent white Gaussian
noise which follows N(0, (0.052)). Random phase drift is
observed in this model. The rotation number ρ, given as

ρ = lim
n→∞

∑n
k=1 θk

n
, (3)

equals to ω in this case.
The return map with music modulation is given as the

following random circle map,

θn+1 = θn + ω
′ + ξn − ηn

K
2π

cos(4πθn) (mod 1), (4)

where ω′ = 0.15, which is estimated by the experimental
data. K > 0 is a control parameter for the amplitude of ex-
ternal force. The model includes two random variables ξn
and ηn. The second random variable ηn is an independent
telegraphic noise whose amplitude is 0 with probability p
and 1 with probability 1 − p. The additive white Gaus-
sian noise, ξn, is a model for the internal noise, which ex-
presses a high dimensional dynamics within the body and
the entire physiological system, and the multiplicative tele-
graphic noise, ηn, is those for the external noise, which cor-
responds to the music modulation which is with relatively
smaller scale than the internal noise.

The mean rotation number ρ′ ∼ 0.13 is estimated by the
experimental data. The rotation numbers ρ′ of the model
(4) for K ∈ [0, 2], and p ∈ [0, 1], are numerically calculated
and shown in Fig. (3). The line indicates ρ′ = 0.13. We
choose a parameter (K, p) = (0.8, 0.28) on the line, to fit the
rotation number of the model to the estimated value, and to
fit the shape of the random return map to the return plot of
the experimental data.
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Figure 3: The rotation number ρ′ of the equation (4) as a
function of K and p. The line corresponds to ρ′ = 0.13.
The selected parameter (K, p) = (0.8, 0.28) is denoted in
the figure.

The constructed random return maps are shown in Fig.4.
To get the graph, we set initial conditions and random re-
alizations, numerically iterate each models with presence
of the noise, and obtain return plots of the generated time
series.

In order to check the validity of our model, we observe
the time series and the invariant density generated by the
model. The generated time series in an interval for 230
steps are depicted in Fig.5 and changes of the invariant den-
sities are shown in Fig.6. One can see that the time series
generated by the model qualitatively describes stagnation
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Figure 4: The random return maps generated by the model
with (K, p) = (0, 0) and (0.8, 0.28) are shown with a set of
scattered dots. The return plots of the experimental data
are indicated with a set of smaller points. The left figure
is those without music modulation and by the equation (2).
The right figure is those with music modulation and by the
equation (4).

motion in the experimental data. The invariant density gen-
erated by the model with music modulation is with two
humps corresponding to each stagnation motion around
synchrony.
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Figure 5: The time series of phase difference generated by
the model. Top: a typical time series generated by the equa-
tion (2). Bottom: a typical time series generated by the
equation (4).

4. Summary

We investigated the effect of music from the viewpoint
of the interaction between human heartbeats and pedal-
ing rhythms during the cycling exercise. We derived the
phase difference between the heartbeats and the pedaling
rhythms, and observed its time series. As a result, we
found the transitory stagnation motion in the physiologi-
cal rhythms with music modulation. We, then, constructed
random return maps from the data. The dynamics without
music is modeled by a random rotation map and the dynam-
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Figure 6: The invariant density generated by the model.
Left: the density generated by the equation (2). Right: the
density generated by the equation (4).

ics with music by a random circle map with two stochastic
terms. The additive noise is the model of the internal noise,
which expresses a high dimensional dynamics within the
body, and the multiplicative noise is the model of external
noise, which expresses the music modulation. The time se-
ries and the invariant density generated by our model qual-
itatively describe the phenomena observed in the experi-
ments.

In conclusion, we consider that music changes the dy-
namical structure to induce the transition of synchrony and
indirectly acts on involuntary rhythms. The effect of music
is often discussed by using the averaged heart rate, but in
our experiment there was no large difference of the aver-
aged heart rates between dynamics with and without mu-
sic modulation. The subject answered better mood un-
der the condition with music in the introspective report,
which indicates that there is an effect with music modu-
lation. Our analyses capture them as transitory stagnation
motion around synchrony in a random dynamics with two
stochastic terms.

The presented random dynamical systems approaches,
in general, may shed light on studies on finite scale phe-
nomena in open non-autonomous dynamics, such as phys-
iological rhythms modulated by one-time music listening
that is studied in this paper, whose importance has been
recognized in a wide range of scientific areas.
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