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Abstract

We consider the Navier-Stokes equations for viscous incompressible flows in the half plane under the
no-slip boundary condition. By using the vorticity formulation we prove the (local in time) convergence
of the Navier-Stokes flows to the Euler flows outside a boundary layer and to the Prandtl flows in the
boundary layer at the inviscid limit when the initial vorticity is located away from the boundary.
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1 Introduction

In this paper we consider the Navier-Stokes equations for viscous incompressible flows in the half plane
under the no-slip boundary conditions:

Oy —vAu+u-Vu+Vp=0 t>0, r € R2,
divu =0 t>0, reR2,
. ) (NS,)
u=20 t>0, x € OR%,
uli—o = a T € Ri.
Here R2 = (r1,22) € R? | z2 > 0} and v is the kinematic viscosity which is assumed to be a positive

constant, and u = u(t,x) = (ui(t,z),ua(t,x)), p = p(t,z) denote the velocity field, the pressure field,
respectively. We will use the standard notations for derivatives; 0, = 0/0t, 0; = 0/0z;, A = 25:1 OJQ-,
div u = 25:1 Ojuj, and u - Vu = 2521

The behavior of viscous incompressible flows at the inviscid limit is a classical issue in the fluid
dynamics. When the fluid domain has no boundary it is well known that the solution of the Navier-
Stokes equations converges to the one of the Euler equations, e.g. [8, 6, 9, 22]. However, in the presence of
nontrivial boundary one is faced with a serious difficulty in this problem even in the two-dimensional case
if the no-slip boundary condition is imposed on the velocity field. This is due to the appearance of the
boundary layer, whose formation is formally explained by Prandtl’s theory that estimates the thickness
of the boundary layer as the square root of the viscosity. So far the rigorous verification of Prandtl’s
boundary layer theory was achieved only for some specific cases. For example, it is proved in [2, 32, 33]
that for analytic initial data the solution of (NS, ) converges to the one of the Euler equations outside
the boundary layer and to the one of the Prandtl equations in the boundary layer. When the domain
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and the initial data possess a circular symmetry the significant cancellation occurs in the nonlinear term,
and hence the convergence is affirmatively justified; see [23, 4, 18, 19, 15, 25]. On the other hand, the
necessary and sufficient condition for the L? convergence of the Navier-Stokes flows to the Euler flows
was given by [13], which was extended by several authors [35, 37, 14, 15].

In the fluid dynamics the vorticity field, i.e., the curl of the velocity field, is also an important quantity
and useful in understanding various phenomena. At the inviscid limit it is recognized that the vorticity is
highly produced in the boundary layer and forms a vortex sheet (or line in the two dimension) along the
boundary. However, under the no-slip boundary condition on the velocity field the study of the vorticity
field is still less developed mathematically, since the vorticity is subject to a nonlocal and nonlinear
boundary condition from which it is not easy to derive useful informations. This is contrasting with the
case of the whole plane, where the detailed analysis has been established [21, 7]. In the case of the half
plane the situation is relaxed a little, since the solution formula is available for the linearized problem. By
making use of this solution formula, [20] studied the vorticity equations in the half plane and established
some asymptotic estimates which hold at least up to the time O(Vl/ Hfor0<v < 1.

The aim of this paper is to study the inviscid limit of (NS,) by using the vorticity formulation in
[20] when the initial vorticity is located away from the boundary. This class of initial data includes
a dipole-type localized vortex, which is often used in numerical works as a benchmark to investigate
the interaction between the vorticity created on the boundary and the original vorticity away from the
boundary; cf. [30, 16, 28]. In this paper we will establish the asymptotic expansion of vorticity fields at
the inviscid limit for a short time 7" > 0 (but 7T is independent of the viscosity), that is of the form

v 1 X 1 14 xT 14
Ww(t,x) = wp(t, ) + —wp(t, 21, =) + —wiD(t, 21, =) + wi (¢, 2). (1.1)
V2 V2 V2 V2

Here w(®) is the vorticity field of the Navier-Stokes flows (NS,), wg is the vorticity field of the Euler flows
(see (E) below), wp is the vorticity field of the Prandtl flows (see (P) below), and the remainder parts
w}lg, w%) are of the order O(v'/?) in suitable norms. It should be noted here that, even if there is no
vorticity near the boundary at the initial time, the vorticity is immediately created there and forms a
vortex line along the boundary in positive time. In particular, we have to deal with the boundary layer
and the infinite growth of vorticity at the inviscid limit. Although we will focus on the analysis of the
vorticity field in this paper, the asymptotic expansion for the velocity field is easily obtained from the
Biot-Savart law. More precisely, we have the following

Theorem 1.1 Assume that the initial velocity a = (a1, as) belongs to V.Volv’p(Ri) for some 1 < p <2 and

[

the initial vorticity b = d1az — Daay belongs to WHLH(R2) N WH2(R2). Assume also that

dy = dist (OR%,supp b) > 0. (1.2)
Then there are positive constants C and T such that the following estimate holds for 0 < v < 1.
v v 1
sup_[[ulfy(t) = un(t) = ul) ()| g2y < CvE. (13)
0<t<T

Here UX% is the solution of (NS,), ug is the solution of the Euler equations with the initial velocity a,

W)

and up’ describes the boundary layer of the form

€2 1 Z2
ug)(tvx) = (UPJ(taxlai)v VZUP,Q(t7$17T))7 (14)
V2 V2
where vp = (vp1,vp2) is the solution of the (modified) Prandtl equations. Moreover, T is estimated from
below as T > cmin{dy, 1}, where c is a positive constant depending only on ||b||W4’1(Ri)mW4’2(Ri)-
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The space Wolf(Ri) is the completion with respect to the norm ||V || Lr(R2) of the space of all smooth,

divergence-free vector fields with compact support in R%, and WP (]Ri) is a usual Sobolev space.
The velocity field ug = (ug,1,ug2) of the ideal incompressible flows is subject to the Euler equations

Owup +ug -Vug + Vpg =0 t>0, zeR2,
divug =0 t>0, x € RZ, (®)

ugs =0 t>0, z € OR2,

upli=0 = a z € RL.

Since the initial velocity a in Theorem 1.1 possesses an enough regularity the existence and the uniqueness
of the classical solution of (E) are verified by the known approach [38, 39, 12, 3].
The Prandtl equations for the boundary layer profile vp = (0p,1,Up2) are written as follows.

(0r — 0%,)0p1 + 0P 1010p1 + Up2dx,0p1 + O17ip = 0 t>0, (x1,X2)€RY
Ovpy1 + Ox,0p2 =0,  Ox,ip =0 t>0, (z1,X2)€eR2
Z~1P(t,fL‘1,0) =0 t> 0, xr1 € R,
lim @p@(t,xl,Xz) = UEJ(t,CCl, 0) t> 0, xr1 € ]R, (P)
X2—>OO
lim ﬁ'p(t,l‘l,XQ) :pE(t,le,O) t>0, x1 € R,
X2~>OO
7~)p|t:0 =0 (xl,XQ) € Ri

The local solvability of the Prandtl equations is proved by [29, 24] under some assumptions on the
monotonicity of the data, and by [2, 32] for the analytic initial data. The analyticity condition is in fact
required only in the tangential direction [17]. But the solvability for general initial data in a Sobolev class
is still an open problem. The velocity field vp = (Up71, vpz2) for the modified Prandtl equations is defined
by Up71(t, X1, XQ) = @p}l(t, I, XQ) — uEyl(t, X1, 0), Up,g(t, X1, Xz) = f;z 811)P71(t, x1, YQ) dYﬁ; cf. [33]

Theorem 1.1 is derived from the analysis of the vorticity equations which will be stated in the next
section. The lower bound of the time 7" in Theorem 1.1 is of the order O(dp) when dj is small, which seems
to be natural and optimal to ensure (1.3) in our setting, since our initial data is not necessarily analytic
in the region away from the boundary. After the time period ensured by Theorem 1.1 the separation
of the boundary layer is expected to occur in general and the vorticity will exhibit rather complicated
behaviors; [16, 28]. The mathematical understanding of these phenomena is a challenging problem.

In the rest of this section let us briefly describe the idea to establish the asymptotic expansion (1.3).
The proof is based on two key observations. Firstly we observe that the solution should be analytic at
least near the boundary because so is at the initial time. Thus the solvability of the Prandtl equations
itself is not surprising in our setting; cf. [2, 32, 17]. But we note here that the solvability of the Prandtl
equations does not necessarily imply the desired asymptotic expansion, as in the counter example by
[10]. Moreover, our solution should lose the analyticity as it leaves the boundary, and it is important to
estimate how to lose it precisely. We overcome this difficulty by introducing a suitable weighted function
space which represents this loss of analyticity. Secondly we use the fact that the vorticity field of the Euler
flows satisfies the transport equations and hence its support is away from the boundary even in positive
time. Then the vorticity of the Navier-Stokes flows is expected to be small exponentially in »~! in the
region between the boundary layer and the support of the vorticity of the Euler flows. The presence of
this region prevents the strong and uncontrollable interaction of the vorticity produced in the boundary
layer with the vorticity originated from the initial one, resulting the classical thickness (’)(1/1/ 2) of the
boundary layer at least for a short time. A suitable weighted function space has to be introduced again in



order to describe this region. In this step we also appeal to the result [5] on the sharp pointwise estimate
for fundamental solutions of the linear heat-transport equations in the whole space. After establishing
the estimates for some linear and bilinear mappings we construct the solution by applying the abstract
Cauchy Kowalewski (ACK) theorem as in the previous works [2, 32, 33]. The ACK theorem used in this
paper is a slightly extended version of [27, 11]. Due to the lack of the analyticity away from the boundary
the construction of the remainder part in the asymptotic expansion requires intricate calculations. In
particular, the iteration sequence, for which the ACK theorem is applied, has to be defined in a technical
manner; see Section 4.

The rest of this paper is organized as follows. In Section 2.1 we recall the vorticity equations for
(NS,), (E), and (P), together with the appropriate boundary conditions. In Section 2.2 we state the
integral formula for the linearized problem related with the vorticity equations for (NS,). In Section
2.3 we introduce the wighted function spaces which play central roles in this work. The estimates for
the Biot-Savart law in these function spaces are obtained in Section 2.4. Section 3 takes a large part of
this paper, where we collect the estimates for a number of linear and bilinear mappings. Based on these
estimates we establish the asymptotic expansion of vorticity fields in Section 4 by solving suitable integral
equations with the aid of the ACK theorem. In particular, the boundary layer part is constructed in
Theorems 4.4, 4.12, and the remainder part is obtained in Theorem 4.10. Theorem 1.1 is finally proved
in Section 5. We state some open problems related to this work in Section 6. Some of the key estimates
and the result on the fundamental solution of the heat-transport equations are stated in the appendix.

Finally we give some comments on the notations used in this paper. We write o < 8 when o < Cf3

holds with a numerical constant C' > 0 (independent of v, dy, and so on). We also write o < { gl } v
2

when both a < 1y and o < B2y hold. For dg > 0 (defined by (2.3) below) and | > 0 we define smooth
nonnegative cut-off functions x4y, (v2) and xj, (z2) by

1 if 0< o <ldp,

¢ (k) —k
=1- : < Cdif. (15
0 if 22> (1+1)dp, Xiay (2) Xidg (72) X14,, (22)] - (15)

Xidg (2) = {

When A is a measurable set in ]Ri we also denote by x4 the characteristic function of A.

2 Preliminaries

2.1 Vorticity equations

Let w = Rot u = Oyua — O2uy be the vorticity field. Then the Biot-Sawart law in Ri is given by
u=Jw) = (Si(w), Saw)) =V (-Ap) lw, (2.1)

where V+ = (82, —1) and h = (—Ap)~! f denotes the solution of the Poisson equation —Ah = f in R?
and h =0 on &Ri. We introduce the bilinear forms

B(f.h) = J(f)-Vh, N(f,h) = i (B(f,1))],, _o- (2:2)

Then the vorticity equations for the Navier-Stokes flows are described as follows.

Ow — vAw + B(w,w) =0 t>0, zeR2,
V(Oow + (—02)2w) = —N(w,w) t>0, zedR2, (V,)
wli=o = b := Rot a. T E]Ri.
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The first equation of (V) is obtained by taking the Rot in the first equation of (NS,). The boundary
condition in (V,) is imposed so as to keep the no-slip boundary condition on u = J(w); [1, 20].
The vorticity field of the Euler flows, denoted by wg, satisfies the equations

Owg + B(wg,wg) =0 t>0, xERi,
(VE)

WE|t=0 = b reR2.

When b € WHH(R2) 0 WH2(R%) it is not difficult to show that the classical solution of (Vg) exists
globally in time and wp € C'([0,T] x R2) N L>®(0,T; WHH(R2) N WH2(R2)). Moreover, since dy =
dist(aRi, supp b) > 0 we have

Uo<t<T, Supp w(t) C {z € R | zo > 2%dg}, dp = min{27%dy, 271} (2.3)

for some Ty > Cdg with C' > 0 depending only on ||b]|y4.1p4.2.
The vorticity field of the Prandtl flows ©p is given by wp = —020p1 and the Biot-Sawart law in this
case is written as

o0

Opi(t,z1,X2) =vpa(t,z1, X2) +vpi(t, x1, Xo) == up,1(t,z1,0) +/ wp(t, x1,Y2)dY5, (2.4)
X2
Opa(t,z1,X2) = vEa(t,x1, X2) + vpa(t, x1, X2)
Xo 0
= Xo0hug 2(t,21,0) — 31( Yowp(t, z1,Y2)dYs + Xz/

wp(t,ml,Yg)dY2>. (2.5)
X

0

Set Vx = (01,0x,). Then the equation for wp = wp(t,x1, X2) is given by

8twp—8§(2wp: —vp - Vxwp t> O, (1‘1,X2) ER%_,
Ix,wp = — [y 0p - VxwpdYs — N(wg,wp) t>0, (21,X2)€dR:,  (Vp)
wp|t:020 ($1,X2) ER%.

The boundary condition of wp is derived from the same argument as in (V,) (cf. [1]), or one can deduce
it also by performing the formal expansion w(t,z) = wg(t,z) + v~ 2wp(t, 21, z2/v'/?) + remainder.
To establish the rigorous asymptotic expansion of w = w®) we first aim the decomposition w® =

wg + wg) + w}V), where wg), wgy) are solutions of the equations
Owp — vAwp + B(wg + wp,wp) =0 t>0, xeRi,
1/(82&)3 + (—8%)%003) = —N(wE —i—wB,wB) — N(wE,wE) t>0, xe€ aR%_, (VBV)
wBlt=0 =0 :L‘EIR?H
Owr — vAwy = —B(w,wy) — B(wr,wg + wp) — B(wp,wg) + vAwg t>0, ve R%r,
V(agw[ + (—8%)%&:1) = —N(w,wy) = N(wr,wg + wp) — N(wp,wg) + vJ1(Awg) t>0, x¢€ 8R3L,
wI\t:():O SUER2,
(V1)

respectively. Here we have used Ji(Af) = —daf — (—93)Y/2f on ORZ. In (Vp,) and (Vy,) the symbol
(v) is abbreviated in the notations of w, wp, and wy, for simplicity. The function wp takes the form

wp = Ry, wp for a suitable profile function wp = wg’), where R, is the scaling operator defined by

(Rof)(x) = % f(w1,532), s> 0. (2.6)



The function wg) will be shown to converge to the solution wp of (V) in the limit v — 0 (Theorem 4.13).

We will construct wy of the form wy = Ry wip + wir for some functions w;g = w}lg and wyr = w%).
The proof for the existence of such wg, wyp, and wy; is given in Section 4 (Theorems 4.4, 4.10) by solving

the associated integral equations with the aid of the ACK theorem.

2.2 Representation formula for solutions of the linearized problem

In this section we recall the solution formula to the linear problem

Ow — vAw = t>0 € R?
tw vaw f b x 2+7 (LV)
Wlt=o = b xr € RY,
subject to the boundary condition
v(0y + (—0)2)w =g t>0, xcoR%. (LBC)

Here f, g, b are assumed to be smooth and decay fast enough at spatial infinity. We denote by G and F
the two-dimensional Gaussian and Newton potential, respectively, i.e., G(t,z) = (4nt)"Lexp (—|z|*/(41))
and E(z) = —(2r) ! log|z|. Let * be the standard convolution in R?. Following [20], we set

T(t,2) = (ZE * G(t)) (x), 2= 2(0% + (—0})20s). (2.7)
We also use the notation (hy x ha)(z) = / hi(z — y*)ha(y) dy, where y* = (y1, —y2).
&
Lemma 2.1 ([20]) The integral equation for (LV)-(LBC) is given by

w(t) = "B+ T(wt) b —T(0) x b
t

+ / IR (f(5) = 9(5)H{zympy) ds + / P(t =) (£(5) = 9(9)H{z,y) ds

0 0
_ /0 T(0) * (£(s) = g(s)H}s,_gy) ds. (2.8)

Here e!™N s the semigroup for the heat equation (with the unit viscosity) in R?._ subject to the homoge-
neous Neumann boundary condition, I'(0)x := lim o I'(¢)x, and g?—[%mzo} is a one-dimensional Hausdorff

measure with density g defined by (h,gH%IFOQ = / h(z1,0)g(x1) dzy for h € Cg(@).
R

The reader is referred to [34, 36] for the solution formula of the (Navier-)Stokes equations. We note that
I'0)xh=EFExh in Ri. The following cancellation property is important.

Lemma 2.2 If g = Ji(f) |so—0 then EEx (f — g?—l}mzo}) =0 in R%. In particular, we have ZE xb =0
in R if Ji(b) =0 on ORA.

For the proof of Lemma 2.2, see [20, Proposition 3.2]. We will also use
Lemma 2.3 The following identity holds.

/0 D(v(t—s))* (f(s) — g(s)?—[%mzo}) ds — /0 L(0) % (f(s) — g(s)?—[%mzo}) ds

= —1//0 /OS EG(v(s— 1)) * (f(r) — g(T)’H%IQ:O}) drds. (2.9)



Lemma 2.3 follows from the definition of I'(¢, x) and the equality G(t) = —E x0;G(t). The right-hand
side of (2.9) is useful in studying the spatial decay, while the left-hand side of (2.9) has an advantage
in view of regularity when the second term vanishes. This property will be taken into account in the
definition of the solution mapping in Section 4.

2.3 Function spaces

We will construct wg and wy by applying the ACK theorem. For this purpose it is essential to set up a
suitable family of Banach spaces. Recalling the definition of dg € (0,1/2) in (2.3), we set

(Hﬂ (élaXQ) — @g;p)(§17X2) = exp <(M - V22(2)+’§1| +pX22>7 (210)
) = o) —exp (IO G - ), (211)

where 1, p,6 > 0 and () = max{«,0} for o € R. Let

wh—t

@)=l fem) = F(Em) = !

27r)%

/ f(21, 20)e 181 duy. (2.12)
R

We denote by ||fHng L, the norm (/
1

(/ \f(gl,x2)|qu2)z>/ngl)1/p. For j = 0,1, we set
R JO

k ~ 1+-E o
||f||X]<;,p) = E <||80 o) x X3 <51>2f(€17X2)HL§ Lite + ||905§L’p)X2+2<§1>3X2f(§1,X2)HL§ Lgk), (2.13)
v 1 1

k=0,1
. A j+E N
gy, = 3 (Ieh X 6 Xl o + 168733 08, Fle0 Xl g e ). (219
w7 k=01 !
) 7 ,0) 0,0
HfHXw) = [lp“Ner) (€, 22)ll 22 2, + el D05 £ ( (€, 22)ll 22 12, + e £l 1. (2.15)
The spaces X (1:9) , X (rp )j X}’;’ej), are then naturally defined as the subspaces of LQ(Ri) equipped with
the norms || - HX(“ ) || HX(“ X Il - HX(H,Q)', respectively. For simplicity of notations we will often write in
the abbreviated styles: X (1) -l X and so on. The space X (1) Wil be applied for wg, and X%’Z)

or X}’;’j) will be applied for w;. It is useful to introduce the space for wg as follows.

lof Ve F€n ez 12, + I V(€00 (€1, w)llsz 12, + i Flluys  (2.16)
1fllve = [1flwan + [ Fllwas- (2.17)

171 g0

From (2.3) we may assume that wg € L*(0, Tp; XS%E’N) NYg) for all N > 0. For convenience we will
often use the notations ) ) ) )
X1g5 = Xg", Xy =Xg". (2.18)

By the definition of the weights (2.10) - (2.11) the functions in X(“ p) or X(“ f) with g > 0 are analytic
in the tangential direction near the boundary. The form (u — m2)+|§1| represents how the analyticity is
lost as the function leaves the boundary, and v~ !(6dg — 1’2)3_ expresses the smallness exponentially in
v~ ! near the boundary. These are in fact compatible with the heat equations, and thus, essential in our

arguments; see Proposition 3.1.



2.4 Biot-Savart law

In the vorticity formulation the velocity field is given by the Biot-Savart law v = J(w) = V+(=Ap)~lw.
This section is devoted to give several estimates for J(f) which are used in the latter sections.

Lemma 2.4 The following representations hold.

F(0r(=Ap) 7' f) (€1, 02) = ;,ﬁﬂ{/ e e L GRE

+ /:o erlfillme) (1 — o2l f(g) 25) dza
F(02(=Ap) " f) (&1, m2) = *{ / e~ Gillmamz2) (1 — em2Mle2) f(&) ) dzp
+ / embl(z2mm2) (1 4 e=2Mlez) fey 2n) day ).

Proof. The required representations are obtained by solving the ODE: §%ﬁ — 8%3 = f in x9 > 0 with the
boundary condition h(&1,0) = limg,—00 h(£1, 22) = 0. The details are omitted. This completes the proof.

Lemma 2.5 Let k =0,1 and p > 0. Then it follows that

1
XiRl,f s ”Ruf”X(O,Oh
Il s { 1X2 BTl IR S (2.19)
HfHL%’ X}?:?)?
dirk vk Fias itk g < 3R 2.20
E ||X{:5224d3} (f)||L4 + E ’|X{$224dE} (f)HL2 ~ (p) H Vf”x}%ﬁga ( . )
IVE TPl + 19T 22 S 1] g0 (221)

Proof. To prove (2.19) we use the representation

Vao) @ =5 [ - T Ay = ),

2 le =yl |z —y*]?

1/2

Hencewehave\J(f)(a:)\g/ m*lf(y)]dyg/ y2732\f( )| dy, which implies the esti-
r2 [z —yllz —y*] R |z —y¥

mate ||J(f)||ra < ||a:;/2f||L2 = HX21/2RVfHL2 by the Hardy-Littlewood-Sobolev inequality. The other esti-

. 1/2 1/2 - 1/2 1/2
mate J()l|zs < [1£za/s is well known. Next, from [[7(f)llz= < [T IVIDILE < 110115
we have ||J(f)||ze < |If]] 0 by the Sobolev embedding inequality and the interpolation inequality.
11,1

When f € X}%?l) we use the representation in Lemma 2.4. Then we have |F (J(f)) (&1, 22)| < Hf(§1)||L1 .
This implies |J(f)(x)| < H<§1>}'(J(f))(§1,x2)\|L2 | Ry fHX(o 0- The proof of (2.19) is complete. To

show (2.20) we decompose f as f = fxa, + fxg, - fz2 > 4dE then Lemma 2.4 leads to the inequality

(I xae) €1,22)] £ [6ale 2 o (), 0 (e aa) (T (FXae))ll g porn S w2l 11,
2780

1/2

Thus, combining the Hausdorff-Young inequality with the estimate zoe #%3/" < (v/p)Y/2, we arrive at

IX{@s>adpyd (FXap) e S d}fjl(y/p)l/2||RVf||X(o,p). Similarly, it is not difficult to see that
= IB,0

1% V1

1 34k 1
A X rr210y VI (PXap) i S OBy A2 a1 VI (a1 S C)FIRuf 0.

A
AS



C 1/2 C C C
Next we see that [[V47(7x5, )llce % Iy *VE(rxG, e and [V508,)lle S I94(xG,) e for & =
0,1. Thus, since dg € (0,1/2), it immediately follows that

_ c 2% S+k _ c V.1
dp IV A0 T (X e S T gy dET V5 (=A0) T (A, $ 2110

The proof of (2.20) is complete. The estimate (2.21) with £ = 0 is easily obtained from the Hardy-
Littlewood-Sobolev inequality and the Calderén-Zygmund inequality. For £ = 1 it suffices to note
IVI(Pllze £ N llpe and (V2T ()l g2 S IV fllzz + VI (O1f)llzz € V£ L2- This completes the proof.

Combining Lemma 2.5 with the Hélder inequality and the Sobolev embedding inequality, we get the
following lemma, whose proof is omitted here.
Lemma 2.6 Let 1 <p <4, k=0,1, and p > 0. Let B(f,h) be the bilinear form in (2.2). Assume that
supp h C {z € R2 | z2 > 4dg}. Then we have

1,1
dg (E)QHRufHX%fg

1B(f,h)llzr S 17l (2.22)
11l 00
_3_ Lk V.1
dg® " (=)2Bu fll g0
IVEB(f, ) S P R o (2.23)
11l 00

3 Estimates for linear and bilinear mappings

In this section we establish the estimates for various mappings that appear in the vorticity equations.
When we deal with the bilinear forms the following elementary inequalities will be freely used.

1(€1)7 Fy *FzHLgl S \\<§1>1*l(j)F1!\Lgl|!<§1>”“”FQHL;, (€)% Fy *FzHLgl 5 H<§1>2F1”LglH<£1>2F2HL§1'
(3.1)

Here j = 0,1, and () is defined by I(1) = 0 and 1(0) € {0, 1}.

3.1 Basic linear estimates

First we prove that the function spaces defined in Section 2.3 are invariant in a sense under the action
of the heat semigroup, which gives the validity of our choice of the weight functions in Section 2.3. The
key observation is the following simple inequalities, which will be combined with the heat kernel.

1 1 1 1 _ 2
(=2 X)) |&| < (u—v2Ya) || + v2| Xy — Ya|l€1] < (p— v2Ya) €] + v(t — 5)E0 + w}
(3.2)
_ 2
(1= 22) 1] < (= o) 1] + s — ol €] < (1 — )4 Jeu| + w(t — )2+ 12202 (3.3)

dv(t —s)’

In Proposition 3.1 below we give the estimates for e/(¢=$)AN f But it is clear from its proof that all
estimates in Proposition 3.1 are valid even if the kernel of e/(*~9)A~ is replaced by the two-dimensional
Gaussian-type functions g(civ(t—s), z1—y1)g(cov(t—s), x2—ya2), where g is the one-dimensional Gaussian
and c1, co are suitable positive parameters. This fact will be used in the latter sections.



Proposition 3.1 Let k,l € NU{0}, m,n =0,1, and 0 <~ < 1. Assume that 0 < s <t, 0 < p' < p,
0<p<p<2 and0< @ <0 <274 Then

(1 %) 5 (t—s ,2) i
Iy ) X E F (R ISRy £ 2 o S leso“ X3 g i
(3.4)
1
H‘ T ) k+n l—n-‘r% 1—n l/(t—S)AN 1 52
X 0 F Rlle le 1+m S +
lep " (&)X, % 7 m%ﬂ& (waﬂn um@—$%@—ﬂﬁ)
(,2) 1z
ZH 22f||L§1L§j;” (3.5)
7Q) v(t—s 1 ( ’g) £
Hwyit<§ﬁk+kf(€(t BN Olpz 2 § —— o) ) Fllz 2. (3.6)
1 (vt —s))2 e
s3]l ’g)<€1>kf><4d 2 12
I E %
o e oy (N Pz s, S B @3)

vt —s)2(0 — 0')3

Proof. Let g(t, X3) be the one-dimensional Gaussian, i.e., g(t, Xa) = (47t)~ /2 exp (— X3/(4t)) and set
g(t, X2,Ys) = g(t, Xo — Ya) + g(t, X2 + Y2). We observe that

00 1
f‘(RVeV(t_S)ANle) (&1, X9) = e—u(t—s){f / g(t — s, Xo, }/'Q)e_i(/ﬁ—’/QY2)+|51‘((p(é‘70)f)(§1’ Yy)dYs. (3.8)
v 0

Then we combine (3.2) with e*”(tfs)g%g(t — 8, X9,Y5), which leads to
P ~
b F (R N R, ) (61, X0)| £ e BOIEENE gt - 5)) + (U OIFE)) (X2). (39)

Here we have written as hj * ho(X2) = / h1(Xo — Y2)ho(Y2) dYs for simplicity. Now we apply the
&

weighted Young inequality (7.1) to get

L m [N
I X F (R, IR, £) (€] g S €30 o 3 it X3 ()l s (3.10)
Jj=0 2

Note that the case m = 1 in (3.10) is confirmed by using X21/2g(t —5,X2,Y2) < ((t— s)1/4 +Y1/2) (5(t—
5)/4, X3 — Ys), since the factor (t — s)'/4 is canceled after applying the L? — L! estimate in (7.1).
Est.(3.4) is obtained by taking the L? norm with respect to & in (3.10). To prove (3.5) we observe
that |§1|efi(“7”1/2y2)+|51| < (- p’)_lefi(“/ﬂ’my?)“gl‘ when 0 < Yy < 4//vY/2, 0 < p/ < p, while
\51]6_%”('5_5)5%_’”22/8 S TSRt — 8) V2 (p — p) V2 P2/ when Yy > 1! /Y2, 0 < p' < p. Then the
expression (3.8) yields, instead of (3.9),

1o
o T F (R AN Ry £ (61, X))

1

1 s2
SJ( /+ 1 1
=Ky (t—s)2(p—p)2

! LY A
Jemav(t=s)t / 9(2(t — ), X5 — Ya)e~ T (017 ) (&1, Ya)| AV
Ry

10



This shows (3.5) with n = 1. Similarly, the case n = 0 is obtained by the inequality

D=

s
(t—s)2(p—p)2
The details are omitted. The proof of (3.6) is similar to the one of (3.4). Indeed, (3.3) implies

| X00x,9(t — 5, X0, Ya)|e ¥ < (1+

5 ’
)Q(Z(t - S)a X2 - }/2)6_%Y22 for XQ,YQ > 0.

0 A
O (2 ) (61, 22)] 5 IO (00— ) (V)N ). (311)
Then applying (7.2) to (3.11) yields (3.6). To prove (3.7) with m =1 we use (3.6) and get

9/
s — ’?) ~
B g <§1>k+1]:(€y(t S)ANfX4dE)HL§lL§2 S o (51)kfX4dEHLgng2~

Then (3.7) with m = 1 follows from the inequality

, vs 1wt

60— 9/d2 (‘UJ7 ’s)

(%) <
o (&, ma) <€ v By (&, 1) S (

o}

for 0 < z9 < 5dg and 0 <~ < 1. The case m = 0 is proved in the same way. This completes the proof.

Remark 3.2 From (3.10) we also have

(%) ¥ —s)A 2 3 i
lop™ (€)1 Xy F(Rue Y Ra f)llps prom € ———— ZHsoB (€ X5 fll e s (3:12)

(vt —s)iF
and (7.2) yields

0,%) Lit—s 0%
o\ e =98N i< ol £ (3.13)

Moreover, by using F (R, €” v(t=s)AN (h’i-[{gc2 0})) = e V(=98 g(t — 5, X)h(&1), we get the estimate
7% it v(t—s 1
o 60X, 0l P (R (it o)l i < e L T
t—s

Since the proofs are straightforward we omit the details here.

3.2 Estimates for bilinear forms (I)

In this section we establish the estimates of the bilinear forms appearing in the nonlinear terms of the
vorticity equations. In order to estimate the boundary layer parts (wp and w;yp) it is convenient to
rewrite the bilinear forms in (2.2) in the rescaled variables:

BY)(f,h)(x1,X2) = RyB(Ryf, Rub)(21,Xz),  NW(f,h)(21) = Ji(Ry B¥)(f, ) (1,0).  (3.15)
Motivated by the relation B(f,h) = J(f)-Vh =V - (hJ(f)), we also introduce the bilinear forms

DU(f,h) = (DY (f,h), DY (f,h)) = (RyDy(Ry f, Ruh), v"ER,Dy(Raf, Rih)).  (3.17)

Note that B®)(f,h) = Vx - DW)(f, h) holds, where Vy = (8361,8)(2). In the proof of next lemma we set

f(u,p,a)(fl,)@) W (&1, X2> D(e1,v7 Xa) f (&1, Xa).

11



Lemma 3.3 Assume that 0 < 27 ' (u—p/) < p/ < pu<1,0<p <p <24 and 0 < s < 1. Let
4k =0,1, and let I(1) = 0 and 1(0) € {0,1}. (i) For DW)(f,h) we have

1o el x2 F(DW (. 10) e o < Ml IR e (3.18)
PO B S IR o X5 ihe) |
I,1-1(7)
oD (DY) (1)) gy Ly, (3.19)
, 1+ S ——————— Ly, .
B Sz A Lalxy ™ (p— p)3 HRngXﬁ? X153
(w2) 5k V 1 11l 00
Il VX OV i S 1 i (Mg, o G20
§17 X9 V2 “?) 1) IBJH(J)
(ii) Let m = 0,1. For B®)(f, h) we have
(18 35 (v) ”fHX%Ol) 16
H §1X22]:(B1 (f; h))HL2 LiF S IR fH’ o 5] (1, 5) ’ (321)
€17 Xy x| XIB14j+10)
D F B o s — b 0 Ly (3:22)
B 142 2 ) Lg Ly~ (pn— p/)i-m HfHX(uO) Xﬁ‘;’gllm’
IT,m+j+1(5)
I (“’g)Xm+§f(B(V)(f e <, % HfHX%%) 17| (3.23)
B "2 AP IR fllwor [ x05E" |
X2 v XII,l ’
(iit) Let i =0,1,2. For N¥)(f,h) we have
L 1 [Py 1R .00
Bo|g| g (v) IB,2—m(i)—n(i) IB,i+(1—1)n(i)
et F(N Jh S — )
I &1 ( (f ))HL?I ow— HleHX(“ 0) . ||R1 h”X(“ 0)
I1,2—m(i)—n(i) II,i+(1—4)n(i)
(3.24)
11 0 1Pl )
Glealyg i1 v) X1B.1-105) X1B.,j410)
el F(N h < . 3.25
| &1 (N®I(f ))HLgl ||le‘|x<#°> 1R 1Al 0 (3.25)
1(4) I1,5+1(5)

Here m(i) =0 ifi = 1,2 and m(0) = 1, and n(2) =0, n(1) =1, and n(0) € {0,1}.
Proof. (i) By Lemma 2.4 and (3.17) we have the explicit formula
1 1 .
].‘(DY’)(f’ ) (€1, X3) = / { / e—V2|771|(X2—Zz)(1 _ €—2V2|771|22)f(m7 Z5)dZ,
1 . .
/ e~ imi(za- X2 (1 e 22 ImlZ2) f(ny | 7o) dZo Y h(Er — 1, Xa) diy.
X2

Then we have from |(1 — /2 Xo)y — (u — /2 Z5) | < v?| X9 — Zo| and |€1] < || + |m — &1,

(1,2) v _3,% 7 3
Cp !f(Dg)(f,h))(fl,Xzﬂé/RHe av2ImllXz ‘f(u,o,o)(m)HLIZQ|h(u,§,0)(§1—?71,X2)|d?71, (3.26)
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which implies for j, &k = 0,1,

S OIF (DY (1) (1, Xo)|
</ HquO)(nl)”L12
R

1
X< I f o2 + {T}uf(uoo )z,
m|2

‘iL(uf,O) (& —m, Xo)|dm, (3.27)

which gives (3.18) by the relation of the scaling V_1/4HFHL§( = ||R1/,,FHL22 and the inequality (3.1).
2 x
The calculation as in (3.26) yields

(1,2
YB

~ X
B 1/ 3771 {/ 2 e_V%‘anXz—ZQ)(l - e_QV%‘UHZQ)JE(?h, Z3) dZs
2Jr vzl Jo

0 1 1 N N
+/ 6—V2|771\(22—X2)(1 _ 6—21/2|771|X2)f(7717 Z5) ng}h(fl — 1, X5) dm!
X2

FOY(f, m) (€1, Xo)| = 1)

p—o' 3,
< Xoe™ X /Hﬂe b mlix- |f(u,00)(771)HL1 | (1,2,0) (&1 — 11, Xo)[dmi. (3.28)

Then it is not difficult to deduce (3.19). On the other hand, instead of (3.28), we also have

P8 (DY) (1. 1)) (€1, Xa)| S v / e~ trimixa=tf oo (1), V2.0 (1 = 1, Xo) [ d. (3.29)
Thus (3.20) follows by arguing as (3.27). (ii) As in the proof of (i), we observe that
/ {- / e AmIXe=2a) (1 =2 b i)y, 25) a2y

+/ 6_”7|"1|(ZQ_X2)(1 + 6_2”7‘"”)(2)]3(771? Z5) dZo}i(&1 — m)h(& — m1, Xa) d |
Xo

w%’g)\f(B?)(ﬂ h)) (&1, X2)| = ¢

< /R He*%”%‘"1"X2f"f<u,o,0><m>||L122 (€1 = m)hz,0) (€ — M, Xo)| dnn, (3.30)
which gives (3.21) for j,k = 0,1 by arguing as (3.27). As for B (f, h), we see that if i/ > v'/2 X5 then
oy V(B (1, ) (6, X2)
ORI AT {/ A2 (A f, 7) 42,

+/ e—uflml(Zz Xz)(l f2u§|771|X2)f(m’ Z5) dZQ}VféaXQ}AL(& — 1, X3) dﬁl‘
X2

S O _ _3,3% A N
< /le’e 1 (=) (Im+1& mI)H6 Tv2 || X2 |f(#,0,0)(771)||L122 |X28X2h(m§70)(§1—nl,X2)|dn1

1 7] _3,} i .
< M—M’/leﬂfl—ml”e vz ImlXz |f(,u,0,0)(771)HL122|X28X2h(,u,§,0)(£1_n17X2)|d7717 (3.31)
and if 1/ < v'/2X, then
( ,7§ v —l/l —| 7 1 7
on )|]:(B§ '(f, h)) (&, X2)| S /R|€ 2 Im[1X ‘f(nl)HLlZQ v 2|0x, Py, 2 0) (61 — M1, Xo) [ dmy

1 _3 _qa A
SM,/RIG 2 || X2 ‘f(nl)‘|L122|X28X2h(%§70)(f1—nl,X2)|dT]1. (332)
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Combining (3.31) and (3.32), we get (3.22) for j,k = 0,1, and m = 0. On the other hand, we also have

(1,2) _3,3 |} 2
on | F (B m) (61, Xo)| S /R e a2 .00 0m) 1, 1X20x, B0 (€0 = m, Xo)| i,
(3.33)
which gives (3.22) with m = 1. Est.(3.23) is proved in the same manner by using (3.33) for m = 0, and

XaF (B () (6 Xo)l S ¢ [ e I f) 1 Xa0x s — . Xo)l
for m = 1. The details are omitted here. (iii) From the definition of N)(f,h) we have
F(NW(f, 1)) (&) = /OOO a2 (i) ey )) - F(DW(f, 1)) (61, Ya) Y. (3.34)
This yields, from the arguments as in (3.26), (3.27), and (3.29), that
FVOE )@ S 6l [ ertamieia
0

| f(,u,[),O) (m) HLg(2

. / Hf(,u,(),o) (771)”L§(2 X{|n|>1} \ﬁ(u,o,o) (&1 —m, Yo)| dm dYs
R Al LX<ty +

1 1
v |2
1 f 0.0 (m) L
1,7 2
< lafebiel [ IFiw00 )l 23, Xiim 21
R HfHL1X{‘771|§1} + T T
v |2

3,1 1Ye f — L (e o
. He v 131 2(6 4(# #)|£1|X{0<Y2<é} +X{Y22é})h(#70’0)(€1 7771)“[/%,2 d’l’]l (335)

Hence, we get (3.24) from (3.1) by performing two-ways estimates also for h in the same manner as for
f, and by using ]§1|e_”1/2‘51|y2/4 S (w— /)" when Yo > /v Y2 and 271 (u — i) < /. Est.(3.25) also
directly follows from (3.35) (with u/ = ). The details are left to the reader. The proof is complete.

3.3 Estimates for bilinear forms (II)

Motivated by the integral equations stated in Section 2.2, we introduce the following bilinear forms.

OGN A(E) = ~Rye" SN RaBY(fh),  ®FL[fR)() = Rue” S (NW(f b H )
U, )(t) = =R ()« RaBO(f ), W [fR](t) = RD(wt) « (N (£, ) H}x,—oy),

Y[f,B)(t) = vR, / t EG(v(t — 7))« RiBY)(f,h)dr,
; L

t
Y[f, B(t) = —vR, /0 EG(v(t — 1)) * (NO(f,h)HEx,—oy) .
These are used for the boundary layer parts wg, wrp. Let x4, be the cut-off function defined by (1.5).
For the interior part wrr we set CIJy') [f, h](t) == Z?:l <I>§I:Z.) [f, h](t), where
S RI(E) = ¢4 B(f, xaazh), YY) = e N B(f, X Xsazh).
v)

Y [f, B)(t) = —e""2N B(f, XEq,,)-

)

14



The rest of this section is devoted to establish the estimates for these bilinear forms. The basic strategy
is to combine Proposition 3.1 with Lemma 3.3, but we need to take into account which function spaces
f and h belong to. In particular, when both f and h correspond with the remainder parts wyp or wyy
the prefactor »~1/2 is allowed in the estimates (e.g. see (3.37)). In oder to ensure the lower bound of
the existence time T in Theorem 1.1, the dependence on the parameters dg,t,s has to be examined
carefully, which requires some detailed calculations. In this section we always assume that 0 < v < 1 and
0 <s<t<1. We also remind (3.1) and the statements just before Proposition 3.1.

Lemma 3.4 Assume that 0 < 274 (u —p/) < p/ <p<1land0 < p < p <274 Letl(l) = 0 and
(0) € {0,1}. (i) Let j =0,1,2, and m = 0,1. Then

1
v 1 52 HfHX(u 0)
W [f Rt —s) 0 S + : : Bt sa—m) IAll e
' Xﬁ‘gy‘jt ) = wt—s)z2(p—p)2 R fHX}‘I‘ gzﬂﬂ(l o Xlg,jm+2(17m)
(3.36)
(ii) Let j=0,1. Then
1 1
1 visg? ”f”
WL, h](E—s)| o S ( + 15-10) ||
’ X;%,ft : %(t - 5)% (t— 3)%@ - P/)% HRl f“ H ) 1) IB.j+1(7)
(3.37)

Proof. In the proof below we sometimes write @g)l [f,h] instead of @%}’)1 [f,h](t — s) for simplicity of
notations. From the definitions of B (f, h) and D) (f, h) we first decompose @g)l [f,h] as

q)(é/’)l [f, h] _ _Ryeu(t—s)ANR%angu)Oc’ h) R, eV(t s)ANR1 aX D u) f h Z (I’B ) Z
i=1,2

Let 7 =0,1. Then we have from (3.5) and (3.18),

. k y o1 . k s
I e x5 F (@ F M) g g = o E] T X F(Rue 9% Ry DI (£.1) 3 s

1 s 11l .0
St ot IR (s 339
H=H pt—s)2(p—p)2 X7, 1 1) [B.3+10)
and similarly from (3.4) and (3.18),
, .k v 1 ||f”X(u 0)
o X F @A) e ok € ——— R Pl o (339)
7 177 X2 1/2(t — 8)2 ” 1fH X[B,jJrl(j)
11 1 1)
Set g*(t, X2, Y2) = g(t, Xo — Ya) — g(t, X2 + Y2). For (I)g,)lﬂ[f’ h] we observe that
F (@) 1A = ) (61, Xa)| = |/ I 0,07 (= 5, X0, V) (DY (1)) (61, Y2) dYa.
Hence, as in the proof of (3.4), one can verify with the aid of (3.19) that
, 3 Fll w0
WD XS F ()l A < i Wl h 3.40
H 51 2 ( B,1,2[f7 ])HLgng’“ ~ (t—s)%(p—p’)% HR%f”Xﬁ*? H HX;;;;’Q ( . )
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Similarly, we have from (3.20),

R T - 1 ”f”x;gof " ,
| ® ’ ~ T L ’ oy . 3.41
H 51 2 ( B,1,2 [f ]) HLEIL;(ZI“ y%(t _ S)% ||R1 fHX(H 0) || ||X;;§§J)rl(j> ( )

I,1-1(3)

Collecting above estimates, so far we have shown that for j,k = 0,1,

1
. . 1Al o
ol xEF @) e o + R e,
132 ( B,1 ) LglLX2 (,u — i Ml(t _ S)%(,O—,Ol)%) HR%fHXYI‘S) Xﬁ%j)
(3.42)
B 149 BN 1 S T ot HRl fHXw f) o xXptel
In particular, (3.36) with 7 = 0, m = 1, and (3.37) with j = 0 have been proved. To estimate
the other norms we set @%’)1 1,[ Jhl(t —s) = —Rl,e"(t_s)ANRl/l,Biy)(f, h) and @g’)m, [f,h](t —s) =
~R,e"t=IANR, B (£, h), which gives @) [f,h] = S @) ,[f,h]. Then (3.5), (3.21), and (3.22)
i=1,2
imply
1
W.2) o2k ) 1 52 Hf||X;xéc2
e2xzF@W [f h e < + .
H 1422 ( B,l[ ])HL?ILX2 (M_Nl ,u’(t _ S)%(p— ,0,)%) HR%ﬂ }9‘7(2)) H H ;;};2)
(3.44)

Moreover, (3.4), (3.5), and (3.21) imply that, by setting S, ; (&1, X2) = {ij+k/28§<2 for j,k,k=0,1,

(v ) (V) < Sé Hf” 57901 1G)
” Sﬁkzk}—( Bll/[ ])HL2 L1+k (1+ A &) ”leH ) HhH s
(t—s)2(p—p)2 xi? s 1B, 14+5+1()
(3.45)

As for @%}7)1,2, [f, h], we combine (3.22) with (3.4) if £ = 0 and with (3.5) if k = 1 to obtain

; £
o0 F @ b e e S (e Mo )
SO 3 /1J I+ S L
7.k, k Bl,2 Léle2 M_#/ u’(t—S)%(p—p’)% ||R1 fHX;I ozk . X;‘;E)—l(i)
T J

(3.46)

for 7(k,7) = k4 j 4+ 1(j). Collecting (3.42), (3.44), (3.45), and (3.46), we arrive at (3.36). So it remains
to prove (3.37) for j = 1, but in view of (3.43), it suffices to estimate dx,F ( B, 1 @ A, ]) for each i =1, 2.
First let us consider @), , [f, h]. Note that [ Xa0x,g(t—s, X2, Y2)| S (Ya(t—s)"/?+1)g(5(t—5)/4, X3 Y2)
holds. Then we appeal to the estimate of the form (3.4) and (3.23) with m = 1, and to (3.12) and (3.23)
with m = 0, which gives

[l pems:
W% 1+§a F <I)(V) h < 1 X161 h
X ES 1 1 P
’;0 : e Xy 2 ( B,1,2/ £, DHLEIL;; I/%(t _ s)% ||R§fHX§tIM$) | HX;’Z{j)’
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as desired. As for @g)l 1/[f, h], we have from the integration by parts,

X28X2 ( Blll[fa }(t_s))(glaXQ)
= Il + IZ + I3 = _/ e_V(t_s)gf (XQ - }/2)8)(2.9@ - S>X2a YYQ)'F(BY/)(fv h)) (617Y2) dYVZ
0

_/ eI (5, Xy, Vo) F (B (f, 1)) (€1, Y2) dY2
0

o
-~ / eV g5t — 5, Xy, V) Yady, F(BY)(f, 1)) (€1, Ya) dYa.
0

1l 0
From the proof of (3.4) and (3.21) we see E ||<,oB ey k/QI HLQ LItk < KB 1R o) -
IB,1

i=1
So it remains to estimate I3. Set [131 = Ygayz}"(Bly (f, h)) — .7-"(B1V (f, Y20y, h)) and decompose I3 into

I3, = —/ e*”(tfs)ffg*(t —5,Xo,:)I131dYs and I39 = I3 — I3 1. The term II3; is expressed as
0

1B/ 1l o

1 . 2. 1 1 .
I151(&1,Y2) = 2/ <— 2Yo f(m, Ye) + V§|771|YQ{/ e‘MITll\(YQ—Zz)(l _ 6_2”2|771|Z2)f(771, Z2) dZs
R 0
0o 1 1 . .
+ / e VA mI(ZN2) (1 — =22 ImIV2) f(ny | 7)) d22}>i(§1 —n)h(&1 — m1, Y2) dmr.
Ys

Hence, by writing || £)| Lz instead of |E ()| rz. for simplicity of notations, we see
2 2

1ol
o NI (61, V)]
A l A
10, (X2) g Iy, + 23 mIYallfinoo iy, )

R ; e (61— Ve 00 (€1 — - Y2)|
| Y2(||f(p,0,o)HL;;2 + VZ\H1\§||f(u,0,0)HL§(2) ) L
: 523
10x.(X2£)) (0,08, + ﬁ”f(u,oo ey, )
<l A ) ’1) pl ) (51—')h(u,g,o)(ﬁl—-,Yz)HL}H'
('0_7#)%(Hf(#,o,o)HL?2 + VZ|771|§Hf(y,O,O)”L§(2)

. ¢ ; 1/2 .
Then, using (0x:(Xa1) 012,24, S 115 a0 e, o5, S v721Rs oo together wich
the estimate of the type (3.12) yields

1 y%s% Hf” MO)
+

Al 2y
Xy

l"/7
lop " 13,1”L§1L}X2 < (

e

i(t — ) (t— s)i(p — p’)% HR%JCH }7,?)

On the other hand, the term ]-"(B%V)(f, Y20y, h)) is estimated as

S F(BY, Yadhyh) (61, ¥2)) (3.47)
(\771\ & D ooy,
X{|m|>1 Yoy, hy e 0) (€ — - Y2)| 11 -
L ool + el ezl + X0E s ) (205020 H
v vl |2 *2

(3.48)
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Thus, the appropriate use of the estimate like (3.4) (with [ = 1 to treat |£;| in (3.48)) and (3.12)

(for the other term in (3.48)) implies that the norm ng%‘l’p,/t)lg,gHLg £y is bounded from above by
1 2
171 g -
vt —s))” (o1 e norm sllzz 12 is estimated in the
(vt — 5))1/? it 120l Th e Lslz 12 timated in th

R
1B/ f g

same way. The details are omitted here. The proof is complete.

Lemma 3.5 Assume that 0 < 27 (u—p') < ¢/ <pu<1land 0 < p < p <274 Let (1) = 0 and
1(0) € {0,1}. (i) Let j =0,1,2. Then

H(I)(V) f h( )H < 1 ”fHX;‘;(; —n(i) Hh“X;%O)Jr(l . ( 4 )
t—s S m(@)-n( Jridmnt . (349
372[ b X;gvj%) w— HRl fHX(“ 0) HthHXW 0)
» I1,2—m(5)—n(j) I1,j+(1=35)n(j)

Here m(j) =0 if j = 1,2 and m(0) = 1, and n(2) =0, n(1) = 1, and n(0) € {0,1}.
(ii) Let 5 =0,1. Then

. 1o 1Al 00
|QWLE I E = o) S I5:1-10) ma L (350)
s (w!, B 1 1
X S e — gt | Bl IRshllggo

Proof. Both (3.49) and (3.50) easily follow from (3.14), (3.24), and (3.25). The proof is complete.

Lemma 3.6 Let ¢, € C5°(Ry) be a cut-off function such that ¢,(z2) =1 if 0 < z9 < r and ¢, (z2) =0 if
w9 > 2r. Assume that 0 < 2 Y (u—p/) <p/ <p<1land0 < p <p<27% Letl(1) =0 and 1(0) € {0,1}.
(i) Let i = 1,2, and j = 0,1,2. Then

o L=, 5 T ST
. ( t—s P ——— —m(j)—n J Jn(d . 351
AR X0 = Hle”me IR L] o
\J 11,2—m(j)—n(j) I1,5+(1-5)n(5)

Here m(j) =0 if j = 1,2 and m(0) = 1, and n(2) =0, n(1) = 1, and n(0) € {0, 1}.
(ii) Leti=1,2, and j =0,1. Then

6 W= o) S —— o i (3.52)
1 t—s / T A I : 3.52
i3 i s (!, Bly ~ L 1 h

? X/t va2(t—s)2 HR%f”Xﬁj?llm ||R1 HX}‘;JOH(])

Proof. We give the proof only for \I/ [ 7, ] since \I’ [ f,h] is estimated in the same way. Using E x f =
/ G(7) * f dr, we have from B®)(f, h) = “)(f,h) and the integration by parts,
0

F(U[£,0](t - 5)) (61, X2)
- / / €+ '51 Dx,)e ¢ g4 — s+ T Xy 4 ) dr i F(DY(.) (61, Y2) Yo
—2/ ev(t= %g(t—s Xy + Yao)v2 6| F (DS (f, 1)) (&1, Ya) dYa

w2 [T [Teg s Slage ity s T v dr Al A (08 (1) 6 Vo) aYe

V2
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(X + Y3)?

Thus, by the inequality u1/2|£1|Y2 < vré? + ™

for r, X2, Y2 > 0, we have

PP )@ [l e 0 s D

1 1
. (Hgleéw |€1\Y2]-"(D§V)(f7 h)) HL{,2 + Hflefévz |£1|Y2V%]:(D§V)(f, h)) HL§,2>

V(t s)

+ e TG g2t 5), X) [|&re B2l F(DY (£, 1) Iy - (353)
2

The terms [[¢e 2" 2 F (DI (£, 1))y and e 2PN 2u 2 (DY (f,1)) |1y are estimated in
2 2
the same way as F(N®)(f,h)) in the proof of Lemma 3.3 (see (3.34)), and hence, it follows that

! : i / . 1
el ems O F (DI (£, 1) g 1y, + Nl Ole e 21002 F (DY (1) 1 1,

0) hl| w0
T ||le\|X<uo> HthHX(uO)
I1,2—m(j)—n(j) I1,5+(1—35)n(4)

’£1| )
V2(t — s+ 7/v)1/2
¢t1/2f(\:[]gy) [f, h](t—s)) HL? Ll is bounded from above by the right-hand side of (3.51).
1 2

v(t—s)
e~ = +51d7’<C'that

oo
for j = 0,1,2. Thus we see from the inequality / (5% +
0

|| b w.p'/t) é-JXk/Q

The estimate for X»0x, {Qi)tl/z]:(\llgy) [f, h](t — S))} is proved in the same manner by using the inequality
\Xé@é(z (t— s—i—T/l/ Xo+Y2)| S g(5(t—s+7/v)/4,X>2), 1 = 1,2. Now (3.51) has been proved. The estimate

(3.52) for \I/ [f h] is proved similarly. Indeed, in this case the terms ||£1e™ 5”1/2|§1|Y2]—"( gy)(f, h))HL§

2

and ][516_5”1/2|51‘Y2yl/Z.F(DQ (f,h)) HL%/ in (3.53) are estimated in the same way as (3.35), and we also
2

(t=s)+7 . . .
use the inequality |£1]e™ et < (v(t — s))7Y/2. The details are omitted here. The proof is complete.
q y

Lemma 3.7 Let ¢¢ = 1 — ¢, where ¢, is the function in Lemma 3.6. Assume that 0 < 271 (u — p') <
W<p<land0<p <p<27* Letl(1) =0 and 1(0) € {0,1}.
(i) Leti=1,2, and j =0,1,2. Then

h
c < 1 I O X5 i) n) | ||L°° (0.5 X5k (1= jyn(s))
e, 1T £ R S
X5 S = IR L[] (1.0) Ry (1,0)
1B, R St (U2 G sy v ER0sX T nG)
(3.54)

Here m(j) =0 if j = 1,2 and m(0) = 1, and n(2) =0, n(1) = 1, and n(0) € {0,1}.
(ii) Let i = 1,2, and j = 0,1. Then

1 A -
e S M IR
Xibj va(t —s)z v Lee0,sx Y ) s L8 X0 )
(3.55)

19



Proof. We give the proof only for Tgy) [f,h] since Tgy) [f,h] is estimated similarly. By the definition of
Tgy) [f,h] and BW)(f, h) = Vx - DW)(f, h) the integration by parts yields

FOXWf, 1) (€1, Xa) = 2 / / (—v€ + A [e1ox,)e "8 g(s — 7, Xy + Vo) i€, F(DY(f, 1)) dYa dr
0 0

9 / / (€ + 13 16110x, ) By, g(s — 7, Xo + Vo) F(DY(f, 1)) dYa dr.
0 0

v(s—1)
We use the inequality (v1/2[¢1)!|0%, e~ g(s —r, Xo+Ya)| S tTe™ 5 737l g(3(5 — 1), X,)
for Xo > t/2 and 1 = 0,1, 2, to get

oo F(O LR € XKl 5 [ e 305 ), X ar
.(Hgleéu%myzf(pgu)(f, M)y, + Hfle*%u%\£1|Yzy%]—"(pg’)(f7h))HL%/ > (3.56)

The integrand in the right-hand side of (3.56) is estimated as in Lemma 3.6. Hence we see, for example,

/ &/ : E 1 HfHLoo 0, ;X(“’O) . ||h||L°°(O, ;X<Mv0) ) )
”Sp(éu’ t )€{X22¢§%.F(Tgu)[f, h])HL2 Lig_k S I HR f”( s IB,T(J)) ||R hH S I1B,7'(5)
e AR 7 Lo (0,500 ) i LN(O,S;XE*IL’S?m)

Here we have set 7(j) =2 —m(j) —n(j) and 7/(j) = j + (1 — j)n(j). The other norms are estimated in
the same way. The proof is complete.

In the proofs of Lemma 3.8 - 3.10 below we set f(u,pﬁ) (&1,22) = gog’p) (&1, mg/ulﬂ)(pg“’e) (&1, 29) f(£1, 2).

Lemma 3.8 Assume that 0 < p < dg and 0 < 0’ < 0 < 278, Let j = 0,1, and let I(1) = 0 and
1(0) € {0,1}. Then

R
” l/f”X%”O;

N

S
1RLf Bl (=) o) S o]l e (3.57)
" X S gt - 920002 | Wlypony, [ X0
1 R0 £l 300
S4 XIB,I—l(')
H(I)gljl) [f) h](t - S)HX(“’GT/) S.z I 1 1 d_l_% ||f|| J HhH (u,%) . (358)
11,j divi(t—s)2(0 —0')4 E X I1j+1()

Proof. We will write ||f||L§2 instead of Hf(m)”Li2 for short. Lemma 2.4 imply for i = 1,2,

Xadw F (Di(f, 1)) (€1, 52)]

Tdg . 00 . “
< xady / ( / e Imllv=22l| f () 2)| dzn + / emImllvz==2| f iy 2)] dzo) l(Er — i, yo)| din
R 0 Tdg

L1, X N X "
SX4dE/R(€ alu yz)”nl'||f(u,o,0)><7dEHL;c2 +e QdElmlanngHL}Q)’h(gl_771792)‘(1771

Lo, _0 —a5)2 o _ A A

< e alrmv)ilal =55 (6dp "’2)+X4dEH(Hf(u,o,o)XmE||L§2 +e dElm‘HfXEdEHL}Q)\h(u,o,g)(fl —wyz)HL;H-
Thus, from ||f I < I [ A xGalle < (m) ™4 fllvy for fe XWP Ny,
uS, IOM {1/ (1,0,0)X7dp LY, ~ 11/ (1,0,0)1122, A X6dpllLL, =\ Vg 10T 11,2 B,
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0/5) ¢ 1l ) A :
we have ”801 TN 4ap F (Di(f, h))HLglLig < T Hh”X}‘;’f/S)' Let €22 be the heat semi-
XH,szE ’

group with the unit viscosity in the half plane subject to the homogeneous Dirichlet boundary condition.
From the integration by parts and F(Dz(f,k))(£1,0) = 0 we see that |]-"(<I>§V1) [f,h])| is bounded from

above by |£1f( VE=)AN (yyq, D1 (f, h)) |+ |82f( v(t=5)AD (y 44, Do(f, h)))|. Since (3.7) holds even if Ay
is replaced by Ap, by applying it with v = 1 we have for j =0, 1,

3 Ry fll w0
(1D ed ()1 52 120l
ler & F (2ralfhl)lice 12, < 2Bl ey (3.59)
1 1 ( 1,1 ) dE(t . S)%(Q _ 9/)% Hf”X}‘;’g)ﬁYE X;‘;”js)
: . 2 2 ; 0
While, from the estimates || f(,,00)X7dz L, S 00z, 1/ XGapllLers, < \|f||X;313) for f e X}’}LO)
. RSl gt
and dp € (07 1/2)7 we see ”90] £1X4dE (Dz(f> h))||L2 L2 S —1 —j/2 v ||h||X(# 0/s)
f17%2 HfHXuO o I1,5+1(5)
I,1-1
for i = 1,2. Hence from (3.7) with v = 1/2 we arrive at
(2 i ) 51 HR1fH YILBOI) o)
P 14 . J
lpr "t 5{-’?(@[,1”: h])HH N T N N -1 Il g (3.60)
vidi(t — )3 (0 — 0% £ 1] e X1n )

I,1-1(5)

for 7 = 0,1. To estimate 0o F (<I>(IV1) [f,h]) we observe from the similar calculations as above that

S E(BL(f xaaph)) (€1, 9)]

< Xadg /]R (||J?(,L,o,0)><7dEHL;B2 + e_dE‘m'HfngEHLgcQ)|(€ 771)3( 0y(& =, )| i, (3.61)
and

, ) .
7\ F (Ba(f xaah)) (61, 2)| < /R(Hf(u,o,o)X?dEHL;%C2 + e Gl )
. <|771y282X4dEB(M,0,§)(§1 —n,y2)| + X4dE|a2B(u,0,§)(£1 - 771,3/2)|> dm. (3.62)

Thus it is not difficult to see [|¢; (o, 182

FB(f xaash)lez 2, < 1Pl guovs) and

HfHX;I?Q)mYE

o 1Rl
oy F(B(f, xaauh)) lp2 12 < 32 e |l «(uo/5). So as in the proof of (3.59) and

Lo, e T S

11,1
(3.60), we get the desired estimates for ]]gogu’el/t)ﬁgf(@%) [f,h])||z2. Finally let us estimate the L' norm
of Sogoﬁ//t)q)?’l) [f,h]. From the definition of D(f,h) and the integration by parts we have
v 1
B H(E = )@)€~ [ Gt~ 5).x = y)ID(f xaash) w)] dy
VE— )t Jas
5% 0’9—79/)
< T T | GQut—s)z—y)er * xaaghJ(f)(y)ldy.  (3.63)
dp(t—s)2(0 —0")z Jr2

21



Thus we have from (3.13) and by applying Lemma 2.5 after ||.J(f)ho,0,0/5) 21 < IIJ()IL4llR0,0,0/) Las35

1
(0,97') V) SQHJ(f)h(Qo,g)HLl 3% | Ry fHX%O(;
oy @7 lf Al = T T s n - T IR] .0
ClE(t — 8) 2 (9 — 9’) 2 (t — S) 2 (9 9’) 2 Xﬁ’g) X6
Similarly, one can derive
, 1 Ry fll 0.0
0.%) - (v 51 1R fl
Iy P oWl S —— B8 B a-
vadp(t — s) 0 —0)1 X}?:g) 1.0

The details are omitted here. This completes the proof.

Lemma 3.9 Assume that 0 < p < dg and 0 < 0 <278, Let j = 0,1, and let [(1) = 0 and 1(0) € {0,1}.
Then

||R f||
1 d N .
|5 M=) g9, < vt It X5dhl a4+ (3:64)
" A TTRINE Hmﬂwh) eXsdshly 20
Proof. From
14— ) 27(12*?/2)2 11 11
Pab LS 7y < e 32 lee—nellan] < p—gr2(dp—a2)1 6] yo > dp, (3.65)

by arguing as in the proof of Lemma 3.8 we have with x = x{,, Xs8dp,

v 1 —zv(t—s)éi—2(dp—= >
@ISR = 5)) (€] S e IRl [T g - )00 - o)
’ vi(t—s)2 0

=

'/R(HleldEHLng "’e_dE|m|||fX§OdEHL}02)|]A1(£1 —m1, y2)|x dn1 dye.

Thus, as in the proof of (3.6), one can derive

o 1 HRfH%?“) o
o G F (@) 2 12 S ——— ! 1T DR 00X 12 12
FaT @l Ml 1, vi(t—s)? *llyeor ne
]
1 40 12 HR f“ ;OBOI) 1(5)
4av J
S T Tevs F - X llyys+i).2
va(t—s)2 dy ||f||X<o,0)
I1,1-1(5)

Here we have used ||fx¢ ol < 1 for f € X (0’0), and also used the Parseval equality and
X10dg Lo LY, L 11,0

cp(IO’H/ s) < es9% for y2 > 4dp in the last line. The similar argument using the estimate like (3.63) yields

1 40 g2 HRVfHX(O,O)

—evsiE IB,0

D) f, bl S
2lf Vi (t—s)t ”f”X§?18)

)

IXapX8dphll 4

In particular, (3.64) with j = 0 follows from # < 278, From the definition of B(f, ) and (3.65) the term

82]-"(@?’2) [f,h]) is estimated in the same way (see also the arguments in (3.61) - (3.62)). The details are
omitted. The proof is complete.
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Lemma 3.10 Assume that 0 < u < dg, p > 0, and 0 < § < 278, Let j = 0,1, and let [(1) = 0 and
1(0) € {0,1}. Then

[ @731t = )0y

11,5
-1-4 vs1 . _pgp
(dE 2(7)2 _|_]dEle vsdE)||Ruf||X(O,§) c <
p 183-16) ¢ ([IV (X8ap M) lwrisi 2 + HV(XSdEh)HL%)' (366)
HfHXg’g) 1(5)
s L—=0(g

Proof. First we note that Lpgu’e/t)}"(B(f, ngEh)) = F(B(f, ngEh)). Combining this with (3.6), we get

( 7%) ] v j c j c
lor" e F (@A AN = 9)llnz 12, < IEF (B Xah)llnz, 12, = 1] BU Xeagh) 2-

When j = 0 by using Lemma 2.5 the last term is estimated in two ways:

_3 ps.l
dE2 (?)2 HRufHXm,g)

IB(fs X8apMllzz S IXap (Nl IV (X8ap M)l L2 < 181 0 [V(X8ap M)l L2,

17150
RPIZ I
. . . dEl(*)2 HRVfHX(O,@ .
IB(f XgapM) 2 < [IXaas T (24l V (Xgap P 14 < Il P 180 o [V(Xgaph)llwrz.
X170

When j =1 it follows again from Lemma 2.5 that

101B(f; XgapP)lIL2 < [IXiap T (O10) | LalV (X8aph)llLa + IXGap T (Sl [[00V (X8 1) 12
-3 vs, 1l
dE2 (7) 2 ||Rl/f|| (0,2)
p X3 0 IV (XEaph) e
1500
By using (3.13) and || B(f, x§4, )21 < IXGa, T (Dl £allV (XGqp Pl ass the L norm is estimated as
1
a5 ()2 R,
E (p) | fHX%?g

(O,Q) v c
Iy DU Bt — 8|0 S IB X k) S
11l 00

)

19 (P4

Again Lemma 2.5 is used. Thus (3.66) has been proved for j = 0. To complete the proof for the case
j = 1 we use the equality 82(I>§V?2 [f,h] = —e*(=9)2D 9, B(f, X§a, ). Then the above argument implies
0D oy 7 (@) £, 1] (1 S (102 B(f, XGay b
lor O F (27 31F, k)t = ))ll22 12, S 102B(f: X5a, ) 2
< (IXFap 2T (Dl + IxGap (Do) IV O 1) [l
(0,0)

Since [[x4y,J (f)|[Le is estimated from Lemma 2.5 as above, we focus on ||x5,, 02J(f)|z+. If f € X77;

then the desired estimate follows from Lemma 2.5. On the other hand, if R, f € X}%f) 1/ %) then we have
from the equality 02 J1(f) = —f + O J2(f) and 02 Ja(f) = —01J1(f),

1 1
IX7ap 02 (Pl < IX7ap flls + [IXGap T (1)t S IXdap N 721V (aap DI E2 + Xda, T (91| 4

1 L g2 W Z N
S dgle BEIRN o+ g ()R o

IB1 IB1

The proof is complete.
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3.4 Estimates for solutions of heat-transport equations

We consider the heat-transport equations with the homogeneous Neumann boundary condition:

OH —vAH +u-VH = f t>0, reR%,
OoH =0 t>0, x€dR%, (HT)
Hl|i—0 =0 zeR2.

Here the velocity u is given by
u:J(wE+R;wB+R;wIB+wH) (3.67)
for some wp € L®(0,T;X5" NYe), wp € L0,T;X5"), wip € L®(0,T;X\%7)), and wyy €

t
L0, T; X\7%)). Fix wp and wp, and we will use the notation ||(t—) ™ £l 1(0.1:2) = / (t—s)""||f(s)]| 2 ds.
; " 0

Then for w; = (wrp,wrr) we set

Ary(t,wr) = [[VJ(WE) || 0,600 + V| (t — ‘)7iX{x224dE}VJ(R%wB + Riwrp +wrr)|| 1 o24),
Agy(twr) = ||V J(WE) |l 110414y + v (t — ')ﬁX{zszE}VzJ(R%wB + Riwrp +wrr)| 21 o22),
Az (t,wr) = tlull Lo (0,41

Ago(t,wr) = e~ 5375% (|| X fadp<as<san) Vuall Lo 0102) + [ull oo (01,200 + 1)

Proposition 3.11 Let T € (0,dg). Assume that f € L>(0,T; W*1(R2) N W*2(R2)) and

Uo<t<T supp f(t) C{z € Ri | 22 > mdg} for some 12 <m < 32, (3.68)
4
dp
sup ||u(t)| pee < T Z sup Aj,(t,wr) < 1. (3.69)
0<t<T (D3 0<I<T

Then there is 6 > 0 independent of v € (0, dZE) and dg such that if sup A1, (t,wr) < then the solution
0<t<T

H e C([0,T); L*(R%) N L>®(R%)) of (HT) satisfies the following estimates for 0 <t <T.

H@) e S 075 w1t =) Fllp o l<q<p<oo,  (3.70)

X < on-tyam HOlor S e 7% | fll110.401) 1<p< oo, (3.71)

X (o <(m-10d5y VH Ol S € 7% | £l 110 110y 1 <p< oo, (3.72)

X (w2 <(m—10)dp} V H | Lao4:10) S e_ﬁd%HfHLl(O,t;Ll) 1 <p,q<oo. (3.73)
Moreover, if 4/3 <p <4 and 1 < q < p then

IV Oag HO)lw S v 7)1t = )"0 2V a0z + Il @i, (3.74)

IV (Xap HO 2 S IV Fllnrosre) + IV Fllioszay + 1oz (3.75)

¢
Proof. Let p (t,s) be the evolution operator associated with (HT). Since H(t) = / PW)(t,s)f(s)ds
0
the estimate (3.70) follows from (7.4) in Lemma 7.2. Next we prove (3.71). If x5 < (m — 4)dg and
y2 > mdp, then we have from (3.69),

|z — y

d
2+E

t
[z —y| - / lu(T)||zoe d7 > & —y[ =T sup |lu(t)|ze =
s o<t<T
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for 0 < s <t <T. Thus (7.6) yields 0 < quy)(t,m;s,y) < (vt —s)7t exp(—4yéﬁs) - 1‘5}?;’7';) for

29 < (m —4)dg, y2 > mdg, and 0 < s < t < T. Hence the Young inequality implies

¢ 1 __dp ~201-1) _ 1
IX{z2<(m—1)ap}H (@)|lzr < /0 W@ W) || f(5) || ds S dy e~ % || £l 1 0.it)s
v(t—s P

which proves (3.71) by 0 < v < d% and 0 < t < dg. To show (3.77) we use the formula
E

t t t 3
H(t) = —/ 816”(t_5)ANu1H ds — / agey(t_s)AD’UJgH ds + / ey(t_S)ANf ds = E H;(t). (3.76)
0 0 0 i—1

¢
We decompose Hy as Hy = Hy1 + Hi, where Hy (t) = —/ Oye’t=9)AN (u1 HX {zy<(m—1)d}) ds and
0

t
Hi(t) = —/0 Oy’ t=9)AN (u1 H X {2,>(m—4)dz}) ds. By the maximal regularity we have for 1 < p, ¢ < oo,

IVH | Lao ey S vt H X (o< (m-ydg lLaozr) S (08) " As (6 wn) | HX {oy<(m-2)dp} || La(0.1:0), and
1

thus, (3.69) and (3.71) yield |VH1 1|/ za(0,t;10) S 67712”’56%||f”L1(0,t;L1)' On the other hand, since |z —y| >

|z —y|/2+dg if x2 < (m —6)dg and y2 > (m — 4)dg we have as in the proof of (3.71), by using (3.70),

1 2

t e = UE ||y H| 11 —2

[eS— O 2 45 < dy
0 (V(t—s)) p

which implies ||X{z,<(m—6)ds} VH12llLa(0,:00) S 67ﬁd%||f||L1(0,t;L1)- The term Hy is estimated simi-

larly and the details are omitted. As for Hs, the representation of the heat kernel and (3.68) lead to
_ g2 :

IX{zo<(m-a)dpy VH3(#)||Lr S e SutdEHfHU(O’t;U). Collecting these, we get

(2-1)

__1 g2
e GutdEA37V(t7 w[)HfHLl(O,t;Ll)a

__1 12
X (zo<(m-6)dp} VH | Lo iry S € 278 fll 10,41 1 <p,q< oo (3.77)

To prove (3.72) and (3.73) we decompose H as H = Z?:l H;, where

3

t t t
Z H;(t) = — /0 e/ (t=8)ANy, . V(HX(m-7)d) ds — /0 e/ (t=s)Any, . V(HX(n—7)a) ds + /0 e/t=)AN s,
=1

The first term is estimated from (3.71) and (3.77) as

V(HX(m-7)dp)|lLr t1
( )1E ds S —llullzeeots000) IV (HX (m-7)d) | La(0,1520)

(V(t — s))i V2

1
Se 16thEA37V(t7wI)HfHLl(O,t;Ll)v

/ -
X (o< (mo)in) VEL (D)l| e < /0

and by the maximal regularity together with (3.71) and (3.77) we also have for 1 < p,q < oo,

_ _ 1 2
IV?Hill Lao,iszry S vl VHX n-nyap) | Lao,iir) S Asw(twr)e” 5% fll Lo s

By using v - V(HX(m-7ydp) = V - (WH X (n—7)d,,) and (3.70) the term Hy is estimated as

, t e_md% —2(3-3) _ L2
tresmiey VSOl & [t ds £ d™ 0 e an Ay (1w
0 (v(t—s))2 >
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and

1 2
6_ 4u(t—s) dE

X (oastmesyiny V2HS(0) 10 / (51||uHHL1dssdE

E_l) 1 o
‘e 6"tdEA3,V(t7wI)HfHLl(O,t;Ll)-

v(t — s))2 P

It is easy to estimate ||X{z,<(m—9)dst VH3(E)llr and [[X{zy<(m—1)dp} V> H5 | 12(04;12), SO we omit the de-
tails. The proof of (3.72) and (3.73) is complete. To show (3.74) set Hg = Hx§,, . Then VHp satisfies

OVHg —vAVHg +u-VVHg = —Vu-VHg — V(2005x44, 02 H + v03x5q, H — usHdox5q,) + Vf
with ,VHg = 0 on 9:R?. By using (7.4), (3.71), (3.72), and (3.73) we have for 4/3 < p < oo,
t [VJ(Riwp + Riwrp +wyrr) - VHg|| 4

T+p
LT (s

IVHe(®) | S IV (@) - VHl| 1 000 + / :
0 (u(t — s))4

IV (ugHOaxgy, )| 4 V£l
VIV OG0, 21 ) + IV O, D 300 + [ LA R L
0 (v(t—s))* P (v(t—s))a >
_1.1
S Ay (t wr) Sup IVHE(s)|[zr + Aaw(twD) |l oz + 1@ =) 2V £l L oL0)-
<5<
Thus (3.74) follows if sup Aj,(t,w;) < J < 1. The estimate of V2Hp is obtained from the equation
0<t<T
OV?Hg — vAV? Hp +u-VV2Hg
= —Vu-VVHg - V(Vu - VHg) = V?(200:X4,00H + v3xfa, H — uaHdaXGy,) + V2 f
with 3,V?Hp = 0 on OR?. Then from (7.4), (7.5), and the Holder inequality, we have
IV*He ()2 S Avu(t,wr) sup [[V2He(s)ll g2 + Azw(twr) sup [VHg(s)|ps + V2 fllpro4:02)
0<s<t 0<s<t
1 1 _1
+v2 ”V((%Xid};a?H)HL2(0¢;L2) +v2 Hv(a%XidEH)Hm(o,t;L?) tv o2 HV(U2H82XidE)HL2(0,t;L2)-
From (3.71), (3.72), (3.73), and (3.77), it is not difficult to see
1 1 _1
v ”V(82XACLdE82H)||L2(O,t;L2) T2 ||V(322XZdEH)||L2(0,t;L2) +v 2 HV(U2H32XZdE)HL2(o,t;L2)
S Agp(GwD) | fllzr o0y
Hence (3.75) follows from (3.74) with p =4 if sup A;,(¢,wr) < 0 < 1. This completes the proof.
0<t<T
In the construction of w; we also need the estimates for solutions of the equation
WK —vAK +u' - VK = —x204,(u—u') - VH t>0, JJER?H
0K =0 t>0, =x€dR%, (3.78)
Kli=0 =0 reR2.
Here H is the solution of (HT) and the velocity fields u, u' are given as
u:J(wE—i—R;wB—i—R;w]B—i—wH), u’:J(wE+R;wB+R;w’IB+w'U) (3.79)

for some wp € LOO(O,T;X](EO’G)), wp € L“(O,T;Xg)’p)), wrp, Wy € L°°(O,T;X§%’

0.0
L2(0,T; Xﬁl,l))- For fr = (fip, frr) we set |[fill yuoor = 118l ypuo + I f11]l 00

) /
71), and wrr,wp; €
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Proposition 3.12 Let T € (0,dg). Assume that sup As,(t,w}) <1 and that H satisfies the estimates
0<t<T

in Proposition 3.11 with m = 32. Let K € C([0,T); L*(R%) N L>®(R%)) be the solution of (3.78). If
4/3 < p < oo then

__1 72
IK(0)llzr S e 7% || fll 10420y sup [lwr(s) — wi(s)]l 000, (3.80)
0<s<t 1,0
__1 g2
IVE®)lzr S e 20| fll 10400 S Jwr(s) — w}(S)IIX;odo,o» (3.81)
S 3

Proof. From (7.4) we have

t [Ix20a5 (u — ') - VH|| 1 . ,
T ds < voatz|lu — u'|| oo (04,14 1X20a0 VH | L2 (0,1;10)
(v(t—s))*

Thus (3.80) follows from (3.77) and Lemma 2.5. Next we use the formula

HMWMSA

t t
K(t) = — / e/E=)AN Y VK ds — / /=98N x4 (u— ') - VH ds = Ky () 4+ Ka(t). (3.82)
0 0

Since V -« = 0 the first term is estimated from the maximal regularity and (3.80) as
VK1l Lao,0) S V_lHu/KHLq(O,t;LP) S V_luu/HL‘”(O,t;LOO)HKHL‘I(O,t;LP)

__1 g2
< Az (t,wp)em 7B || fll oy sup [Jwi(s) — wi(s)] 4000 (3.83)
0<s<T 1,0

As for K5, we have from (3.72),

t HX20dE(U - U/) “VH|

t VH
vl < [ gy < e ooy [ 20V
0 (v(t—s))4 0 (u(t—s))
_ 1 g2
< e e |u - Wl oo, | fll L2 0)- (3.84)

Again from the definition of K7 we have ||[VK1(t)|zr < [|w']] Loo (0,000 | (v(E — -))’1/2VKHL1(0¢;LP). Then

(3.83), (3.84), and Lemma 2.5 yield (3.81). The details are omitted here. This completes the proof.
The following proposition is used to verify the conditions in Proposition 3.11.

Proposition 3.13 Let wg be the solution of (Vi) and let Ty be the time in (2.3). Then there is T} €

(0,Tp) such that if 0 < v < d%, T € (0,1¢], and

sup [Jwp(t)]
0<t<T X

—

1
oty <L sup (HwIB(t)HX(O,ﬁ) + lel(t)”ng}ﬁ)) < v, (3.85)

0<t<T IB1

sy

then we have for u= J(wg + Rl/,,wB + Rl/,,wIB +wrr),

4
dp
sup ||u(t)||pe < T sup Ay, (t,wr) <9, E sup A;,(t,wr) < 1. (3.86)
0<t<T 0<t<T ‘S 0<t<T

Here 6 > 0 is the number in Proposition 3.11 and Tj) is taken so that Tj) > c'dg for some constant
depending only on ||b]lywa.1qpa2.
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Proof. The assertion follows from Lemma 2.5 and the definitions of A; (¢, wy). The requirement of v < d3,
is to ensure the lower bound Tjj > ¢’dg, which comes from the term Ay, (¢, w;) and the application of
(2.20). We skip the details. The proof is complete.

Let H be the solution of (HT) with u = J(wg + Ry ,wp + Ri/,wrp +wir), and let H' be the solution
of (HT) with v’ = J(wg + Ry ,wp + Ry jwip +wh;) and f replaced by f’. Then we have

Proposition 3.14 Suppose that f, f' € L>®(0,To; W>1(R2) N W223(R2)) and that f, f' satisfy (3.68)
with m = 32. Assume that wg, wr = (wrp,wrr), and Wy = (W, w};) satisfy (3.85). Let 0 < v < d3,
and let T) > 0 be the number in Proposition 3.13. Then for 0 <t < T} and 4/3 < p < 2 it follows that

X (n<16a,0y (L (8) = H'(£)) || L
1 2
< ¢ 32009 — o
~e E(OS<1§<)t lwr(s) w1<3)HX§?6O»0)(HVfHLl(O,t;L%) + e openy) +IIf = f HLl(O,t;Ll))7 (3.87)

IV (XSap H (t) = XEap H' (1)) || v
1

341
ST s or(5) = w6 o (19 ety 19518, + I 300
HIV = sz + I = sz (3.88)
Proof. We decompose H — H' as H — H' = K + L, where K is the solution of (3.78) and L solves
L —vAL+u' - VL =—x5, (u—u') - VH+ f—f t>0, =zeR%,
0L =0 t>0, x€dR%, (3.89)
Llt=0 =0 T € Ri.

Then by applying Proposition 3.11 to (3.89) with m = 20 we have
X {zo<16dpy L) Lr < e st (IIx50a, (w — ') - VH|| 10,20y + I1f = F'll L 0.621))
190k, LDl = [ 0= )19 (o 0= 00) - W)
IV = llnropzey + IX50a (w —u') - VH| gty + I1f = Fllo oy

for 4/3 < p < 2. The Hoélder inequality, Lemma 2.5, and Proposition 3.11 imply
IX50a; (u(s) = u'(5)) - VH(s)[ g2 < u(s) — v ()| 24lIV (x§ap H ()] 4

3
S [lwr(s) — w}(S)HX;%om (”VfHLl(o,s;L%) + 1 Fllro.s21))s
and
IV (X204, (u(s) — u'(s)) - VH(5))]l, 4
< lu(s) = ' ()| 24|V (XS0a,, VH ()l 22 + X, V(u(s) = 4 (5)) | 22 1X50a, VH (5) || L4
< Jlwr(s) — w'I(S)HX%om (IV?fllzr0,.5:22) + IV Fllro,s.ce) + 111 0.5:21))

Vs |1
+ ((dT)Q |wrp(s) — w/IB(S)H ©.2) t |wrr(s) — w/II(S)HX(OvO))(va||L1(0,s;L4) + ||f”L1(0,s;L1))
EP X180 11,0

_1
S P2 llwi(s) = wi(s)ll .20 IV fllLroswrey + 11l o,s2))
1,0

for 0 < v < df;. Take p = 277. Collecting these, we observe that || X (4, <164, L(t)||zr and IV (X84, L))l e
are bounded from above by the right-hand side of (3.87) and (3.88), respectively. Since K is already
estimated in Proposition 3.12, the proof has been completed.
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4 Construction of solutions

In this section we construct the solution wp = Ry, wp of (Vp,) and the solution w; = R/, wip +wys of
(V1,) by solving the associated integral equations. Lemmas 2.1, 2.2, and 2.3 imply the integral equation
for wp such as

t t
wp(t) = / Ag)(t,s,wB)ds+/ F](;)(t,s) ds, (4.1)
0 0
where
2 2
AR (t,5,wp) = > ) [Ruwp + wp, wp](t— )+ 63 U [Ruwp + wp, wp](t - 5)
=1 =1
2
+ 364 1 [Rywp + wp, wp](s), (4.2)
=1
FY(t,s) = ®pa[Rows, Rywg)(t — s) + Y [Rywp, Rywg](s). (4.3)

Precisely speaking, @g)i[R,,wE + wp, wp] should be expressed as @%’)i[R,,wE(s) + wp(s), wp(s)], but we
will use the abbreviated style for simplicity of notations. The similar remark is added for the other terms.

The system for the remainder part w; = (wrp,wyr) is described as

t t t t
wip(t) = / AWMt s,wp)ds + / F(t,s)ds, wyy(t) = / AWMt s,wp) ds + / FY(t,s)ds, (4.4)
0 0 0 0
where, by setting w = wg + Ry/,wp + Ry, wip + wyr, each term is defined by

2
AV, s,wr) = > @Y [Ryw, wip)(t — ) + Y @4 lwip + Rywir, w](t — s)

=1 i=1
+ (I)gv)Q [Ryw, Rywrr](t = s) + @%’7)2 [wrg + Rywrr, Rywg](t — s)
2
\I/z(y) [Ryw, wrp + Rywrr](t —s) + Z ¢4 \IJZ(V) (wrp + Rywrr, Rywg + wpl(t — )

=1

=

+
RS
Nl

.
Il
—

2
Ey) [Ryw,wrp + Rywrr](s) + Z ¢§% Tﬁ»”) (wrg + Rywrr, Rywg +wg|(s), (4.5)
i1

+
gl
<S5
m\:{

.
I
—

EiR(t,s) = 0y [wp, Rywp](t — 5) — vR,e” I3 (i (Awp)Hiy, o))

S
S

e

+ TEV) [’LUB, Rwa}(S) — UzRy/ EG(V(S — 7’)) * (AwE — Jl (AWE)H}XQ:O}) dT,
i=1 0
3
A%) (t,s,wy) = q)gv) [R%wIB +wrr,wg](t —s) + <I>§”1) [w, wrr](t — s) + Z <I>§lji) [w, HV [wi]](t — s), (4.6)
=2
FI(;) (t,s) = @gy) [R%wB,wE] (t—s)+ ve? AN A
Here H™)|wy] is defined by
t
HW)[wi](t) = — / PM(t,s)(B(Riwp + Riwrp +wir,wp) — vAwg) ds, (4.7)
0 v v
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where PTEV) (t,s) is the propagator for the heat-transport equations (HT) with

u:J(w):J(OJE—FR;U}B—FR;IU]B—FU)U). (4.8)

The use of H®[wy] rather than wy; in (4.6) is essential in order to overcome the difficulty arising from
the lack of the analyticity in the region away from the boundary.

4.1 Solutions of (Vg,)

To apply the ACK theorem to (4.1) we set the iteration sequence {wg)}gozo by

t t
wg)(t) :/ F](;)(t, s)ds, wgﬁl)(t) :/ AV )(t s w%))ds—&—w(o)( t). (4.9)
0 0
We also set
1 xwor gy = sup IF ot |wellzs = sup [|we(t)|lve, (4.10)
B 0<s<t Xp 0<t<Tp

where Tp > 0 is the number in (2.3).

Lemma 4.1 Assume that 0 <2 Y (u—p/) <p/ <p<dg, 0<p <p<274 and 0 < s <t < Ty, where
Ty € (0,dg) is the number in (2.3). Then

(v)
A1) = AP,
1 s%

_ + 1 1
BBy (t—s)2(p—p')2

< ( )(lwsllze + 11l g g + 1Pl gn ()1 = Pllggn - (411)

!/

Proof. From Up<i<7,3upp wr(t) C {z € R% | 23 > 32dg} we have sup [wg(t)||
0<t<Tp

0 < pu<32dg and N > 0. Then, since Ag) (t,s, f) consists of the linear terms and the nonlinear terms
which are bilinear forms, (4.11) follows from (3.36), (3.49), (3.51), and (3.54). The proof is complete.

XMy, < 2lwllz, for

Lemma 4.2 Assume that 0 < p < dg, 0 < p < 27%, and 0 < s < t < Ty, where Ty € (0,dg) is the
number in (2.3). Then

1S @) oy < dilwrll,. (4.12)

B

Proof. Tt is not difficult to see from Up<i<7,supp wg(t) C {z € R% | 25 > 32dp} that the proof of

(3.54) actually implies ||T(V)( V(JJE,RVWE)HX(dE,p/t) < al;31||mg||2
B

<
2d@,0
Lo (0,5 X B0y ™

El HWE||2ZE This esti-

mate and (3.49) yield (4.12). The proof is complete.

For vg > 0 we set
Yy = (1= (k+2)7?), v = lim = y0llZo(1 — (b + 2)7%) > 0. (4.13)

A simple modification of the arguments in [27, 11] for the ACK theorem (see also [26, 31]) leads to
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Lemma 4.3 Let 0 < v < dg. Let g = dg, po = 27%, 00 = (po, po), and 0 < g < Tpy. Set

A = su (k)
k p sup [Jwg’ || xx0 4,
1<k<1 0<t<yp(1-k)
(k+1 k V(1 — k)
Go=sup  supu T = w0y (R~ ).
1<kl 0<t<yk(1-K)

If 7o is sufficiently small then it follows that A\ < 1 and (, < 6%y for all k € N and for some § € (0,1).
Moreover, ~yy is taken so that o > codg, where co > 0 depends only on ||b||y,.

Proof. Set Cp =1+ ||wgl|z;- Note that vo < Ty < dg = po. From Lemma 4.2 we first observe that for
~ O ~ ~ _
0<i<t<aol—r)and /2 <k <1, [0 cuomn S Ierl, < g lwel,. Hence we

B
have \g < 1/4 if vy = copo with a sufficiently small ¢y € (0,1) depending only on ||wgl|z,, and thus, on
|b]ly- Similarly, for 0 < <t < 1(1 — k) and 1/2 < k < 1, Lemma 4.2 with h = 0 implies

0 0) /7
lwy @) o) S / IAE 5,05,y 0+ [0 D 22,
B

B

I 1 iz (0)
Si + — w + ||w K(s)o, w K(s)o dS‘f’*,

o L G =t T el gm0+

where x(s) =271(1 — s/v0 + k) € (k,1). Since k(s) satisfies s < v9(1 — k(s)), we have
7 ;1

), CE/ 1 t2 1 Y0 1 1 1
W (Ol g, 20) S + = ds+ - S Ce(—)2+- <5,
H B ()HXB(uo,f) o Jo (H(S)—Ii (t—s)%(ﬁ(s)—ﬁ;)%) 4 (MO) 4 9

if ¢p chosen above is small enough (but depending only on ||b||y, ). This shows A\; < 1/2. Moreover, the
calculation as above yields

1)/~ 0)
i &) = W O 20)
X
1t 1 i

Shh Gt (F— )2 (k(s) — k)2

N|=

) (ol ze + [l o )05 grcoma 5

for 0 <t <t <ml—k) 1/2< k< 1, and k(s) = 271(1 — s/y1 + k). Then it is easy to see

||w§31)(t) - wg)( )]l [P ORS CE(’V()/,LL()) t/(%(l — K) — t), that is, (o < 1 if the above ¢ is taken
B

small enough. Now let us assume that A;1; <1 for j =0,1,---,k. Then from Lemma 4.1 we have for
0<t<t<yu(l—r)and 1/2 <k <1,

k ~ k
w2 (@) — w0 (@)

H Iﬂ(p,o Jl)
B
1 [t 1 2 ) T
am T lwellzs + lwg ’ X lwg ™ —wg’|| )00, A
Ho Jo (/1(5)—/{ (t—s)%(ﬁ@)_ﬁ)%)( E ]201 0(s) ) Bl xs)0,)
Cr /f 1 2 (k+1) (k)
S o + g w —w K(s)o, dS,
Ho Jo (H(S)—H (t*S)%(E(S)—/{)%)H B B HXB() 0(s)
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where x(s) =271 (1 — s/vi41 + k). Since s < v(1 — K(s)) and k(s) € (k,1) for 0 < s < £, we get

7 -1
(k+2) 7 (k+1) 7 1 t2 s
w t) —w DI oy S C C/ + — ds
™ @) =i O o S Otk | (rmy— m(t_@é(ﬁ(s)_@%)w(l—m(s))—s
) 1
t 2
- 7
§CEC1J/ ( V41 A 1 k+1 §)ds
0 pio(r1(l — k) — ) g (E = 8)2 (Y1 (1 — K) — s)2
t

Yo\ 2
S CeGr(—)2 =,
G =

which gives (x11 < Ck (70/u0)1/2§k, ie., Cup1 < 6C < 8FF1¢ for 6 € (0,1) if the above cg is sufficiently
small depending only on ||b||y,,. Using this estimate and the definitions of Ag, (x, and vk, we also have

k

Mevz € —2 Gt At S (b +3)285 10 + At < Go D (G437 4 AL
Vk+1 — Vk+2 j=0

Since (p < 1 and A\ < 1/2, if ¢¢ is taken small enough depending only on ||b||y, then we have Ao < 1.
Hence the assertion of the lemma follows by the induction on k. The proof is complete.

Lemma 4.3 implies the following existence theorem for (4.1).

Theorem 4.4 There is Tp € (0,Tp) such that (4.1) admits the unique solution wp which belongs to the

space C([O,TB);X](B,’iB’pB/TB)) with pp = dg/2, pp = 27°, and satisfies sup |]w3(t)\\X(HB,pB/t) < 1.
0<t<Tp B
Moreover, Tg is taken so that T 2 codg, where cg > 0 is the number in Lemma 4.5.

Proof. Lemma 4.3 shows that {wg)}i‘;o is a Cauchy sequence in the Banach space endowed with the
(1 — k)

norm ||F|| = sup sup || F| xxoo0 4y (———— —1), where 7 > 0 is defined by (4.13) with 79 > 0 in
1/2<k<1 0<t<~(1—r) B t
Lemma 4.3. Let wp be the limit of {wg)}z‘;o. Then Lemma 4.3 implies  sup sup  |lwp ||Xg¢70(t) <

1/2<k<1 0<t<y(1—k)
1. By Lemmas 4.1, 4.2 we see that wp is the solution of (4.1) belonging to C([O,Tl);Xé“’p/TB)) with
p=dg/2 and p = 27, where T = 70/2. The proof is complete.

4.2 Solutions of (Vy,)

In this section we construct the remainder part w; = w —wg — Ry, wp, where wp is the boundary layer
function in Theorem 4.4. Our aim is to solve the integral equation

t t
wr(t) = / Agy)(t,s,wl) ds —|—/ FI(V)(t, s)ds, (4.14)
0 0
where w; = (wrp,wry), Agy)(t,S,UJ]) = (A%)(t, s,w[),A(ﬁ)(t,s,wI)), and FI(V) = (FI(E,),FI(;)). This
solution is shown to give wy of the form wy = Ry, wrp + wrs. To apply the ACK theorem we consider
the iteration sequence {w&k)}zozo,

t t
w}o)(t) = /0 FI(V) (t,s)ds, wgkﬂ)(t) = /0 Ag'/)(t, s,wyc)) ds + wgo) (t). (4.15)
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Let Tg > 0 be the number in Theorem 4.4. We set

dg _
lwsllzy; = 0<Stu<12pB ||wB(t)HX(“B*pTB) WB= 5 PB= 275, (4.16)
B
12l g ror = 18l g + 111l 0 fr=(fip, fir), (4.17)
3]
||fI||X;jj(t) = s P OlNS fi(s) = (fi(s), f1(s)), o= (n,p,0).  (418)
SS ]J

Lemma 4.5 Assume that 0 < 27 —p/) < p/ < p <dg/2,0<p <p <275 0<60 <278 and
0 < s <t<Tg, where Tp is the number in Theorem 4.4. Set 0 = (u,p,0) and Cp =1+ ||wg||z,. Let
7 =0,1. Then

1 52

+ 1 1
Wt —s)2(p—p)2

A s, ) — AL s, ) < OR
A5 ( ) — App( )HX,(‘;,;%> (u—u

1 n v
va(t—s)2

) fr — hillxy (s)

/

NI
ol

(t=s)i(p—p)>

+ ( Y frllxg ) + hrllxg ) Ifr = hallxg ). (4-19)

Proof. We note that A(V p(t,s, fr) consists of the linear terms and nonlinear terms which are bilinear
forms. Hence (4.19) dlrectly follows from Lemmas 3.4 - 3.7 and ||wpl|/z; < 1. The details are omitted.
The proof is complete.

Lemma 4.6 Assume that 0 < p < dg/2,0 < p <27 and 0 < s <t < Tg, where Tg € (0,dg) is the
number in Theorem 4.4. Let 0 < v < d%. Then

m\»—t

1753 o)y S 7z (4.20)

Proof. Tt is not difficult to see that the terms || R, e’ (=8N (Jl(AwE)H%:EQ:O}) | oty and v Ry, / EG(v(s—
IB,1 0
7)) (Awg —Jy (AwE)H%m:O}) d7 ||\ (up/t) are bounded from above by Cllwg||z, for some constant C' > 0.
IB,1

The details are omitted. In the sequel we give the estimate only for @%})2 [wp, Rywg] in the definition of

FI(]VB), for the other terms are estimated in the similar manner. Since supp R,wg(t) C {X € Ri | Xo >
32v71/2dg} we observe from (3.34) and from the calculations as in (3.26) and (3.28),

2 o0 o
|~7:(N(V)('LUB,RVWE))(§1)| < Z/O e—l/2|§1|Y2|£1|1/T‘.7:(DJ(,V)(wB,Rwa))‘(gl,Yz)dYQ

(e.) B 1 1 R R “
& /3sz [Gafe 0 (2 mllxz<vay i (m)liny, + Ixizozvayn(m)lpy )Rown (& — 771:Y2)HL%1 Y2

172

d ) ) —
< dgle 20| (s ) g, + e 55 oty @ )Ly )1+ 16— ml) gy sl

which implies
1

el ) F(NW (wi(s), Ruwr(s)) |2 < i(’/% )HwEllz lwsllzy S o w25l wsl 2
s Ltv le ~ dE d2 E B ~ dE E B*
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Here we have used 0 < s <t < T < dg and v < d%. Hence we have from (3.14),

N

188 5wn(s), Ruwn()t = )| oo S I F (NG (wi(s), Ruop() Iz S - llwellz,

IB,1 dp

by ||wgl||z; < 1. The proof is complete.

Lemma 4.7 Assume that 0 < 27 (u— ') < p/ < p<dg/2,27"<p <p<2°,0<6<28 and
0 < s <t<min{T},Tp}, where Ty, Ty are the numbers in Proposition 3.13, Theorem 4.4, respectively.
Set o = (u,p,0) and Cp =1+ ||wg||z,- Let fr = (fip, f11) satisfy (3.85) and 0 < v < d3,. Then

||A%)(t737f1)|| 1,00y~ CE( 81% 1 )HfIHX” (s) + 3 } 1 HfIHX" (s)
Xt dp(t )2 (0 - 0')> S e
2 1
PN L (4.21)
dg (t—s)2
Moreover, if hy = (hrp, hrr) satisfies (3.85) in addition, then
1
” 5 Cps? I f1llxe () + 1l xe . (o) 1f1 = hrllxe (o)
NS (s, 1) = AT (s b o) S ( C =+ CF)
Xi16° dp(0 —0")2 v2(0—0")1 (t—s)2
(4.22)

Proof. To make the notation short the terms like (I)gl,) [Ri/vfis + fr1,wE](t — s) will be denoted by
<I>§V)[R1/,,f13 + frr,wg). From supp wg(t) C {z € R | 25 > 32dg} we apply (3.66) to get

187 (R fr5 + frr,08ll 0 ) = |9F3(R fi + frr, ]|

.9
II,1 II,1
101 _p g2
V282 e vs E

< (( 2 SO o + IIfH(S)IIXw,m) losllze < Collfillxs @ (4.23)

dgp5 E IB,1 II,1 ’

E
for 0 < v < d%, 0<s<dg, and 277 < p/ < p <275, Similarly, we have
”(I)gy)[R%fIB‘i‘fH_R%hIB_hlwa]HX( , 9/> NCE”fI_h[HXU . (4.24)
11,0
Next we observe from Lemma 3.8 that
57 (|wellz + |wgllz Cps?
|2 lwe + Raws, full oo < (lorlz ) 1 f1lx7 ) < ? N frllxg o)
v X dp(t —s)2(0 — 0')2 dp(t—s5)2(0 —0')2
(4.25)
1 3
) st (Il (5)ll gm0 +dg? 1f2(s)ll g 0)
191 [Ryfr5 + frr fulll o) T - 1) o)
v Xira d%yl(t — 5)5(9 — 9’)1 Xir1
1
sS4 9

< 177z, (s)- (4.26)

d2ui(t — )2 (0 — 0')i
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Similarly, Lemma 3.8 implies

||‘I’§l:1) we + Riwp, frr — hII]HX( o+ ||‘I> [R1 frB + frr, fr1) — <I>§”1) [R%hIB + hir, hU]HX(“,’eT/)

)

II, 0" 11,0
1

1
Cps? SZ(HfIHX" ) Iallxg, )
< S 11 = hrllxg ) + 1f7 = hrllxg o) (4.27)
dp(t— )2 (0 — 0')2 dgm(t—s) 60— 01

As for the term <I>§V2) we + Ry wsg, H®[f7]], we have from (3.64) and Proposition 3.11,

|lwellzs + [[wsllzs

14 v 1 C v
||‘I’Er,2)[wE+R1wB,H( I ety S E : 664”Sd%HX4dEX8dEH( )[fl](S)HWl,QmL%
v Xrra ‘ d%yi(t — 3)5
CE __1 g2
ST ¢ 32USdEHQ[fI]HLl(O,s;Ll)a (4.28)
djvz(t—s)2
where
Q[f1)(r) = —B(R%wB(T) + R%f[B<T) + fr1(7),we(1)) + vAwg(T). (4.29)
Then Lemma 2.6 implies
L
v
1Lf ()l < ( ws o) + 118D 0.39) + 111 (D g0 ) lwellzp + viwel zg,
dE XIB,207T XIB 0 11,0
and thus, since 0 < s < dg we have from ||wg|z, <1,
1
1QLfrll 10,501y S CB(s ||f1|| : +v2). (4.30)
I,O s
Hence (4.28) and (4.30) yield
(v) (v) < 012;;5 3
@75 [we + Riws, HYUflll o) < T (sl f1ll Lo +v2) (4.31)
Y 11,1 (t—s)2 Xro e
for 0 <v < d5E. Similarly, we have
(v) ) Cps? 1
17 2[R fre + fro HOUN oy S ——1 /1l L0 ( /1] Loko T v2). (4.32)
Y X1 (t_ ) IO 5) 10 (5)

On the other hand, as in the calculation of (4.28), we have from (3.64) and Proposition 3.14,

|@3w + Ruws, HOf] = HOBA 0o
II,0

wEgl|zp + llwBlz 1 2 lve v Y
< Jomlzs + 10Blzn bt ve ) Noan (HOUS) — BOWAG) 4

dEI/2(t - 8)
1 2
C 6_32usd
dEE(t_) ((uvmmu oty T IRV @)1 = Bl w00, + 19077] - ﬂ[m]uym,s;m)

(4.33)
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From Lemma 2.6 it is not difficult to see that for 0 < v < d% and 0 < 7 < s <dg,

1
VU ot S <(d%)2(HwB(T)HX<o,ﬁ> + HffB(T)HX(o,E;fT)) + HfH(T)!Xg:g))\WEHzE +vllwsllzg

IB1 IB1

1
< Cell f1l] 0. %0 +CEV2dE2,

I1 S

which gives

1
HVQ[fI]HL1 0,8 W1 QQLS‘) ( Il f1l] (0 0) ( : —+ VQdEl)- (4.34)
11 S
Lemma 2.6 also implies
1211] = @bl 0,550r) + IVQU] = VRPN 4 o) S CESHfI—hIII 0Fo (4.35)
1,0

for 1 <p<4,0<v<dy, and 0 <s < dg. Hence the estimates (4.30), (4.33), (4.34), and (4.35) show

v v 12 02
1282lwe + Ryws, HOf1] = HO W] 1wy 8 —L5 (011l w30 )= hallxpye- (4:36)

’ v Xi10' (t—s)2 e (s ’
Similarly, we have

|©3[Rs fri + frr, HO[f1)] [MBMH,M>[h1nuxw%@

11,0
< (|V3[Rs fi5 = Buhus + fir = hir, HOU oy + 1903 Rahrg + hir, HO ] = O
XII,Ot v Xi10

Cg

< (U o g0 DA+ g o)Ifr =Rl oo (4.37)
3)2 11 s) 11 10 5)

We omit the details. For @% we + Ry wg, H®|[f;]] we use Lemma 3.10 and Proposition 3.11 to get

1@ lwp + Riws, HO[f1]]|

9/)

(#,77
II,1
1/8 1 v
S (Ut (e Hdgle T = 8) (w2 + |wel26) IV Ockag HO DI, v 8
S Ce(Ivalflll + 101l 22 0,5.01)) (4.38)

L1(0,s;W1 2mLB)

or 0 <v< and 0 < s < dg, where 7] 1s defined by (4.29). us (4.30), (4.34), an . yie
f d% d d here Q| f;] is defined by (4.29). Thus (4.30), (4.34 d (4.38) yield

v v 1
1873kwr + Ryws, HOUI 00, S Ch(slitllxg, o +v2d5")- (4.39)

II,1

By the same argument we have

I931R, fro+ i1 HOUI g, S OBl o0 (lftllxg, o +wdds) (440

IIl Il
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Next, as in the proof of (4.36), we have from Lemma 3.10, Proposition 3.14, and |wg||z, +||ws| z; < CE,

183w + Raws, HO(fr) = HOW 0 ) S ColY (6o HY 1)) = Xsap HO 1] (5))

IIO

< Cp ( (el

4
L2NL3

;W 2ﬁL3 + ||Q[ff]||L1(OsL1 )Hfl - hIHXJO(s

+IVQLfi] = Vb + [120f7] = [hI]HLl(O,s;Ll)>- (4.41)

L(0,s L2mL3

Hence, the estimates (4.30), (4.34), (4.35), and (4.41) yield

||<I>§’j§[wE+R%wB,H(”)[fI] H )] s < CR(1+vi||f1] Lok )())Hfl—hl||X}”o(s)~ (4.42)

X110 11 S

Similarly, we have

|2F3(R fr5 + fir, HO[f1]] = @3 Rahrp + hi, K],
11,0
<@ § [R1frp — Rihip + fir = hir, H WA ot ”(I)[g[Rl hig + hi, HY) [hy] - H(V)[fl]]HX(ur,eT’)
110 11,0
1
SOp(L+vafil 010 )+ thll o040 I =hrllxg - (4.43)
X1,12 (s) 1,1 S ’

Then (4.21) follows from (4.23), (4.25), (4.26), (4.31), (4.32), (4.39), (4.40), and from the assumption
111l 0.1/27 09 o S v'/4. Similarly, (4.22) follows from (4.24), (4.27), (4.36), (4.37), (4.42), (4.43), and
I,1

from the assumptions HfIHX(O’l/ﬂ*O) < v1/* and ||h[||X(°*1/27’0)(1;) < v/4. The proof is complete.
I,1 I,1

(*)

Lemma 4.8 Assume that 0 < pu < dg/2,0< 0 <278 and 0 < s <t < Tg, where Ty is the number in
Theorem 4.4. Let 0 < v < d%. Then

m\»—t

HFI(IV)(tﬂ S)HX(H,%) ~ HWE‘HZE (4.44)

I1
Proof. From (3.6) and (3.13) it is easy to see I/He”(t*‘*)ANAwE(s)HX(M o) S V||lwgllzg. For the term
<I>(IV) [Ry),wB,wE] = @% [Ry/,wp,wg] we have from (3.66) that H<I>§ [Rl/,,wB( s),wp(s)](t — S)HX%L,f/t) =
||<I>§V§ [R1),wi(s), we(s)|(t — 8)|| w0/t is bounded from above by V24 wgl 2, |wEl 7. Here we have

’ 11,1
used 0 < s <t < dp and 0 < v < d%. This completes the proof, since |wg|z, < 1.

Let v € (0,71) and set

Ve =M=k +2)7%), 9= lim 5 = RIRZ(1 = (k+2)7%) > 0. (4.45)

The next lemma is a counterpart of Lemma 4 3, but the argument becomes more complicated. Roughly

( (1,0)

speaking, we aim the uniform bound of {w h } in X ]‘épl) x Xy 71 » while the convergence estimate will be

established in a weaker topology of X}%%) X X}’; g)-
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Lemma 4.9 Let 0 < v < d%. Let pufy, =dg/2, py =27°, 64, =278, and o, = (15, ppy, 0). Set

/
k Ve(1 — k) i k
= s sl g (R = 1) me= s [wfll o
1<kl 0<t<y(1=k) (t 0<t<i~} @
!
k41 k 7, (1 — k) 1
(= sup sup ||w§ +) _ w} )H wol (7’“ ; — 1)8.
%§5<1 0<t<y;, (1—k) XI,o (t)

If v > 0 is sufficiently small then it follows that A\ < V%, e < 1/%, and (, < 68¢y for all k € N and for
some 0 € (0,1). Moreover, ~ is taken so that vy > c¢(dg, where ¢ > 0 depends only on ||b||y, .

Proof. By the inequality Hw}o) @Ol (HO o100/ S / HF (t,s)l W18/ ds, we see from Lemmas 4.6,
I 1

4.8 that ngo)(t)HX(uo o000 SV / tdg' |wglzy for 0 < t < Tp. Thus \g < vY/2/4 and ny < v'/2/4

I,1
hold for 0 < 7, = ¢{dg with sufficiently small ¢, > 0 depending only on ||b||y,. Now let us assume that
N\ < /2 and n; < V2 for i = 0,1,--- ,k. Then for 0 <t <t < 'Vllc+1(1_"{) and 1/4 < k < 1 we have
from (4.19) with h; =0, j = 1, and (4.21)
k)
Il o e
- C t X; 02 Iy 5
||w§k+1)(t)|| b E/ ()d +7 _ . I (s) i ds
X;,(ILO’ T de k(s) — dz Jo (t—s)2(k(s) — k)2
f 1 id% C2yai
(k
+/ (—— T+ —= ;)||wz)||2m>ag ds + ]fz . (4.46)
0 v2(t—s)2(k(s)—r)T (t—s)i(k(s) — k)2 X 7 E

Here £(s) is chosen so that k < k(s) and s < 7;(1 — k(s)). First we take 1/2 < k < 1 and k(s) =
2711 - 5/9}1 + £). Then we have from ||w§k)||X,€(S)GO < (v(1—r(s))/s—1)" /8)\k and 711 < Vs

I,1

s ~1 v2ts
/ - ds S ’yllf—l—l)\ktg / ( & S 0 7
0

9 1
K(s) = K 7]2)+1(1 —K)—8)8 (7k+1(1 K)—1)8
t H )H Ns)dé(s) 1 1 ¢ 1 ,%V%t%
/ I - 1 ds g (7]/43—1—1)2)\]4{8/ ~ 1 5 ds g Yo 19
1 1 1 5 , 1
0 (f— )3 (k(s) — k)2 0 (t—=5)2(Ypq (1= k) —5)8 (Vey1 (1 — ) — )3
and similarly,
i 1 vidz Lyt
/ ( 1~ 1 1 + 1 1 )Hw}k;)”2 K:(S)d(/) dS S, fyo v 1-
0 v2(t—s)2(k(s) — k)T (E—s)3(k(s) — k)2 Xra () (Vey1 (1 — ) = )3

These estimates yield A\gyq < viif0 < v < dy and 7 = cydp, where ¢/ > 0 is small enough (but
depending only on [[b]ly,). Next we take x = 1/4 and (s) = 271(3/2 — s/v,,;) in (4.46). Then
k(s) — K >1/4 for s < ,,,/2, and thus, when 0 < £ <t <, /2 we have

k+1) 5 < Ce (k cz ot k
It DI gy oy o) < /WMWMW ds+ =2 | =l | aom ds

X;jf i’ 4t dz Jo (t—S)% 1,1 ()
¢ 1 va d (k) 1 vt 1
+/ TR s Al LR e Ll ap e YEdat)
. vi(i—s)3 (t—s)%) T lx70s) d P
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This proves ngs1 < vY/2if 0 < v < d% and 1}y = cjdp. By the induction on k we have proved that

A < vY2 and ny, < v'/2 for all k € NU {0}. To estimate ¢, we use (4.19) and (4.22). Then it follows
that for 0 <t <t <~,,,(1—x)and 1/2 <k <1,

(k+2) 7 (k+1) 7 Cy [* 1 dg (k+1) (k)
w (t) —w (t T / + — w —w (o ds
[Jwj ) —wy )HX;(O%,?%O . (H(S)_ﬁ (tis)%(ﬁ(s)iﬁ)%)\! i i ”x,f0>°<s>
- 1
i vidz 1 (k+5) (k+1) (k)
+§Q/(N N Nwﬂumguw — oy ds
S \E=9)i(s) —r)p  vAE—s)in(s) —m)i/) T K@ A a®

t
~ k (k
+C’,%;/O(t—s) 2[|wl ) — (P H(S)JO()ds.

Again let us take r(s) = 271 (1 —s/7;,, +#). Then, since ngkﬂ) )

T{
Q0
=}
o,
g
~

are bounded from above by (v, (1 — (s))/s — 1)71/8@C and ('y,’gﬂ.(l — (s) /s — 1)71/8)\;6“-, respectively,
we have

k ~ k ~
w2 (@) — w0 @)

) Ci (%) 2.

t
%)N( dE

[ S e G g

1,0

Hence, (x4+1 < 0¢x holds for some § € (0,1) if 7 = ¢{dg with sufficiently small ¢{, > 0 (depending only
on ||b]ly,) and 0 < v < d%. This completes the proof.

Theorem 4.10 There is T; € (0,Ty) such that (4.14) admits the unique solution wy which belongs to

the space C([0,T7); X (M”DI/T”QI/TI)) with uy = dg/8, pr = 277, 07 = 2719 and satisfies the estimate
sup ||lwr(t )HX(”I pritor s < VY2 Moreover, Ty is taken so that T 2 cydp, where ¢y > 0 is the number

37<ztzgnma 4.9.

Proof. By Lemma 4.9 we observe that {w}k)}zozo is a Cauchy sequence in the Banach space endowed

with the norm ||F|| = sup sup (M )1/8HF|| b ) Let wy be the limit of {w}k)},‘z"zo

1/2<K<10<t<~'(1—r) t Xro
in this Banach space. Then again by Lemma 4.9 we also have

11—k 1 1 1
sup sup (M — )5 |lwr]| e <07, sup  fwill i < vE (4.47)
l<k<1 0<t<y/(1-k) t X0 0<t<iy’ Xro @

It is easy to see that wy solves the integral equation (4.14). Moreover, w;; = H®[w;] holds, since
211 = wip — HY) [wr] satisfies the integral equations for

Opzir —VvAzr = _J(WE‘FR%U)B‘FR%U/IB +wrr) - V(Xadg211), 02211 |es=0 =0, 211 |t=0 = 0. (4.48)
It is not difficult to show z;; = 0 from (4.48). Hence wyy satisfies the heat-transport equation (HT) with

u=J(wg+ Riwp + Riwrp + wyy), f=- (R1’LUB+R1U)]B+’LUU) Vwg + vAwg.
Then the definition of Agy) (t,s,wy) implies w; = Ry, wrp + wys solves (Vy,). The proof is complete.

39



4.3 Convergence of wp to the solution of (V)

In this section we prove the convergence of wp = wg) in Theorem 4.4 to the solution of the vorticity

equations for the Prandtl equations, i.e., Eq. (Vy), at the limit ¥ — 0. To this end we first solve (Vy),
where its proof is almost same as in Theorem 4.4. Let {e!4};>¢ be the semigroup for the one-dimensional
heat equations in {(¢, X2) | t > 0, X € R} subject to the homogeneous Neumann boundary condition.
Then the integral equation for (Vy,) is written as

t
wp(t) = —/ e(t_S)AB(O)(RowE + wp,wp)ds
0

+ /Ot =Y NO(Rowp + wp, wp)H%XFO} + N(wg, wE)’H%XQ:O}) ds, (4.49)

where
B (Rowp, h) = lim BY)(R,wp, h), BO(f,h) = lim BY)(f. h), (4.50)
NO(Rowp, h) = lim N (R,wp, h). NO(f, h) = lim N®)(f, h). (4.51)

Here the limits in (4.50) - (4.51) are taken in the formal sense for a while. It is easy to see that, as
desired, BOO)(Rowp, h) is equal to vg - Vxh with vg given in (2.4) and (2.5), and that

00 X2 00
BO(f,h)(X) = | f, Yo) dYadnh - (| Yaf(ar,Ya)dYs+ Xo | f@nY) dY2)dx, h(X),
2 0 2
(4.52)
NOY(Rowg + f,h)(z1) = / h BO(Rowg + f,h)(x1,Ys) dYs. (4.53)
0

plé1l
4

Here X = (z1, X2). We set cpgf’p) (&1, X2) =exp ( + pX%) with u, p > 0, and introduce the norm

k A 1+k A
1 llygon = <||90§f’p)X22<§1>2f(€1,X2)!Lgngk+||<P§5'f’p)X2 2<51>ax2f<§17X2>HL§1L;;).
k=0,1

Lemma 4.11 Assume that 0 <2 Y (u—p/) <y <p<1,0<p <p<27% and0<s <t <Ty. Then
it follows that

[ WEg, AN WEIlZ 2y, .
|| ( )H »(P"t) (“_” /(E )%( / é)” ” E|| ||X(HS> ( )

1

1 S2
[ ABOSE M o) S + 1w IRl ey, (455)

Xt G u’(t—é’)%(p—p’)%) X
1
t—s)A 0 1

eI N )(ROWE’h>H{X2=0}}HX}<ju’,Q') S M_N,HWEHZEHhHX;mgw (4.56)

1 52

1

h . (4.57
w— + ,u’(t - S)E(p— p/)%)Hf”Xé“’O)H HX}(DM,g) ( )

(t—s)A f p7(0) 1
IUNO WM M .y % €

Lemma 4.11 is obtained by combining Lemmas 3.4 and 3.5 with Lemma 7.3 in the appendix if one
takes the limit v — 0 of the estimates in these lemmas. The details are left to the reader.
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Theorem 4.12 There is Tp € (0,Ty) such that (4.49) admits the unique solution wp which belongs to

the space C([0, Tp); XY™ PP/ ™0)) with up = dp/2, pp = 275, and satisfies sup lwp(®)l ywpopm < 1.
0<t<Tp P
Moreover, Tp is taken so that Tp > cpdp, where cp > 0 depends only on ||b||y, .

Proof. The proof is carried out in the same way as in Theorem 4.4 by using the estimates for the bilinear
forms given by Lemma 4.11. So we omit the details here. The proof is complete.

Theorem 4.13 Let wg = wg) and wp be the functions obtained by Theorem 4.4 and Theorem 4.12,
respectively. Then there is Tp > 0 satisfying

v 1 ~ dg ~ _
sup [wp(t) = wi ()|, 5 < v i =2 (4.58)
0<t<T}p 1By 1
Moreover, T}, is taken so that T > cdp, where ¢ > 0 depends only on ||b||y, .
Poof. Set [lwp|z, = sup  [Jwp(t)|l\ (up.op/n. Assume that 0 <s <t < min{Tp,Tp}. Set
0<t<Tp P
t
I(t) = Z / (@g’)i[Rl,wE + wp,wpl(t —s) — @%’;[RZ,LUE + wp,wp|(t — s)) ds,
i=1,270
t
I1(t) = —/ (e(t_S)AB(O)(ROwE +wp,wp) + @g)l[Rl,wE +wp,wp](t — s)) ds
O b
t
— /0 (e(t_S)A (N(O) (Rowp + wp, wp)H%XFO}) + (I)EBV,)z [Rywg + wp,wpl(t — s)) ds
t
— /0 (e(t_s)A (N(wE, wE)HJ%Xg:O}) + @%’7)2[Rwa,wE] (t— s)) ds,
" @) )
HHQ:—EZ/(L”WME+w%wmQ+ﬁ”mWERWﬂ@»®.
i=1,270
Thus we have wp —wp =1+ II + I1I. As in Lemma 4.3, we set
_ T(1-K) 1
(= sup sup lwp —wp| ap 4 (T - (4.59)

1 —
1<k<l 0<t<y(1-k) 1By 2 (1)

Here v € (0,min{Tp,Tp}) will be determined later and || f||,¢up) ., = sup || f(s)|upss). Let 1/2 <
X[B,,,l(t) 0<s<t X8,

k<1,0<t<t<~v(l—r). Then since |wg|z, + |wpllz, <2 the estimates (3.36) and (3.49) yield

- Cg ¢ 1 52
O o S == ( + — Nwp —wp| | ap o, ds.
Xppoa 0 A8 Jo TR =8 (F = )3 (s(s) — ) e )
Here we take r(s) =271(1 — s/v + k) € (k,1). Then we have
- Cp¢ [f, 1 53 s 1 Cry2ts(
1ol ) S d (E(S) — K tz 3 l)( (1—-k(s))—s Pds s = 1
PONERE E Jo (t—s)2(k(s)—r)2" 7 di(v(1—r) —t)2
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Thus it follows that

Y-k 1 _ ¢
swp s )y (Uil (1.60)
1<k<1 0<t<y(l-k) XIBTl (t)

if v = c¢dp with sufficiently small ¢ > 0 depending only on ||b||y,,. Next we estimate I1. Let 0 < p/ < dg/4,
0 < p/ <275 It is straightforward to get

t
[ /0 (I (N wp, wrHix,—p) + B al R, wil(t = ) dsll_,, g, S vl (461)

IBy,1
and we omit the proof here. For the other terms it suffices to apply Lemma 7.3 with 4 = dg/2 and
p =272, Then we conclude that if 0 < v < d%, then || TI(t )|| ot < v 2td S (w2, + lwplzp)?, e,

1
1_ 1
swp s s <u —npi<c” (4.62)
1<kl 0<t<y(1-k) XIB PO t 4
where v = cdg with sufficiently small ¢ > 0 depending only on ||b||y, . Hence, if we show
1
1 1
owp w1 e (i (4.63)
$<k<l 0<t<y(l—k) X}B a0 t 4

then (4.60), (4.62), and (4.63) imply ¢ < v'/2, that is, (4.58) holds for T' = ~/4, where v = cdp and
the constant ¢ > 0 depends only on ||b||y,. To prove (4.63) we focus only on Tgy) [wp,wg], for the other
terms are estimated by the same argument. From (3.21) and (3. 22) it is not difficult to deduce

(u’:f) 2 v

lem, (€ X{XQS%}}-(B()(f,h))HLglL}(ZSM e Ly (4.64)

w'.2) (v)

I, €0x s 00, F (B iz 1y, S 1 lLgguo 1Al .- (4.65)
5 IBZ,

v

Now we recall that

FOOW fwp, wp)()) (&1, X) = 2 / / € b ey, )e M g (s — 7 Xy + Vi)

! })‘F(B(V) (’LUB, wB))(€17 YQ) dY2 dT,

A
1
v2

ey T X
v2
which gives for [ =0, 1,

V3 (€1)? ,
(s— )t eslg)

v

|<£1>X53é(2}"(Tgy)[wB,wB]( §1,X2 / / v Tglg( (s—1), X2+Y)<

v{&1)

+ 2 X{Y2Z”1,}) ‘f(B(V)<U)B,wB))’(§1,Y2) dYQ dr.
v2

Hence, as in the proof of (3.4), by using (4.64) and (4.65) we get

1
v ® v2 75 14
10w, wsl($)]] ey S /0 (n@" <sl>2x{x2§%}f(3<><wB<T>,wB<T>>)||L§1L§2dT

v2

S v
+ [ Lot €0, 2y P (B w0 wm0) iz,
1

1
s V2 Sy 1/ S2
< / lws(MP . o dr + / lws P e dr < 2252 lwgll3

0 (s—7)2(u— ) X\ ? x\s) 16dg By’
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if0 <v<dy pf =dg/4, p = dg/2, and p = 27% Then it is not difficult to get (4.63) from the
arguments as above. The proof is complete.

5 Proof of Theorem 1.1

By Theorems 4.4, 4.10, 4.12, and 4.13, the solution w = w®) of (V,) is decomposed as w¥ = wp +

Ry jywp + Ry (0 —wp +wi)) + wl, and it follows that

1
sup [[wp(t)] gy <1, sup [wl) (8) —wp(t) + wid @) e + sup [wi @) 0, <30
0<t<T Xp 0<t<T Xrip,1  0<t<T X5

for p = dg/8, p=277,0 =271% and T = edp with ¢ > 0 depending only on [|b]y,. Since ug\% =

J(w®) and up = J(wg), Lemma 2.5 implies sup |J(Rypwp)(t)||Le < C and sup Hug\%(t) —up(t) —
0<t<T 0<t<T

J(Ry ,wp)(t)]|Le < Cv'/? with a numerical constant C' > 0. Let vp = (vp1,vp2) be the velocity field
defined in (2.4) - (2.5). It suffices to show

sup (Iv2 Ravp(t) — Ji(Rowp)(t)|| oo + 2 [lopa(t)|| e + [[Ja(Riwp)(t)|r=) < Cvz.  (5.1)
<t< v v 12

We give the proof only for the first term of the left-had side of (5.1). The other terms are handled with
similarly. Lemma 2.4 implies

) 1 X —I/l — — ]/1 A
‘]:('UPJ(t) —v %Rl,Jl(R;wp)(t»({l,Xg)‘ < 2/ eV Ia(Xe Y2)(1 _ o2 glgl‘YQNU}P(t,gl,YQ)‘dYQ
v 0
1 [ 1 1
w3 [ e g ey o6, vl
Xa

< CV%|\(§1>Y2wP(t>gl»YZ)HL{,Qv

which leads to [|(&1)F (vpa(t) — V_1/2R,,J1(R1/V’wp)(t))||Lg L < Cv'2|wp||z, for 0 < t < T. Hence
1 2
(5.1) follows by using ||81/2R1/Sf”Loo = || f||zee. This completes the proof.

6 Open problem

In the proof of Theorem 1.1 the condition (1.2) plays essential roles. If (1.2) is absent and the initial
data is not analytic it is believed that the separation of the boundary layer immediately occurs in general
and the vorticity behaves rather intricately, which is difficult to control. In particular, it is hard to
expect that the vorticity keeps the simple form as in (1.1) for 0 < ¢ < O(1). For general initial data
the expansion like (1.1) is verified so far only for a time period 0 < t < O(v'/3); [20]. It is not known
whether the exponent 1/3 can be improved or not. More importantly, it is not clear how to estimate the
interaction between the vorticity generated near the boundary and the vorticity away from the boundary
without the condition (1.2), which causes the lack of the effective bound of the vorticity even in the
region . = {z € RZ | 2o > ¢} for a positive c. In view of (7.6), or if one reminds the trajectory flow
determined by u, it is important to control the quantity |lu||1 (1 (q,.))- But so far the uniform bound
(with respect to the small viscosity) for this quantity is absent even if L is replaced by LP for some
p > 2 when the initial data is taken from a Sobolev class.
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7 Appendix

7.1 Young inequality in weighted function spaces

Lemma 7.1 Assume that 1 < g <p<oo and 0 < <1/4. Then the following estimates hold.
et X3 g(t =)« F(Xa)llpg, S (1—48) 2000 — ) 2G| NE (X)) g, (7.)
le?Ode 2t gt — 5) x f(a2)ll g, S (1—48) 2070 (1 — 5) 2@ eSO f(ay) |y - (7.2)

Proof. We give the proof only when p < co. Set 1/r =1+ 1/p — 1/q. The Holder inequality yields

. _1
efXg/g(t—s,Xg—Yz)|f(Yg)\dY2 < (/ FXEEVE gt~ s, Xy — V) dYR) '
R R

r8y2_18 8 1L gy, 1-4
( / I g(t — 5, Xo = Vo) e E f(Y2) |1 dYa) P e E fl| " (73)
R 2

Then we use the equalities

BX; | Xo—Ya]* BYZ  (1-4B)t+40s

Yal? — Bl —4B)(t —s) 2

t 4t—s) s 4t(t—s) | 2T (=48t +4Bs 2 s{(1—4B)t+4Bs} 2’
BX; | Xa-Ya]?  BYZ __4Bt+(1—4ﬁ)s|y B s 2 BA—4B)(t—5) o
t At — s) s At—s)s 7 4Bt+ (1—4PB)s t{4Bt + (1 —48)s} %

Hence (7.3) implies
B
etX%/g@_s,XQ—Y2>|f<Y2>|de
R

S (=49 30D = 000 [ B s X - PR A1) e
R

and (7.1) is easily obtained from this inequality. To prove (7.2) we observe that

e (0w g (1 s)xf(w2)llrz, < e (65220 g )L (@2) 12, ({2 <6amy) Hg(E=5) xS (@2l 12, (22611

and thus, it suffices to estimate [|e®(6de—22)"/tg(t — 5) « f(xz)HLgQ({mng}). Set 9 = 6dp — w2 and
79 = 6dg — y2. Then for x9 < 6dgp we have

[e o]

gt — 5,23 — y2) f (y2) dya + / gt — 5,35 — y2) f (y2) dyz = ZI
6dg

6dg
gt — 8) % f(a2) = /

—00

Since g(t — s,z9 — y2) = g(t — s, T2 — ¥2), by arguing as in the proof of (7.1), I; is estimated as

1¥ % 11| o (aaciany) S (1—48) 20570 (¢ — 5) 722 S Cls—mll ),

As for I, we have from the Holder inequality and from Z2 > 0 and % < 0 when x2 < 6dg and yo > 6dE,

233 T -1 [ L q
et®2|I] < ( et P2g(t —s, @y — )" dy2) 9 ( t2g(t — 5,22 — 72)" | f(12)] dy2)”HfHLq
dE 6dE

(1—48)t+46s 22 o0 . 11 o0 . a 1 1-1
< o e / gt — 5,2)" dya) 1 ( /d gt — 5, 52) | (2)|? dy2) 111 5m
6dp 6dg

_(1*43)“!’4355:2 _ 1
< o HETER G5

Hence we have ||ef3x2/t1'2HLp ({za<6dp)) S (1 —48)7 1/@p)(t — 5)=1/2(1/a=1/P) | f|| La. The proof is complete.
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7.2 Kernel for the heat-transport equations

Lemma 7.2 Let PTEV) (t,s) be the evolution operator associated with (HT), and let quy) (t,x;s,y) be the
kernel of pr (t,s). Then for 1 < q<p < oo,

1 1
|2t ) Sl S (v(t = )" 7 | £ s 0<s<t<oo, (74)
and if F' = (Fy, Fy) satisfies F» =0 on 8Ri then
t
H/ POt )V - Fdsl|z2 < v 3| Fll oo 0<s<t<oo. (7.5)
0
Moreover, we have
0< PW(t, z;s,y) < Lexp - L(pﬁ —y| - /t ()| oo d7)? (o) = max{a,0}.
- T 2nu(t — 8) dv(t — s) s +) ’

(7.6)

Proof. The estimate (7.5) is a simple application of the energy calculations based on the integration by
parts, so we omit the details here. Let H be the solution of (HT). Then by setting H(t,x) = H(t/v, )
if 2o > 0 and H(t,z) = H(t/v,z*) if x9 < 0 with * = (21, —z2) the problem (HT) is reduced to the
equation in the whole plane

{ OH—AH+a-VH=F t>0, x¢cR2

_ 7.7
Hli—o =0 r € R2. (7.7)

Here @ = (1, u2) is defined by
“lug(t if z3>0 “lug(t if 93>0
m(a) =g Ul e S B A I (2
v tug(t/v,x*)  if 29 <0 —v g (t/v,x*)  if me <0,
and f(t,z) = v f(t/v,2) if 20 > 0 and f(t,2) = v f(t/v,z*) if 23 < 0. Clearly @ satisfies div @ = 0
in R? since up = 0 on OR%. Let P;(t, s) be the evolution operator associated with (7.7). Then we have

H(vt) = /OV Pi(vt,vr)vf(vr)dr. (7.9)

To show (7.4) we take v f(vt, z) = Vf(x)é{t:l,s}, where f is the extension of the time-independent function
f in R2 by the above reflection. Then we have H(vt) = Py(vt, vs)vf and the LP — L7 estimate in [5,
Theorem 1] implies | H(vt) [ po(sz) < (0t — )Y f | agez) < (Ut = ) Y5 V) f g The

estimate (7.4) then follows from the relation H(t) = H(vt)X{z,>0)- Let Pa(t,x;s,y) be the kernel of
Py(t,s). It is well-known that P;(¢, z;s,y) is positive. From (7.9) we have

vt _
H(vt,z) = / Py(vt, z;vr, 2)v f(vr, 2)dz dr,
0o JRr?

which yields, by taking f(t,7) = §r—yy 01—},
Pt x55,y) = Pa(vt,z;vs,y) + Pa(vt,z;vs, y") (7.10)

for z,y € R%. Now we recall the pointwise estimate by [5, Theorem 3] as follows.

vt

1 1 - 2
Py(vt,z;vs,y) < me?{p ( - m(‘x —y| - /VS [a(7)| Lo d7)+)- (7.11)

Hence (7.6) holds by (7.10) and (7.11). The proof is complete.
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7.3 Lemma for Theorem 4.12

Lemma 7.3 Assume that 0 < s <t <Ty, dg/8 < pu—p' <pu<dg, 27" <p—p <p<274 0<v<ds,
and j = 1,2. Then the following estimates hold.

1
2t
(tfs)AB(O) R h —i—CI)(V) R hl(t — , < vt h 7.12
e WEg, vWE, S ’ ~ w s '
| (Rowg, h) palRwwn, hl( )HXI(;:’%) dE(t—s)%” Bz HX}()MD (7.12)
[eCABO(f ) + S LA =)0y S eI el e (7.13)
’ X;;;;j) dp(t—s)z Xp’ Xp *
l 1
—s v ve
||6(t )A(N(O)(ROWE,}Z)H%XQZO}) +®(B,)2[RVO')E7h](t_ S)H (vapT/) ~ d] HwE‘HZEHhH (H p)’ (714)
IBluﬂl
He“‘S)A(N‘OMf,h)H%XFO})+<I>S§,é[f,h]<t—s>ux(,p)N S ) Ly (7.15)
IBy,j E

Proof. We give the proof only for (7.12) and (7.13), the other two are estimated in the same manner. We
recall that wg = wg(s), 0 < s < Ty, satisfies supp R,wp C {Xo > 32dEZ/_1/2}. The arguments as in the
proof of Lemma 3.3 lead to the estimate for the case Yo < v~1/2 such as

B (Rowg, h) — BY (Rywp, h)) (&1, Y2))|
1 1 ~
/ ||X{ZQ>32dE 1/§|771|('—Y2)(26—V§|771|Y2 1 e—2u?\771|Y2)R,,<IJEHL122 |(€1 — m) (&L — 1, Yo)| dne,

F (B (Rowp, h) — BY) (Rywp, b)) (€1, Ya)|

o v ml(-—Ya) —2u 3 | |Y: 1 —uE Ve - >
/ HX{Z >32dE} (1 —e itz — 2u2|n|Yae n Q)RVWEHle |0y, h(&1 — 1, Ya)| dmy.
2

1
V2
Thus, if Y2 < v=12 then I(s,&1,Ys) := F(BO(Rowp, h) — BY)(R,wg, h)) (&1, Ya) satisfies

1 u pv2

1 ~
|I(S7§17Y2)| S /R (‘771| I ’51 —_ ,,71’)(# — M/) ”7712('DE||L%2|(£1 - nl)h(,u,f)(gl - 7717}/2)| d771

[ R i@ 6 -
+ ni wel 2 Y2|(Ov: 1= 1, ¥2)dny.
r (fml 16 —m(p—pw)" ’

Here we have set f(#,p/s) = gogf’p/s)f. Thus we get for k = 0,1,

11
kE V282

l”’?s
lpm, ™ (€1)Yy? ()2 poe
17 Y2

w h : 7.16

If Y5 > v~ /24 then we use the estimate

1 .
|.7:(B(0)(RowE,h))(£1,Y2)| < /lR HX{ZQZ%}ewzImH-7Y2|R,,6JJL;Hle2 |(&1 —m)h(& —m, Y2)|dm

/ |61—m|-2YF .
< |l (Ao, ey —n, Y2)| dn,
- w— zo (1, E)
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and
|y —m|-£YZ
e 4 1—M st2

F(BY (Rywp, ) (61, Y2)| < /]R (T4 1€ = m ) — 1)

which yields for k = 0, 1,

1 N
Iniwellz, Yal(Ovah) 2y (&1 — M, Ya) | A,

! vs
o <€1> 5 X{Y2 )z pie S = 10— 1) ”wEHZEHh‘HXI(Jqu)' (7.17)
On the other hand, from (3.21) and (3.22) it is not difficult to show
1
(7.18)

W), 4k 0
lep = (€42 F (B )(RowEvh))HLgngk < m\lelleHhHXg,g)-

Recalling the notation g(t, Xo,Ys) = g(t, Xo — Y3) + g(t, Xo + Y3), we decompose e*=5)4BO)(Rowp, h) +
@%’7)1 [Rywg, h](t — s) into I1;(t,s) and IIy(t,s), where
F(IL)(t, 5,61, X2) = / e VI g (t — 5, Xp, o) (5,1, Ya) AV,

0
F(IL)(t, s, &1, X2) :/0 (1 — e V=) g(t — 5, Xy, Ya) F (B (Rowp, h)) (€1, Y2) dYa.

The estimates (3.4) and (3.5) yield

1
s2 w2 )2
HLE I e S (1+ o 42X I s
wt SO T rat
11 11 1
V282 vz2s2 S2
< 1+ lwzliza P12 (7.19)
i () 0 el g o

Here we have used (7.16), (7.17), u — ¢/ > dg/8, and p — p' > 277. On the other hand, by trivial
B p

modifications of the proofs for (3.4) and (3.5), we can derive the estimate

1
3 k
(t—s)A <1 52 }: Xz
€ / 4 ~Y 1+k.
H fHX(”’%) ( (t—s)%(p—p é - 01”@ 2 ”L2L+

P

Hence, from |1 — e (=8| < Cu(t — 5)¢? and by using (7.18) we have

L) g Svlt—s)(1+ o ) S 2o )22 F(BO (Rows, ) 2 po
s X}(:/,%) ~ (t— S)%(p ,O % 5 LZ Ly,
1
v(t —s) 52
< 1+ lwsllzolbll e (7.20)
d% ( (t _ S) ) E (# )

Hence (7.12) holds from (7.19), (7.20), and the assumptions on the parameters. To prove (7.12) we see
from (4.52) that

IF(BO(f,h) — B (f,h)) (&1, Y2)] S v é/H77122f||L1 (&1 — m)h(€&1 — 1, Ya)| dip

1
vt [ 102y, Ylows (s = m, Vol .
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Hence for I'(&1,Y2) = F(BO(f,h) — BW)(f,h)) (€1, Ya) we have

[N
[NIE

W) o ok Vs ,
lep, > (€Y Il 2 pise S T ||/l XU o) [|7] xwhs  I=12 (7.21)
a (=) (p—p)2
On the other hand, from the same arguments as in the proof of (3.21) and (3.22) one can derive
I8 D I F(BOEM s gr S g s Ihl e (7.22)
¢ PRI g G e Pl '

We decompose el‘=)ABO)(f h) + <I>B 1[f h](t — s) into II{(t — s) and II5(t — s), where
f(Hi)(t—s,&,Xg)z/ e g (t — 5, X0, Ya)I' (5,61, Ya) Y,
0

FUL)(t - 5,61, X2) = /0 T (1= e M9 gt — 5, Xy, Vo) F(BO(f, 1)) (61, Ya) Y.

Then from (3.4), (3.5), (7.21), and (7.22), it is not difficult to see

[N

1
vzs
HII{(t_SW 1o’ S(l"i_ 1 1) 1Hf” (u )H H (uﬁ)? (7'23)
Xy, (t=s)2(p—p)2 (L—p)(p—p)?
1

s2 v(t —s)

15t =8l 0 S 1+ £l (1] (7.24)
2 X‘gh%) ( (t—s)%(p p)%)(ﬂ M)3 (#5) (H )*

Here j = 1,2. Thus (7.13) follows from (7.23), (7.24), and the assumptions on the parameters. By
arguing as above, The estimates (7.14) and (7.15) are proved from the equality

(0)(f’ h) — N(V)(f, h) = /OO e—l/%|51\Y2 (B(O)(f, h) — B(V)(f, h)) dysy + /Oo (1 _ e—u%|§1|Y2)B(0)<f’ h) dYs.
0

0

The details are omitted. The proof is complete.
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