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1 Introduction

This paper is a review of some results obtained in [7], focusing on a rigorous derivation
of the Lamb shift (see below) from an effective Hamiltonian in non-relativistic quantum
electrodynamics (QED), a quantum theory of non-relativistic charged particles interacting
with the quantum radiation field (a quantum field theoretical version of a vector potential
in classical electrodynamics). We also present a general class of effective operators for an
abstract quantum system interacting with a Bose field (a quantum field of bosons) such
that the effective Hamiltonian in non-relativistic QED is a concrete example in the class.

In this introduction, we first explain some physical backgrounds behind the work [7].
A hydrogen-like atom is an atom consisting of one electron, whose electric charge is

−e < 0, and a nucleus with electric charge Ze > 0, where Z is a natural number (the case
Z = 1 is the usual hydrogen atom). As is well known, if the nucleus is fixed at the origin of
the 3-dimensional Euclidean vector space R3 = {x = (x1, x2, x3)|xj ∈ R, j = 1, 2, 3} and,
as the potential acting on the electron at the position x ∈ R3, one takes into account only
the electric Coulomb potential1 −Ze2/4π|x| from the nucleus, then a quantum mechanical
Hamiltonian describing the hydrogen-like atom is given by the Schrödinger operator

Hhyd = − ~2

2me

∆ − γ

|x|
(1.1)

acting on L2(R3), the Hilbert space of equivalence classes of complex-valued functions
square integrable on R3 with respect to the 3-dimensional Lebesgue measure, where ~ :=
h/2π (h is the Planck constant), me > 0 is the electron mass, ∆ is the generalized
Laplacian on L2(R3), and

γ :=
Ze2

4π
.

Indeed, Hhyd is self-adjoint with domain D(Hhyd) = D(∆)—for a linear operator A on
a Hilbert space, D(A) denotes the domain of A—and the spectrum of Hhyd, denoted
σ(Hhyd), is found to be

σ(Hhyd) = {En}∞n=1 ∪ [0,∞) (1.2)

with

En = −1

2

meγ
2

~2

1

n2
, n = 1, 2, 3, · · · , (1.3)

where each eigenvalue En is degenerate with multiplicity n2(e.g., [6, §2.3.5a] and [6,
Lemma 5.22, footnote 12]). These eigenvalues explain very well the so-called principal
energy levels of the hydrogen-like atom (Fig.1(a)), but do not show the finer structures
of the energy spectrum (Fig.1(b)), which may be regarded as splits of the degeneracy of
En’s .

1The electromagnetic system of units which we use in the present paper is the rationalized CGS Gauss
unit system with the dielectric constant in the vacuum equal to 1.
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Figure 1: Energy spectrum of a hydrogen-like atom

It turns out that the finer structures of the hydrogen-like atom can be explained by
the Dirac operator

Dhyd := −i~c
3∑

k=1

αkDk + mec
2β − γ

|x|
,

acting on ⊕4L2(R3) (the four direct sum of L2(R3)), where c > 0 is the speed of light
in the vacuum, Dk is the generalized partial differential operator in the variable xk, and
αk, β are 4×4 Hermitian matrices satisfying the following anti-commutation relations (δkl

denotes the Kronecker delta):

αkαl + αlαk = 2δkl, αkβ + βαk = 0, β2 = 1 (k, l = 1, 2, 3).

The operator Dhyd is a relativistic version of Hhyd [17].
It is shown [17, §7.4] that the discrete spectrum σdisc(Dhyd) of Dhyd is given by

σdisc(Dhyd) = {En,j}n,j

with

En,j =
mec

2√√√√√√√√√1 +
1

~2c2

 γ

n −
(

j +
1

2

)
+

√(
j +

1

2

)2

− γ2

~2c2


2
, n = 1, 2, · · · ,

where j (1/2 ≤ j ≤ n−1/2) is the total angular momentum of the electron, being related
to the orbital angular momentum ` = 0, 1, · · · by j = ` ± 1/2 (±1/2 are the possible
values of the spin of the electron), and the condition γ/~c < 1 is assumed.
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It is easy to see that En,j is monotone increasing in n and that, for each n,

En,j < En,j+1.

Note also that the non-relativistic limit2 c → ∞ of En,j − mec
2 gives En:

lim
c→∞

(En,j − mec
2) = En, n = 1, 2, · · · .

For each n = 1, 2, · · · , the state with energy eigenvalue En,j and angular momentum
` = 0, 1, 2, 3, 4, · · · is respectively labeled as nxj with x = s (` = 0), p (` = 1), d (` =
2), f (` = 3), g (` = 4), · · · :

princplal number state
n = 1 1s1/2

n = 2 (2s1/2, 2p1/2), 2p3/2

n = 3 (3s1/2, 3p1/2), (3p3/2, 3d3/2), 3d5/2
...

...

Here the states in each round bracket are degenerate. For example, the states 2s1/2 and
2p1/2 are degenerate with energy E2,1/2. The energy levels E2,1/2 and E2,3/2 are very near
with E2,1/2 < E2,3/2. Hence these energy levels subtracted by mec

2 may be regarded as
a split of the second principal energy level E2 in the non-relativistic theory. It is known
that the energy levels {En,j − mec

2}n,j gives a good agreement with experimental data
(Fig.1(b)).

In 1947, however, Lamb and Retherford [14] experimentally observed that there is a
very small difference between the energies of the states 2s1/2 and 2p1/2 with the former
being higher than the latter (Fig.2). This difference is called the Lamb shift. Thus the

2s1/2, 2p1/2

2s1/2

2p1/2
∆E

Figure 2: ∆E =Lamb shift

Dirac theory breaks down in this respect.
It was Bethe [10] who first explained the Lamb shift using non-relativistic QED. He

considered the Lamb shift as an energy shift caused by the interaction of the electron with
the quantum radiation field. In his calculation, which is based on the standard heuris-
tic perturbation theory, the mass renormalization of the electron is one of the essential
prescriptions. On the other hand, Welton [18] gave another method to explain the Lamb
shift using non-relativistic QED: He infers that the interaction of the electron with the

2In a non-relativistic theory, the kinetic energy of a rest particle is zero. Hence, in taking the non-
relativistic limit of an energy in a relativistic theory, one must subtract the rest energy mec

2 from it.
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quantum radiation field may give rise to fluctuations of the position of the electron and
these fluctuations may change the Coulomb potential so that the energy level shift such
as the Lamb shift may occur. With this physical intuition, he derived the Lamb shift
heuristically and perturbatively. After the work of Bethe and Welton, perturbative cal-
culations of the Lamb shift using relativistic QED with prescription of renormalizations
have been made, giving amazingly good agreements with the experimental result (see,
e.g., [13]). However a mathematically rigorous construction of relativistic QED (existence
of full relativistic QED) is still open as one of most important and challenging problems
in modern mathematical physics. On the other hand, non-relativistic QED allows one to
analyze it in a mathematically rigorous way [1, 2, 3](for a review of recent developments
of non-relativistic QED, see, e.g., [12])

Motivated by finding a mathematically general theory behind Welton’s heuristic ar-
guments made in [18], the present author developed in the paper [4] an abstract theory
of scaling limit for self-adjoint operators on a Hilbert space and applied it to one-particle
non-relativistic QED (a quantum mechanical model of a non-relativistic charged particle
interacting with the quantum radiation field; a variant of the Pauli-Fierz model [15]) to
obtain an effective Hamiltonian of the whole quantum system. This result is the starting
point of the present review. Thus we next explain it in some detail.

2 A Model in Non-relativistic QED and Scaling Limit

For mathematical generality, the non-relativistic charged particle is assumed to appear
in the d-dimensional Euclidean vector space Rd with d ≥ 2, so that the Hilbert space of
state vectors for the charged particle is taken to be L2(Rd). We consider the situation
where the charged particle is under the influence of a scalar potential V : Rd → R (Borel
measurable). Then the non-relativistic Hamiltonian of the charged particle with mass
m > 0 is given by the Schrödinger operator

H(m) := − ~2

2m
∆ + V. (2.1)

On the other hand, the Hilbert space of state vectors of a photon is given by

Hph := ⊕d−1L2(Rd),

the (d− 1)-direct sum of L2(Rd), where the number (d− 1) in the present context means
the freedom of polarization of a photon and Rd here denotes the space of wave number
vectors of a photon. Then the Hilbert space of state vectors for the quantum radiation
field is given by the boson Fock space

Frad := ⊕∞
n=0 ⊗n

s Hph

=

{
Ψ = {Ψ(n)}∞n=0

∣∣Ψ(n) ∈ ⊗n
s Hph, n ≥ 0,

∞∑
n=0

‖Ψ(n)‖2 < ∞

}

over Hph, where ⊗n
s Hph denotes the n-fold symmetric tensor product of Hph with⊗0

sHph :=
C (the set of complex numbers) and ‖Ψ(n)‖ denotes the norm of Ψ(n).
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As is easily shown, ⊗n
s Hph is identified with the Hilbert space of square integrable

functions ψ(n)((k1, s1), (k2, s2), · · · , (kn, sn)) on (Rd × {1, · · · , d − 1})n (kj ∈ Rd, sk ∈
{1, · · · , d−1}) which are totally symmetric in the variables (k1, s1), (k2, s2)，· · · , (kn, sn),
where the isomorphism comes from the correspondence

Sn(⊗n
j=1ψj) →

1

n!

∑
σ∈Sn

ψσ(1)(k1, s1) · · ·ψσ(n)(kn, sn), ψj = (ψj(·, s))d−1
s=1 ∈ Hph

with Sn being the symmetrization operator on ⊗nHph and Sn denotes the symmetry group
of n-th order. We use this identification.

In the physical case d = 3, the energy of a photon with wave number vector k ∈ R3 is
given by ~c|k| (by Planck-Einstein-de Broglie relation, ~k is the momentum of the photon
with wave number vector k). Thus, in the case of general dimensions d, we assume that
the energy of a photon with wave number vector k ∈ R3 is given by ~cω(k) with a
function ω : Rd → [0,∞) such that 0 < ω(k) < ∞ for a.e. (almost everywhere) k ∈ Rd

with respect to the Lebesgue measure on Rd. Then the free Hamiltonian of the quantum
radiation field is defined by

Hrad := ⊕∞
n=0~cω(n),

where ω(0) := 0 and ω(n) is the multiplication operator by the function

ω(n)(k1, · · · ,kn) :=
n∑

j=1

ω(kj)

on (Rd × {1, · · · , d − 1})n.
For each f ∈ Hph, there exists a densely defined closed linear operator a(f) on Frad,

called the photon annihilation operator with test vector f , such that its adjoint a(f)∗

takes the form

(a(f)∗Ψ)(0) = 0, (a(f)∗Ψ)(n) = Sn(f ⊗ Ψ(n−1)), Ψ = {Ψ(n)}∞n=0 ∈ D(a(f)∗), n ≥ 1

(for more details, see [5, Chapter 10]). The operators a(f) and a(g)∗ (f, g ∈ Hph) satisfy
the commutation relations—canonical commutation relations (CCR)—

[a(f), a(g)∗] = 〈f, g〉 ,

[a(f), a(g)] = 0, [a(f)∗, a(g)∗] = 0

on the subspace

Frad,0 := {Ψ = {Ψ(n)}∞n=0 ∈ Frad|∃n0 such that Ψ(n) = 0, ∀n ≥ n0},

where [A,B] := AB − BA (commutator) and 〈·, ·〉 denotes inner product (anti-linear in
the first variable, linear in the second one). Thus the set {a(f), a(f)∗|f ∈ Hph} gives a
representation of the CCR indexed by Hph.

For a.e. k ∈ Rd, there exists an orthonormal system {e(s)(k)}d−1
s=1 of Rd such that each

vector e(s)(k) = (e
(s)
1 (k), · · · , e

(s)
d (k)) is orthogonal to k.
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Let ρ be a real distribution on Rd such that its Fourier transform ρ̂ —ρ̂(k) :=
(2π)−d/2

∫
Rd e−ik·xρ(x)dx (symbolic expression)—is a function satisfying

ρ̂

ωa
∈ L2(Rd) \ {0}, a =

3

2
,
1

2
.

Then the quantum radiation field A(ρ) := (A1(ρ), · · · , Ad(ρ)) smeared with ρ is defined
by

Aj(ρ) =

√
~c√
2

{
a

(
ρ̂√
ω

ej

)∗

+ a

(
ρ̂√
ω

ej

)}
, j = 1, · · · , d,

where ej : Rd → Rd−1, ej(k) := (e
(1)
j (k), · · · , e

(d−1)
j (k)), a.e.k ∈ Rd. We remark that,

for the definition of Aj(ρ) itself, condition ρ̂/
√

ω ∈ L2(Rd) is sufficient. The additional
condition ρ̂/ω3/2 ∈ L2(Rd) is needed in the development below.

The Hilbert space H of state vectors of the quantum system under consideration is
given by

H = L2(Rd) ⊗Frad.

The Hamiltonian of our model is of the following form (I denotes identity):

HNR = H(m0) ⊗ I + I ⊗ Hrad + HI(ρ,m0)

with

HI(ρ,m0) := − q

m0c

d∑
j=1

pj ⊗ Aj(ρ),

where m0 > 0 is the “bare” mass of the particle (the mass of the particle before going
into the interaction with the quantum radiation field)3, q ∈ R and pj := −i~Dj denote
respectively the electric charge and the j-th momentum operator of the particle. The
operator HI(ρ,m0) describes an interaction of the charged particle with the quantum
radiation field. In this context, the function ρ̂ plays a role of momentum cutoff for
photons interacting with the particle. The model defined in this way is called the dipole-
approximated Pauli-Fierz model without the self-interacting term of the quantum radiation
field.

To draw from the Hamiltonian HNR observable effects that the quantum radiation
field may give rise to the quantum particle, we consider a scaling limit of HNR. Thus we
introduce the following scaled Hamiltonian:

HNR(κ) := H(m(κ)) ⊗ I + κI ⊗ Hrad + κHI(ρ, m), κ > 0,

with
1

m(κ)
:=

1

m
+ κ

(d − 1)

d

( q

mc

)2
∫

Rd

|ρ̂(k)|2

ω(k)2
dk,

where m > 0 is the observed mass of the particle.
Under the assumption that V is infinitesimally small with respect to −∆, the operator

HNR(κ) is self-adjoint and bounded below [4, Lemma 3.1].

3The bare mass of the particle may change when it interacts with the quantum radiation field such
that the result yields the mass observed in real phenomena.
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Remark 2.1 The scaled Hamiltonian HNR(κ) is obtained by the scaling c → κc and q →
κ3/2q in HNR with H(m0) and HI(ρ,m0) replaced by H(m(1)) and HI(ρ,m) respectively.
Replacing m0 with m(κ) is called a mass renormalization4. We want to emphasize that
the mass renormalization makes the Hamiltonian bounded below (under the condition
that H(m) is bounded below) [4, Lemma 3.1].

A scaling limit of the original Pauli-Fierz model with dipole approximation is discussed
in [11] (see also [12]).

The vector

Ω0 := {1, 0, 0, · · · } ∈ Frad (Ω(0) = 1, Ω(n) = 0, n ≥ 1)

is called the Fock vacuum in Frad. We denote by P0 the orthogonal projection onto the
1-dimensional subspace {αΩ0|α ∈ C} spanned by Ω0.

It is shown that the operator

T :=
iq

mc

d∑
j=1

pj ⊗
1√
2~c

{
a

(
ρ̂

ω3/2
ej

)∗

− a

(
ρ̂

ω3/2
ej

)}
is essentially self-adjoint. We denote its closure by T .

Let

λq :=
(d − 1)

4d

(
~

mc

)2
q2

~c

∫
Rd

|ρ̂(k)|2

ω(k)3
dk.

The following theorem is proved [4, Theorem 3.4]:

Theorem 2.2 Assume that ρ̂ is spherically symmetric (i.e., it depends only on |k|).
Suppose that V satisfies the following two conditions:

(V.1) D(∆) ⊂ D(V ) and, for all a > 0, V (−∆ + a)−1 is bounded with
lima→∞ ‖V (−∆ + a)−1‖ = 0.

(V.2) For all t > 0,
∫

Rd e−t|y|2 |V (y)|dy < ∞.

Then, for all z ∈ C \ R,

s- lim
κ→∞

(HNR(κ) − z)−1 = e−iT
(
(Heff − z)−1 ⊗ P0

)
eiT ,

where s- lim means strong limit and

Heff := − ~2

2m
∆ + Veff (2.2)

with

Veff(x) :=
1

(4πλq)d/2

∫
Rd

e−|x−y|2/4λqV (y)dy, x ∈ Rd. (2.3)

4Strictly speaking, one should replace m0 in HI(ρ,m0) with m(κ) too. But, since

HI(ρ,m(κ)) = HI(ρ,m) − κ
q

c

(d − 1)
d

( q

mc

)2
(∫

Rd

|ρ̂(k)|2

ω(k)2
dk

) d∑
j=1

pj ⊗ Aj(ρ).

and the second term on the right hand side is of the third order in q, one may take into account only the
first term on the right hand side as a primary approximation in a perturbative sense.
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Remark 2.3 Under condition (V.1), V is infinitesimally small with respect to −∆ and
hence H(m0) is self-adjoint and bounded below for all m0 > 0. Moreover, under conditions
(V.1) and (V.2), Veff is infinitesimally small with respect to −∆ and hence Heff is self-
adjoint and bounded below (see [4, §III, B]).

Theorem 2.2 may be physically interpreted as follows: the limiting system as κ → ∞
restricted to the subspace L2(R3)⊗{αe−iT Ω0|α ∈ C} is equivalent to the particle system
whose Hamiltonian is Heff . Therefore Heff may include observable effects of the original
interacting system through Veff . In this sense, we call Veff an effective potential for the
particle system and, correspondingly to this, we call Heff an effective Hamiltonian of the
particle interacting with the quantum radiation field.

To see if the effective Hamiltonian Heff really explains some observable effects, one has
to investigate the spectral properties of it. This was the main motivation of the paper [7].
In what follows, we concentrate our attention on this aspect.

3 Elementary Properties of the Effective Potential

It is obvious that q → 0 if and only if λq → 0. Hence we replace λq by a parameter
λ > 0 and regard λ as a perturbation parameter, where the limit λ ↓ 0 corresponds to
the unperturbed case. Thus we consider the effective Hamiltonian in the form

Hλ := − ~2

2m
∆ + Vλ, λ > 0, (3.1)

with

Vλ(x) :=
1

(4πλ)d/2

∫
Rd

e−|x−y|2/4λV (y)dy. (3.2)

As for V , we assume only that∫
Rd

e−t|y|2 |V (y)|dy < ∞, ∀t > 0, (3.3)

which ensures the finiteness of Vλ(x) for all x ∈ Rd.
We have

Heff = Hλq . (3.4)

Remark 3.1 If V ∈ Lp(Rd) for some 1 ≤ p ≤ ∞, then (3.3) is satisfied by the Hölder
inequality.

Note that Vλ is the convolution of V and the Gaussian function

Gλ(x) :=
1

(4πλ)d/2
e−|x|2/4λ, x ∈ Rd, (3.5)

i.e.,
Vλ = Gλ ∗ V. (3.6)
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In other words, Vλ is the Gauss transform of V with the Gaussian function Gλ. This
structure may be suggestive, because the function Gλ(x − y) of x and y is the integral
kernel of the heat semi-group {eλ∆}λ>0 on L2(Rd) (the heat kernel).

The effective potential Vλ is a perturbation of V in the following senses:

(i) If V is continuous and supx∈Rd |V (x)|e−c|x|α < ∞ for some c > 0 and α ∈ [0, 2),
then

lim
λ↓0

Vλ(x) = V (x), x ∈ Rd.

(ii) If V ∈ L2(Rd), then
Vλ = eλ∆V ∈ L2(Rd).

and hence limλ→0 ‖Vλ − V ‖L2(Rd) = 0 holds5.

(iii) If V ∈ Lp(Rd) for some p ∈ [1,∞), then Vλ ∈ Lp(Rd) and

lim
λ→0

‖Vλ − V ‖Lp(Rd) = 0.

(iv) If V ∈ L∞(Rd) and V is uniformly continuous on Rd, then Vλ ∈ L∞(Rd) and

lim
λ→0

‖Vλ − V ‖L∞(Rd) = 0.

Thus, from a perturbation theoretical point of view, it is natural to write

Hλ = H0 + Wλ (3.7)

with

H0 := H(m) = − ~2

2m
∆ + V, (3.8)

Wλ := Vλ − V. (3.9)

However, we want to emphasize that Hλ is not necessarily a regular perturbation of H in
the sense of [16, §XII.2]. Even in that case, the order of the perturbation may be infinite.

Remark 3.2 It may be natural to consinder a generalization of Hλ in the form

Hλ(K) := − ~2

2m
∆ +

∫
Rd

Kλ(x,y)V (y)dy

with a measurable function Kλ : Rd × Rd → R (λ > 0) such that, for each f in a class
of functions on Rd, limλ→0

∫
Rd Kλ(x,y)f(y)dy = f(x) in a suitable sense. To develop a

perturbation theory for Hλ(K) as a perturbation of the Schrödinger operator H0 would
be interesting.

One can analyze general aspects of spectra of Hλ [7]. But, here, we restrict ourselves
to the case where V is a spherically symmetric function on R3.

5For p ∈ [1,∞], ‖ · ‖Lp(Rd) denotes the norm of Lp(Rd).
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4 Spectral Properties of Hλ with a Spherically Sym-

metric Potential on R3

We consider the case where d = 3 and V is given by the following form:

V (x) =
u(|x|)
|x|

, x ∈ R3 \ {0} (4.1)

with u : [0,∞) → R being bounded and continuously differentiable on [0,∞) with the
derivative u′ bounded on [0,∞). Note that V has singularity at x = 0 if u(0) 6= 0. It is
easy to see that this V satisfies condition (3.3). By direct computations, one sees that
the effective potential Vλ in the present case takes the form

Vλ(x) =
e−|x|2/4λ

√
πλ|x|

∫ ∞

0

e−r2/4λu(r) sinh
|x|r
2λ

dr. (4.2)

In particular, Vλ also is spherically symmetric6.
A basic result on the spectra of Hλ is stated in the next theorem:

Theorem 4.1 Let V be given by (4.1). Then, for all λ ≥ 0, Hλ is self-adjoint with
D(Hλ) = D(∆) and bounded below. Moreover

σess(Hλ) = [0,∞),

where σess(·) denotes essential spectrum, and, if there exists an r0 > 0 such that supr≥r0
u(r) <

0, then the discrete spectrum σdisc(Hλ) is infinite.

Suppose that H0 has an isolated eigenvalue E0 ∈ R with finite multiplicity m(E0)
(1 ≤ m(E0) < ∞). Let r be a constant satisfying

0 < r < min
E∈σ(H0)\{E0}

|E − E0|.

Then
Cr(E0) := {z ∈ C||z − E0| = r} ⊂ ρ(H0),

Let
nr := r sup

z∈Cr(E0)

‖(H0 − z)−1‖, rλ := sup
z∈Cr(E0)

‖Wλ(H0 − z)−1‖.

Theorem 4.2 Let rλ < 1/(1 + nr). Then, Hλ has exactly m(E0) eigenvalues in the
interval (E0 − r, E0 + r), counting multiplicities, and σ(Hλ)∩ (E0 − r, E0 + r) consists of
only these eigenvalues.

In the case where E0 is a simple eigenvalue of H0, one can obtain more detailed results:

6It is an easy exercise to show that, in general, if V is spherically symmetric on Rd, then so is Vλ.

11



Corollary 4.3 Let rλ < 1/(1 + nr). Suppose that m(E0) = 1 and Ω0 is a normalized
eigenvector of H0 with eigenvalue E0. Then, Hλ has exactly one simple eigenvalue Eλ in
the interval (E0 − r, E0 + r) with formula

Eλ = E0 +
〈Ω0,WλΩ0〉 +

∑∞
n=1 Sn(λ)

1 +
∑∞

n=1 Tn(λ)
,

where

Sn(λ) :=
(−1)n+1

2πi

∫
Cr(E0)

dz
〈
Ω0,

[
Wλ(H0 − z)−1

]n+1
Ω0

〉
,

Tn(λ) :=
(−1)n+1

2πi

∫
Cr(E0)

dz

〈
Ω0, [Wλ(H0 − z)−1]

n
Ω0

〉
E0 − z

,

and σ(Hλ) ∩ (E0 − r, E0 + r) = {Eλ}. Moreover, a normalized eigenvector of Hλ with
eigenvalue Eλ is given by

Ωλ =
Ω0 +

∑∞
n=1 Ωλ,n√

1 +
∑∞

n=1 Tn(λ)
,

where

Ωλ,n :=
(−1)n+1

2πi

∫
Cr(E0)

dz(H0 − z)−1
[
Wλ(H0 − z)−1

]n
Ω0.

5 Reductions of Hλ to Closed Subspaces

The Hilbert space L2(R3) has the orthogonal decomposition

L2(R3) = ⊕∞
`=0 ⊕`

s=−` Hs
`

with
Hs

` = L2([0,∞), r2dr) ⊗ {αY s
` |α ∈ C},

where Y s
` is the spherical harmonics with index (`, s):

Y s
` (θ, φ) := (−1)s

√
(` − s)!

(` + s)!

√
2` + 1

4π
P s

` (cos θ)eisφ,

θ ∈ [0, π], φ ∈ [0, 2π), s = −`,−` + 1, · · · , 0, · · · , ` − 1, `

with P s
` being the associated Legendre function:

P s
` (x) := (1 − x2)s/2 ds

dxs

(−1)`

2``!

(
d

dx

)`

(1 − x2)`, |x| < 1.

We have ∫ π

0

dθ

∫ 2π

0

dφ sin θY s
` (θ, φ)∗Y s′

`′ (θ, φ) = δ``′δss′ .

As we have already seen, Vλ under consideration is spherically symmetric. Hence Hλ

is reduced by each Hs
` . We denote the reduced part of Hλ by H`,s

λ :

12



(H`,s
λ f ⊗ Y s

` )(r, φ, θ) =

(
− ~2

2m

d2

dr2
+ Ṽλ(r) −

~2

2m

2

r

d

dr

)
f(r)Y s

` (θ, φ)

+
`(` + 1)

r2
f(r)Y s

` (θ, φ), f ∈ C∞
0 (0,∞),

where Ṽλ(r) := Vλ(x)|r=|x| and C∞
0 (0,∞) is the set of infinitely differentiable functions on

(0,∞) with bounded support in (0,∞).

Corollary 5.1 For each pair (`, s) (` ∈ {0}∪N, s = −`,−`+1, · · · , `), Theorem 4.2 and
Corollary 4.3 with Hλ replaced by H`,s

λ hold.

6 Energy Level Shifts in a Hydrogen-like Atom

Now we consider a hydrogen-like atom mentioned in Introduction. Thus we take as an
unperturbed Hamiltonian H0 the Schrödinger operator Hhyd defined by (1.1):

Hhyd = − ~2

2me

∆ + V (γ), V (γ) := − γ

|x|
. (6.1)

The eigenvalue En of Hhyd (see (1.3) ) is a unique simple eigenvalue of the reduced part

H`,s
hyd of Hhyd (0 ≤ ` ≤ n − 1) to the closed subspace Hs

` with a normalized eigenfunction

ψn,`,s(x) := Cn,`e
−βnr/2(βnr)`L2`+1

n+` (βnr)Y
s
` (θ, φ),

r = |x|, ` = 0, 1, · · · , n − 1,

where

βn :=
2meγ

~2n
,

Lk
n (0 ≤ k ≤ n) is the Laguerre associated polynomial with order n − k, i.e.,

Lk
n(x) =

dk

dxk
Ln(x), x ∈ R

with Ln(x) being the n-th Laguerre polynomial and

Cn,` :=
β

3/2
n

√
(n − ` − 1)!√

[(n + `)!]32n
.

Applying (4.2) with u = −γ (a constant function), the effective potential

V
(γ)
λ := Gλ ∗ V (γ)

in the present case is of the form:

V
(γ)
λ = V (γ) + W

(γ)
λ

13



with

W
(γ)
λ (x) :=

2γ√
π|x|

Erfc(|x|/2
√

λ),

where Erfc : R → [0,∞) is the Gauss error function:

Erfc(x) :=

∫ ∞

x

e−y2

dy, x ≥ 0.

Hence the effective Hamiltonian

Hλ(γ) = − ~2

2me

∆ + V
(γ)
λ , λ > 0,

takes the form
Hλ(γ) = Hhyd + W

(γ)
λ .

The next theorem follows from a simple application of Theorem 4.1:

Theorem 6.1 For all λ > 0 and γ > 0, Hλ(γ) is self-adjoint with D(Hλ(γ)) = D(∆)
and bounded below. Moreover, σdisc(Hλ(γ)) is infinite and

σdisc(Hλ(γ)) ⊂ (−∞, 0), σess(Hλ(γ)) = [0,∞).

We take rn > 0 such that rn < |En+1 − En| and set

Crn(En) := {z ∈ C| |z − En| = rn}.

Let

Mn := rn sup
z∈Crn (En)

‖Hhyd − z)−1‖, Rλ,n := sup
z∈Crn (En)

‖W (γ)
λ (Hhyd − z)−1‖.

We denote by H`,s
λ (γ) the reduced part of Hλ(γ) to Hs

` .
We have from Corollary 5.1 the following result:

Theorem 6.2 Let n ∈ N, ` = 0, 1, · · · , n − 1 and s = −`,−` + 1, · · · , `. Suppose that
λ > 0 and Rλ,n < 1/(1 + Mn). Then, H`,s

λ (γ) has a unique simple eigenvalue En,`,s(λ)
near En with

En,`,s(λ) = En +

〈
ψn,`,s,W

(γ)
λ ψn,`,s

〉
+

∑∞
p=1 F

(p)
n,`,s(λ)

1 +
∑∞

p=1 G
(p)
n,`,s(λ)

,

where

F
(p)
n,`,s(λ) :=

(−1)p+1

2πi

∫
Crn(En)

〈
ψn,`,s,

[
W

(γ)
λ (Hhyd − z)−1

]p+1

ψn,`,s

〉
dz,

G
(p)
n,`,s(λ) :=

(−1)p+1

2πi

∫
Crn (En)

〈
ψn,`,s,

[
W

(γ)
λ (Hhyd − z)−1

]p

ψn,`,s

〉
En − z

dz.

14



Moreover, a normalized eigenvector ψ
(λ)
n,`,s of H`,s

λ (γ) with eigenvalue En,`,s(λ) is given by

ψ
(λ)
n,`,s =

ψn,`,s +
∑∞

p=1 S
(p)
n,`,s(λ)√

1 +
∑∞

p=1 G
(p)
n,`,s(λ)

,

where

S
(p)
n,`,s(λ) :=

(−1)p+1

2πi

∫
Crn(En)

(Hhyd − z)−1
[
W

(γ)
λ (Hhyd − z)−1

]p

ψn,`,sdz.

Let n ∈ N, λ > 0 and Rλ,n < 1/(1 + Mn). Then, by Theorem 6.2, one can define

∆En(`, s; `′, s′) := En,`,s(λ) − En,`′,s′(λ) (6.2)

for `, `′ = 0, 1, · · · , n−1, s, s′ = −`,−`+1, · · · , ` with (`, s) 6= (`′, s′). We call it an energy
level shift of Hλ(γ) with respect to the n-th energy level.

The next theorem is an important result necessary for deriving the Lamb shift (see
the next section):

Theorem 6.3 Under the assumption of Theorem 6.2, the following holds:

En,`,s(λ) = En + 4πγ|ψn,`,s(0)|2λ + o(λ) (λ → 0). (6.3)

7 Derivation of the Lamb shift

In this section, we assume that, for each n ∈ N, λ > 0 is sufficiently small so that the
assumption of Theorem 6.2 holds. Then, by Theorem 6.3, we have

∆En(`, s; `′, s′) = 4πγ(|ψn,`,s(0)|2 − |ψn,`′,s′(0)|2)λ + o(λ) (λ → 0).

Using

L1
n(0) = nn!, Y 0

0 =
1√
4π

,

we obtain

|ψn,`,s(0)|2 =


1

π

(meγ

~2

)3 1

n3
; ` = 0, s = 0

0 ; ` ≥ 1

(7.1)

Hence the following hold:

(i) If `, `′ ≥ 1, then
∆En(`, s; `′, s′) = o(λ) (λ → 0). (7.2)

(ii) If ` ≥ 1, then

∆En(0, 0; `, s) = 4πγλ|ψn,0,0(0)|2 + o(λ) (λ → 0). (7.3)
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Formula (7.3) shows that, for each n, the energy of the state with ` = 0, s = 0 (the
s-state) is higher than that of the state with ` ≥ 1 for all sufficiently small λ. This may
be a non-relativistic correspondence of the experimental fact that, for n = 2, the energy
of the state 2s1/2 is higher than that of the state 2p1/2.

To compare the value of ∆En(0, 0; `, s) with the experimental one, we take λ = λq

with q = −e, m = me and

ω(k) = |k|, ρ̂(k) =
1√

(2π)3
χ

[ωmin/~c,ωmax/~c]
(|k|), k ∈ R3,

with constants ωmin > 0 and ωmax > 0 satisfying ωmin < ωmax. Then we have

λ = λ−e = α

(
~

mec

)2
1

3π
log

ωmax

ωmin

,

where

α :=
e2

4π~c
≈ 1

137

is the fine structure constant. We remark that ωmin (resp. ωmax) physically means an
infrared (resp. ultraviolet) cutoff of the one-photon energy. We have γ = Ze2/4π. Thus
we obtain

∆En(0, 0; `, s) ≈ α5 4

3π
mec

2Z4

n3
log

ωmax

ωmin

=
8

3π
α3Ry

Z4

n3
log

ωmax

ωmin

(α → 0), (7.4)

where Ry := α2mec
2/2 is 1 rydberg (−Ry is the ground state energy of the hydrogen

atom). If we take ωmax = mec
2 (the rest mass energy of the electron) and ωmin = 17.8 Ry,

then the right hand side of (7.4) completely coincides with Bethe’s calculation [10] of the
Lamb shift. Hence it is in a good agreement with the experimental result.

8 An Abstract General Class of Effective Hamiltoni-

ans

In concluding this paper, we want to point out that the effective Hamiltonian Hλ given
by (3.1) is a special case of an abstract effective operator obtained as a scaling limit of
the generalized spin-boson (GSB) model [8], a general model of an abstract “particle”
quantum system coupled to a Bose field (a quantum field of bosons).

The GSB model is described as follows. The Hilbert space for the abstract “particle”
quantum system is taken to be an abstract complex Hilbert space H and the Hilbert space
for the Bose field is given by the boson Fock space

Fb(K) := ⊕∞
n=0 ⊗n

s K

over an abstract Hilbert space K—Fb(K) is just the Hilbert space Frad with Hph replaced
with K. Then the Hilbert space of the composite system is the tensor product H⊗Fb(K).
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The abstract version of the photon annihilation operator on Frad is defined on Fb(K)
too, in exactly the same form. We denote it by a(f), f ∈ K and set

φ(f) :=
1√
2
(a(f)∗ + a(f)), f ∈ K.

Let T be a non-negative, injective self-adjoint operator on K denoting the one-particle
Hamiltonian of the Bose field. Then the n-particle Hamiltonian (n ≥ 0) of the Bose field
is defined by T (0) := 0 and

T (n) :=
n∑

j=1

I ⊗ · · · ⊗ I⊗
jth
^

T ⊗I · · · ⊗ I, n ≥ 1.

The free Hamiltonian of the Bose field is given by

Hb = ⊕∞
n=0T

(n).

Let A be a self-adjoint operator on H denoting the Hamiltonian of the particle system,
Bj (j = 1, · · · , N) be a symmetric operator on H, and gj ∈ K (j = 1, · · · , N). Then the
Hamiltonian of the GSB model is defined by

HGSB := A ⊗ I + I ⊗ Hb + q

N∑
j=1

Bj ⊗ φ(gj)

acting on the Hilbert space H⊗Fb(K), where q ∈ R is a coupling parameter between the
Bose field and the “particle”.

Example 8.1 As is easily seen, the model HNR in non-relativistic QED discussed in
Section 2 is a concrete example of the GSB model with the following realizations (the
unrenormalized version7):

N = d, (8.1)

H = L2(Rd), K = ⊕d−1L2(Rd), (8.2)

A = H(m0), Bj = − pj

m0c
, T = ~cω, gj =

√
~cρ̂ej√

ω
. (8.3)

As in the case of HNR, we can consider a scaling limit for HGSB. For that purpose, we
assume the following:

(A.1) There exist self-adjoint operators A0 and A1 on H such that

(i) A0 is non-negative and D(A0) ⊂ D(A1);

(ii) ‖A1ψ‖ ≤ a‖A0ψ‖ + b‖ψ‖, ∀ψ ∈ D(A0) for some a < 1 and b ≥ 0.

(A.2) The set {Bj}n
j=1 is a set of strongly commuting self-adjoint operators on H.

7Also the renormalized version HNR(κ) is included.
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(A.3) The self-adjoint operator A0 strongly commutes with Bj, j = 1, · · · , N .

(A.4) gj ∈ D(T−1)∩D(T−1/2), j = 1, · · · , N , and {gj}N
j=1 is linearly independent. More-

over, for all j, k = 1, · · · , N ,

Λjk :=
〈
T−1gj, T

−1gk

〉
is a real number.

Condition (A.4) implies that the N × N matrix

Λ := (Λjk)

is strictly positive.
By condition (A.2), for all t := (t1, · · · , tn) ∈ Rn, the operator

B(t) :=
n∑

j=1

tjBj

is essentially self-adjoint, so that its closure B(t) is self-adjoint and e±iqB(t) are unitary

for all q ∈ R. It is not so difficult to show that, for all ψ ∈ D(A0) and all t, e−iqB(t)ψ is

in D(A0) and e−iqB(t)A1e
−iqB(t)ψ is strongly continuous in t with

‖e−iqB(t)A1e
−iqB(t)ψ‖ ≤ a‖A0ψ‖ + b‖ψ‖.

Hence we can define an operator A1(q) with D(A1(q)) = D(A0) by

A1(q)ψ :=
1

πN/2
√

det Λ

∫
RN

e−〈t,Λ
−1t〉RN e−iqB(t)A1e

iqB(t)ψdt, (8.4)

where det Λ is the determinant of the matrix Λ and the integral is taken in the sense of
strong Riemann integral. It follows that A1(q) is symmetric.

By condition (A.2), the operator

RB :=
q2

2

N∑
j,k=1

〈
T−1/2gj, T

−1/2gk

〉
BjBk

is essentially self-adjoint and non-negative.
For each κ > 0, we define a renormalized version of HGSB by

HGSB(κ) := A ⊗ I + κRB ⊗ I + κI ⊗ Hb + κq
N∑

j=1

Bj ⊗ φ(gj).

Conditions (A.2) and (A.4) imply that the operator

L :=
N∑

j=1

Bj ⊗ φ(iT−1gj)

is essentially self-adjoint (see [9, Lemma 3.4]).
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Lemma 8.2 The operator HGSB(κ) is self-adjoint, bounded below and the operator equal-
ity

e−iqL̄HGSB(κ)eiqL̄ = A0 ⊗ I + κI ⊗ Hb + HI(q),

where
HI(q) := e−iqL̄A1e

iqL̄.

Proof. Essentially same as the proof of [9, Lemma 3.7].

Lemma 8.3 Let
Aeff(q) := A0 + A1(q).

Then Aeff is self-adjoint with D(Aeff(q) = D(A0) and bounded below.

Proof. We can show that ‖A1(q)ψ‖ ≤ a‖A0ψ‖ + b‖ψ‖, ∀ψ ∈ D(A0), since

1

πN/2
√

det Λ

∫
RN

e−〈t,Λ
−1t〉RN dt = 1.

Hence, by Kato-Rellich theorem, the desired result follows.

By Lemma 8.2 and an application of [4, Theorem 2.12], we can prove the following
result on the scaling limit κ → ∞ for HGSB(κ):

Theorem 8.4 For all z ∈ C \ R,

s- lim
κ→∞

(HGSB(κ) − z)−1 = eiqL̄(Aeff(q) − z)−1 ⊗ Pe−iqL̄,

where P is the orthogonal projection onto the one-dimensional subspace {αΩ|α ∈ C} with
the Fock vacuum Ω := {1, 0, 0, · · · } ∈ Fb(K).

Theorem 8.4 shows that Aeff(q) can be regarded as an effective operator of HGSB(κ)
with A1(q) being an effective “potential” for A1.

Example 8.5 Consider the case of Example 8.1. In this case, we take

A0 = − ~2

2m
∆, A1 = V,

with m0 replaced by m, where the potential V is assumed to satisfy (V.1) and (V.2)
in Theorem 2.2. We also assume that ρ̂ is spherically symmetric. Then we have the
following:

Λjk = δjkC, C :=
1

~c

d − 1

d

∥∥∥∥ ρ̂

ω3/2

∥∥∥∥2

L2(Rd)

,

(A1(q)ψ)(x) =
1

πd/2Cd/2

∫
Rd

e−t2/CV

(
x +

q~
mc

t

)
ψ(x)dt, ψ ∈ D(∆).

By change of variables, one easily sees that

A1(q)ψ = Veffψ, ψ ∈ D(∆)

with Veff given by (2.3). Hence A1(q) = Veff .
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Thus the operator Aeff(q) may be regarded as a perturbation of A which is physically
meaningful to applications to quantum mechanics. To analyze spectral properties of
Aeff(q) in comparison with those of A would be interesting.

Remark 8.6 A more general form of an effective operator of A would be

A(q) :=
1

πN/2
√

det M

∫
RN

e−〈t,M−1t〉e−iqB(t)AeiqB(t)dt,

with a strictly positive N ×N matrix M , under the condition that the right hand side is
defined as a strong integral on a suitable dense subspace. We propose to analyze properties
of the operator A(q) including its self-adjointness.
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