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Abstract: We study the parameter dependence of the Bergman kernels on planar do-
mains depending on complex parameters ζ in nontrivial “pseudoconvex” ways. It turns out
that, in an example where the domains are rectangles Rζ , the Levi form of log KRζ (z, z) with
respect to ζ approaches to 0 as (ζ, z) tends to the boundary point (1+i, 0). In contrast to this,
if (ζ, z) tends to the other boundary point, completely different phenomena are observed.

1. Preliminaries

We briefly present here certain results underlying the proofs of Theorems. This exposi-
tion is adapted to our special cases.

1.1. Bergman kernel. The Bergman kernel of a domain Ω ⊂ Cn is a reproducing kernel
for the Hilbert space of all square integrable holomorphic functions on Ω. In what follows,
let Ω be a bounded domain in Cn, let A2(Ω) be the space of square integrable holomorphic
functions on Ω. It is a closed subspace of L2(Ω) with respect to Lebesgue measure. And let
{φ j(z)}∞j=1 be a complete orthonormal basis for A2(Ω). Then the Bergman kernel KΩ(z,w)
is identified with the following series:

KΩ(z,w) =

∞∑
j=1

φ j(z)φ j(w),

which is independent of the choice of orthonormal basis. For z = w, one has KΩ(z, z) > 0.
The Bergman kernel satisfies the following transformation formula.

Proposition 1.1. Let f : Ω −→ D be a biholomorphic mapping between Ω and D. Then,

KΩ(z,w) = KD( f (z), f (w)) det f ′(z)det f ′(w).

By Cauchy’s estimate it is easy to see that KΩ(z,w) is a C∞function on Ω × Ω and that,
on the diagonal, it can be represented as

KΩ(z, z) = sup{| f (z)|2 | f ∈ A2(Ω), || f (z)||A2(Ω) = 1} for ∀ z ∈ Ω.

Riemann’s mapping Theorem states that any simply connected domain of the complex
z plane can be mapped with a univalent transformation onto the unit disk or onto the upper
half of the complex w plane. Unfortunately, the proof of this celebrated theorem is not
constructive, that is, given a special domain in the z plane, there is no general constructive
approach for find the univalent transformation. Nevertheless, as we will see, there are many
particular domains, such as the interior of a polygon, for which the univalent function can
be constructed explicitly.

1.2. Schwarz-Christoffel transformation. Let Γ be a piecewise linear boundary of a
polygon in the w-plane and let the interior angles at successive vertices be α1π, α2π, · · · , αnπ.
The transformation defined by the equation

w = F(z) = C
∫ z

0
(ξ − a1)α1−1(ξ − a2)α2−1 · · · (ξ − an)αn−1dξ + C′, (1.2.1)

where C, C′ are complex numbers and a1, a2, · · · , an are real numbers, maps Γ into the real
axis of the complex z plane and the interior of the polygon to the upper half of the z plane.
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The vertices of the polygon A1, A2, · · · An are mapped to the points a1, a2, · · · , an. This map
is an analytic one-to-one conformal transformation between the upper half of the z plane
and the interior of the polygon.

Remark 1.2. Actually, for any univalent transformation, the correspondence of three points
on the boundaries of two simply connected domains can be prescribed arbitrarily. In par-
ticular, any of the three vertices of the polygon can be associated with any three points on
the real axis.

2. Results and Proofs

The considered parameter rectangles are

Rζ := {z = s + it ∈ Cz | 0 < s < Reζ, 0 < t < Imζ}

where ζ ∈ B with B := {ζ ∈ C||ζ − (1 + i)| < η} and define R :=
⋃
ζ∈B{ζ} × Rζ . Then the

following results hold.

Theorem 2.1. The Bergman kernels of Rζ on the diagonal are

KRζ (z, z) =
1

π(Imsn2(u, k(ζ)))2 |sn(u, k(ζ))cn(u, k(ζ))dn(u, k(ζ))
sn−1(1, k(ζ))

Reζ
|2

where u = sn−1(1, k(ζ))z/Reζ and sn(u, k), cn(u, k), dn(u, k) are the Jacobi’s elliptic fun-
tions of the first kind, sn−1(1, k) is the complete elliptic integral of the first kind. k(ζ) is a
real valued analytic function with respect to ζ, its Taylor expansion to the second order
near the point ζ = 1 + i is:

k(ζ) = k0 + 2Re((a + ib)ε) + 2Re((c + id)ε2) + 2e|ε|2 + · · · ,

where k0 = 1/
√

2, a = b = −2c = K/
(
4
√

2(2E − K)
)
, d = e = −

√
2a2, here K is the value

of the complete elliptic integral of the first kind at the point k = 1/
√

2, and E is the value
of the complete elliptic integral of the second kind at the point k = 1/

√
2.

Proof. Firstly, for symmetry, we consider the transformation F(w, ζ) which maps the up-
per half of the w plane H onto R′ζ which is a rectangle with vertices A1(Reζ), A2(ζ),
A3(−ζ), A4(−Reζ) for each ζ in the z plane. We associate A1(Reζ) with a1(1), A2(ζ) with
a2(1/k(ζ)), and w = 0 with z = 0. Then by symmetry, A3(−ζ), A4(−Reζ) are associated
with a3(−1/k(ζ)), a4(−1) respectively. Our goal is to determine both the transformation
z = F(w, ζ) and the constant k as an analytic function with respect to the variable ζ. In this
case α1 = α2 = α3 = α4 = 1/2, a1 = 1, a2 = 1/k, a3 = −1/k, a4 = −1. Furthermore, be-
cause F(0, ζ) = 0 (symmetry), the constant C′ of integration (2.2.1) is zero; thus Equation
(2.2.1) yields

z = F(w, ζ) = C(ζ)
∫ w

0
((1 − t2)(1 − k2(ζ)t2))−

1
2 dt. (2.1.1)

The integral appearing in (2.1.1), with the choice of a single branch defined by the require-
ment that 0 < arg(w − ai) < π, i = 1, 2, 3, 4, is the so-called elliptic integral of the first
kind. The association of A1(Reζ) with a1(1) and A2(ζ) with a2(1/k(ζ)) imply that

Reζ = C(ζ)
∫ 1

0
((1 − t2)(1 − k2(ζ)t2))−

1
2 dt, (2.1..2)

Imζ = C(ζ)
∫ 1

0
((1 − t2)(1 − (1 − k2(ζ))t2))−

1
2 dt. (2.1.3)

Since k(ζ) is a real valued analytic function with respect to ζ, the power series of k(ζ) is

k(ζ) = k0 + 2Re((a + ib)ε) + 2Re((c + id)ε2) + 2e|ε|2 + · · ·
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in a neighborhood of the point ζ = 1 + i. Then, (2.1.2) and (2.1.3) yield that k0 = 1/
√

2,

a = b = −2c =
1 +

∑
n>1( (2n−1)!!

(2n)!! )2( 1
2 )n

4
√

2
∑

n>1( (2n−1)!!
(2n)!! )2n( 1

2 )n−1
=

K

4
√

2(2E − K)
,

d = e = −
√

2a2, and C(ζ) = Reζ/K(k(ζ)). In summary, the transformation F(w, ζ) is given
by

z = F(w, ζ) =
Reζ
K(k)

∫ w

0

(
(1 − t2)

(
1 − k2(ζ)t2

))− 1
2 dt .

Secondly, the inverse of the integral in F(w, ζ) gives w as a function of z via one of the
so-called Jacobi’s elliptic function sn(u, k). Then the inverse of F(w, ζ) with respect to the
first variable is given by

w = f (z, ζ) = sn
(

K(k)
Reζ

z, k(ζ)
)
.

Moreover,

F(−w, ζ) = −F(w, ζ)

implies that f (z, ζ) maps Rζ to {w ∈ Cw|w = a + ib, a > 0, b > 0}, thus f 2 maps Rζ to the
upper half w plane H. In addition, it is known that the Bergman kernel of the upper half w
plane on the diagonal is

KH(w,w) =
1

4π(Imw)2 ,

then by Proposition 1.1, the Bergman kernels of Rζ on the diagonal are

KRζ (z, z) =
1
π

1
(Im f 2)2 | fz|

2| f |2

=
1

π(Imsn2(u, k))2 |sn2(u, k)cn2(u, k)dn2(u, k)|
∣∣∣∣∣K(k)
Reζ

∣∣∣∣∣2
here u = K(k)z/Reζ. �

Theorem 2.2. For Bergman kernels KRζ (z, z) where (ζ, z) ∈ R, it holds that

lim
z→0,ζ→1+i

∂2 log KRζ (z, z)

∂ζ∂ζ
= 0,

Proof. From the expression of KRζ (z, z),

∂2 log KRζ (z, z)

∂ζ∂ζ
= − 2

∂2 log(Imsn2(u, k))

∂ζ∂ζ
+ 2Re

∂2 log(sn(u, k)cn(u, k)dn(u, k))

∂ζ∂ζ

+ 2
∂2(− log(Reζ) + log |K(k)|)

∂ζ∂ζ

= − 2A + 2B + 2C.
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where

A :=
∂2 log(Imsn2(u, k))

∂ζ∂ζ
= 2

Im
(
sn(u, k) ∂

2sn(u,k)
∂ζ∂ζ

+
∂sn(u,k)
∂ζ

∂sn(u,k)
∂ζ

)
Imsn2(u, k)

+

2Re
(
sn2(u, k) ∂sn(u,k)

∂ζ
∂sn(u,k)
∂ζ

)
− |sn(u, k)|2

(
|
∂sn(u,k)
∂ζ
|2 + |

∂sn(u,k)
∂ζ
|2
)

(Imsn2(u, k))2 ,

B := Re
∂2 log(sn(u, k)cn(u, k)dn(u, k))

∂ζ∂ζ

= Re
∂2 log sn(u, k)

∂ζ∂ζ
+ Re

∂2 log cn(u, k)

∂ζ∂ζ
+ Re

∂2 log dn(u, k)

∂ζ∂ζ
,

C :=
∂2(− log(Reζ) + log |K(k)|)

∂ζ∂ζ
.

Using the expression of k(ζ) we get that

lim
ζ→1+i

∂k
∂ζ

= (1 + i)a, lim
ζ→1+i

∂k

∂ζ
= (1 − i)a, lim

ζ→1+i

∂k
∂ζ

∂k

∂ζ
= 2a2, lim

ζ→1+i

∂2k

∂ζ∂ζ
= −2

√
2a2.

and since u = sn−1(1, k(ζ))z/Reζ, then,

lim
ζ→1+i

∂u
∂ζ

= (−1 + i)
u
4
, lim

ζ→1+i

∂u

∂ζ
= (−1 − i)

u
4
, lim

ζ→1+i

∂u
∂ζ

∂u

∂ζ
=

1
8

u2,

lim
ζ→1+i

∂2u

∂ζ∂ζ
=

(
4a2 +

1
4

)
u, lim

ζ→1+i

(
∂u
∂ζ

∂k

∂ζ
+
∂k
∂ζ

∂u

∂ζ

)
= 0.

And, using the power series expansion of sn(u, k), cn(u, k) and dn(u, k) in a neighborhood
of u = 0, that,
sn(u, k) = u − 1

3! (1 + k2)u3 + 1
5! (1 + 14k2 + k4)u5 + O(u7),

cn(u, k) = 1 − 1
2! u

2 + 1
4! (1 + 4k2)u4 + O(u5),

dn(u, k) = 1 − 1
2! k

2u2 + 1
4! (4k2 + k4)u4 + O(u6),

the following further results can now be verified,

lim
z→0,ζ→1+i

A = 8a2 +
1
4
, lim

z→0,ζ→1+i
B = 4a2 +

1
8
, lim

z→0,ζ→1+i
C =

1
8

+ 4a2.

These follow that

lim
z→0,ζ→1+i

∂2 log KRζ (z, z)

∂ζ∂ζ
= lim

z→0,ζ→1+i
(−2A + 2B + 2C) = 0.

�
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