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Abstract

An incompressible two-dimensional flow on a β plane is considered. The β plane is
a tangent plane of a sphere to approximately describe fluid motion on a rotating
sphere assuming that the Coriolis parameter is a linear function of the latitude.
Rossby waves are expected to dominate the β plane dynamics, and here in this
paper, a mathematical support for the crucial role of the resonant pairs of the
Rossby waves is given.
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1 Introduction

We consider an incompressible two-dimensional flow on a β plane 1 ,

∂tw + J(Ψ, w) + β∂xΨ = νΔw, (1)

where w = w(t) = w(t, x) (t > 0, x ∈ R
2), J(A, B) = (∂xA)(∂yB)−(∂yA)(∂xB).

Ψ is the streamfunction of the fluid, and w is the vorticity (Ψ = −(−Δ)−1w).

Email addresses: yamada@kurims.kyoto-u.ac.jp (Michio Yamada),
yoneda@math.sci.hokudai.ac.jp (Tsuyoshi Yoneda).
1 A similar equation, the Charney-Hasegawa-Mima equation,

∂tw − ∂tΨ + J(Ψ, w) + β∂xΨ = νΔw

will be discussed in a separate paper.
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The velocity of the fluid is given by (u, v) = (−∂yΦ, ∂xΦ), and the initial data
is w|t=0 = w0(x1, x2).

The β plane was first introduced by meteorologists (see [3,4]) as a tangent
plane of a sphere to approximately describe fluid motion on a rotating sphere,
assuming that the Colioris parameter is a linear function of the latitude. Con-
ventionally the x- and y-axes are taken eastward and northward, respectively,
and the x-direction is often called zonal direction in earth and planetary sci-
ences. We employ this intuitive terminology when convenient in this paper. A
formal derivation of the β plane approximation is given in [10]. The equation
(1) describes a two-dimensional motion of an incompressible fluid on the β
plane, and it has been known that in its solution, as time goes on, a stripe
pattern emerges, consisting of alternating eastward or westward zonal flows
(see [11]), similar to the zonal band structure observed on Jupiter 2 .

The equation (1) has been widely employed in earth and planetary sciences
to study the effect of differential rotation (latitudinal variation of the Coriolis
parameter) and the mechanism of zonal flow formation. From a physical point
of view, one of the most important properties of equation (1) is that there is
a linear wave solution, in contrast with non-rotating two-dimensional Navier-
Stokes fluid. The linear wave solution originates from the third term of (1),
and its dispersion relation is

ω = − βk1

k2
1 + k2

2

, (2)

where ω and (k1, k2) are the angular frequency and the wavenumber vector of
the linear wave, respectively. This wave is called Rossby wave, which is known
to play quite an important role in fluid motion of atmosphere and ocean.
Generally in nonlinear dynamics of linear waves, resonant pairs are expected
to give a dominant contribution to the nonlinear interactions. In the case of
the Rossby waves, therefore, the resonant waves are expected to dominate the
dynamics, and here in this paper, we will give a mathematical support for
the crucial role of the resonant pairs of the Rossby waves. For the rotating
Navier-Stokes equations in pure mathematical analysis, refer to [1,2,5–9,12].

The paper is organized as follows: In section 2, we show existence of local-in-
time unique solution to (1). The existence time is independent of the parameter
β. In section 3, we state the main result. To state the main result, we need
to set a filtered equation and give a resonant-nonresonant decomposition. We
consider the resonant-nonresonant decomposition precisely in Section 4. In the
last section, we give a proof of the main theorem.

2 The origin of the zonal band structure on Jupiter is still controversial. Three
dimensional deep convection is another possible origin of the surface zonal bands.
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Fig. 1. Zonal bands on Jupiter (NASA).

2 Local existence and uniqueness of the solution

We introduce a weighted �1 (in Fourier side) space given by

Xs := {w =
∑

n∈�2

anein·x ∈ S ′(T2) for a = {an}n∈�2 :

an = a∗
n (n ∈ Z

2), ‖a‖s := ‖a‖�s
1

:=
∑

n∈�2

(1 + |n|2)s/2|an| < ∞}

for s ≥ 0, where a∗
n is the complex conjugate of the Fourier coefficients an.

‖a‖0 is also written as ‖a‖. It is well known that X0 is an algebra which is
continuously embedded in BUC, the space of bounded uniformly continuous
functions. For the periodic case, we can point out the following relationship
between Xs(T2) and the Hölder space Cs(T2).

Proposition 1 We have w ∈ C∞(T2) if and only if w ∈ ∩s≥1X
s. Obviously,

Xs ⊂ Cs (s ≥ 0).

Throughout this paper we use �1-norm of amplitudes. To treat the Coriolis
term, we need to define rigorously the multipliers nj/|n|2 (j = 1, 2) as

lim
ε→0

nj

|n|2 + ε
.

Thus we see that
nj

|n|2
∣∣∣∣∣
n=0

= 0.

Let ωn := in1/|n|2. Without loss of generality, we set ν = 1. We consider
equation (1) on T

2, and then we can rewrite (1) by amplitude functions as
follows (we set

∑
n∈�2 a0,nein·x := w0 and

∑
n∈�2 an(t)ein·x := w(t)):
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∂tan(t) + |n|2an(t) + βωnan(t) =
∑

n=k+m

(
k1m2

|k|2 ak(t)am(t) − k2m1

|k|2 ak(t)am(t)

)

=
∑

n=k+m

(
k1n2

|k|2 ak(t)am(t) − k2n1

|k|2 ak(t)am(t)

)

=: Jn(a, a), and an(0) = a0,n.

We now obtain a local existence result in �1(Z
2) as follows:

Theorem 2 Assume that a(0) := {an(0)}n∈�2 ∈ �1(Z
2). Then there is a local-

in-time unique solution a(t) := {an(t)}n∈�2 ∈ C([0, TL] : �1(Z
2)) satisfying

TL ≥ C

‖a0‖2
0

, sup
0<t<TL

‖a(t)‖0 ≤ 10‖a0‖0,

where C is a positive constant independent of β. Moreover if ‖a(0)‖s < ∞, we
have the following pointwise estimate:

|an(t)| ≤ C1

(1 + |n|2)s/2
for 0 < t < TL, (3)

where C1 > 0 is independent of β.

Proof. The solution can be rewritten as follows (we say “mild solution”):

an(t) = e−(|n|2+βωn)tan(0) +
∫ t

0
e−(|n|2+βωn)(t−τ)Jn(a(τ), a(τ))dτ, n ∈ Z

2.

A direct calculation shows that

|an(t)| ≤ |an(0)| +
∫ t

0

C

(t − τ)1/2
|Jn(a(τ), a(τ))|dτ, n ∈ Z

2,

here we used

sup
t>0,n∈�2

ts/2|n|se−t|n|2 ≤ C for s > 0. (4)

By the convolution in �1(Z
2), we have the following estimate:

‖a(t)‖0 ≤ ‖a(0)‖0 + Ct1/2 sup
0<τ≤t

‖a(τ)‖0 sup
0<τ≤t

‖a(τ)‖0 for t > 0,

Using the above estimates, we easily have the local existence result (see [6] for
example). To show the pointwise bound, it suffices to show that

‖a(t)‖s ≤ C for t ∈ [0, TL], if ‖a(0)‖s ≤ C (C is independent of β).
(5)
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Indeed, by (5) and the following estimate:

sup
n

(1 + |n|2)s/2|an(t)| ≤ ‖a(t)‖s (0 < t < TL),

we have the pointwise bound. To show (5), we use a bootstrapping argument.
Namely, we first control sup0<t≤TL

‖a(t)‖1/2 from the estimate of the mild
solution. Second, we control supt ‖a(t)‖1, third sup0<t≤TL

‖a(t)‖3/2 and so on.
Here we only control sup0<t≤TL

‖a(t)‖1/2. By (4), we have

‖a(t)‖1/2 ≤ ‖an(0)‖1/2 + Ct1/4 sup
0<τ≤t

‖a(τ)‖2
0 for 0 < t < TL.

Thus sup0<t≤TL
‖a(t)‖1/2 is controllable. The same calculations for ‖a(t)‖1,

‖a(t)‖3/2, · · · give the desired estimate.

3 Filtered equation, resonant-nonresonant decomposition and the
main theorem

In this section, we give a filtered equation, a resonant-nonresonant decompo-
sition and state the main theorem. We set cn(t) := e−tβωnan(t) for n ∈ Z

2. A
direct calculation shows that {cn(t)} satisfy the following equation:

∂tcn(t) = −|n|2cn(t) + Bn(c(t), c(t)) and cn(0) = an(0), (6)

which we call the “filtered equation”, where

Bn(c1, c2) := e−tβω(n)Jn(etβω(·)c1, e
tβω(·)c2)

with ω(n) := ωn = in1/|n|2. From now on we handle {cn(t)}n∈�2 instead of the
coefficients {an(t)}n∈�2, since they are equivalent in �1(Z

2) to each other. The
nonlinear operator Bn can be decomposed into two parts, the resonant part
B0(·, ·) (independent of β) and the non-resonant part B0+(βt, ·, ·) (depending
on β). More precisely,

∂tcn(t) = −|n|2cn(t)+B0
n(c(t), c(t))+B0+(βt, c(t), c(t)) and cn(0) = an(0).

We will give its detail in the next section. Now we define the solution b(t) to
the resonant part of the equation and the remainder term rn(t) := cn(t)−bn(t)
as follows:

∂tbn(t) = −|n|2bn(t) + B0
n(b(t), b(t)) and bn(0) = cn(0) = an(0), (7)

∂trn(t) = −|n|2rn(t) + B0
n(c(t), r(t)) + B0

n(r(t), b(t)) + B0+
n (βt, c(t), c(t))

and rn(0) = 0. We call equation (7) the limit equation. Formally, the limit
equation is the case of β → ∞ for (1). This kind of decomposition has already
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Fig. 2. The frequency set of the three-wave interaction. In this plot, trivial three
wave interactions, (n1, n2) = (n1,−n2) + (0, 2n2), are ignored.

been done for the rotating 3D-Navier-Stokes/Euler equations (see [1,2,9,12]
for example). It is known by numerical integration that for large values of β,
the flow field is non-isotropic as there arise zonal (i.e. in x1-direction) flows,
meaning that most energy is concentrated to the Fourier components of n ∼
(0, n2). Numerical computation thus suggests that the solution to the limit
equation is a non-isotropic flow (namely, zonal jet flow).

The main result is as follows: the solution c(t) to (6) tends to the solution b(t)
to the limit equation provided that β tends to infinity. More precisely,

Theorem 3 For all ε > 0, there is β0 > 0 s.t. ‖r(t)‖0 ≤ ε for 0 < t < TL and
|β| > β0, where TL is the local existence time (see Theorem 2).

To control the remainder term, we use oscillatory integral and estimate the
non-resonant operator B0+ (see Section 5).

4 Decomposition of the nonlinear term

In this section we decompose the nonlinear term into two parts: the resonant
part and the non-resonant part, and we estimate them in �1(Z

2)-norm.

Theorem 4 Let c1(t) := {c1,n(t)}n∈�2, c2(t) := {c2,n(t)}n∈�2 ∈ �1(Z2),
ωnkm := n1/|n|2 − k1/|k|2 − m1/|m|2, and
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bnkm(ck, cm) :=
k1m2

|k|2 ck(t)cm(t) − k2m1

|k|2 ck(t)cm(t)

=
k1n2

|k|2 ck(t)cm(t) − k2n1

|k|2 ck(t)cm(t).

Recall that ω(n) = in1/|n|2. Then the non-linear term

Bn(c1, c2) := e−tβω(n)Jn(etβω(·)c1, e
tβω(·)c2) =

∑
n=k+m

eitβωnkmbnkm(c1,k, c2,m)

can be decomposed into two parts:

B0
n(c1, c2) =

∑
n=k+m

ωnkm=0

bnkm(c1,k, c2,m)

and

B0+
n (βt, c1, c2) :=

∑
n=k+m

ωnkm 	=0

eiβtωnkmbnkm(c1,k, c2,m).

The resonant part B0
n(c1, c2) can also be decomposed as follows:

B0
n(c1, c2) :=

∑
μ∈D

Bμ
n(c1, c2) (8)

for D = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.

The bilinear forms Bμ := {Bμ
n}n∈�2 (μ ∈ D) are defined as follows:

B(0,0,0)
n (c1, c2) : =

∑
n=k+m

n1=k1=m1=0

bnkm(c1,k, c2,m)

B(0,1,1)
n (c1, c2) :=

∑
n=k+m

|n|=|m|	=0,−k1=m1 	=0

bnkm(c1,k, c2,m), (9)

B(1,0,1)
n (c1, c2) :=

∑
n=k+m

|n|=|m|	=0,n1=m1 	=0

bnkm(c1,k, c2,m), (10)

B(1,1,0)
n (c1, c2) :=

∑
n=k+m

|n|=|k|	=0,n1=k1 	=0

bnkm(c1,k, c2,m), (11)
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B(1,1,1)
n (c1, c2) :=

∑
n=k+m

ωnkm=0,n1,k1,m1 	=0

bnkm(c1,k, c2,m). (12)

Moreover we have the following estimates (see (15)and (16)).

‖{e−|n|2tBn(c1, c2)}n∈�2‖0 ≤ (C/t1/2)‖c1‖0‖c2‖0 (13)

and

‖{e−|n|2tB0+(βt, c1, c2)}n∈�2‖0 ≤ (C/t1/2)‖c1‖0‖c2‖0, (14)

where C > 0 is independent of β. (From these inequalities, we can show the
local existence for b and r. The proof is quite similar to that of Theorem 2,
thus we omit its detail.)

The following remarks and the definition are important to see that the solution
to the limit equation is a zonal flow. Let us define a frequency set of the Fourier
coefficients b = {bn}n∈�2 ∈ �1(Z

2) as

Λb := {n ∈ Z
2 : bn1,n2 �= 0} ∪ {n ∈ Z

2 : b−n1,n2 �= 0}
∪{n ∈ Z

2 : bn1,−n2 �= 0} ∪ {n ∈ Z
2 : b−n1,−n2 �= 0}.

Remark. (Trivial resonances.) For any b1, b2 ∈ �1(Z
2), we have

ΛB(1,1,0)(b1,b2) ⊂ Λb1 , ΛB(1,0,1)(b1,b2) ⊂ Λb2,

ΛB(0,0,0)(b1,b2) ⊂ {n ∈ Z
2 : n1 = 0} and ΛB(0,1,1) ⊂ {n ∈ Z

2 : n1 = 0}.

The following definition is the key in this paper.

Definition 5 (Three wave interaction frequencies.) Let Λ be such that for any
n ∈ Z

2 with n1 �= 0, if there is k and m with k1 �= 0 and m1 �= 0 such that
ωnkm = 0, then n ∈ Λ, if not, then n �∈ Λ. (The wavenumber set Λ is the whole
red area in Figure 2.)

Remark. If b is such that Λb ⊂ Λ, then ΛB(1,1,1)(b,b) ⊂ Λ.

We note that every wavenumber n = (n1, n2) has a trivial resonance with
{k, m} = {(n1,−n2), (0, 2n2)}, and is therefore not resonantly independent of
other wavenumbers. However, taking into account the Hermite conjugate re-
lation an = a∗

−n, if the four wavenumbers n = (±n1,±n2) have only the trivial
resonances and have no energy, i.e. |an| = 0, then we can conclude that these
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wavenumbers do not gain the energy through the three wave resonant interac-
tions. In other words, for c = {cn}n∈�2, if Λc ⊂ Λ, then the resonant interac-
tions B(1,0,1)(c, c), B(1,1,0)(c, c), B(1,1,1)(c, c) vanish at wavenumbers outside Λ,
B(0,0,0)(c, c) and B(0,1,1)(c, c) are included in {n ∈ Z

2 : n1 = 0}. Generally in
a turbulent solution of the governing equation, every wavenumber component
has more or less energy. But the number of the resonant triads gives a rough
estimate of the strength of the nonlinear interactions between Fourier modes,
and the wavenumbers in the white area in Figure 2 are then expected to have
less energy exchange compared with wavenumbers in the red area, resulting
in a non-isotropic energy distribution in wavenumber space.

Proof of Theorem 4. We now define the resonant frequency set K ⊂ (Z2)3

(the non-resonant frequency set is its complementary set) and (Z2)3
μ. Recall

that ωnkm = n1/|n|2 − k1/|k|2 − m1/|m|2. Let

K := {(n, k, m) ∈
(
Z

2
)3

: ωnkm = 0}
and

(Z2)3
μ := {(n, k, m) ∈

(
Z

2
)3

: n1 ∈ Z
2
μ1

, k1 ∈ Z
2
μ2

and m1 ∈ Z
2
μ3
}

for μ = (μ1, μ2, μ3) ∈ {0, 1}3, where Z
2
0 := {(0, 0)} and Z

2
1 := Z

2 \ {(0, 0)}.
Thus we have the following decomposition:

(Z2)3 = K ∪ Kc =
⋃

μ∈{0,1}3
(K ∩ (Z2)3

μ) ∪ Kc.

Moreover, we see that(
K ∩ (Z2)3

μ

)
∩
(
K ∩ (Z2)3

μ′
)

= ∅ if μ �= μ′.

By using K and (Z2)3
μ, we can define bilinear forms as

Bμ
n(c1, c2) : =

∑
n=k+m

(n,k,m)∈K∩(�2)3µ

bnkm(c1,k, c2,m) (resonant part),

B0+
n (βt, c1, c2) : =

∑
n=k+m

(n,k,m)∈Kc

eiβtωnkmbnkm(c1,k, c2,m) (non − resonant part)

for μ ∈ {0, 1}3. We then have the following estimate of each coefficient:

|Bμ
n(c1, c2)| ≤

∑
n=k+m

|n||c1,k||c2,m| (15)

and

|B0+
n (βt, c1, c2)| ≤

∑
n=k+m

|n||c1,k||c2,m|. (16)
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Inequalities (15) and (16) give (13) and (14) by the use of (4). The definitions
of Bμ

n , B0+
n and a direct calculation yields

Bn(c(t), c(t)) =
∑

μ∈{0,1}3
Bμ

n(c(t), c(t)) + B0+
n (βt, c(t), c(t)). (17)

Lastly, to show (8), it suffices to have the following three equalities:

B(1,0,0)
n (c, c) = 0, B(0,1,0)

n (c, c) = 0, B(0,0,1)
n (c, c) = 0 for c = {cn}n∈�2

which are easily shown to hold because, for example, if k1 = m1 = 0, n1

vanishes, i.e. B(1,0,0)
n = 0 since n = k + m. The other two equalities are

similarly shown. Thus we complete the proof.

5 Proof of the main theorem

Proof of Theorem 3. First let us define an oscillatory integral of the non-
resonant part as follows:

B̃0+
n (βt, c1, c2) :=

∑
n=k+m
ωnkm 	=0

1

iβωnkm

eiβtωnkmbnkm(c1,k, c2,m),

where

bnkm(ck, cm) :=
k1m2

|k|2 ck(t)cm(t) − k2m1

|k|2 ck(t)cm(t)

=
k1n2

|k|2 ck(t)cm(t) − k2n1

|k|2 ck(t)cm(t).

Note that

∂t

(
B̃0+

n (βt, c1(t), c2(t))
)

=

B0+
n (βt, c1(t), c2(t)) + B̃0+

n (βt, ∂tc1(t), c2(t)) + B̃0+
n (βt, c1(t), ∂tc2(t)) (18)

and

‖{e−t|n|2B̃0+
n (βt, c1, c2)}n∈�2‖0 ≤ C

t1/2τβ
‖c1‖0‖c2‖0, (19)

where τ is an infimum of {|ωnkm|} over all combinations of n, k and m with
n = k + m. By using B̃0+

n , we can control the remainder term since β is in
the denominator. However ωnkm is also in the denominator and there is a
possibility that a subsequence of {|ωnkm|} converges to 0. It means that we
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cannot control ‖{e−t|n|2B̃0+
n (βt, c1, c2)}n∈�2‖0 directly. Thus we need to handle

finite elements of b(t) = {bn(t)}n∈�2, c(t) = {cn(t)}n∈�2 and r(t) = {rn(t)}n∈�2

(approximated terms). Now first we give a formal calculation, and after that we
give a rigorous calculation using the approximated terms. In order to estimate
the remainder term r(t) = {rn(t)}n∈�2, it suffices to estimate yn(t) := rn(t) −
B̃0+

n (βt, c(t), c(t)), since B̃0+ := {B̃0+
n }n tends to zero in �1-norm when β → ∞

(if B̃0+ have only finite elements). We see from (18) that the functions {yn(t)}n

satisfy the following equations:

∂tyn(t) + |n|2yn(t) − Ln(c(t), b(t), y(t)) =
3∑

j=1

Ej
n, (20)

where

Ln(c, b, y) : =B0
n(c, y) + B0

n(y, b),

E1
n : =−B̃0+

n (βt, ∂tc(t), c(t)) − B̃0+
n (βt, c(t), ∂tc(t)),

E2
n : =−|n|2B̃0+

n (βt, c(t), c(t)),

E3
n : =Ln(c(t), b(t), B̃0+(βt, c, c)).

Note that we can also estimate {∂tcn(t)}n and {E2
n}n in �1-norm if they have

only finite elements. Using (19) together with estimate of the resonant part
(13), (14) and an absorbing argument, we can control the remainder term.

Now we give more detail computation. To control r, we split it into two parts:
finitely many terms and small (in �1(Z2)) remainder terms, respectively (cf.
[1, Theorem 6.3] and [12]). For r = {rn}n∈�2, let

Pηr :=

{
rn : |n| ≤ η

}
.

Remark. We have ‖(I −Pη)r‖0 → 0 (η → ∞).

Then we divide r into two parts: finitely many terms (low frequency part) Pηr
and small remainder terms (high frequency part) (I −Pη)r.

It should be remarked that we have the following estimates:

11



‖PηB̃
0+(βt,Pηc1,Pηc2)‖0 ≤ α(η)

β
(1 + η2)1/2‖Pηc1‖0‖Pηc2‖0, (21)

‖PηB
0+(βt,Pηc1,Pηc2)‖0 ≤ (1 + η2)1/2‖Pηc1‖0‖Pηc2‖0,

‖Pη(| · |2y)‖0 ≤ (1 + η2)‖Pηy‖0,

‖∂tPηc‖0 ≤‖Pη(| · |2c)‖0 + ‖PηB(c, c)‖0

≤ (1 + η2)‖c‖0 + (1 + η2)1/2‖c‖2
0

for 0 < t < TL (TL is a local existence time, see Theorem 2), where

α(η) := max{|ωnkm|−1 : |n|, |k|, |m| ≤ η with n = k + m}.
Note that α(η) is always finite, since it only have finite combinations for the
choice of n, k and m. Now we set yn := rn−B̃0+

n (βt,Pηc,Pηc). Let Ln(c, b, y) :=
B0

n(c, y) + B0
n(y, b). For |n| ≤ η, we see that

∂t

(
yn + B̃0+

n

)
=−|n|2

(
yn + B̃0+

n

)
+ Ln(c, b,Pη(y + B̃0+))

+Ln(c, b, (I − Pη)(y + B̃0+))

+B0+
n (βt,Pηc,Pηc) + B0+

n (βt, (I − Pη)c,Pηc)

+B0+
n (βt, c, (I −Pη)c).

From (18), we have

∂tyn + |n|2yn − Ln(c, b,Pηy) =
3∑

j=1

Ej
n + Rn (22)

for |n| ≤ η, where

E1
n : =−B̃0+

n (βt, ∂tPηc,Pηc) − B̃0+
n (βt,Pηc, ∂tPηc),

E2
n : =−|n|2B̃0+

n (βt,Pηc,Pηc),

E3
n : =Ln(c, b,PηB̃

0+
n (βt,Pηc,Pηc)),

Rn : =Ln(c, b, (I − Pη)(y + B̃0+))

+B0+
n (βt, (I −Pη)c,Pηc) + B0+

n (βt, c, (I − Pη)c).

Note that (22) is a linear heat type equation with external forces E1, E2,
E3 and R. We see that for any ε > 0, there is η0 such that if η > η0, then
‖PηR‖0 < ε. Due to the pointwise bound (5), η0 is independent of β. By using
(21), we can also see that for any ε > 0, there is β0 (depending on η0) such
that if |β| > β0, then

∑3
j=1 ‖PηE

j‖ < ε. Thus we have from the mild solution
that

‖Pηy(t)‖0 ≤
∫ t

0

C

(t − τ)1/2

(
(‖c(τ)‖0 + ‖b(τ)‖0)‖Pηy(τ)‖0 + ε

)
dτ.
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By Gronwall’s inequality, we have that for any ε > 0, there is η0 and β0

(depending on η0) such that if η > η0 and |β| > β0, then ‖Pηy‖0 < ε for
0 < t < TL. Clearly, we can also control (I − Pη)y with sufficiently large η
(independent of β), and PηB̃

0+(βt,Pηc,Pηc) with sufficiently large β for fixed
η. Thus we can control r for sufficiently large η and β which completes the
proof.
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