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Abstract

Consider the solution u(x, t) of the heat equation with initial data u0. The
diffusive sign SD[u0](x) is defined by the limit of sign of u(x, t) as t → 0. A
sufficient condition for x ∈ Rd and u0 such that SD[u0](x) is well-defined is
given. A few examples of u0 violating and fulfilling this condition are given. It
turns out that this diffusive sign is also related to variational problem whose
energy is the Dirichlet energy with a fidelty term. If initial data is a difference
of characteristic function of two disjoint sets, it turns out that the boundary
of the set SD[u0](x) = 1 (or −1) is roughly an equi-distance hypersurface from
A and B and this gives a separation of two data sets.

1 Introduction

We consider a simple Cauchy problem for the heat equation in Rd (d ≥ 1) with a
real-valued bounded (measurable) initial data u0 of the form

ut − ∆u = 0 in Rd × (0,∞) (1.1)

u |t=0 = u0. (1.2)

The unique bounded solution u is known (see e.g. [W]) to be represented by the
Gaussian kernel Gt of the form

u (x, t) =

∫
Rd

Gt(x − y) u0 (y) dy = (Gt ∗ u0) (x) (1.3)

with Gt(x) = (4πt)−d/2 exp
(
−|x|2/4t

)
. We are interested in the behavior of sign of

u as t tends to zero.
We set

SD[u0] (x) = lim
t↓0

sgn u (x, t) (1.4)

and call it the diffusive sign (by the heat equation) of u0 at x, where we use the
convention that

sgn a =


1, a > 0,
−1, a < 0,
0, a = 0.

If u0 is continuous at x̂ and sgn u0(x̂) 6= 0, the diffusive sign is well-defined at x̂
and agrees with sgn u0(x̂) since u (x, t) is continuous at (x̂, 0); see e.g. [GGS]. How-
ever, if u0(x̂) = 0, the diffusive sign may not be well-defined even if u0 is continuous
near x̂. We show this phenomenon by giving explicit examples where u (x̂, t) changes
its sign infinitely many times as t tends to zero (Lemma 2.2 and Theorem 2.3).
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Our main goal of this paper is to give a sufficient condition for u0 so that SD[u0](x)
is well-defined for a given point x. In one-dimensional problem this is related to the
number of changes of sign which is also called the “number of zeros” in the literature.
Let Z[u0] be the supremum over all k such that there exists −∞ < x0 < x1 < · · · <
xk < ∞ with

u0 (xi) u0 (xi+1) < 0 (i = 0, 1, . . . , k − 1).

(If there is no such k, we set Z[u0] = 0.) If one restricts xi’s in a fixed open interval
I we write ZI [u0] instead of Z[u0]. The quantity ZI(u0) is the number of changes of
sign in I. We say Z[u0] is locally finite if ZI(u0) is finite for all bounded open interval
I. If u0 is bounded, piecewise continuous, we shall show that SD[u0](x̂) exists for x̂
when Z[ū0] is (locally) finite for

ū0 (x) =
{

u0(x̂ + x) + u0 (x̂ − x)
}
/2 (1.5)

provided that u0 is continuous at x̂ with u0(x̂) = 0 (Theorem 2.1). For a higher
dimensional case one should replace ū0 by

ū0 (r) =

∫
|ω|=1

u0

(
x̂ + |r|ω

)
dHd−1, (1.6)

where Hd−1 denotes d−1 dimensional Hausdorff measure so that dHd−1 is the surface
element (Theorem 2.4). These assertions can be proved by a simple application of
the strong maximum principle [PW]. Under this setting one is able to prove that the
set of x when SD[u0](x) = 0 is a codimension one set, so it is negligible in the sense
of the Lebesgue measure. This means the zero set of the diffusive sign is thin even
if the original zero set of u0 has an interior.

The diffusive sign is related to the asymptotic sign for a problem of deblurring
images. For a given gray scale image u0 one way to recover the image is to minimize
a strictly convex variational problem

1

2

∫
Rd

|∇v|2dx +
λ

2

∫
Rd

|v − u0|2dx, (1.7)

where λ > 0 is the fidelty constant. If vλ is the unique (H1) minimizer of (1.7), then
vλ solves the Euler-Lagrange equation of the form

−∆v + λv = λu0 in Rd. (1.8)

We define the asymptotic sign of u0 at x of the form

Sa[u0](x) = lim
λ→∞

sgn vλ(x). (1.9)

The large fidelty formally corresponds to small time in the heat equation. In fact,
when one approximates the solution of the heat equation by a fully implicit finite
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difference approximation in time, it is interpreted as an Euler-Lagrange equation of
the variational problem. So we expect that

Sa[u0](x) = SD[u0](x)

provided that SD is well-defined. Indeed, we shall prove it rigorously by writing the
Newton potential by a heat semigroup (Theorem 3.1).

In [ROF] the total variation is used in (1.7) instead of the Dirichlet energy for a
recovery of blurred image. The idea is to minimize∫

Rd

|∇v| dx +
λ

2

∫
Rd

|v − u0|2dx (1.10)

instead of (1.7). One is able to define

St[u0](x) = lim
λ↓0

sgn vλ(x).

However, as it turns out this is quite different from Sa or SD because the speed of
diffusion is very slow. The set where diffusive sign is zero is rather thin even if the
zero set of u0 has an interior while the set of zeros of St[u0] may have an interior.
We shall see this phenomenon by an example (Theorem 3.3).

We shall apply this diffusive method to separate sets of data. Suppose that each
point of Rd fulfills either property P or Q (with P ∩ Q = ∅) except very thin set.
However, we only know that in some subset A of Rd the property P is fullfilled and
in some subset B (A ∩ B = ∅) of Rd the property Q is fulfilled. We would like
to classify other point whether it fulfills the property P or Q in a reasonable way.
Usually, people try to find a straight line (or a simple curve) to divide R2 into two
sets so that A belongs to one side of the line and B belongs to another side of the
line. The line is taken so that the distance from this line to a closest point of A
and B is the same and that this quantity is maximized by taking a suitable normal
direction of the line. (In a higher dimensional space the line should be of course a
hyperplane.) This is a simple example of support vector machines [CST], [Std] and
it is widely used for data separation. This separation line is called a maximal margin
classifier [Std, 22.3.1]. We propose here to use the heat equation to find a separation
curve which is interpreted as an example of a geometric diffusion approach explained
in [CLLMNWZ].

We set
u0(x) = χA(x) − χB(x) (1.11)

where χA is the characteristic function of A, i.e. χA(x) = 1 if x ∈ A and χA(x) = 0
if x 6= A. We implicitly assume that A and B are Lebesgue measurable. We propose
to classify a point of Rd by using the diffusive sign SD[u0]. We set

A] =
{

x ∈ Rd |SD[u0](x) = 1
}
,

B] =
{

x ∈ Rd |SD[u0](x) = −1
}
.
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We expect that x has the property P if x ∈ A] and it has the property Q if x ∈ B].
The complement set of A] ∪B] in Rd is an analytic variety if u0 fulfills our sufficient
condition mentioned before. However, this does not imply that the boundary of A]

has a finite perimeter. It turns out that ∂A] = ∂B] is an equi-distance hypersurface
from A and B i.e. the set x of point where de(x,A) = de(x,B). Here de denotes the
essential distance (Theorem 4.1). Note that even if we replace u0 by χA − cχB with
c > 0, the separation hypersurface is the same. The separation hypersurface does
not depend on the ratio of size |A|/|B| of A and B, where |A| denotes the Lebesgue
measure of A.

We also give a few numerical test to draw a separation curve ∂A]. In [BF] instead
of using (1.10) Ginzburg-Landau type energy is proposed

1

2

∫
Rd

{
ε |∇v|2 +

1

ε

(
|v|2 − 1

)2}
dx +

λ

2

∫
Rd

|v − u0|2dx. (1.12)

It is essentially known that the Gamma limit as ε → 0 of (1.12) is (1.10) (if one puts
a multiple constant 4/3 in front of |∇v| in (1.10)); see e.g. [MM], [S]. Compared
with (1.7) this variational problem emphasizes sign very much. Using (1.12), the
authors of [BF] separates several data sets on graphs as well as Rd. It is not clear
whether or not our separation by A] and B] is the same as theirs. We shall give
several speculations in this paper.

2 Sign of a solution of the heat equation

We give a sufficient condition for u0 so that SD[u0](x) is well-defined. We start with
one-dimensional problem.

Theorem 2.1. Assume that u0 is a (real-valued) bounded measurable function in
R and that u0 is piecewise continuous (with possibly countably many discoutinuities
having at most finitely many accumulation points) and at discontinuities either left
or right continuous. Assume that u0 is continuous at x̂ and u0(x̂) = 0. If the number
of changes of sign Z[ū0] of

ū0(x) =
{

u0(x̂ + x) + u0(x̂ − x)
}
/2

is (locally) finite, then SD[u0](x̂) is well-defined. In other words, there exists t̂ =
t̂(x̂) > 0 such that u (x̂, t) has the same sign for 0 < t < t̂ (x̂), where u is the solution
of (1.1)–(1.2) (i.e. u is given by (1.3)). Moreover, SD[u0](x̂) = 0 if and only if u0

is odd with respect to x̂. Thus the totality of such x̂ is locally finite.

Proof. We may assume that u0 6≡ 0. We symmetrize the problem by considering

ū (x, t) =
{

u (x̂ + x, t) + u (x̂ − x, t)
}
/2.
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Evidently, ū solves the heat equation with initial data ū0. Assume that ū0 6≡ 0. Since
Z[ū0] is (locally) finite and ū0 is even in x, there is an interval (−γ0, γ0) such that
u0 is continuous near γ0 > 0 and that

(i) ū0 ≥ 0 on (−γ0, γ0) and ū0(γ0) > 0,

or
(ii) ū0 ≤ 0 on (−γ0, γ0) and ū0(γ0) < 0.

Since both cases can be treated similarly, we consider the first case. Since ū (x, t)
is continuous at x = γ0, t = 0 (see e.g. [GGS, Chapter 1]), we may assume that
there is t̂ > 0 such that ū (x, t) > 0 on {±γ0} × [0, t̂ ). By the strong maximum
principle [PW] ū (x, t) > 0 in [−γ0, γ0] × (0, t̂ ). Thus ū (0, t) > 0 for t ∈ (0, t̂ ). This
implies that u (x̂, t) > 0 for t ∈ (0, t̂ ) so SD[u0](x̂) is well-defined and equals one. A
symmetric argument yields that SD[u0](x̂) = −1 for case (ii).

If ū ≡ 0, then u (x, t) is odd with respect to x̂. Since u0 is assumed to be
continuous at x̂, u (x, t) is continuous at x̂ and t = 0. Since u (x̂ + x, t) is odd,
u (x̂+0, t) = 0 for sufficiently small t. This means that SD[u0](x̂) is well-defined and
equals zero.

Remark 1. (i) The idea using symmetrization is used in many times to prove qual-
itative properties of solutions of semilinear heat equations. For example, Chen and
Matano [CM] proved that the maximum point of w (x, t) (x ∈ R) converges to a
unique point as t tends to the blow up time when w solves wt = ∆w + wp (p > 1)
by considering the symmetrization ū.
(ii) There are several studies about the number of zeros or the number of changes of
sign for a solution of a one-dimensional general linear parabolic equation of second-
order. It is known that this number is nonincreasing in time. This type of result
goes back to Nickel [N] and rediscovered by Matano [M] and Henry [H], where they
proved the nonincrease of the number of changes of sign by the strong maximum
principle. For nonincrease of the number of zeros the reader is referred to an article
by Angenent [A] where it is also analyzed a way of merging zero when the number
of zero actually decreases. This paper appeals to an asymtotic analysis near a point
of interest by introducing similarity variables (cf. [GGS]).

If the number of changes of sign Z[ū0] is infinite, there is a chance that SD[ū0](x̂)
does not exist. We shall give an explicit example of such u0. In fact, in our example
u (x̂, t) is oscillatory in time and it changes signs +1 to −1 infinitely many times as
t ↓ 0.

Lemma 2.2. Let Uk be a function of the form

Uk(x) =


(
−

1

k

)n

x, x ∈

[
2n + 1

2n
,
2n−1 + 1

2n−1

)
with n ≥ 1,

0, otherwise.
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Let u be the solution of (1.1)–(1.2) with initial data u0 = Uk. Then u (0, t) changes
its sign infinitely many times from 1 to −1 as t ↓ 0 provided that k ≥ 8.

Proof. By a direct calculation we have

u (0, t) =
1√
4πt

∫ ∞

−∞
e−y2/4tu0(y)dy

=
1√
π

∫ ∞

0

e−z2

u0(
√

4tz)dz.

By the definition of Uk

u (0, t) =
1√
π

∞∑
n=1

∫ (2n−1+1)/(2n−1
√

4t)

(2n+1)/(2n
√

4t)

√
4tz

(
−1

k

)n

e−z2

dz

= −
√

4t

2
√

π

∞∑
n=1

∫ (2n−1+1)/(2n−1
√

4t)

(2n+1)/(2n
√

4t)

{
−2z

(
−1

k

)n

e−z2

}
dz

= −
√

t

π

∞∑
n=1

(
−1

k

)n (
e−((2n+1)/(2n+1

√
t))

2

− e−((2n−1+1)/(2n
√

t))
2)

=

√
t

π

[
e−1/t +

∞∑
n=1

k + 1

k

(
−1

k

)n

e−((2n+1)/(2n+1))
2
/t

]

=

√
t

π

[
e−1/t +

∞∑
n=1

k + 1

k
(−1)n exp

{
−
(

2n + 1

2n+1

)2
1

t
− n log k

}]
.

We set

a0 = e−1/t, an =
2(k + 1)

k
(−1)n exp

{
−
(

2n + 1

2n+1

)2
1

t
− n log k

}
(n ∈ N).

so that

u (0, t) =

√
t

π

[
a0(t) +

∞∑
n=1

an(t)

]
.

Note that sgn an(t) = (−1)n.
It is clear that∣∣a0(t)

∣∣ ≤ ∣∣a1(t)
∣∣ for t ≤ t0 ≡

7

16

(
log

k2

k + 1

)−1

.

If
∣∣an(t)

∣∣ =
∣∣an+1(t)

∣∣ for n ≥ 1, then we obtain(
2n + 1

2n+1

)2
1

t
+ n log k =

(
2n+1 + 1

2n+2

)2
1

t
+ (n + 1) log k.
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By a direct calculation we see that

t = tn ≡ 2n+2 + 3

22n+4 log k
.

It is clear that tn > tm for n < m, and∣∣an(t)
∣∣ < ∣∣an+1(t)

∣∣ for t < tn,∣∣an(t)
∣∣ > ∣∣an+1(t)

∣∣ for t > tn.

For t ∈ (tn+1, tn) we see that∣∣an+1(t)
∣∣ > ∣∣an(t)

∣∣ > · · · >
∣∣a1(t)

∣∣ > ∣∣a0(t)
∣∣ and

∣∣an+1(t)
∣∣ > ∣∣an+2(t)

∣∣ > · · · . (2.1)

By the same argument we obtain

t = t+n ≡ 2n+2 + 3

22n+4(log k − log 2)
when

∣∣an(t)
∣∣ = 2

∣∣an+1(t)
∣∣,

t = t−n ≡ 2n+2 + 3

22n+4(log k + log 2)
when 2

∣∣an(t)
∣∣ =

∣∣an+1(t)
∣∣.

It is clear that t−n < tn < t+n , and∣∣an(t)
∣∣ < 2

∣∣an+1(t)
∣∣ for t < t+n ,∣∣an(t)

∣∣ > 2
∣∣an+1(t)

∣∣ for t > t+n ,

2
∣∣an(t)

∣∣ < ∣∣an+1(t)
∣∣ for t < t−n ,

2
∣∣an(t)

∣∣ > ∣∣an+1(t)
∣∣ for t > t−n .

It is clear that t−1 < t0 for k ≥ 3. If t < t−n and t > t+n+1, then |an+1| > 2|an|
and |an+1| > 2|an+2|. This implies

∣∣an+1(t)
∣∣ >

∣∣an(t)
∣∣ + ∣∣an+2(t)

∣∣. To guarantee the
existence of such t we need t−n > t+n+1 or

2n+2 + 3

22n+4(log k + log 2)
>

2n+3 + 3

22n+6(log k − log 2)
. (2.2)

This condition is fulfilled if k satisfies

log k >
3 · 2n+3 + 15

2n+3 + 9
log 2.

If
log k ≥ 3 log 2 or k ≥ 8,

then this inequality (2.2) holds for all n = 1, 2, . . .. Thus if k ≥ 8, then t+n+1 < t−n .
Under the condition k ≥ 8 we see that

sgn
(
an(t) + an+1(t) + an+2(t)

)
= (−1)n+1 for t ∈ (t+n+1, t

−
n ).
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From the fact tn+1 < t−n+1 < t+n < tn and (2.1) it follows that

sgn
(
an+2j+1(t) + an+2j+2(t)

)
= (−1)n+1 for j = 1, 2, . . . , t ∈ (t+n+1, t

−
n ),

sgn
(
an−2j+1(t) + an−2j(t)

)
= (−1)n+1 for j = 1, 2, . . . , [n/2], t ∈ (t+n+1, t

−
n ),

where [a] is a largest integer less than or equal to a. We thus obtain

sgn u (0, t) = (−1)n+1 for t ∈ (t+n+1, t
−
n ).

Then the solution of (1.1) with u0 = Uk for k ≥ 8 has infinitely many zeros of t at
x = 0.

We are tempted to say that it is enough to assume that u0 itself has at most finitely
many changes of sign to guarantee that SD[u0](x) is well-defined. Unfortunately, this
is not true in general. In fact, the following example just changes the sign once but
ū0 with respect to zero has infinite Z[ū0].

Theorem 2.3. Assume that

u0(x) =
(
Uk(x)

)
+
−
(
−Uk(−x)

)
+

where a+ = max (a, 0). Let u be the solution of (1.1)–(1.2). Then u (0, t) changes its
sign infinitely many times from 1 to −1 as t ↓ 0 provided that k ≥ 8.

Proof. Since, by symmetry of the Gaussian kernel, u (0, t) is the same as Lemma 2.2,
our assertion is already proved in Lemma 2.2. (Note that Z[u0] = 1 while Z[ū0] = ∞,
where ū0(x) =

(
u0(x) + u0(−x)

)
/2.)

We give a sufficient condition for u0 so that SD[u0](x) is well-defined for multi-
dimensional case (d ≥ 2).

Theorem 2.4. Assume that u0 is a (real-valued) bounded measurable function in Rd.
Assume that u0 is continuous at x̂ and u0(x̂) = 0. Let ū0 be the radial average around
x̂ defined by (1.6). Assume that ū0 is piecewise continuous (with possibly countably
many dicontinuities having at most finitely many accumulation points). Moreover, it
is left or right continuous at discontinuities. If the number of changes of sign Z[ū0]
of ū0 is (locally) finite then SD[u0](x̂) is well-defined. Moreover, SD[u0](x̂) = 0 if
and only if ū0 ≡ 0. The totality of such x̂ is included in an analytic variety of Rd so
it has finite d − 1 dimensional Hausdorff measure.

Proof. We may assume u0 6≡ 0. We study the radial average of the solution

ū (r, t) =

∫
|ω|=1

u
(
x̂ + |r|ω

)
dHd−1(ω), r ∈ R.
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Evidently, ū is a radial solution of the heat equation (1.1) with initial data ū0.
Assume that ū0 6≡ 0. Then we proceed exactly as in Theorem 2.1 and observe

that ū (0, t) > 0 for t ∈ (0, t̂ ) for the case (i), which implies that u (x̂, t) > 0 for
t ∈ (0, t̂ ). The case (ii) is symmetric. In the case (i) SD[u0](x̂) = 1 while in the case
(ii) SD[u0](x̂) = −1.

If ū0 ≡ 0 so that ū ≡ 0. This in particular implies that u (x̂, t) = 0 for all t > 0.
Thus SD[u0](x̂) = 0. Moreover, the set

Σ =
{

x̂ ∈ Rd
∣∣ SD[u0](x̂) = 0

}
is contained in the set of zero of u (x, t) for all t since ū0 at x̂ equals zero. Since
u (·, t) is analytic in space for t > 0, Σ is included in an analytic variety, so it is of
locally finite d − 1 Hausdorff measure.

Remark 2. Even if the heat equation is replaced by a general second-order parabolic
equation with non-analytic coefficients it is known that the set of zeros of a solution
at a fixed time has at most locally finite d − 1 Hausdorff dimension [XYChen].

We next study what kind of initial data satisfies the locally finiteness of Z[ū0].
For further references we say that v is a (locally) finitely many sign-changing function
if Z[v] is (locally) finite. Evidently, if u0(x1) is real analytic like sin x1, then ū0 is a
locally finitely many sign-changing function. For data separation it is convenient to
consider a characteristic function. Assume that A and B are a possibly countably
many disjoint union of open intervals whose lengths are bounded from below by a
some positive content and A ∩ B = ∅. If one sets

u0(x1) = χA(x1) − cχB(x1)

with c ∈ R, it is easy to set that ū0 is a locally finitely many sign-changing function.
More generally, if {Ak}∞k=1 is a set of disjoint intervals with infk |Ak| > ∞, then a
function

f(x1) =
∞∑

k=1

ck χAk
(x1) (2.3)

with ck ∈ R is a locally finitely many sign-changing function. If one considers f̄ , this
is again of the form (2.3) with possible modification at locally finitely many points,
which does not give any effect to define Z[f̄ ]. Thus one is able to conclude a general
statement for a piecewise constant function.

Theorem 2.5. Assume that u0 is of the form (2.3), i.e.,

u0(x) =
∞∑

k=1

ck χAk
(x)
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with ck ∈ R, where {Ak}∞k=1 is a disjoint family of intervals with infk |Ak| > ∞.
Then ū0 defined by (1.5) is a locally finitely many sign-changing function for any
x̂ ∈ R.

For a higher dimension setting the situation will be more involved. It is expected
that if Ak has piecewise real analytic boundary then the radial average ū0 of u0 is
a locally finitely many sign-changing function. We shall give a proof when Ak is a
square in the plane Rd with d = 2.

Lemma 2.6. Let A be a square of the form A = [a, a + 1]× [b, b + 1] with a ≥ b > 0.
Let vA is the radial average of χA, i.e., vA = χ̄A in R2. Then

2π vA(r) =


0, r < r1 or r ≥ r4,
Arc cos (h (r, a, b)/r2) , r1 ≤ r < r2,

Arc cos
{(

b2 + b +
√

r2 − (b + 1)2
√

r2 − b2
) /

r2
}

, r2 ≤ r < r3,

Arc cos (h (r, a + 1, b + 1)/r2) , r3 ≤ r < r4

with r1 =
√

a2 + b2 , r2 =
√

a2 + (b + 1)2 , r3 =
√

(a + 1)2 + b2 ,

r4 =
√

(a + 1)2 + (b + 1)2 and h (r, a, b) = a
√

r2 − b2 + b
√

r2 − a2.

Moreover, the function (in the RHS of vA) in [r2, r3) can be extended analytically
in some neighborhood of [r2, r3] while the square of the function in [r2, r3) and [r3, r4]
can be extended analytically in some neighborhood of [r1, r2] and [r3, r4] respectively.

Proof. The formula for vA follows from a direct calculation. This is a piecewise
analytic function. Since

Arc cos x√
1 − x2

=
∞∑

j=1

(1 − x2)j−1

(2j − 1)x2j−1
,

there exists a real analytic function b1(x) near 1 such that

Arc cos x = b1(x)
√

1 − x for x ∈ (1 − δ, 1)

with any δ ∈ (0, 1). By a direct manipulation we observe that

2π vA(r) =


0, r ≤ r1 or r ≥ r4,

b1(r)
√

r − r1, r1 < r < r2,

b2(r), r2 ≤ r < r3,

b3(r)
√

r4 − r, r3 ≤ r < r4

with bi which is real analytic in a neighborhood of [ri, ri+1] (j = 1, 2, 3).

11



Theorem 2.7. Let Ak be a square of the form

Ak = [ak, ak + 1] × [bk, bk + 1]

for ak, bk ∈ R and k = 1, . . . , m. Set u0 =
∑m

k=1 ck χAk
with ck ∈ R. Then the radial

average v = ū0(r) defined by (1.6) is a finitely many sign-changing function for any
x̂ ∈ Rd. Thus SD[u0](x) is well defined for all x ∈ Rd.

Proof. We first note that vA = vB if we take

B = [ā, ā + 1] × [b̄, b̄ + 1], ā = max (ã, b̃), b̄ = min (ã, b̃)

with ã = a if a ≥ 0, ã = |a + 1| if a < 0 and same for b̃, where

A = [a, a + 1] × [b, b + 1].

So we may assume that ak > bk > 0 to calculate v = Σm
k=1ck χAk

. By an explicit
form of Lemma 2.6 v is at least continuous.

Let ri (i = 1, 2, 3, 4) be the singularity of χ̄A with A = Ak defined in Lemma 2.6.
We denote it by rk,i to clarify the dependence of k. By Lemma 2.6 our v is piecewise
real analytic in R except a singular set

S =
{

rk,i

∣∣ k = 1, . . . m, i = 1, 2, 3, 4
}

.

Let (p, q) be the maximal interval so that v is real analytic. By definition p and q is
an element of S. By the identity theorem the number of zeros of v is finite in any
compact sunset of (p, q). It remains to exclude the possibility that zeros accumulate
at p or q. By Lemma 2.6 near p, v is of the form

v(r) = b(r)
√

r − p + c(r),

where b and c is an real analytic function near r = p. Thus(
v(r) − c(r)

)2
= b(r)2(r − p).

If there is ρj ↓ p such that v(ρj) = 0, then by the identity theorem c(r)2 = b(r)2(r−p)
near r = p since both sides are real analytic in a neighborhood of r = p. However,
this is impossible since c(r) is analytic near r = p. We thus observe that there is no
accumulation point of zeros of v. Similarly, there is no accumulation of zeros of v to
r = q. We have thus proved that v has finitely many zeros and continuous so it is
a finitely many sign-changing function. (Note that we need not assume that Ak is
mutually disjoint.)

By Theorem 2.4 we now conclude that SD[u0](x) is well-defined for such u0 at all
x ∈ Rd.

Remark 3. In Theorem 2.7 we may replace finite sum of χAk
’s by an infinite sum∑∞

k=1 ck χAk
provided that Ak is mutually disjoint and infk ak, inf bk > 0. The

conclusion should be of course modified by replacing “finitely many” by “locally
finitely many”. This kind of remark is important if one consider a periodic setting.
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3 Variational approach

We shall study the asymptotic sign related to the strictly convex variational problem
(1.7), i.e.,

v 7→ 1

2

∫
Rd

|∇v|2dx +
λ

2

∫
Rd

|v − u0|2dx (3.1)

with λ > 0. For a given u0 ∈ L2(Rd) there is a unique H1-minimizer vλ, which
satisfies the elliptic equation (1.8)

(λ − ∆) v = λu0 in Rd (3.2)

and Sa[u0](x) = lim
λ→∞

(
sgn vλ(x)

)
.

Theorem 3.1. Assure that u0 ∈ L2(Rd) ∩ L∞(Rd) with d ≥ 1 is continuous at x̂
and SD[u0](x̂) exists. Then Sa[u0](x̂) is well-defined and equals SD[u0](x̂).

Proof. The solution of (3.2) is written by use of the heat semigroup et∆ = Gt∗ of the
form

vλ = (λ − ∆)−1λu0 =

∫ ∞

0

e(∆−λ) t(λu0) dt. (3.3)

Here
e(∆−λ) t = e∆te−λt and e∆tf = Gt ∗ f.

Thus

vλ(x) =

∫ ∞

0

λe−λt(e∆tu0)(x) dt.

Assume that SD[u0](x̂) = 1 so that there is t̂ > 0 such that (et∆u0)(x̂) > 0 for
t ∈ (0, t̂ ). Since et∆u0 is bounded for all t > 0 (actually converges to zero uniformly
in t as t → ∞ [GGS]), we now apply the next lemma to conclude that sgn vλ(x̂) = 1
for sufficiently large λ. Thus, Sa[u0](x̂) = 1 = SD[u0](x̂). The case SD[u0](x̂) = −1
can be treated in the same way.

It remains to prove the case SD[u0](x̂) = 0. In this case et∆u0(x̂) is zero at least for
a small t. However, since u is also analytic in time, this implies that (et∆u0)(x̂) = 0
for all t > 0. Thus

vλ(x̂) =

∫ ∞

0

λe−λt(et∆u0)(x̂) dt = 0

so we conclude that Sa[u0](x̂) = 0.

Lemma 3.2. Let f be a bounded real-valued continuous function defined in [0,∞).
Assume that there is t̂ > 0 such that f(t) > 0 for t ∈ (0, t̂ ). (Note that f(0) may be
zero.) Then

a(λ) =

∫ ∞

0

λe−λtf(t) dt

is positive for a sufficiently large λ.
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Proof. We divide the integral into two parts (0, t̂ ) and (t̂,∞). We estimate∣∣∣∣∫ ∞

t̂

λe−λtf(t) dt

∣∣∣∣ ≤ ‖f‖∞
∫ ∞

t̂

λe−λt dt = ‖f‖∞e−λt̂,

where ‖f‖∞ = sup
{ ∣∣f(t)

∣∣ ∣∣ 0 ≤ t < ∞
}
. The other part is estimated from below

as ∫ t̂

0

λe−λtf(t) dt ≥ λe−λt̂

∫ t̂

0

f(t) dt .

Thus

a(λ) ≥ e−λt̂

(
λ

∫ t̂

0

f(t) dt − ‖f‖∞
)

.

If λ is taken so that

λ > ‖f‖∞
/ ∫ t̂

0

f(t) dt ,

then a(λ) > 0.

Remark 4. The equation (3.2) has a unique bounded solution if u0 ∈ L∞(Rd)
without assuming that u0 ∈ L2(Rd). The unique solution is given by (3.3).

We now study the energy (1.10) involving total variation. This does not diffuse
the sign so St[u0] and Sa[u0] are quite different.

We consider a one-dimensional problem for (1.10) with u0 ∈ L2(Rd) ∩ BV (Rd).
Then the unique minimizer vλ for (1.10) fulfills the Euler-Lagrange equation

ηx − λv = λu0 for all x ∈ R\Σλ ,

|η| ≤ 1 for all x ∈ R ,

η (x) = ±1 for |vx| − a.e. ,

where Σλ is the set that η is not differentiable. See [Ch] and [ACM]. This problem
is studied in detail in [BFI].

Theorem 3.3. Assume that u0 is Lipschitz and supported in [−M,M ]. Then the
support of the minimizer vλ is also contained in [−M,M ] for all λ > 0.

Proof. As we know vλ is also Lipschitz continuous since u0 is Lipschitz continuous
[Ch]. If w ∈ L2(R) and Lipschitz on R, we have(

sup
x≥m

∣∣w(x)
∣∣ )3

≤ 3 ‖w‖2
L2(x≥m)‖wx‖∞ . (3.4)

Indeed there is a sequence {xj}∞j=1 such that xj → ∞ with w (xj) → 0. By a
fundamental formula for the calculus we have∣∣w3(m) − w3(xj)

∣∣≤ ∫ xj

m

∣∣(w3)x

∣∣ dx ≤ ‖w‖2
L2(x≥m)‖wx‖∞ .
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Sending j → ∞ yields the desired estimate. Since vλ is in L2, by (3.4) we conclude
that vλ(x) → ∞ as |x| → ∞.

Suppose that vλ is not zero for some x0 > M . Since vλ(x) → 0 as |x| → ∞,∫
R

|∇vλ| + λ

2

∫
R

|vλ − u0|2dx ≥
∫ x0

−∞
|∇vλ| + λ

2

∫ x0

−∞
|vλ − u0|2dx +

∣∣vλ(x0)
∣∣

=

∫
R

|∇wλ| + 1

2

∫
R

|wλ − u0|2dx

with wλ(x) = vλ(x) for x ≤ x0 and wλ(x) = 0 for x > x0. Thus the energy of wλ is
smaller or equal to that of vλ. Since the minimizer is unique, this is a contradiction
so we conclude that vλ = 0 for x > M . A symmetric argument yields that vλ = 0
for x ≤ −M so that the support of vλ is contained in [−M,M ].

This is a quite different from the case of (1.7), where the total variation energy
is replaced by the Dirichlet energy. Because of diffusion effect of (1.7) vλ cannot be
zero in a larger set for this problem, while the diffusion effect of total variation is
limited since it is not strictly parabolic.
Example. If u0(x) =

(
1 − |x|

)
+
, then vλ = 0 for |x| ≥ 1 so for all λ the number

St[u0](x) = 0 for |x| ≥ 1. This is strikingly different since the asymptotic sign
Sa[u0](x) = 1 no matter how x is. (Note that u0 is nonnegative.)

If we calculate the Euler-Lagrange equation, one can prove that

vλ(x) = min

(
1 −

√
2

λ
,
(
1 − |x|

)
+

)
.

along the line of [BFI]. Note that from the Euler-Lagrange equation one observes
that if vλ is continuous near x0 and vλ(x0) 6= u0(x0), then vλ is a constant near x0

[BFI, Proposition 2.2]. This observation is a key to have the above solution.

4 Application to separation of data

We are interested in characterizing

S± =
{
x ∈ Rd

∣∣ SD[u0](x) = ±1
}

when u0 has a special structure like χA − χB where A and B are two disjoint mea-
surable sets in Rd. Roughly speaking the interior of S+ (resp. S−) is the set where
distance from A is longer (resp. shorter) than that from B. Since our A and B is just
measurable, we have to use essential distance instead of usual distance. We define
the essential distance de(x,A) by

de(x,A) = sup
{

r ∈ R
∣∣∣ ∣∣Br(x) ∩ A

∣∣ = 0
}

,
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where Br(x) denotes the closed ball of radius r centered at x and | · | denotes the
Lebesgue measure. By definition it is clear that de(x,A) is Lipschitz continuous on
Rd. We consider more general data u0 than χA − χB.

Theorem 4.1. Assume that u0 ∈ L∞(Rd) satisfies ess. infA u0 > 0 and
ess. supB u0 < 0 and u0 = 0 outside A∪B, where A and B are two disjoint measurable
sets or more weakly |A ∩ B| = 0. Then

int S+ =
{
x ∈ Rd

∣∣ de(x,B) > de(x,A)
}

, int S− =
{
x ∈ Rd

∣∣ de(x,B) < de(x,A)
}

.
(4.1)

Moreover, the complement of int S+ ∪ int S− has no interior.

Proof. Since de is continuous, it suffices to prove that de(x,A) < de(x,B) (resp.
de(x,B) < de(x,A)) implies x ∈ S+ (resp. x ∈ S−). The argument is symmetric so
we just give a proof for the case de(x,A) < de(x,B). By the assumption there exists
ρ > 0 such that

|Bρ(x) ∩ A| = M > 0 and |Bρ(x) ∩ B| = 0.

We divide the integral of u = Gt ∗ u0 as

u(x, t) =

∫
Bρ(x)

Gt(x − y)u0(y)dy +

∫
Rd\Bρ(x)

Gt(x − y)u0(y)dy = I1 + I2.

Since

(4πt)d/2I1 ≥ cA

∫
Bρ(x)∩A

exp

(
−|x − y|2

4t

)
dy ≥ cAM exp(−ρ2/4t)

with cA = ess. infA u0 and

(4πt)d/2I2 ≥ −CB

∫
Rd\Bρ(x)

exp

(
−|x − y|2

4t

)
dy

= −CB

∫ ∞

ρ

exp(−r2/4t)rd−1drHd−1(Sd−1)

with CB = ess. supB |u0|, we observe that

u(x̄, t) ≥(4πt)−d/2 exp

(
−ρ2

4t

)
×
[
cAM − CBHd−1(Sd−1)

∫ ∞

ρ

exp(−r2/4t)rd−1dr exp

(
ρ2

4t

)]
.

Since

0 ≤ exp
(
(ρ2 − r2)/4t

)
rd−1 ≤ exp(ρ2 − r2)rd−1 for ρ ≤ r and t ≤ 1/4
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and the righthand side is integrable in (ρ,∞), Lebesgue’s dominated convergence
theorem implies that ∫ ∞

ρ

exp
(
(ρ2 − r2)/4t

)
rd−1dr → 0

as t ↓ 0. We thus conclude that u(x, t) > 0 for sufficiently small t.

It is easy to see that the set where de(x,A) = de(x,B) has no interior so the last
assertion follows.

Corollary 1. Assume that u0 = χA−cχB with c > 0 where A and B are two disjoint
measurable set. Then (4.1) holds.

Note that c does not play any role to determine int S+ and int S−.
We consider a data separation problem. Suppose that each point of Rd fulfills

either propery P or Q (with P ∩ Q = ∅) except very thin set. We have to classify
a point of Rd either it fulfills P or Q. We know that in A ⊂ Rd the property P is
fulfilled while in B ⊂ Rd. Our S+ and S− in Corollary 1 give a way to classify Rd

by the properties P and Q. Corollary 1 gives a characterization of our int S+ and
int S− by a completely geometric way. The set

C = Rd\
(
(int S+) ∪ (int S−)

)
=
{
x ∈ Rd

∣∣ de(x,B) = de(x,A)
}

is a separation curve or hypersurface consisting of points having the same distance
from A and B. We call this set as an equi-distance hypersurface. Note that in general
C may not be of finite perimeter.

From Theorem 4.1 and Corollary 1 we have an algorithm of data separation. Set
u0 as

u0(x) = χA(x) − χB(y)

for given data A and B, and obtain the solution u(t, x) of (1) with the above u0.
For a reasonable data separation it is better to choose t very small. We observe that
our method provides the hypersurface version of a maximal margin classifier [CST]
without any technique of data transfer to a higher dimensional space.

We give here a few examples of data separations. In the following numerical ex-
aminations we consider the heat equation in a square Ω = [−1, 1] × [−1, 1] with the
boundary condition — periodic in x1 and the homogeneous Neumann condition at
x2 = −1, 1 for x = (x1, x2). Note that for the heat equation homogeneous Neumann
problem in one direction (x2-direction) is reduced to a periodic boundary value prob-
lem by extending a function in x2 in an even way (a symmetric way) with respect
to x2 = +1,−1. Thus under this interpretation our solution with the Neumann in
x2 and periodic in x1 boundary condition is regarded as the solution of the Cauchy
problem (1.1) with an initial data whose restriction in Ω equals our u0.
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We calculate the solution by an explicit difference method with the space lattice
grid size h = 0.01 and the time grid size τ = 0.1 × h2. The difference equation is

uk+1
i,j = uk

i,j +
τ

h2
(uk

i−1,j + uk
i+1,j + uk

i,j−1 + uk
i,j+1 − 4uk

i,j),

where uk
i,j = u(hi, hj, τk) for −100 ≤ i, j ≤ 100 and k ≥ 0.

The first one clarifies the difference between our method and support vector
machine. Let {

A =([−a,−a + h) ∪ (a − h, a]) × [c, c + h),

B =((−b − h,−b] ∪ [b, b + h)) × (−c − h,−c],
(4.2)

where b > a > 0. It is easy to find that the separation line by the maximal margin
classifier (a separation line by a support vector machine) is R × {0}. However, our
method provides the equi-distance curve{

(x1, x2) ∈ R2

∣∣∣∣∣ (b − a, 2c) · (x1 + (a + b)/2, x2) = 0 on (−∞, 0] × R,

(a − b, 2c) · (x1 − (a + b)/2, x2) = 0 on [0,∞) × R

}

for the curve of data separation. If (±a, c), (±b, c) are on lattice points for numerics
and h is smaller than the span of the lattice points, then the initial data for numerics
should be given as

u0(x) = χ{(±a,c)}(x) − χ{(±b,−c)}(x).

The calculation in very short time, like as figure 1, provides the separation curve
which is very close to the equi-distance curve. If one calculates longer, the curve is
smoothened as in the right one of figure 1. If one calculates for a long time i.e. for
large t, the curve may fail to classify data as shown in the next example.

The second example is the two-moon type data, which a simple maximal margin
classifier cannot draw a separation curve. We give each 100 points of random data
for A and B around {0.5(cos θ, sin θ)− (0.25, 0.15)| θ ∈ [0, π]} and {0.5(cos θ, sin θ)+
(0.25, 0.15)| θ ∈ [−π, 0]}, and set

u0(x) = χA(x) − χB(x).

In the right one of figure 3 some points are failed to separate by our method. We
thus observe that it is necessary to take t sufficiently small for exact data separation.

If we calculate by an implicit scheme, the results of separation curves are almost
the same; however, evidently it takes more time to calculate.

In [CLLMNWZ] a geometric diffusion approach is given for a data separation
procedure. Their approach is very general including the data separation by the heat
equation given here. Although they discussed the problem on a graph or a manifold,
we just explain the idea of their method when A and B are disjoint subsets of Rd.
Let S be a compact self-adjoint operator in periodic L2 space in Rd, i.e. L2(Td) (or
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Figure 1: Example of data separation for (4.2). The left figure denotes the profile
of the initial data such that u0 = 1 at black dots, u0 = −1 at cross, and u0 = 0 at
the others. The center and right figures express the profiles of {x| u(x, t) = 0} at
t = 0.005 and t = 0.2 (500 and 20000 steps respectively by the explicit difference
scheme). The area with slash line is the place where u(·, t) > 0, and the other area
is the place where u(·, t) < 0. The maximal margin classifier [CST], [Std, 22.3.1]
provides the solid straight line, which is [−1, 1] × {0}, in center and right figures.
The dashed line in the right figure is the equi-distance curve, which almost agree
with the curve {x| u(x, 0.005) = 0} in the center figure.

Figure 2: Difference between {x| u(x, t) = 0} with t = 0.005(dashed line), 0.2(chain
line) by our diffusive method, and the curve by maximal margin classifier (solid line).
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Figure 3: Example of a data separation for two-moon type data. The left figure is
the distribution of given data, 100 points of black dots by u0 = 1 and 100 points of
gray dots by u0 = −1, and u0 = 0 on the other area. The center and right figures
are the profiles of {x| u(x, t) = 0} with t = 0.003 and t = 0.05 (300 and 5000 steps
respectively by the explicit difference scheme), respectively. The area with slash line
is the place where u(·, t) > 0, and the other area is the place where u(·, t) < 0.

weighted L2 type Hilbert space). A typical example is an iteration of a resolvent of
the Laplacian, i.e.

S = Sm := (I − ∆/m)−m (m = 1, 2, . . .).

Its limit as m → ∞ is of course S∞ = e∆ which is also a typical example. (The
kernel of S is regarded as a similarity function which is constracted by using feature
vectors derived from a neighborhood of each pixel for practical purpose. In other
words, S is chosen depending upon feature of data sets as explained in [BF].) Let
A be a subset where property Q is fulfilled. We set u0 = χA − χB and introduce a
parameter t > 0. Then we give a separation

A]
t =

{
x ∈ Rd

∣∣ St[u0](x) > 0
}

,

B]
t =

{
x ∈ Rd

∣∣ St[u0](x) < 0
}

of Rd. (In practice, t is chosen so that A]
t ⊃ A, B]

t ⊃ B.) If S = S∞, the limit as
t ↓ 0 yields our separation.

5 Remark on the method based on the Ginzburg-

Landau energy

We now compare minimizers of the Ginzburg-Landau energy (1.12) with the min-
imizer of (1.7). There exists at least one H1 minimizer vε, λ satisfying the Euler-
Lagrange equation

−ε∆v − 2 (1 − v2) v/ε + λv = λu0. (5.1)
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For fix ε > 0 if 1/λ is regarded as the time grid τ , then (5.1) gives an implicit scheme
of time discretization on the evolution equation (called the Allen-Cahn equation)

∂u/∂t = ε∆u + 2 (1 − u2) u/ε. (5.2)

We often rescale t by microscopic time t′, i.e. t = t′/ε when we discuss a phase
separation. The equation (5.2) becomes

∂u/∂t′ = ∆u + 2 (1 − u2) u/ε2. (5.3)

Starting from initial data u0, we know that u quickly tends to either 1 or −1 as time
develops [XChen] for small ε. As for the heat equation it is natural to define the
diffusive sign by the Allen-Cahn equation by

SACε
D [u0](x) = lim

t↓0
sgn uε(x, t)

when uε is the solution of (5.3) with initial data u0. We also define the asymptotic
sign by the Allen-Cahn equation by

SACε
a [u0](x) = lim

λ′→∞
sgn vε, λ′ε(x). (5.4)

We conclude this paper by stating several problems related to relation of diffusive
signs.

Problem. (i) Does SACε
D agree with SD? In particular, is SACε

D independent of ε > 0?
(ii) Does SACε

D agree with SACε
a ? In particular, is SACε

a independent of the choice of
a minimizer?
(iii) Is the convergence (5.4) uniform with respect to ε? In other words, does there
exist λ̂ = λ̂(x) independent of ε ∈ (0, 1) so that sgn vε, λ′ε(x) is constant for λ′ > λ̂(x)?
Or more weakly, sgn vε, λ′

(x) is constant for λ′ > λ̂(x)?

We know

Eε,λ[v] =
1

2

∫
Rd

{
ε |∇v|2 +

1

ε

(
|v|2 − 1

)2}
dx +

λ

2

∫
Rd

|v − u0|2dx

converges to

Eλ[v] =


∫

Rd

∣∣∇W (v)
∣∣+ λ

2

∫
Rd

|v − u0|2dx, v(x) ∈ {−1, 1}, v ∈ BV (Rd) ∩ L2(Rd),

∞, otherwise

with W (u) =
∫ u

−1
(1 − r2) dr in the sense of L1

loc Gamma convergence as ε → 0 ;

see e.g. [MM], [S] for a given u0 ∈ L2(Rd). The first item
∫ ∣∣∇W (v)

∣∣ is regarded as
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4
3

∫
|∇v| for the valued function v ∈ {−1, 1} since W (1) = 4/3. Thus Eλ is essentially

the same as (1.10) (with restricting the value of v in {−1, 1}). Since

ε |∇v|2 +
1

ε

(
|v|2 − 1

)2 ≥ 2
∣∣∇W (v)

∣∣
for a function v whose value is in [−1, 1], if one knows a bound for min Eε λ[v] for a
fixed λ, then it gives a bound for ∫

Rd

∣∣∇W (vε λ)
∣∣

independent of ε ∈ (0, 1). If λ is fixed sufficienly large and ε → 0, then the limit is
a two-valued function whose total variation is finite. This separation seems to give
a regularized way of equi-distance separation.
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