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Abstract

In this paper we consider curves on a spacelike surface in Lorentz-Minkowski 3-space.
We introduce new geometric invariants for these curves. As an application of the unfolding
theory of functions, we investigate the local and global propereties of these invariants.

1 Introduction

In this paper we consider local and global properties of curves on spacelike surfaces in three
dimensional Lorentz-Minkowski space. The study of the extrinsic differential geometry of sub-
manifolds in Minkowski space is of special interest in relativity theory. In [2, 4], it was in-
vestigated codimension two spacelike submanifolds in Lorentz-Minkowski space. Inspired by
these papers, we are particularly interested in spacelike curves in three dimensional Lorentz-
Minkowski space as a special case, that is submanifolds of codimension two in the space. As an
application of the idea in [2, 4], we consider curves on a spacelike surface in three dimensional
Lorentz-Minkowski space. In the extrinsic differential geometry, one of the principal ideas to
study surfaces is to investigate geometric properties of curves on them. Therefore we study
curves on a spacelike surface in three dimensional Lorentz-Minkowski space. Since we consider
a spacelike surfaceM , we can choose a future directed unit timelike normal vector field n along
the surface. For a curve γ on the surface, we restrict the normal vector field n along γ, so
that we have a unit timelike normal vector field nγ along γ. Moreover, we choose the unit
tangent vector field t and another normal vector field b along γ. As a result, we construct a
pseudo-orthonormal frame {t,nγ , b} along the curve γ and call it a Lorentzian Darboux frame
(cf., §3). Applying the idea in [4] to the Loretzian Darboux frame, we define smooth mappings

L± = nγ±b and have the normalized mappings L̃± which are called the Lightcone Gauss maps.
By differentiating L±, we obtain new invariants κ±l of γ, which are called lightcone curvatures.
The lightcone Gauss maps induce the normalized lightcone curvature κ̃±l . We also define other
important mappings called lightlike height functions and Lightcone pedal. We show that the
lightcone Gauss map is constant if and only if κ+l ≡ 0 or κ−l ≡ 0. In this case the curve γ
is a special curve on the surface M , which is called a lightlike-slice (or an L-slice) of M. We
consider L-slices of M as the model curves on the surface M. The singularities of the lightcone
Gauss map is a point where κ+l = 0 or κ−l = 0, which is also a point where γ has higher order
contact with one of the tangent L-slices of M . As an application of the theory of unfoldings
of functions in [1], we give a classification of singularities of both the lightcone Gauss map and
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the lightcone pedal in Theorem 5.4, which is one of the main results. In order to apply the
unfolding theory, we give an explicit characterization of the cusp singularities in Proposition
5.3.

On the other hand, we also investigate the global properties of the normalized lightcone
curvatures. Here we consider a unit speed closed regular curve γ on a spacelike surface from
the unit circle S1. We show that the total normalized lightcone curvature is equal to the
winding number of the projection of the curve to the Euclidean plane in Theorem 6.5. Moreover
we consider the total absolute normalized lightcone curvature of γ, we have the inequality
in Theorem 6.7 that the total absolute normalized lightcone curvature is not less than the
maximum of the absolute value of the winding number of the projection to the Euclidean plane
or 1. In order to characterize the curve with the equality, we introduce the notion of lightlike-
convexity relative to M , or we call it L-convex relative to M, for a regular curve on the surface
M . Then in Proposition 6.9, we show that the total absolute normalized lightcone curvature
attains the minimum if and only if γ is L-convex relative to M.

We explain in §2 the basic notions of Lorentz-Minkowski space that will be used throughout
the paper. In §3 we introduce lightcone curvatures and study its basic properties. In §4 and §5
are devoted to the study of height functions, the lightcone Gauss map and the lightcone pedal
by considering the relationship with curvatures. Moreover, in §5, we have one of the main
results in this paper that local properties of the curve provided by the lightcone curvature. In
§6, global properties of the lightcone curvatures are investigated. Finally in §7 we consider
Euclidean plane curves and the hyperbolic plane curves as special cases.

2 Notations and definitions

In this section we prepare some notations and definitions which we will use in this paper. Let
R3 be a three-dimensional vector space. For any x = (x0, x1, x2),y = (y0, y1, y2) ∈ R3, the
pseudo-scalar product of x and y is defined by ⟨x,y⟩ = −x0y0 + x1y1 + x2y2. We call (R3, ⟨, ⟩)
Minkowski 3-space. We write R3

1 instead of (R3, ⟨, ⟩). We say that a non-zero vector x ∈ R3
1 is

spacelike, lightlike or timelike if ⟨x,x⟩ > 0 , ⟨x,x⟩ = 0 or ⟨x,x⟩ < 0 respectively. The norm of
the vector x ∈ R3

1 is defined by ∥ x ∥=
√
|⟨x,x⟩|. Here we define the notion of planes. For a

non-zero vector v ∈ R3
1 and a real number c, we define a plane with pseudo-normal v by

P (v, c) = {x ∈ R3
1 | ⟨x,v⟩ = c }.

We call P (v, c) a spacelike plane, a timelike plane or a lightlike plane if v is timelike, spacelike
or lightlike respectively. We now define Hyperbolic plane by

H2
+(−1) = {x ∈ R3

1 | ⟨x,x⟩ = −1, x0 > 0}

and de Sitter 2-space by
S2
1 = {x ∈ R3

1 | ⟨x,x⟩ = 1 }.

We define
LC∗ = {x = (x0, x1, x2) ∈ R3

1 | x0 ̸= 0, ⟨x,x⟩ = 0}

and we call it the (open) lightcone at the origin. Then the subset

LC∗
+ = {x ∈ LC∗ | x0 > 0}
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of LC∗ is called the future lightcone. If x = (x0, x1, x2) is a non-zero lightlike vector, then
x0 ̸= 0. Therefore we have

x̃ =

(
1,
x1
x0
,
x2
x0

)
∈ S1

+ = {x = (x0, x1, x2) | ⟨x,x⟩ = 0, x0 = 1}.

We call S1
+ the lightcone (or, spacelike) unit circle. Here we define

a ∧ b =

∣∣∣∣∣∣
−e0 e1 e2

a0 a1 a2
b0 b1 b2

∣∣∣∣∣∣ ,
where a = (a0, a1, a2), b = (b0, b1, b2) and {e0, e1, e2} is the canonical basis of R3.

3 Curves on spacelike surface and lightcone Gauss maps

We consider a spacelilke embedding X : U −→ R3
1 from an open subset U ⊂ R2. We write

M = X(U) and identify M and U through the embedding X. Here, we say that X is a
spacelike embedding if the tangent space TpM consists of spacelike vectors at any p = X(u).
Let γ̄ : I −→ U be a regular curve and we have a curve γ : I −→ M ⊂ R3

1 defined by
γ(s) = X(γ̄(s)). We say that γ is a curve on the spacelike surface M. Since γ is a spacelike
curve, we can reparameterize it by the arc-length s. So we have the unit tangent vector
t(s) = γ ′(s) of γ(s). Since X is a spacelike embedding, we have a unit timelike normal vector
field n along M = X(U) defined by

n(p) =
Xu1(u) ∧Xu2(u)

∥Xu1(u) ∧Xu2(u)∥
,

for p = X(u).

We say that n is future directed if ⟨n, e0⟩ < 0. We choose the orientation of M such that n
is future directed. We define nγ(s) = n ◦ γ(s), so that we have a unit timelike normal vector
field nγ along γ.

Therefore we can construct a spacelike unit normal section b(s) ∈ Np(M) by b(s) = t(s) ∧
nγ(s). It follows that we have ⟨nγ,nγ⟩ = −1, ⟨nγ, b⟩ = 0, ⟨b, b⟩ = 1. Then we have a pseudo-
orthonormal frame {t(s),nγ(s), b(s)}, which is called the Lorentzian Darboux frame along γ.
By standard arguments, we have the following Frenet-Serret type formulae:

t′(s) = κn(s)nγ(s) + κg(s)b(s),
n′

γ(s) = κn(s)t(s) + τg(s)b(s),
b′(s) = −κg(s)t(s) + τg(s)nγ(s),

where κn(s) = −⟨t′(s),nγ(s)⟩, κg(s) = ⟨t′(s), b(s)⟩ and τg(s) = −⟨b′(s),nγ(s)⟩.
Here, we have the following properties of γ characterized by the conditions of κg, κn, τg.

γ is


a geodesic curve if and only if κg ≡ 0
an acymptotic curve if and only if κn ≡ 0
a principal curve if and only if τg ≡ 0
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We now consider a smooth mapping provided by the lightcone normal vector field nγ ± b at
each point s ∈ I. And we write L±(s) = nγ(s)±b(s). By the above Frenet-Serret type formulae,
we can calculate the following derivative of L±(s) :

(L±)′(s) = (n′
γ(s)± b′(s)) = ±τg(s)L±(s) + (κn(s)∓ κg(s))t(s).

Now, we consider a future directed unit timelike normal vector filed nγ(s) ∈ NpM and
the corresponding spacelike unit normal vector field b(s) ∈ NpM along γ constructed in the
previous paragraph, where p = X(u). Here we define the lightcone Gauss map of γ relative to
M by

L̃± : U −→ S1
+; s 7−→ ˜(nγ ± b)(s).

By definition, we have ℓ±0 L̃± = L± where L±(s) = (ℓ±0 (s), ℓ
±
1 (s), ℓ

±
2 (s)). It follows that

ℓ±0 (L̃±)′ = (L±)′− ℓ±0
′L̃±. Consider the orthogonal projection πt : TpM

⊕
NpM −→ TpM , since

L̃±(s) ∈ NpM and πt ◦ (L±)′(s) ∈ TpM, we obtain

πt ◦ (L̃±)′(s) =
1

ℓ±0 (s)
πt ◦ (L±)′(s) =

1

ℓ±0 (s)
(κn(s)∓ κg(s))t(s).

According to the above calculation, we define new invariants κ±l by κ±l (s) = κn(s) ∓
κg(s), which are called lightcone curvatures of γ relative to M . Therefore πt ◦ (L̃±)′(s) =

1
ℓ±0 (s)

κ±l (s)t(s). We also define κ̃±l by κ̃±l (s) = ± 1
ℓ±0 (s)

κ±l (s). We call κ̃±l normalized lightcone

curvatures of γ relative to M . Let σ be + or −. Then we have the following proposition :

Proposition 3.1 Under the above notation, the following conditions are equivalent:

(1) κσl = 0.

(2) L̃σ is constant.

(3) There exists a lightlike vector v ∈ S1
+ ⊂ LC∗ such that Imγ = P (v, c) ∩M.

Proof. We only give the proof for σ = +. In this case we write L = L+, κl = κ+l and ℓ0 = ℓ+0 .

Assume that κl = 0. Then πt ◦ L̃′ = 0. This means that

L̃′(s) = − ℓ0
′(s)

ℓ0(s)2
L(s) +

1

ℓ0(s)
τg(s)L(s) = (− ℓ0

′(s)

ℓ0(s)2
+

1

ℓ0(s)
τg(s))L(s).

Here we define λ by λ(s) = − ℓ0(s)
′

ℓ0(s)2
+ 1

ℓ0(s)
τg(s), then

L̃′(s) = λ(s)L(s) = (λ(s)ℓ0(s), λ(s)ℓ1(s), λℓ2(s)).

Since we have L̃(s) = (1, ℓ1
ℓ0
(s), ℓ2

ℓ0
(s)), L̃′(s) = (0, ( ℓ1

ℓ0
)′(s), ( ℓ2

ℓ0
)′(s)). Therefore λ(s)ℓ0(s) ≡ 0. By

the above calculation and the fact ℓ0(s) ̸= 0, we have λ(s) ≡ 0. Thus, L̃′(s) ≡ 0, so that L̃ is
constant.

On the other hand, assume that L̃ is constant. By the definition of L̃, we have κl = 0. This
completes the proof of the equivalence between (1) and (2).

Assume that L̃ is constant. This means that there exists a lightlike vector v ∈ S1
+ ⊂ LC∗

such that L̃ = v. Here we define F : I −→ R by F (s) = ⟨γ(s),v⟩. Since F ′(s) = ⟨γ ′(s),v⟩ = 0,
there exists a scalar c ∈ R such that F (s) = ⟨γ(s),v⟩ = c. Therefore Imγ = P (v, c) ∩M.
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For the converse, assume that Imγ = P (v, c) ∩M. The tangent space of P (v, c) can be
identified with P (v, 0). Since Imγ ⊂ P (v, c), we have TpImγ ⊂ P (v, 0), so that NpImγ ∩
P (v, 0) is the line generated by v. For the future directed timelike unit normal vector field nγ

along γ, there exists a lightlike vector v̄ such that v̄ is parallel to v and v̄ − nγ is a spacelike
unit normal vector field along γ.We write b = v̄−nγ, so that we have the Lorentzian Darboux

frame {t,nγ, b} along γ with ñγ + b(s) = ṽ. This means that the corresponding lightcone

Gauss map L̃ is constant. This completes the proof of the equivalence between (2) and (3).
This completes the proof. 2

The above proposition suggests that curves of the form P (v, c)∩M (v ∈ S1
+) are the candidates

of model curves on M . These might play a similar role to lines in Euclidean plane. We call it
a lightlike-slice (or, an L-slice) of M .

4 Lightlike height functions

In order to investigate the geometric properties of curves on spacelike surfaces, we introduce
two families of functions and apply the theory of unfoldings of functions. Let γ : I −→ M be
a curve on a spacelike surface M. Then we define two families of functions as follows:

H : I × S1
+ −→ R; (s,v) 7−→ ⟨γ(s),v⟩,

H̃ : I × LC∗ −→ R; (s,v) 7−→ ⟨γ(s),v⟩ − v0,

where v = (v0, v1, v2). We call H the lightcone height function of γ on M and H̃ the extended
lightcone height function of γ on M. We denote hv(s) = H(s,v) for any fixed v ∈ S1

+ and

h̃v(s) = H̃(s,v) for any fixed v ∈ LC∗. Then we have the following proposition:

Proposition 4.1 Under the above notations,we have the following:

(1) hv
′(s) = 0 if and only if v = L̃σ(s).

(2) hv
′(s) = hv

′′(s) = 0 if and only if v = L̃σ(s) and κl
σ(s) = 0.

(3) hv
′(s) = hv

′′(s) = hv
′′′(s) = 0 if and only if v = L̃σ(s), κl

σ(s) = 0 and (κl
σ)′(s) = 0.

Proof. (1) Since {nγ, b, t} is a basis of the vector space TpR3
1 where p = X(u), there exist real

numbers λ, µ, ξ such that v = λnγ + µb+ ξt. Then we have

h′v(s) = ⟨γ ′(s),v⟩ = ⟨t(s), λnγ(s) + µb(s) + ξt(s)⟩ = ξ.

Since hv
′(s) = 0, we have ξ = 0, and the fact that v ∈ S1

+ implies that λ = ±µ = ±1. This
completes the proof of (1).

We only give the proof (2) and (3) for σ = +. In this case we write L = L+ κl = κl
+ and

ℓ0 = ℓ+0 .

(2) Since hv
′′(s) = ⟨γ ′′(s),v⟩, hv ′(s) = hv

′′(s) = 0 if and only if hv
′′(s) = ⟨γ ′′(s), L̃(s)⟩ = 0.

Here, we have L̃(s) = 1
ℓ0(s)

L by definition. It follows form the Frenet-Serret type formulae that

⟨γ ′′(s), L̃(s)⟩ = 1

ℓ0(s)
⟨κn(s)nγ + κg(s)b(s),nγ(s) + b(s)⟩ = 1

ℓ0(s)
(−κn(s) + κg(s)) = − 1

ℓ0(s)
κl.

5



Since ⟨γ ′′(s), L̃(s)⟩ = 0 and ℓ0(s) ̸= 0, we have κl = 0. This completes the proof of (2).

(3) By the assertions (1) and (2), hv
′(s) = hv

′′(s) = hv
′′′(s) = 0 if and only if hv

′′′(s) =

⟨t′′(s), L̃(s)⟩ = 0 and κl = 0. Since t′′(s) = κn
′(s)nγ(s) + κn(s)nγ

′(s) + κg
′(s)b(s) + κg(s)b

′(s),
we have

⟨t′′(s), L̃(s)⟩ = 1

ℓ0(s)
(−κn′(s) + κg

′(s)− κg(s)τg(s) + κn(s)τg(s)) = − 1

ℓ0(s)
(κn

′(s)− κg
′(s)) = 0.

Then we have κl
′ = 0. This completes the proof. 2

By definition, we have ∂H̃/∂s = ∂H/∂s, ∂2H̃/∂s2 = ∂2H/∂s2, ∂3H̃/∂s3 = ∂3H/∂s3. Then we
have the following proposition:

Proposition 4.2 Under the notations as the above, we have the following:

H̃(s,v) =
∂H̃

∂s
(s,v) = 0 if and only if v = ⟨γ(s), L̃σ(s)⟩L̃σ(s).

The above proposition induces the following notion: We define the lightcone pedal of γ relative
to M as a smooth mapping

LPσ
(γ,M) : I −→ LC∗; s 7−→ ⟨γ(s), L̃σ(s)⟩L̃σ(s).

The image LPσ
(γ,M)(I) is called the lightcone pedal curve of γ relative to M.

On the other hand, we consider the following another family of function:

H : R3
1 × S1

+ −→ R; (x,v) 7−→ ⟨x,v⟩.

We denote hv(x) = H(x,v) for any fixed v ∈ S1
+, then, we have

hv0(s) = ⟨γ(s),v0⟩ = H(γ(s),v0) = hv0(γ(s))

Moreover, for any s ∈ R and v0 = L̃σ(s0), h
−1
v0
(s) is an L-slice when we consider H = H|M×S1

+
.

By Proposition 4.1, (1), h−1
v0
(c0) is an L-slice of M tangent to γ at γ(s0), where c0 = hv0(s0).

We call h−1
v0
(c0) a tangent L-slice of γ at γ(s0). We have two tangent L-slices at each point

depending on σ = ±. We denote it by TL(M,γ)σs0 . Now let F :M −→ R be a submersion and
γ(s0) ⊂ F−1(0). We say that γ and F−1(0) have contact of order k if the function f = F ◦γ(s)
satisfies f(s0) = f ′(s0) = · · · = f (k)(s0) = 0 and f (k+1)(s0) ̸= 0.

Then we have the following proposition:

Proposition 4.3 A curve γ and the tangent L-slice TL(M,γ)σs0 have a contact of order two
at point s0 if and only if κl

σ(s0) = 0 and (κl
σ)′(s0) ̸= 0.

Proof. Here we have a vector v0 ∈ S1
+ and the tangent L-slice is given as h−1

v0
(s) for any s ∈ R.

By Proposition 4.1, the conditions L̃σ(s0) = v0, κl
σ(s0) = 0 and (κl

σ)′(s0) ̸= 0 are equivalent
to the conditions hv0

′(s) = hv0

′′(s) = 0, hv0

′′′(s) ̸= 0. Since hv0(s) = ⟨γ(s),v0⟩ = H(γ(s),v0) =
hv0(γ(s)), we can calculate that hv0(s) = hv0(γ(s)) satisfies hv0

′(s0) = hv0

′′(s0) = 0, hv0

′′′(s0) ̸=
0. This means γ and the tangent L-slice have a contact of order two at the point s0. This
completes the proof. 2
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5 The Lightcone Gauss map and the lightcone pedal

In this section we apply the theory of unfoldings of functions and give a proof of the main
theorem.

First we give a quick review on the theory of unfoldings of functions of one variable. Detailed
descriptions are found in the book[1]. Let F : (R × Rr, (s0, x0)) → R be a function germ. We
call F an r-parameter unfolding of f , where f(s) = Fx0(s). We say that f has type Ak at s0
if f (p)(s0) = 0 for all 1 5 p 5 k, and f (k+1)(s0) ̸= 0. We also say that f has type A≥k at s0 if
f (p)(s0) = 0 for all 1 5 p 5 k. Let F be an unfolding of f and f(s) has type Ak (k = 1) at s0.We
denote the (k − 1)-jet of the partial derivative ∂F

∂xi
at s0 by j(k−1)( ∂F

∂xi
(s, x0))(s0) =

∑k−1
j=1 αjis

j

for i = 1, . . . , r. Then F is called an R+-versal unfolding if the (k−1)×r matrix of coefficients
(αji) has rank k−1 (k−1 5 r). Under the same condition as the above, F is called an R-versal
unfolding if the k×r matrix of coefficients (α0i, αji) has rank k (k 5 r), where α0i =

∂F
∂xi

(s0, x0).

We now introduce important sets concerning the unfoldings relative to the above notions.
The catastrophe set of F is the set

CF = {(s, x)|∂F
∂s

(s, x) = 0}.

The bifurcation set BF of F is the critical value set of the restriction to CF of the canonical
projection π : R× Rr −→ Rr:

BF = {x ∈ Rr|∃s; with
∂F

∂s
(s, x) =

∂2F

∂s2
(s, x) = 0 }

By Proposition 4.1, we have CH = {(s,v) | v = L̃σ(s) }, so that π|CH(s,v) = L̃σ(s). The
discriminant set of F is the set

DF = {x ∈ Rr|∃s;F (s, x) = ∂F

∂s
(s, x) = 0 }.

By Proposition4.2, we have the discriminant set DH̃ of H̃:

DH̃ = {v ∈ LC∗|v = ⟨γ(s), L̃(s)⟩L̃(s)}

On the other hand, we consider the special case when r = 1. Let F : (R×R, (s0, x0)) → (R, 0)
be a one-parameter unfolding of f(s) which has typeAk at s0. Suppose that (∂

2F/∂x∂s)(s0, x0) ̸=
0. Then, by the implicit function theorem, there exists a smooth function germ h : (R, s0) −→
(R, x0) such that

∂F

∂s
(s, h(s)) = 0.

We define a two-parameter unfolding F : (R × R2, (s0, (x0, r0))) −→ (R, 0) by F (s, (x, r)) =
F (s, x) − r. We call F an extended unfolding of F. Let δF : I −→ R2 be a curve defined by
δF (s) = (h(s), F (s, h(s))). Then δF (I) = DF as set germs at (s0, x0). Let γ : (R, s0) −→ R2

be a smooth map germ. We say that γ has the ordinary cusp at s0 ∈ R if γ ′(s0) = 0 and
γ ′′(s0),γ

′′′(s0) are linearly independent. It is known that the image of γ at the ordinary cusp
is diffeomorphic to C = {(x1, x2)|x12 = x2

3} as set germs[1, Page 154]. We also say that a
smooth function germ g : (R, s0) −→ R has the fold singularity at s0 ∈ R if g has type A1 at
s0. In this case, it is easy to show that there exist diffeomorphism germs ϕ : (R, s0) −→ (R, 0)
and ψ : (R, g(s0)) −→ (R, 0) such that ψ ◦ g ◦ ϕ−1(x) = x2. Then we have the following result.
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Proposition 5.1 Under the above notations, suppose that f has type A≥2 at s0. Then the
following conditions are equivalent:

(1) f has type A2 at s0,

(2) h has type A1 (i.e., the fold) at s0,

(3) δF : I −→ R2 has the ordinary cusp at s0.

(4) F is an R+-versal unfolding of f.

(5) F is an R-versal unfolding of f .

Proof. If we calculate the derivative of the equation ∂F/∂s(s, h(s)) = 0, then we have

0 =
d

ds

(
∂F

∂s
(s, h(s))

)
=
∂2F

∂s2
(s, h(s)) +

∂2F

∂x∂s
(s, h(s))h′(s),

0 =
d2

ds2

(
∂F

∂s
(s, h(s))

)
=
∂3F

∂s3
(s, h(s)) +

∂3F

∂x∂s2
(s, h(s))h′(s)

+
∂3F

∂s2∂x
(s, h(s))h′(s) +

∂3F

∂x2∂s
(s, h(s))(h′(s))2 +

∂2F

∂x∂s
(s, h(s))h′′(s).

Therefore, we have

0 =
∂2F

∂s2
(s0, x0) +

∂2F

∂x∂s
(s0, x0)h

′(s0) = f ′′(s0) +
∂2F

∂x∂s
(s0, x0)h

′(s0).

Since (∂2F/∂x∂s)(s0, x0) ̸= 0, f ′′(s0) = 0 if and only if h′(s0) = 0. Under the condition that
h′(s0) = 0, we have

0 =
∂3F

∂s3
(s0, x0) +

∂2F

∂x∂s
(s0, x0)h

′′(s0) = f ′′′(s0) +
∂2F

∂x∂s
(s0, x0)h

′′(s0),

so that f ′′′(s0) = 0 if and only if h′′(s0) = 0. Therefore, the conditions (1) and (2) are equivalent.

By the relations f(s0) = Fx0(s0), h
′(s0) = 0, ∂F/∂s(s0, x0) = 0 and the straightforward

calculatios, we have

δ′
F (s0) = (0, 0),

δ′′
F (s0) =

(
h′′(s0),

∂F

∂x
(s0, x0)h

′′(s0)

)
,

δ′′′
F (s0) =

(
h′′′(s0), f

′′′(s0) + 2
∂2F

∂x∂s
(s0, x0)h

′′(s0) +
∂F

∂x
(s0, x0)h

′′′(s0)

)
.

The curve δF (s) has the ordinary cusp at s0 if and only if δ′
F (s0) ̸= 0 and the rank of the

following matrx is two:

A =

(
h′′(s0)

∂F
∂x
(s0, x0)h

′′(s0)

h′′′(s0) f ′′′(s0) + 2 ∂2F
∂x∂s

(s0, x0)h
′′(s0) +

∂F
∂x
(s0, x0)h

′′′(s0)

)
.

Here we have

rankA = rank

(
h′′(s0) 0

h′′′(s0) f ′′′(s0) + 2 ∂2F
∂x∂s

(s0, x0)h
′′(s0)

)
.

Since f ′′′(s0) + (∂2F/∂x∂s(s0, x0))h
′′(s0) = 0, we have

rankA = rank

(
h′′(s0) 0
h′′′(s0) −f ′′′(s0)

)
.
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Therefore rankA = 2 if and only if h′′(s0), f
′′′(s0) ̸= 0. This condition is equivalent to the

conditions (1) and (2). Thus, the conditions (1), (2) and (3) are equivalent.

Since F is a one-parameter unfolding, F is R+-versal if and only if the rank of the 1 × 1-
matrix α11 = (∂2F/∂x∂s)(s0, x0) is 1 and f has type A2 at s0. However, by the assumption, we
have (∂2F/∂x∂s)(s0, x0) ̸= 0. Therefore the conditions (1) and (4) are equivalent. Moreover,
the two-parameter unfolding F is R-versal if and only if f has type A2 at s0 and the rank of
the following matrix is two: (

∂F
∂x
(s0, x0)

∂2F
∂s∂x

(s0, x0)
−1 0

)
.

By the assumotion, the rank of the above matrix is two. So, the conditions (1) and (5) are
equivalent. This completes the proof. 2

Remark 5.2 In the proof of the above proposition, we calculate that

δ′
F (s) =

(
h′(s),

∂F

∂s
(s, h(s)) +

∂F

∂x
(s, h(s))h′(s)

)
= h′(s)

(
1,
∂F

∂x
(s, h(s))

)
.

Therefore, h′(s0) = 0 if and only if δ′
F (s) = 0.

In order to apply the above proposition to our situattion, we denote γ(s) = (x0(s), x1(s), x2(s)),
and fix the parameterization of a vector v ∈ S1

+ as v = (1, cos θ, sin θ). Then we have

H(s,v) = H(s, θ) = ⟨γ(s),v⟩ = −x0(s) + cos θx1(s) + sin θx2(s0).

We have the following lemma.

Lemma 5.3 Under the above notation, we have

∂2H

∂θ∂s
(s0,v0) ̸= 0,

for v0 = L̃σ(s0).

Proof. By straightforward calculations, we have

∂H

∂s
(s, θ) = −x′0(s) + cos θx′1(s) + sin θx′2(s),

∂2H

∂θ∂s
(s, θ) = − sin θx′1(s) + cos θx′2(s).

We suppose that
− sin θx1

′(s0) + cos θx2
′(s0) = 0 (i)

Here we denote v0 = L̃σ(s0) = (1, cos θ0, sin θ0) and t(s0) = (x0
′(s0), x1

′(s0), x2
′(s0)), then we

have
0 = ⟨t(s0), L̃(s0)⟩ = −x0′(s0) + cos θ0x1

′(s0) + sin θ0x2
′(s0) (ii)

By the equation (i) and (ii),we have− sin θ0 cos θ0x1
′(s0)+cos2 θ0x2

′(s0) = 0 and− sin θ0x0
′(s0)+

sin θ0 cos θ0x1
′(s0) + sin2θ0x2

′(s0) = 0. Then − sin θ0x0
′(s0) + cos2 θ0x2

′(s0) + sin2θ0x2
′(s0) = 0,

that is
− sin θ0x0

′(s0) + x2
′(s0) = 0 (iii)
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By the same calculation as the above, the equations (i) and (ii), we have − sin2 θ0x1
′(s0) +

sin θ0 cos θ0x2
′(s0) = 0 and − cos θ0x0

′(s0) + cos2 θ0x1
′(s0) + cos θ0 sin θ0x2

′(s0) = 0. Then
− cos θ0x0

′(s0) + cos2 θ0x1
′(s0) + sin2 θ0x1

′(s0) = 0, that is

− cos θ0x0
′(s0) + x1

′(s0) = 0 (iv)

By the equations (iii) and (iv), we have

t(s) = (x0
′(s), x1

′(s), x2
′(s)) = (x0

′(s), cos θ0x0
′(s), sin θ0x0

′(s))

= x0
′(s0)(1, cos θ0, sin θ0) = x0

′(s0)v0.

Since t is a spacelike vector and v0 is a lightlike vector, we have a contradiction. This completes
the proof. 2

We denote that γ(s) = (x0(s), x1(s), x2(s)). Let ϕ : S1
+ × (R \ {0}) −→ LC∗ be a diffeomor-

phism defined by ϕ((1, cos θ, sin θ), r) = (r, r cos θ, r sin θ). We define a family of functions

H : I × S1 × (R \ {0}) −→ R

defined by H = H̃ ◦ (1I ×ϕ). By a straightforward calculation, H̃ is an R-versal unfolding of f

if and only H is an R-versal unfolding of f. Therefore, we consider H instead of H̃. We remark
that H is the extended unfolding of H.

As a consequence, we have the following theorem:

Theorem 5.4 For v0 = L̃σ(s0), we have the following:

(A) The following conditions are equivalent:

(1) κl
σ(s0) ̸= 0,

(2) γ and the tangent L-slice TL(M,γ)σs0 have a contact of order one at point s0,

(3) hv0 has type A1 at s0,

(4) L̃σ : I −→ S1
+ is non-singular at s0,

(5) LPσ
(γ,M) : I −→ LC∗ is an immersion at s0.

(B) The following conditions are equivalent:

(1) κl
σ(s0) = 0 and (κl

σ)′(s0) ̸= 0,

(2) γ and the tangent L-slice TL(M,γ)σs0 have a contact of order two at point s0,

(3) hv0 has type A2 at s0,

(4) L̃σ : I −→ S1
+ is the fold point at s0,

(5) LPσ
(γ,M) : I −→ LC∗ is the ordinary cusp at s0,

(6) h′′v0
(s0) = 0 and H is an R+-versal unfolding of hv0,

(7) h̃′′v0
(s0) = 0 and H̃ is an R-versal unfolding of hv0.

Proof. (A) By the proof of proposition 3.1, we have (L̃σ)′(s0) ̸= 0 if and only if κσl (s0) ̸= 0.
This means that the conditions (1) and (4) are equivalent. By the proof of Proposition 4.1,

hv0

′(s0) = 0 and hv0

′′(s0) ̸= 0 if and only if v0 = L̃σ(s0) and κσl (s0) ̸= 0. This means that
the conditions (1) and (3) are equivalent. Moreover, by the relation hv0(s0) = hv0(γ(s0)) and
Proposition 4.1, γ and the tangent L-slice TL(M,γ)σs0 have a contact of order one at point s0
if and only if κl

σ(s0) ̸= 0. Therefore, the conditions (2) and (3) are equivalent. By Remark 5.2,
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LPσ
(γ,M)

′(s0) ̸= 0 if and only if (L̃σ)′(s) ̸= 0. This means that the conditions (4) and (5) are
equivalent.

(B) By Lemma 5.3, the assumption of Proposition 5.1 is satisfied for H. The assertions of
Lemma 5.3 and Proposition 5.1 in the case F = H mean that the conditions (3),(4),(5),(6) and
(7) are equivalent to each other. By Proposition 4.1, the conditions (1) and (3) are equivalent.
The assertion of Proposition 4.3 means that the conditions (1) and (2) are equivalent. 2

6 A global property of the lightcone curvature

In this section we consider regular homotopy invariants of regular closed curves on a spacelike
surface. Here it has been known that the regular homotopy classification among regular plane
curves are classified by the winding number and that the winding number of the projection
of a closed spacelike regular curve is a spacelike homotopy invariant [2]. Here we calculate
the winding number of a regular closed curve on a spacelike surface by using the normalized
lightcone curvature of γ relative to M . Let γ : S1 −→M be a unit speed closed regular curve
on a spacelike surface. We now fix the parameterization of lightcone circle :

S1
+ = {(1, cos θ, sin θ) ∈ LC∗|0 ≤ θ ≤ 2π}

It follows that there exists a smooth function θ(s) such that

L̃σ(s) = (1, cos θ(s), sin θ(s)).

Then we have the following proposition:

Proposition 6.1 Under the same notations as the above, we have the following relation:

dθ(s)

ds
= σ

κℓ
σ(s)

ℓσ0 (s)

at s0 ∈ S1
+ with κℓ

σ ̸= 0. If κℓ
σ = 0 then dθ(s)

ds
(s) = 0

Proof. Firstly we assume that κσℓ ̸= 0. By definition, we have

(L̃σ)′(s) = (0,− sin θ(s)
dθ(s)

ds
, cos θ(s)

dθ(s)

ds
).

If we write nγ(s) = (n0(s), n1(s), n2(s)), then we calculate the following determinant:

∣∣∣nγ(s) L̃σ(s) (L̃σ)′(s)
∣∣∣ =

∣∣∣∣∣∣
n0(s) n1(s) n2(s)
1 cos θ(s) sin θ(s)

0 − sin θ(s)dθ(s)
ds

cos θ(s)dθ(s)
ds

∣∣∣∣∣∣
=

dθ(s)

ds
(n0(s)− n1(s) cos θ(s)− n2(s) sin θ(s))

= −dθ(s)
ds

⟨nγ(s), L̃σ(s)⟩

= −dθ(s)
ds

⟨nγ(s),
1

ℓσ0 (s)
(nγ + σb(s))⟩

=
1

ℓσ0 (s)

dθ(s)

ds
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On the other hand, since ℓσ0 L̃σ = Lσ where Lσ(s) = (ℓσ0 (s), ℓ
σ
1 (s), ℓ

σ
2 (s)), we have (Lσ)′ = ℓσ0

′L̃σ+

ℓσ0 (L̃σ)′. Moreover, by the Frenet-Serret type formulae, we have (Lσ)′ = στg(nγ + σb) + κℓ
σt. It

follows that∣∣∣nγ(s) L̃σ(s) (L̃σ)′(s)
∣∣∣ =

∣∣∣nγ(s)
1

ℓσ0 (s)
Lσ(s) 1

ℓσ0 (s)
(Lσ)′(s)− ℓσ0 (s)

′

ℓσ0 (s)
2Lσ(s)

∣∣∣
=

∣∣∣nγ(s)
1

ℓσ0 (s)
(nγ(s) + σb(s)) 1

ℓσ0 (s)
στg(s)(nγ + σb(s)) + 1

ℓσ0 (s)
κℓ

σ(s)t(s)
∣∣∣

=
σ

ℓσ0 (s)
2
κℓ

σ(s)
∣∣nγ(s) b(s) t(s)

∣∣
= σ

κℓ
σ(s)

ℓσ0 (s)
2

Therefore we have the desired relation. By Proposition 3.1, κℓ
σ(s) = 0 if and only if s is a

singular point of the lightcone Gauss map. This is equivalent to the condition dθ(s)
ds

(s) = 0.
This completes the proof. 2

By the above proposition and the definition of κ̃σl , we have the following proposition:

Proposition 6.2 For any unit speed closed regular spacelike immersion γ : S1 −→M, we have

1

2π

∫
S1

κ̃σl ds = deg(L̃σ),

where deg(L̃σ) is the mapping degree of L̃σ : I −→ S1
+.

Proof. By Proposition 6.1, we have∫
S1

κ̃σl ds =

∫ 2π

0

dθ

ds
(s)ds = 2π deg(L̃σ).

2

By using the canonical projection π : R3
1 −→ R2

0, we have an orientation preserving diffeomor-
phism π|S1

+ −→ S1. We now consider the (Euclidean) Gauss map N : S1 −→ S1 on π ◦ γ.
Since γ : S1 −→ M ⊂ R3

1 is a spacelike curve in R3
1, we have the following lemma as a special

case of [2, Lemma 3.6].

Lemma 6.3 Under the choice of a suitable direction of N, π ◦ L̃σ and N are homotopic.

Since the mapping degree is a homotopy invariant and an invariant under orientation preserving
diffeomorphisms, we have the following corollary.

Corollary 6.4 Under the same assumptions as those in Proposition 6.2, we have

deg(L̃σ) = W (π ◦ γ)

where W (π ◦ γ) denotes the winding number of π ◦ γ.

This proves the following theorem:
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Theorem 6.5 For any unit speed closed spacelike immersion γ : S1 −→ M with γ ′′ ̸= 0, we
have

1

2π

∫
S1

κ̃σl ds =W (π ◦ γ).

On the other hand, we consider the total absolute normalized lightcone curvature of γ. We
define two subsets of S1 as follows:

S+ = {s ∈ S1 | σκσl (s) > 0}
S− = {s ∈ S1 | σκσl (s) < 0}.

Then we have ∫
S1

|κ̃σl |ds =

∫
S+

κ̃σl ds−
∫
S−

κ̃σl ds∫
S1

κ̃σl ds =

∫
S+

κ̃σl ds+

∫
S−

κ̃σl ds.

By Theorem 6.5 and the fact that
∫
S−
κ̃σl ds ≤ 0, we have∫

S1

|κ̃σl |ds ≥ 2πW (π ◦ γ).

Moreover, we have

−2πW (π ◦ γ) = −
∫
S1

κ̃σl ds = −
∫
S+

κ̃σl ds−
∫
S−

κ̃σl ds,

so that we have

−
∫
S−

κ̃σl ds ≥ −2πW (π ◦ γ).

Thus, we have ∫
S1

|κ̃σl |ds ≥ −2πW (π ◦ γ).

Therefore we have ∫
S1

|κ̃σl |ds ≥ 2π|W (π ◦ γ)|.

On the other hand, we have the following lemma:

Lemma 6.6 We have the following inequality:∫
S1

|κ̃σl |ds ≥ 2π.

Proof. We consider the lightcone Gauss map L̃σ : S1 −→ S1
+. Let C(L̃σ) be the critical value set

of L̃σ. By the Sard theorem, D = S1
+ \C(L̃σ) is an open dense subset of S1

+. For any v ∈ D, the
lightcone height function hv has at least two critical points (i.e., one if the maximum another
is the minimum). Suppose that s0 is one of such points. By Theorem 5.4, κσl (s0) ̸= 0 if and
only if hv has type A1 at s0. This means that h′′v(s0) ̸= 0. By the calculation of the proof of
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Proposition 4.1, (2), h′′v(s0) = −κσl (s0). This means that L̃σ|(S+ ∪ S−) : S+ ∪ S− −→ D is
surjective. Thereofore,∫

S1

|κ̃σl |ds =
∫
S1

∣∣∣∣dθds(s)
∣∣∣∣ ds = ∫

S+∪S−

∣∣∣∣dθds(s)
∣∣∣∣ ds = ∫

S+

dθ

ds
(s)ds−

∫
S−

dθ

ds
(s)ds ≥ 2π.

2

Then we have the following theorem.

Theorem 6.7 We have the following inequality:

1

2π

∫
S1

|κ̃σl |ds ≥ max (|W (π ◦ γ)|, 1).

If π ◦γ : S1 −→ R2
0 is an embedding, then W (π ◦γ) = ±1. Therefore, we have the following

corollary:

Corollary 6.8 Let γ : S1 −→ M be a regular curve on M. Suppose that π ◦ γ : S1 −→ R2
0 is

an embedding. Then we have the following inequality:

1

2π

∫
S1

|κ̃σl |ds ≥ 1.

In order to characterize the curve with the equality in the above corollary, we introduce the
following notion: Let L be a spacelike line in R3

1.We define L as a line through the origin which
is parallel to L. Since L⊥ is a Lorentz plane, there exists a psedudo-orthonromal basis {vT ,vS}
of L⊥. Here, vT is timelike and vS is spacelike. Then we have lightlike vectors v± = vT ± vS.
By definition, there exists p ∈ R3

1 such that L = p+L. For any x ∈ L, ⟨p+x,v±⟩ = ⟨p,v⟩ = c±

are constant numbers. Thus we have lightlike planes P (v±, c±). Then we have

L = P (v+, c+) ∩ P (v−, c−).

For a regular curve γ : I −→M, we consider the tangent line Lp of γ at p = γ(s0). Then we say
that the corresponding lightlike planes are tangent lightlike planes of γ at p = γ(s0). Let K be a
subset of M ⊂ R3

1. A plane Π through a point x ∈ K is called a support plane if K lies entirely
in one of the closed half-space determined by Π. Let γ : S1 −→ M be a spacelike embedding.
We say that γ is lightlike-convex (or, L-convex) relative to M if the tangent lightlike planes at
each point γ(s) are support planes of γ(S1). Then we have the following proposition.

Proposition 6.9 Let γ : S1 −→ M be a regular curve on M. Suppose that π ◦ γ : S1 −→ R2
0

is an embedding. Then
1

2π

∫
S1

|κ̃σl |ds = 1 (*)

if and only if γ is L-convex relative to M.

Proof. By Corollary 6.8, the condition (∗) is equivalent to the condition

1

2π

∫
S1

|κ̃+l |ds+
1

2π

∫
S1

|κ̃−l |ds = 2 (**)
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Moreover, the condition (∗∗) is equivalent to the following condition:

hv|(S+ ∪ S−) has type A1 at exactly two points for each v ∈ D. (***)

Suppose that the condition (∗∗∗) holds. If γ is not L-convex relative to M, then there exists
s ∈ S1 and v ∈ S1

+ such that one of the tangent lightlike planes at γ(s) separates γ(S1) into

two parts. Then we have v = L̃σ(s). If hv has type A1 at s, it contradicts to the condition
(∗∗∗). If hv has type A≥2, under a small perturvation of v ∈ S1

+, there exists a point s0 ∈ S1

such that hv has type A1 at s0. This also contradicts to the condition (∗∗∗).

On the other hand, if the condition (∗∗∗) does not hold, then there exists v ∈ S1
+ such that

hv has at least three critical points. If necessary, under a small perturvation of v ∈ S1
+, all

critical values of hv are different. It follows that there exists a critical point s ∈ S1 of hv such
that neither the maximum nor the minimum point of hv. This means that one of the tangent
lightlike planes of γ at s locally separates γ(S1) into at least two parts. Therefore, γ is not
L-convex relative to M. This completes the proof. 2

7 Special cases

In this section we consider the case when M is a spacelike plane or the hyperbolic plane as
special cases.

7.1 Curves on a spacelike plane

Suppose that M = R2
0 = {x = (x0, x1, x2) ∈ R3

1 | x0 = 0}. We consider a plane curve
γ : I −→ R2

0. In this case we have nγ = e0, t(s) = γ ′(s) and b(s) = t(s) ∧ e0. It follows

that L±(s) = e0 ± b(s) = L̃±(s), κn(s) ≡ τg(s) ≡ 0 and κg(s) = ⟨t′(s), b(s)⟩ = κ(s). Thus,
κ±l (s) = ∓κ(s). Then we have the following classical Frenet-Serret formulae on Euclidean plane:{

t′(s) = κ(s)b(s),
b′(s) = −κ(s)t(s).

The interesection of a lightlike plane with R2
0 is a line, so that an L-slice of R2

0 is a line. By
Proposition 3.1, γ is an L-slice of R2

0 if and only if κ ≡ 0. All results in this paper correspond
to classical results on plane curves.

We remark that if we consider a constant timelike unit vector v and a real number c, then
we have a spacelike plane P (v, c). For a curve γ on P (v, c), we have nγ(s) = v. Then all the
results for curves on R2

0 hold for curves on P (v, c).

7.2 Curves on the hyperbolic plane H2
+(−1)

Suppose thatM = H2
+(−1). In this case, by definition, an L-slice of H2

+(−1) is P (v, c)∩H2
+(−1)

for some v ∈ S1
+, c ∈ R which is known to be a horocycle of the hyperbolic plane. We have

nγ(s) = γ(s) , t(s) = γ ′(s) with ∥t(s)∥ = 1 and b(s) = t(s) ∧ nγ(s). We call {t,γ, b} the
Lorentzian Saban frame. Therefore, we have κn(s) ≡ 1, τg(s) ≡ 0. By the Frenet-Serret type

15



formulae in §3, we have the following[3]:
t′(s) = γ + κg(s)b(s),
γ ′(s) = t(s)
b′(s) = −κg(s)t(s),

Here, by Proposition 3.1, γ is a horocycle if and only if κσl = κn ∓ κg = 0 that is κg(s) ≡ ±1.

Moreover, we have κ̃±l (s) = σ(1̃∓ κg(s)). We now denote that κ̃±h (s) = 1̃∓ κg(s) which are
called horocyclic curvatures of γ. By Theorem 5.4, γ and the tangent horocycle TH(H2

+(−1),γ)σs0
have a contact of order one at point s0 if and only if κ̃±h (s0) ̸= 0 and a contact of order two at
point s0 if and only if κ̃±h (s0) = 0 and (κ̃±h )

′(s0) ̸= 0. Moreover, by Theorem 6.5, we have

W (π ◦ γ) = 1

2π

∫
S1

κ̃±h ds =
1

2π

∫
S1

σ(1̃∓ κg(s))ds.

We also have
1

2π

∫
S1

|κ̃±h |ds =
1

2π

∫
S1

|1̃∓ κg(s)|ds ≥ max (|W (π ◦ γ)|, 1).

by Theorem 6.7. By Proposition 6.9, 1
2π

∫
S1 |κ̃±h |ds = 1 if and only if γ is L-convex relative to

M . It means that γ is inside of one of the two horocycles at each point of γ(s) which are the
intersections of tangent lightlike planes of γ and H2

+(−1), where they are support planes of γ.
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