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Abstract. We prove a formula of Petersson’s type for Fourier coefficients of Siegel cusp
forms of degree 2 with respect to congruence subgroups, and as a corollary, show upper
bound estimates of individual Fourier coefficient. The method in this paper is essentially
a generalization of Kitaoka’s previous work which studied the full modular case, but some
modification is necessary to obtain estimates which are sharp with respect to the level aspect.

1. Introduction and the statement of main results

Let Ml(R) be the set of l × l matrices whose components belong to a ring R, and define

Λ = {S ∈ M2(Z) | tS = S},
Λ∗ = {S = (sij) ∈ M2(Q) | sii ∈ Z, 2s12 = 2s21 ∈ Z}.

Let H2 = {Z = X + iY ∈ M2(C) | tZ = Z, Y > 0} be the Siegel upper half space of degree 2,
Sp(2,Z) be the Siegel modular group of degree 2 which consists of all non-singular matrices

M ∈ M4(Z) satisfying tMJM = J , where J =

(
12

−12

)
. For a positive integer N , define

Γ
(2)
0 (N) =

{(
A B
C D

)
∈ Sp(2,Z)

∣∣∣∣ C ≡
(
0 0
0 0

)
modN

}
.

Denote by Sk(Γ
(2)
0 (N)) the space of Siegel cusp forms of weight k(≥ 1) with respect to

Γ
(2)
0 (N), and write the Fourier expansion of f ∈ Sk(Γ

(2)
0 (N)) as

f(Z) =
∑

0≤Q∈Λ∗

af (Q)e(tr(QZ)),(1.1)

where Z ∈ H2, e(x) = exp(2πix) and tr denotes the trace map. The main purpose of the
present paper is to prove a Petersson type formula for the above Fourier coefficients af (Q).
Such a study was carried out by Kitaoka [5] in the full modular case, in order to obtain
an upper bound estimate of Fourier coefficients. Our motivation is to generalize Kitaoka’s
result to the case of general Γ0(N).

First recall the classical elliptic modular case. Let Sk(Γ0(N)) be the space of elliptic cusp
forms of weight k and level N , f ∈ Sk(Γ0(N)), and denote its Fourier coefficients by af (n).
Then the classical Petersson formula is

Γ(k − 1)

(4π
√
mn)k−1

∑
f

af (m)af (n)

⟨f, f⟩
(1.2)

= δmn +
2π

(−1)k/2

∑
c>0

c≡0 (modN)

1

c
S(m,n; c)Jk−1

(
4π

√
mn

c

)
,
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where ⟨ , ⟩ denotes the usual Petersson inner product, δmn is the Kronecker delta, S(m,n; c)
is the Kloosterman sum, Jk−1(·) is the (k − 1)-th J-Bessel function, and the sum on the
left-hand side runs over an orthogonal basis of Sk(N) (see Theorem 3.6 in [3]). From this
formula, evaluating the sum on the right-hand side, we can show

Γ(k − 1)

(4π
√
mn)k−1

∑
f

af (m)af (n)

⟨f, f⟩
= δmn +O((m,n)1/2(mn)(k−1)/2N1/2−kd(N)),(1.3)

where d(·) denotes the divisor function (Duke [1], Kamiya [4]).

Now return to the Siegel case. Let Fk,N be a set of orthogonal basis of Sk(Γ
(2)
0 (N)). For

Q, T ∈ Λ∗, define
δ(Q, T ) = #{U ∈ GL(2,Z)|UQtU = T}.

In what follows, Q is to be regarded as fixed, and ε denotes an arbitrarily small positive
number, not necessarily the same at each occurrence. The constants implied by Landau’s
O-symbol and Vinogradov’s ≪ symbol may depend on Q, ε.

Now we state our main results in the present paper.

Theorem 1.1. Let Q, T ∈ Λ∗, both are positive definite. Then
(i) We have

π1/2(4π)3−2kΓ(k − 3

2
)Γ(k − 2)(detQ)−k+ 3

2

∑
f∈Fk,N

af (Q)af (T )

⟨f, f⟩
(1.4)

= δ(Q, T ) + EQ(T,N),

where EQ(T,N) is the error term, in the sense that it tends to 0 when N → ∞. Moreover
the estimates

(ii) EQ(T,N) = O(N
3
2
−k|T |k− 3

2 +N2−k+ε|T | k2− 1
4
+ε +N3−2k+ε|T |k−1+ε),

(iii) EQ(T,N) = O(N−1/2+ε|T |k/2−1/4+ε)
hold for k ≥ 3.

Remark 1.2. (i) When there is no U ∈ GL(2,Z) satisfying UQtU = T , obviously δ(Q, T ) = 0.
Therefore the role of δ(Q, T ) is similar to the delta symbol in formula (1.3).

(ii) This result is a generalization of Proposition 3.3 in Kowalski-Saha-Tsimerman [7].
They applied the estimate to show an equidistribution result for L-functions associated to
Siegel cusp forms of genus 2 and growing weight k. So it is expected that our result can be
used to prove a similar result for growing level N .

From the above theorem, as we will see in the next section, we can deduce an upper bound
estimate of individual Fourier coefficient.

Theorem 1.3. When there is no U ∈ GL(2,Z) satisfying UQtU = T , we obtain

(a) af (T ) = O(N
3
2
−k|T |k− 3

2 +N2−k+ε|T | k2− 1
4
+ε +N3−2k+ε|T |k−1+ε).

(b) af (T ) = O(N−1/2+ε|T |k/2−1/4+ε)
for k ≥ 3.

When N = 1, Theorem 1.3 (b) is exactly Kitaoka’s estimate [5]. However, the estimate
with respect to N is rather weak in (b). This point is supplied by (a), which gives a sharp
estimate with respect to N . This (a) corresponds to the error estimate of Duke-Kamiya in
(1.3).

In the following sections we will give the proof of the above theorems. Many parts of the
proof are rather straightforward generalizations of Kitaoka’s argument in [5], but we describe
the details because we have to trace carefully how is the effect of N . In particular, some
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modification of Kitaoka’s argument is necessary to obtain estimates which are sharp with
respect to N .

2. Poincaré series

For M =

(
A B
C D

)
∈ Sp(2,Z) and Z ∈ H2, we set

j(M,Z) = det(CZ +D)

and

M⟨Z⟩ = (AZ +B)(CZ +D)−1.

Moreover, we set

Γ
(2)
1 (∞) =

{(
12 S

12

) ∣∣∣∣ S ∈ Λ

}
.

For Q ∈ Λ∗ with Q > 0 and positive integers k, N , we define the Poincaré series gN(Z,Q)

of weight k with respect to Γ
(2)
0 (N) by

gN(Z,Q) =
∑

M∈Γ(2)
1 (∞)\Γ(2)

0 (N)

e(tr(Q ·M⟨Z⟩))j(M,Z)−k.

For f, g ∈ Sk(Γ
(2)
0 (N)), we define the (unnormalized) Petersson norm of f and g by

⟨f, g⟩ =
∫
Γ
(2)
0 (N)\H2

f(Z)g(Z)(detY )k−3dZ.

Proposition 2.1. Let f ∈ Sk(Γ
(2)
0 (N)). Then we have

⟨gN(·, Q), f⟩ = π1/2(4π)3−2kΓ(k − 3

2
)Γ(k − 2)(detQ)−k+ 3

2af (Q),(2.1)

and consequently,

gN(Z,Q) = π1/2(4π)3−2kΓ(k − 3

2
)Γ(k − 2)(detQ)−k+ 3

2

∑
f∈Fk,N

af (Q)f(Z)

⟨f, f⟩
.(2.2)

Proof. This is a direct generalization of a result in Klingen’s book [6], page 90. We briefly
outline the argument. We follow the argument in pp.76-90 of Klingen [6] with replacing

Γn and An by Γ
(2)
0 (N) and Γ

(2)
1 (∞), respectively. The starting point, Proposition 1 ([6,

p.76]), does not depend on N . Formulas (7), (8) in [6, p.78] are proved by the technique
of decomposing the Siegel half space Hn into copies (by the action of {±1}\Γn) of the
fundamental domain Fn. The same technique can be applied to our present situation, with
replacing Sk

n by Sn,k(N). In this way, we follow Klingen’s argument until Proposition 3 ([6,
p.85]). In the statement of Proposition 3, the series Gk

n(z; gν) is defined, but this is again
independent of N . (But be careful with the definition of Λn.) Also N does not appear in the
Fourier expansion of f ∈ Sn,k(N). On the last line of p.87, Klingen defines An, which differs

from our Γ
(2)
1 (∞) by the factor 2. Therefore, gkn(z, t) defined on p.90 of [6] differs from our

gN(Z, T ) by the factor 2. All other parts of the proof are the same as in [6]. �
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Substituting (1.1) (with replacing Q by T ) into the right-hand side of (2.2), we have

gN(Z,Q) = π1/2(4π)3−2kΓ(k − 3

2
)Γ(k − 2)(detQ)−k+ 3

2(2.3)

×
∑

0≤T∈Λ∗

∑
f∈Fk,N

af (Q)af (T )

⟨f, f⟩
e(tr(TZ)).

Therefore, if we write the Fourier expansion of the Poincaré series as

gN(Z,Q) =
∑

0≤T∈Λ∗

AQ,N(T )e(tr(TZ)),(2.4)

we obtain

AQ,N(T ) = π1/2(4π)3−2kΓ(k − 3

2
)Γ(k − 2)(detQ)−k+ 3

2

∑
f∈Fk,N

af (Q)af (T )

⟨f, f⟩
.(2.5)

Therefore the Fourier coefficient AQ,N(T ) can be estimated by our Theorem 1.1. In partic-
ular, when there is no U ∈ GL(2,Z) satisfying UQtU = T , from Theorem 1.1 (ii), (iii) (with
noting Remark 1.2) we find that AQ,N(T ) satisfies the estimations stated in Theorem 1.3.
Since any cusp form can be written as a linear combination of Poincaré series, we obtain the
assertion of Theorem 1.3.

On the other hand, (2.5) implies that, in order to prove Theorem 1.1, it is enough to
consider AQ,N(T ).

Let HN be a complete system of representatives of Γ
(2)
1 (∞)\Γ(2)

0 (N)/Γ
(2)
1 (∞). For M ∈

Sp(2,Z), we denote

θ(M) =

{
S ∈ Λ

∣∣∣∣ M (
12 S

12

)
M−1 ∈ Γ

(2)
1 (∞)

}
.

Lemma 2.2 (Kitaoka [5], p.158, Lemma 1). For M ∈ Sp(2,Z), we have

Γ
(2)
1 (∞)MΓ

(2)
1 (∞) =

⨿
S∈Λ/θ(M)

Γ
(2)
1 (∞)M

(
12 S

12

)
.

From this lemma, it is easy to see that

gN(Z,Q) =
∑

M∈HN

HQ(M,S),(2.6)

where

HQ(M,Z) =
∑

S∈Λ/θ(M)

e(tr(Q ·M⟨Z + S⟩))j(M,Z + S)−k.(2.7)

Write the Fourier expansion of HQ(M,Z) as

HQ(M,Z) =
∑

0≤T∈Λ∗

hQ(M,T )e(tr(TZ)).(2.8)

Then

hQ(M,T ) =

∫
X(mod 1)

HQ(M,Z)e(− tr(TZ))dX,(2.9)

where X =

(
x1 x2

x2 x4

)
= ℜ(Z), dX = dx1dx2dx4.
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Comparing (2.6), (2.8) with (2.4), we obtain

AQ,N(T ) =
∑

M∈HN

hQ(M,T ).(2.10)

Therefore, to prove Theorem 1.1, our remaining task is to evaluate each term on the right-
hand side of (2.10). Let

H
(i)
N = {M =

(
A B
C D

)
∈ HN | rankC = i}

for i = 0, 1 or 2, and decompose (2.10) as

AQ,N(T ) = Σ0 + Σ1 + Σ2,(2.11)

where
Σi =

∑
M∈H(i)

N

hQ(M,T ) (i = 0, 1, 2).

In the following three sections we evaluate Σ0, Σ1 and Σ2, respectively.

3. The case of rankC = 0

In this section, we assume rankC = 0, i.e. C = 0.

Lemma 3.1 (Kitaoka [5], p.158, Lemma 3). As H
(0)
N we can choose{(

tU 0
0 U−1

) ∣∣∣∣ U ∈ GL(2,Z)
}

and θ(M) = Λ.

Proposition 3.2. We have

Σ0 = #{U ∈ GL(2,Z) | UQtU = T},
which is hence non-zero only if Q ∼ T .

Proof. We can choose M which is of the form stated in Lemma 3.1, and θ(M) = Λ. Hence
from (2.7) we have

HQ(M,Z) = e(tr(Q ·M⟨Z⟩))j(M,Z)k = e(tr(Q · tUZU)).

Therefore (2.9) gives

hQ(M,T ) =

∫
X mod1

e(tr(Q · tUZU))e(− tr(TZ))dX.

Then we have∑
M∈H(0)

N

hQ(M,T ) =
∑

U∈GL(2,Z)

∫
X mod1

e(tr(Q · tUZU))e(− tr(TZ))dX

=
∑

U∈GL(2,Z)

∫ 1

0

∫ 1

0

∫ 1

0

e(tr(Q · tUZU − TZ))dx1dx2dx4,

where

X =

(
x1 x2

x2 x4

)
= ℜ(Z).

Since tr(QtUZU − TZ) = 0 is equivalent to tr((UQtU − T )Z) = 0, we see that if UQtU = T
then tr(QtUZU − TZ) = 0 for all Z, hence the above integral is equal to 1. On the other
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hand, if UQtU ̸= T , then tr(QtUZU − TZ) ̸= 0 for almost all Z, so the above integral
vanishes. This completes the proof. �

4. The case of rankC = 1

Next we consider the case rankC = 1.

Lemma 4.1. As H
(1)
N we can choose{

M =

(
∗ ∗

U−1C ′tV U−1D′V −1

)
∈ Sp(2,Z)

∣∣∣∣ U ∈ G1, V ∈ G2, c1 ≥ 1, d4 = ±1,
(c1, d1) = 1, d1, d2 mod c1

}
,

where

C ′ =

(
Nc1 0
0 0

)
, D′ =

(
d1 d2
0 d4

)
, G1 =

{(
∗ ∗
0 ∗

)}
/GL(2,Z), G2 = GL(2,Z)

{(
1 ∗
0 ∗

)}
.

Moreover θ(M) is given by {
S ∈ Λ

∣∣∣∣ S[V ] =

(
0 0
0 ∗

)}
for the above specialized M , where S[V ] = tV SV .

When N = 1, this is Kitaoka’s Lemma 4 ([5], p.159). The above generalization is obvious.
For U, V in the setting of Lemma 4.1, we set

P =

(
p1 p2/2
p2/2 p4

)
= Q[tU ] = UQtU

and

S =

(
s1 s2/2
s2/2 s4

)
= T [tV −1] = V −1T tV −1.

We choose an a1 satisfying a1d1 ≡ 1 mod c1. The following is Kitaoka’s Lemma 1 ([5],
p.160) when N = 1.

Lemma 4.2. With the notation as above, we have

hQ(M,T ) = (−1)k/2
√
2π|Q|

3
4
− k

2 |T |
k
2
− 3

4 δp4,s4s
− 1

2
4 (Nc1)

− 3
2

× e

(
a1s4d

2
2 − (a1d4p2 − s2)d2

Nc1
+

a1p1 + d1s1
Nc1

+
d4p2s2
2Nc1s4

)
Jk− 3

2

(
4π
√

|T ||Q|
Nc1s4

)
.

Using this lemma, we evaluate Σ1. First recall∑
n mod c

e

(
an2 + bn

c

)
= O((a, c)

1
2 c

1
2 ).(4.1)

This is a well-known estimate on generalized quadratic Gauss sums, but here we give a sketch
of proof. Denote the left-hand side by G(a, b, c). When (a, c) > 1, then G(a, b, c) = 0 unless
(a, c)|b, while in the latter case

G(a, b, c) = (a, c)G(a/(a, c), b/(a, c), c/(a, c)),

so we may reduce the problem to the case (a, c) = 1. When (a, c) = 1, we write c = uv, where
u is a power of 2 and v is odd. The decomposition G(a, b, c) = G(au, b, v)G(av, b, u) holds,

and G(au, b, v) is explicitly written in the form ηv
1
2 , where η is a certain complex number

with |η| = 1. Applying Theorem 10.1 of Hua [2, Chapter 7], we find G(av, b, u) = O(u
1
2 )

(here, the ε-factor in Hua’s statement is not necessary because now u has only one prime

divisor). Therefore G(a, b, c) = O(c
1
2 ) as desired.
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Using (4.1), we find∑
d2 modNc1

e

(
a1s4d

2
2 − (a1d4p2 − s2)d2

Nc1

)
= O((a1s4, Nc1)

1
2 (Nc1)

1
2 ) = O((s4, Nc1)

1
2 (Nc1)

1
2 ),

where the last equality follows from the fact (a1, Nc1) = 1. Therefore∣∣∣∣∣ ∑
d2 modNc1

hQ(M,T )

∣∣∣∣∣≪ δp4,s4 |T |
k
2
− 3

4 s
− 1

2
4 (Nc1)

−1(s4, Nc1)
1
2

∣∣∣∣∣Jk− 3
2

(
4π
√

|T ||Q|
Nc1s4

)∣∣∣∣∣
(because Q is fixed and so the Q-factor is to be included in the implied constant), which
further implies ∑

U∈G1

∑
d1 modNc1

(d1,Nc1)=1,d4=±1

∣∣∣∣∣ ∑
d2 modNc1

hQ(M,T )

∣∣∣∣∣(4.2)

≪
∑
U∈G1

δp4,s4 |T |
k
2
− 3

4 s
− 1

2
4 (s4, Nc1)

1
2

∣∣∣∣∣Jk− 3
2

(
4π
√

|T ||Q|
Nc1s4

)∣∣∣∣∣ .
Since G1 is parametrized by the second row up to sign, we see that the right-hand side of
(4.2) is

≪
∑

u=(u3u4)

δp4,s4 |T |
k
2
− 3

4 s
− 1

2
4 (s4, Nc1)

1
2

∣∣∣∣∣Jk− 3
2

(
4π
√
|T ||Q|

Nc1s4

)∣∣∣∣∣ ,(4.3)

where u3, u4 is determined by U =

(
u1 u2

u3 u4

)
. Since P = Q[tU ], we have

Q[u] = (u3 u4)Q

(
u3

u4

)
= p4.(4.4)

Therefore δp4,s4 = δQ[u],s4 , but #{u| Q[u] = s4} = O(sε4). Hence (4.3) is

≪ |T |
k
2
− 3

4 s
− 1

2
+ε

4 (s4, Nc1)
1
2

∣∣∣∣∣Jk− 3
2

(
4π
√
|T ||Q|

Nc1s4

)∣∣∣∣∣ .
Therefore ∑

V ∈G2

∑
U∈G1

∑
d1 modNc1

(d1,Nc1)=1,d4=±1

∣∣∣∣∣ ∑
d2 modNc1

hQ(M,T )

∣∣∣∣∣(4.5)

≪
∑
V ∈G2

|T |
k
2
− 3

4 s
− 1

2
+ε

4 (s4, Nc1)
1
2

∣∣∣∣∣Jk− 3
2

(
4π
√

|T ||Q|
Nc1s4

)∣∣∣∣∣ .
We see easily that V is parametrized by the first column, and s4 = T

(
−v3
v1

)
for V =(

v1 v2
v3 v4

)
. Therefore, setting

A(m,T ) = #{
(
v1
v2

)
|(v1, v2) = 1, T

(
v1
v2

)
= m},
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we find that the right-hand side of (4.5) is

≪ |T |
k
2
− 3

4

∞∑
s4=1

s
− 1

2
+ε

4 (s4, Nc1)
1
2A(s4, T )

∣∣∣∣∣Jk− 3
2

(
4π
√

|T ||Q|
Nc1s4

)∣∣∣∣∣ .(4.6)

Here we quote the following well-known estimates:

Jk− 3
2
(x) =

{
(i) O(xk− 3

2 ),

(ii) O(x− 1
2 )

(4.7)

for x > 0 (see Kitaoka [5], p.163, Lemma 2). Applying (4.7) (i), we see that (4.6) is

≪ |T |
k
2
− 3

4

∞∑
s4=1

s
− 1

2
+ε

4 (s4, Nc1)
1
2A(s4, T )

(
4π
√

|T ||Q|
Nc1s4

)k− 3
2

≪ |T |k−
3
2

∞∑
s4=1

A(s4, T )s
− 1

2
+ε

4 s
1
2
4 (Nc1s4)

−k+ 3
2 .

Finally, since
∑∞

c1=1 c
−k+ 3

2
1 < +∞ (if k > 5

2
), we have

Σ1 =
∞∑

c1=1

∑
V ∈G2

∑
U∈G1

∑
d1 modNc1

(d1,Nc1)=1,d4=±1

∑
d2 modNc1

hQ(M,T )

≪ |T |k−
3
2

∞∑
c1=1

∞∑
s4=1

A(s4, T )s
−k+ 3

2
+ε

4 N−k+ 3
2 c

−k+ 3
2

1

≪ |T |k−
3
2N−k+ 3

2

∞∑
s4=1

A(s4, T )s
−k+ 3

2
+ε

4 .

Since A(s4, T ) = O(sε4) (independent of T ), we now arrive at the following proposition.

Proposition 4.3. If k ≥ 3, then

Σ1 ≪ |T |k−
3
2N

3
2
−k.

This proposition is necessary for the proof of assertion (ii) of Theorem 1.1. To prove
assertion (iii) of Theorem 1.1, we have to modify the above argument, using the both es-
timates of (4.7). That is, to evaluate the Bessel factor in (4.6), now we apply (4.7) (ii) if

4π
√

|T ||Q| ≥ Nc1s4, and apply (i) if 4π
√
|T ||Q| < Nc1s4. Then (4.6) is

≪ |T |
k
2
− 3

4 (S1 + S2),

where

S1 =
∑

s4≤τ/Nc1

s
− 1

2
+ε

4 (s4, Nc1)
1
2A(s4, T )|T |−

1
4 (Nc1s4)

1
2 ,

S2 =
∑

s4>τ/Nc1

s
− 1

2
+ε

4 (s4, Nc1)
1
2A(s4, T )|T |

k
2
− 3

4 (Nc1s4)
−k+ 3

2 ,

with τ = 4π
√

|T ||Q|. Therefore

Σ1 ≪ |T |
k
2
− 3

4

∞∑
c1=1

(S1 + S2).(4.8)
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Lemma 4.4. We have

∑
1≤Nc1≤τ/s4

(s4, Nc1)
1
2 (Nc1)

1
2 ≪ N− 1

2
+ε

(
τ

s4

) 3
2

sε4,(4.9)

∑
Nc1>τ/s4

(s4, Nc1)
1
2 (Nc1)

3
2
−k ≪ N− 1

2
+ε

(
τ

s4

) 5
2
−k

sε4 (k ≥ 3).(4.10)

Proof. When N = 1, this is Kitaoka’s Lemma 2 ([5], p.163). As for (4.9), first we write
(s4, Nc1) = r and Nc1 = rq to obtain∑

1≤Nc1≤τ/s4

(s4, Nc1)
1
2 (Nc1)

1
2 =

∑
r|s4

r
∑

q≤τ/s4r,N |qr

q
1
2 .

Put (N, r) = ν, and write N = νN ′. Then N |qr implies N ′|q, so we can write q = N ′q′.
Therefore the above is

=
∑
r|s4

r
∑

q′≤τ/s4rN ′

(N ′q′)
1
2

≪
∑
r|s4

r
1

N ′

(
τ

s4r

) 3
2

=

(
τ

s4

) 3
2 ∑

ν|N

1

N ′

∑
r|s4,r≡0(mod ν)

r−
1
2

≤
(
τ

s4

) 3
2 ∑

ν|N

1

N ′ν
− 1

2d(s4)

=

(
τ

s4

) 3
2 1

N
σ1/2(N)d(s4) ≪ N− 1

2
+ε

(
τ

s4

) 3
2

sε4,

where σ1/2(N) =
∑

d|N d1/2. The proof of (4.10) is similar, but the condition k ≥ 3 is
necessary in the course of the proof to assure the convergence of a relevant series. �

Using (4.9) and A(s4, T ) ≪ sε4, we have

∞∑
c1=1

S1 ≪ |T |−
1
4

∑
s4≤τ/N

∑
c1≤τ/s4N

(s4, Nc1)
1
2 (Nc1)

1
2 sε4

≪ |T |−
1
4N− 1

2
+ε

∑
s4≤τ/N

(
τ

s4

) 3
2

sε4

≪ |T |
1
2N− 1

2
+ε.
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Also, using (4.10),

∞∑
c1=1

S2 ≪ |T |
k
2
− 3

4

∞∑
s4=1

s−k+1+ε
4

∑
c1>τ/s4N

(s4, Nc1)
1
2 (Nc1)

3
2
−k

≪ |T |
k
2
− 3

4N− 1
2
+ε

∞∑
s4=1

s−k+1+ε
4

(
τ

s4

) 5
2
−k

≪ |T |
1
2N− 1

2
+ε.

Therefore, from (4.8) we obtain

Proposition 4.5. If k ≥ 3, then

Σ1 ≪ |T |
k
2
− 1

4N− 1
2
+ε.

5. The case of rankC = 2

The basic fact for the case rankC = 2 is the following lemma, which is Kitaoka’s Lemma
5 ([5], p.159) when N = 1.

Lemma 5.1. As H
(2)
N , we can choose{
M =

(
∗ ∗

NC D

)
∈ Sp(2,Z)

∣∣∣∣ |C| ̸= 0, DmodNCΛ

}
and θ(M) = {0}.

The condition rankC = 2 is equivalent to |C| ≠ 0. For the set of such matrices, Kitaoka
proved:

Lemma 5.2 (Kitaoka [5], p.164, Lemma 1).

{C ∈ M2(Z) | |C| ̸= 0}
=
{
U−1diag(c1, c2)V

−1
∣∣ U ∈ GL(2,Z), V ∈ GL(2,Z)/P (c2/c1), 0 < c1|c2

}
where diag(c1, c2) =

(
c1 0
0 c2

)
and

P (n) =

{(
a b
c d

)
∈ GL(2,Z)

∣∣∣∣ b ≡ 0modn

}
.

The starting point of the argument is another formula of Kitaoka, stated in p.166 of [5],
which is

hQ(M,T ) =2−1π−4

(
|T |
|Q|

) k
2
− 3

4

||NC||−
3
2 e(tr(AC−1Q+ C−1DT )/N)

×
∫ 1

0

2∏
i=1

Jk− 3
2
(4πsiu)u(1− u2)−

1
2du,

where s1 and s2 are positive numbers such that s21 and s22 are the eigenvalues of the ma-

trix P0 = T
[√

Q[t(NC)−1]
]
. (The symbol ||NC|| means simply the absolute value of the
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determinant |NC|.) Then∑
DmodNCΛ

hQ(M,T ) =2−1π−4

(
|T |
|Q|

) k
2
− 3

4

||NC||−
3
2K(Q, T ;NC)(5.1)

×
∫ 1

0

2∏
i=1

Jk− 3
2
(4πsiu)u(1− u2)−

1
2du,

where
K(Q, T ;C) =

∑
D

e(tr(AC−1Q+ C−1DT )),

with D running over {
D(modCΛ) ∈ M2(Z)

∣∣∣∣(A B
C D

)
∈ Sp(2,Z)

}
.

This K(Q, T ;C) is a kind of generalized Kloosterman’s sum, introduced and studied by
Kitaoka [5]. In particular, Kitaoka proved:

Lemma 5.3 (Kitaoka [5], p.150, Proposition 1). Let C ∈ M2(Z) such that |C| ̸= 0 and

C = U−1

(
c1 0
0 c2

)
V −1, U, V ∈ GL(2,Z), 0 < c1|c2. Then for P, T ∈ Λ∗ we have

K(P, T ;C) = O(c21c
1
2
+ε

2 (c2, t4)
1
2 ),

where ε is any positive number and t4 is the (2, 2)-entry of T [V ]. Moreover, K(P, T ;C) =
K(T, P ; tC) holds.

By this lemma, we find that the right-hand side of (5.1) is

≪ |T |
k
2
− 3

4 ||NC||−
3
2 (Nc1)

2(Nc2)
1
2
+ε(Nc2, t4)

1
2

∣∣∣∣∣
∫ 1

0

2∏
i=1

Jk− 3
2
(4πsiu)u(1− u2)−

1
2du

∣∣∣∣∣(5.2)

(because Q is fixed).
Kitaoka ([5], p.166) showed that∫ 1

0

2∏
i=1

Jk− 3
2
(4πsiu)u(1− u2)−

1
2du ≪


(a) |P | k2− 3

4 ,

(b) |P |− 1
4 ,

(c) |P | k2− 3
4 (tr(P ))

1−k
2 ,

(5.3)

where P = T · Q[t(NC)−1]. Kitaoka stated the above (a) in case tr(P ) < 1, (b) in case
tr(P ) < 2|P |, and (c) otherwise (which are sufficient for his purpose), but actually the above
estimates themselves are valid without such conditions. This is because the estimates (4.7)
are true for any x > 0. In fact, applying (4.7) (i) to the both Bessel factors of the left-hand
side of (5.3), and noting (s1s2)

2 = |P0| = |P |, we obtain the estimate (a). Applying (4.7) (ii)
to the both Bessel factors we obtain (b). Applying (4.7) (i) to the Bessel factor with smaller
eigenvalue si, and applying (4.7) (ii) to the other Bessel factor, we obtain (c).

We first use only (a) and (c) of (5.3) to obtain an estimate which is sharp with respect
to N . It is possible to find a suitable U1 ∈ GL(2,Z) for which A = T [V diag(c1, c2)

−1U1] is
Mikowski-reduced. We may write C in Lemma 5.2 as

C = U−1U−1
1 diag(c1, c2)V

−1.

Then we have
|P | = |T ·Q[t(NC)−1]| = N−4|Q| · |A| ≍ N−4|A|
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and

trP = tr(T ·Q[t(NC)−1]) ≍ tr(T · 12[t(NC)−1]) = N−2 tr(A[U ]).

Therefore from (5.2) we have

∑
U∈GL(2,Z)

∣∣∣∣∣ ∑
DmodNCΛ

hQ(M,T )

∣∣∣∣∣
(5.4)

≪ |T |
k
2
− 3

4 ||NC||−
3
2 (Nc1)

2(Nc2)
1
2
+ε(Nc2, t4)

1
2

 ∑
U∈GL(2,Z),tr(A[U ])≪1

(N−4|A|)
k
2
− 3

4

+
∑

U∈GL(2,Z),tr(A[U ])≪|A|

(N−4|A|)
k
2
− 3

4 +
∑

U∈GL(2,Z),otherwise

(N−4|A|)
k
2
− 3

4 (N−2 tr(A[U ]))
1−k
2

 ,

where we applied (5.3) (a) to the first and third sums, and (c) to the second sum.
Kitaoka proved ([5], p.167, Lemma 2) that if A is Minkowski-reduced, then

∑
U∈GL(2,Z),tr(A[U ])≪1

|A|
k
2
− 3

4 +
∑

U∈GL(2,Z),tr(A[U ])≪|A|

|A|−
1
4 +

∑
U∈GL(2,Z),otherwise

|A|
k
2
− 3

4 tr(A[U ])
1−k
2

(5.5)

≪ m(A)εmax(1, |A|)
3−k
2

+ε|A|
k
2
− 5

4
−ε,

where m(A) = min{A[x]|x ∈ Z2, x ̸= (0, 0)}. Using (5.5), we find that the first and the third
sums on the right-hand side of (5.4) are

≪ (N−2k+3 +N−k+2)m(A)εmax(1, |A|)
3−k
2

+ε|A|
k
2
− 5

4
−ε

≪ N−k+2m(A)εmax(1, |A|)
3−k
2

+ε|A|
k
2
− 5

4
−ε.

On the other hand, in the proof of the above Lemma 2 of Kitaoka, he proved ([5], p.168, line
7) the following

Lemma 5.4.

#{U ∈ GL(2,Z) | tr(A[U ]) ≪ |A|} ≪ #{U ∈ GL(2,Z) | tr(H[U ]) ≪ |H|}

≪ c
1
2a

1
2
+ε,

where we set H =

(
a 0
0 c

)
for A =

(
a b
b c

)
. In particular,

#{U ∈ GL(2,Z) | tr(A[U ]) ≪ |A|} ≪ |A|
1
2
+ε

if A is Minkowski-reduced.

Therefore, the second sum on the right-hand side of (5.4) is

≪ N−2k+3|A|
k
2
− 3

4

∑
U∈GL(2,Z),tr(A[U ])≪|A|

1 ≪ N−2k+3|A|
k
2
− 1

4
+ε.
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Collecting the above estimates, and noting ||NC|| = N2|c1c2|, from (5.4) we obtain∑
U∈GL(2,Z)

∣∣∣∣∣ ∑
DmodNCΛ

hQ(M,T )

∣∣∣∣∣≪ |T |
k
2
− 3

4N− 1
2
+ε|c1|

1
2 |c2|−1+ε(Nc2, t4)

1
2(5.6)

×
{
N−2k+3|A|

k
2
− 1

4
+ε +N−k+2m(A)ε max(1, |A|)

3−k
2

+ε|A|
k
2
− 5

4
−ε
}
.

Similarly to (4.4), we see that t4 = T [v], where v is the vector consisting of the second

column of V . Using this fact, |A| = |T |(c1c2)−2 and (Nc2, T [v])
1
2 ≤ N

1
2 (c2, T [v])

1
2 , we find

that the right-hand side of (5.6) is

≪|T |
k
2
− 3

4N εc
1
2
1 c

−1+ε
2 (c2, T [v])

1
2

{
N−2k+3|T |

k
2
− 1

4
+ε(c1c2)

−k+ 1
2
+ε

+N−k+2m(T [V diag(c1, c2)
−1U−1

1 ])ε ·max(1, |T |(c1c2)−2)
3−k
2

+ε · |T |
k
2
− 5

4
−ε(c1c2)

−k+ 5
2
+ε
}
.

Therefore,

∑
0<c1|c2

∑
V ∈GL(2,Z)/P (c1/c2)

∑
U∈GL(2,Z)

∣∣∣∣∣ ∑
DmodNCΛ

hQ(M,T )

∣∣∣∣∣
(5.7)

=
∑

0<c1|c2

∑
V ∈GL(2,Z)/P (c1/c2)

{W1(c1, c2, V ) +W2(c1, c2, V )} ,

where

W1(c1, c2, V ) =|T |
k
2
− 3

4N−2k+3+εc−k+1+ε
1 c

−k− 1
2
+ε

2 (c2, T [v])
1
2 |T |

k
2
− 1

4
+ε,

W2(c1, c2, V ) =|T |
k
2
− 3

4N−k+2+εc−k+3+ε
1 c

−k+ 3
2
+ε

2 (c2, T [v])
1
2m(T [V diag(c1, c2)

−1U−1
1 ])ε

×max(1, |T |(c1c2)−2)
3−k
2

+ε · |T |
k
2
− 5

4
−ε.

The form of W2(c1, c2, V ) is quite similar to the right-hand side of Kitaoka’s Lemma 3 ([5],
p. 169). Therefore, by the same argument as in p.170 of Kitaoka [5], we obtain∑

0<c1|c2

∑
V ∈GL(2,Z)/P (c1/c2)

W2(c1, c2, V ) ≪ N2−k+ε|T |
k
2
− 1

4
+ε.(5.8)

On the other hand,∑
0<c1|c2

∑
V ∈GL(2,Z)/P (c1/c2)

W1(c1, c2, V )(5.9)

= |T |k−1+εN3−2k+ε
∑

0<c1|c2

c−k+1+ε
1 c

−k− 1
2
+ε

2

∑
V ∈GL(2,Z)/P (c1/c2)

(c2, T [v])
1
2 .

To evaluate this double sum, here we quote one more result of Kitaoka. For G = (gij) ∈ Λ∗,

set e(G) := gcd(g11, g22, 2g12). Let S =

{(
b
d

)
; b, d ∈ Z, (b, d) = 1

}
. For a positive integer

n, define S(n) = S/ ∼, where we denote

(
b
d

)
∼
(
b′

d′

)
if there exists a w ∈ Z such that

(w, n) = 1 and

(
b
d

)
≡ w

(
b′

d′

)
(mod n).
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Lemma 5.5 (Kitaoka [5], p.154, Proposition 2). For any P ∈ Λ∗, we have∑
x∈S(n)

(P [x], n)
1
2 = O(n1+ε(e(P ), n)

1
2 ).

Applying this lemma to P [x] = T [v], n = c2/c1. Then∑
V ∈GL(2,Z)/P (c2/c1)

(c2, T [v])
1
2 ≤

∑
V ∈GL(2,Z)/P (c2/c1)

c
1
2
1 (c2/c1, T [v])

1
2

≪ c
1
2
1 (c2/c1)

1+ε(c2/c1, T [v])
1
2

≪ c
1
2
1 (c2/c1)

3
2
+ε,

where the second inequality follows from the lemma and the fact e(T ) ≤ t4 = T [v]. Therefore
we have ∑

0<c1|c2

c−k+1+ε
1 c

−k− 1
2
+ε

2

∑
V ∈GL(2,Z)/P (c2/c1)

(c2, T [v])
1
2

≪
∑

0<c1|c2

c−k+ε
1 c−k+1+ε

2 =
∞∑

c1=1

∞∑
c3=1

c−2k+1+ε
1 c−k+1+ε

3 ,

where we put c2 = c1c3. This is convergent when k ≥ 3. Then from (5.9) we have∑
0<c2|c1

∑
V ∈GL2(Z)/P (c2/c1)

W1(c1, c2, V ) ≪ |T |k−1+εN3−2k+ε.(5.10)

Substituting (5.8) and (5.10) into the right-hand side of (5.7), we now obtain

Proposition 5.6. If k ≥ 3, then

Σ2 ≪ N2−k+ε|T |
k
2
− 1

4
+ε +N3−2k+ε|T |k−1+ε.

Next, we make use of (5.3) (b) as well as (a) and (c) to deduce another estimate of Σ2. This
time, instead of A, we use A′ = T [V diag(Nc1, Nc2)

−1U1]. Then |P | ≍ |A′|, trP ≍ tr(A′[U ]),
and hence the sums in the curly parentheses on the right-hand side of (5.4) are replaced by∑

U∈GL(2,Z),tr(A′[U ])≪1

|A′|
k
2
− 3

4 +
∑

U∈GL(2,Z),tr(A′[U ])≪|A′|

|A′|−
1
4

+
∑

U∈GL(2,Z),otherwise

|A′|
k
2
− 3

4 (tr(A′[U ]))
1−k
2 ,

for which (5.5) can be directly applied. Therefore∑
0<c1|c2

∑
V ∈GL(2,Z)/P (c1/c2)

∑
U∈GL(2,Z)

∣∣∣∣∣ ∑
DmodNCΛ

hQ(M,T )

∣∣∣∣∣
≪

∑
0<c1|c2

∑
V ∈GL(2,Z)/P (c1/c2)

|T |
k
2
− 3

4 ||NC||−
3
2 (Nc1)

2(Nc2)
1
2
+ε(Nc2, t4)

1
2

×m(A′)εmax(1, |A′|)
3−k
2

+ε|A′|
k
2
− 5

4
−ε

≪ N−2k+ 9
2
+ε|T |k−2+ε

∑
0<c1|c2

∑
V ∈GL(2,Z)/P (c1/c2)

c−k+3+ε
1 c

−k+ 3
2
+ε

2

× (Nc2, T [v])
1
2max(1, N−4|T |(c1c2)−2)

3−k
2

+ε

= R1 +R2,
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say, where R1 denotes the part with (c1c2)
2 ≥ N−4|T |, and R2 the remaining part. Then

R2 = N− 3
2
+ε|T |

k
2
− 1

2
+ε

∑
0<c1|c2

(c1c2)
2<N−4|T |

c
− 3

2
+ε

2

∑
V ∈GL(2,Z)/P (c1/c2)

(Nc2, T [v])
1
2

≪ N− 3
2
+ε|T |

k
2
− 1

2
+ε

∑
0<c1|c2

(c1c2)
2<N−4|T |

c
− 3

2
+ε

2 (Nc1)
1
2

∑
V ∈GL(2,Z)/P (c1/c2)

(c2/c1, T [v])
1
2

≪ N−1+ε|T |
k
2
− 1

2
+ε

∑
0<c1|c2

(c1c2)
2<N−4|T |

c
1
2
1 c

− 3
2
+ε

2

(
c2
c1

)1+ε

(c2/c1, e(T ))
1
2

by Lemma 5.5. Putting c2 = nc1, we obtain

R2 ≪ N−1+ε|T |
k
2
− 1

2
+ε

∞∑
c1=1

c−1+ε
1

∑
n<|T |1/2(c1N)−2

n− 1
2
+ε(n, e(T ))

1
2 .

The last sum is O(e(T )ε(|T | 12 (c1N)−2)
1
2
+ε) as is shown in p.170 of Kitaoka [5]. Hence

R2 ≪ N−2+ε|T |
k
2
− 1

4
+εe(T )ε

∞∑
c1=1

c−2+ε
1 ≪ N−2+ε|T |

k
2
− 1

4
+ε.(5.11)

The remaining part R1 can be treated similarly, and it is estimated by exactly the same
right-hand side as that of (5.11). Therefore we now obtain

Proposition 5.7.

Σ2 ≪ N−2+ε|T |
k
2
− 1

4
+ε.

6. Completion of the proof of Theorem 1.1

From (2.11), Proposition 3.2, Proposition 4.3 and Proposition 5.6, we have

AQ,N(T ) = #{U ∈ GL2(Z) | UQtU = T}(6.1)

+O(N
3
2
−k|T |k−

3
2 +N2−k+ε|T |

k
2
− 1

4
+ε +N3−2k+ε|T |k−1+ε)

for k ≥ 3. This implies assertions (i) and (ii) of Theorem 1.1. On the other hand, from
(2.11), Proposition 3.2, Proposition 4.5 and proposition 5.7, assertion (iii) follows. The
proof of Theorem 1.1 is thus complete.
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