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Abstract

We study the initial-value problem for a Hamilton-Jacobi equation whose Hamiltonian is dis-
continuous with respect to state variables. Our motivation comes from a model describing the
two dimensional nucleation in crystal growth phenomena. A typical equation has a semicontinu-
ous source term. We introduce a new notion of viscosity solutions and prove among other results
that the initial-value problem admits a unique global-in-time uniformly continuous solution for any
bounded uniformly continuous initial data. We also give a representation formula of the solution as
a value function by the optimal control theory with a semicontinuous running cost function.
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1 Introduction

We consider the initial-value problem for the Hamilton-Jacobi equation of the form

(HJ)

{
∂tu+H(x,∇u) = 0 in Rn × (0, T ) =: Q, (1.1)

u|t=0 = u0 in Rn, (1.2)

when the Hamiltonian H is discontinuous in space variable x ∈ Rn. Here ∇u denotes the spatial
gradient, i.e., ∇u = ∇xu = (∂x1u, . . . , ∂xnu). A typical example we consider is the case when

H(x, p) = −|p| − cI(x) (c > 0) (1.3)

with

I(x) :=

{
1 (x = 0),

0 (x ̸= 0),

where | · | stands for the standard Euclidean norm in Rn. In other words, the source term can be
discontinuous. Our main goal is to introduce a suitable definition of weak solution (by extending the
theory of viscosity solutions) so that the initial-value problem admits a unique global-in-time solution
for a general bounded Lipschitz continuous initial data u0 ∈ BLip(Rn) or even just bounded uniformly
continuous initial data u0 ∈ BUC (Rn).

Our motivation comes from crystal growth phenomena. One of key mechanisms of crystal growth is
the two dimensional nucleation ([5, 22]). This growth is started by external supply of crystal molecules
for a flat face. Such a source of supply is called a step source. The other mechanism is the spiral growth
([5]). According to [23], some high-temperature superconductor provides such a model and the authors
proposed a macroscopic model including (1.1)–(1.3) approximating spiral growth on a crystal surface.
Both situations can be modeled by Hamilton-Jacobi equations with discontinuous source terms if we
interpret the phenomena in macroscopic point of view.
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Let us consider the typical case that there is a step source only at the origin and crystals grow at
the uniform velocity 1 horizontally. Assume that the step source supplies crystal molecules at a rate of
c (> 0) and let u(x, t) be the height of crystals at position x ∈ Rn and time t ∈ (0, T ). (See Figure 1.)
Then, the horizontal outward growth rate of crystals is given by ∂tu/|∇u|. Since the horizontal growth

O x

u(x, t)

∂tu

|∇u|
= 1

supplying rate c

Figure 1: The step source at the origin.

speed is one, we have
∂tu = |∇u|

provided that ∇u ̸= 0. However, this equation does not include the effect of step sources. It is natural
to postulate that the growth rate ∂tu at the origin should increase by c due to the step source. The
resulting equation is formally of the form

∂tu− |∇u| = cI(x). (1.4)

The corresponding Hamiltonian (1.3) is not continuous but lower semicontinuous. The equation (1.4) is
a Hamilton-Jacobi equation with a discontinuous source term. The physical intuition suggests that

uc(x, t) = c(t− |x|)+ (1.5)

is a solution for (1.4) when the initial-value equals zero (see Figure 2), where a+ denotes the positive part
of a ∈ R, i.e., a+ = max{a, 0}. Such a “solution” is proposed in [19, 23] by variational principle. The
function uc is also obtained via approximation. More precisely, if we consider approximate Hamiltonians

Hε(x, p) = −|p| − cIε(x) (1.6)

with

Iε(x) =

(
1− |x|

ε

)
+

(1.7)

for ε > 0 and solve (HJ) with Hε and u0 ≡ 0, it turns out that the unique viscosity solution of the
approximate problem uniformly converges to uc as ε ↓ 0. (See Example 3.2 for more details.) However,
it is an important issue how to characterize uc.

Unfortunately, we cannot expect the uniqueness of solutions for (1.4) even in Ishii’s sense of viscosity
solutions [18], where a discontinuous Hamiltonian is treated. Indeed, uc is a solution but uα(x, t) :=
α(t − |x|)+ for α ∈ [0, c] is also a solution with the zero initial data. This is caused by an inadequate
effect of the discontinuous term. More precisely, in the standard definition of supersolutions we use the
upper semicontinuous envelope of H, that is H∗(x, p) = −|p|, but then the term cI(x) disappears which
is a key term of our equation (1.4). Hence, in order to guarantee the uniqueness we must introduce
some proper notion of supersolutions reflecting discontinuities and keep the notion of a subsolution in
a standard way. Instead of using H∗ we are tempted to define a supersolution (D-supersolution) by
requiring

τ +H(x̂, p) >= 0 for all (x̂, t̂) ∈ Q and (p, τ) ∈ D−u(x̂, t̂), (1.8)
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x ∈ R
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u(x, t)
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Figure 2: The intuitive solution of ∂tu− |∇u| = I(x), u0 ≡ 0.

where D−u denotes the subdifferential. However, uα is a D-supersolution no matter how α ∈ (0, c] is

taken. We are led to introduce a notion of D-supersolution by replacing D−u in (1.8) with D
−
u, a kind

of “closure” of D−u. We shall establish a general comparison principle for D-super- and subsolutions.
Applying this comparison principle we are able to establish a comparison principle for Lipschitz contin-
uous D-super- and subsolutions for (1.4). The reason we need Lipschitz continuity is that our general
comparison principle needs continuity of H in x for large |p| which excludes (1.4).

We next discuss the existence problem. Unfortunately, the intuitive solution uc in (1.5) is not a D-
supersolution. We have to weaken the definition of supersolutions by regarding the infimum of a family
of D-supersolutions as a “supersolution”. We call such a supersolution an envelope supersolution. By
definition we have a comparison principle for envelope super- and subsolutions. In this way, we introduce
a notion of an envelope solution (envelope super- and subsolution) and construct a global-in-time solution
by approximating equations with continuous Hamiltonians. It turns out that the envelope solution is
a proper notion of the solution. Indeed, it is easy to see that uc is a unique envelope solution of (1.4)
with the zero initial data. Moreover, we show that our solution preserves the Lipschitz continuity and
uniform continuity of the initial data if Hamiltonian is coercive. Thus the envelope solution is unique
for Lipschitz continuous initial data. Moreover, by a suitable approximation argument one is able to
conclude that the envelope solution we constructed is unique even for bounded uniformly continuous
initial data. The typical H(x, p) we are concerned with is

H(x, p) = H0(x, p)− r(x), (1.9)

where H0 is a continuous coercive Hamiltonian and r is a bounded lower semicontinuous function. No
convexity (concavity) assumption on p 7→ H(x, p) is imposed, though our example (1.3) is concave in p.
In this case, we prove that there exists a unique uniformly continuous envelope solution for all bounded
uniformly continuous initial data (Theorem 3.22).

The name “an envelope solution” was also introduced in [2] and [1] in order to deal with boundary
conditions. They considered equations with continuous Hamiltonians, and defined the notion of envelope
supersolutions as the infimum of standard viscosity supersolutions. Except on the boundary their
envelope supersolution is a standard viscosity supersolution since the infimum of supersolutions in
a domain is known to be a supersolution. Different from their solutions, our envelope solutions for
discontinuous Hamiltonians may not be a D-supersolution.

In the argument above we obtain the unique existence result for a Hamiltonian with the form (1.9)
only when it is coercive. This is caused by a limitation of our comparison principle. In order to
guarantee the continuity of H(x, p) in x for large |p|, we define a relaxed Hamiltonian Ĥ by regularizing
the discontinuity of H. It turns out in several interesting examples that our envelope solution of (1.1)
is also an envelope solution of (1.1) with a relaxed Hamiltonian Ĥ which permits a general comparison
principle without assuming the Lipschitz continuity of solutions. Then, by regarding our envelope
solution of the original problem as that of the relaxed problem, we establish the uniqueness of the
envelope solutions but only for more restrictive Hamiltonians. Fortunately, this still applies the problem
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with finitely many source terms. (See (1.10) with (1.11).) It turns out that the relaxed Hamiltonian
corresponding to (1.3) is

Ĥ(x, p) = −|p| − (cI(x)− |p|)+,

which is continuous if |p| >= c. (This Hamiltonian is coercive but very instructive to calculate Ĥ.) Also,
uc in (1.5) becomes an envelope solution of the relaxed problem.

If we consider the relaxed problem, there are more chance that an envelope solution is a D-solution.
We give its sufficient condition. Note that there still exists an envelope solution which is not aD-solution.

Our theory applies to more physically interesting examples including

∂tu− |∇u| = r(x), (1.10)

where r : Rn → R is bounded and upper semicontinuous, i.e., r ∈ BUSC (Rn). A typical example in
our mind is

r(x) =
N∑
j=1

cjI(x− aj) (cj > 0, aj ∈ Rn, ai ̸= aj(i ̸= j)). (1.11)

This is the case that the step source is distributed at several singletons. It turns out that the resulting
unique envelope solution with zero initial data is

u(x, t) =
N

max
j=1

cj(t− |x− aj |)+, (1.12)

which tells us that the envelope solution is the maximum of solutions for each step source. As an another
example we have

r(x) = cχS(x) (c > 0 and S is a nonempty closed subset of Rn). (1.13)

Then (1.10) means that the step source is concentrated at a general set S. Here χS is the characteristic
function of S, namely

χS(x) :=

{
1 (x ∈ S),

0 (x ̸∈ S).

Our theory guarantees the unique existence of envelope solutions of (1.10) for general bounded uniformly
continuous initial data. We are interested in establishing a representation formula of solutions based
on the optimal control theory. However, the traditional method can be applied only for continuous
equations. In this paper we adopt a discontinuous function appearing in our equation as a running cost
function and prove that our envelope solution can be given via the value function of this discontinuous
control problem under the some kind of controllability condition. Such an interpretation gives several
explicit representation formulas of solutions. For example it guarantees that (1.12) is an envelope
solution of (1.10) with (1.11) and u0 ≡ 0.

Our theory applies more general growth models including anisotropy. The typical form is

∂tu− |∇u|U
(
−∇u
|∇u|

)
σ(x) = r(x). (1.14)

Here U(n) : Sn−1 = {x ∈ Rn | |x| = 1} → R is the growth rate in the direction n ∈ Sn−1 and −∇u/|∇u|
means the outward unit normal vector to the level sets of u. The function σ : Rn → R is called the
surface supersaturation. Since |p|U(−p/|p|) → 0 as |p| → 0 provided that U is continuous, (1.14) has
no singularity contrary to its seemingly singular appearance. The unique existence result for (1.14) is
included in Theorem 3.22.

When the Hamiltonian is non-coercive ([23, 26]), the problem becomes more complicated. We cannot
expect uniqueness results similar to the coercive cases. The difficulty may be seen from the following
two examples. The first one is

H(x, p) = −cI(x) (c > 0), (1.15)
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which means that there is no horizontal growth. Obviously u(x, t) = ctI(x) seems to be the solution when
the initial-value equals zero. However, the solution is not continuous and the uniqueness of solutions
breaks down in our definition as will be mentioned in Example 3.16. The second one is

Hc(x, p) = − |p|
1 + |p|

− cI(x) (c > 0). (1.16)

This Hamiltonian arises in physical phenomena ([23]) where growth velocity is dependent on the gradient
of the crystal surface. For 0 < c < 1 we show that there exists a unique envelope solution for any bounded
uniformly continuous initial data.

In [26] and [17] a step source is considered as a Dirichlet boundary condition. One may think
that our envelope solution of (1.4) coincides with a solution of the Dirichlet boundary problem with
u(0, t) = ct + u0(0) at the origin. This guess is correct provided that a slope of the initial data is less
than or equal to c. However, if not, it turns out that the Dirichlet problem may give a different solution
from our problem with (1.3). We also discuss a relation to the dynamic boundary condition ∂tu(0, t) = c.

In this paper we mainly discuss the case when the given Hamiltonian H(x, p) is lower semicontinuous
with respect to x. We here recall some preceding studies about the viscosity solution theory for PDEs
with discontinuous Hamiltonians. Shortly after the establishment of notions of viscosity solution, Ishii
[18] studied discontinuous Hamiltonians with respect to the variables t and u. Discontinuities in the
space variable x are investigated in many other works later.

For the stationary problem, the equation of eikonal type was studied by Newcomb and Su [20],
Ostrov [21], Deckelnick and Elliott [10] and Soravia [25]. In [20] the authors considered the equation
H(∇u) = n(x). Here H(p) is convex, coercive and positive except at p = 0 and n is assumed to be
lower semicontinuous and positive. They introduced a suitable notion called Monge solutions, which, in
the case of continuous Hamiltonians, are consistent with the usual viscosity solution. Briani and Davini
[4] generalized the approach of Monge solutions for the equation H(x,∇u) = 0, where H(x, p) is only
assumed to be Borel measurable and quasi-convex in p. Although we did not check, we expect that
our envelope solution should agree with the Monge solution when the latter is available. The work by
Soravia [24] is related to our results concerning the optimal control theory. The author of [24] considered
the equation

λu(x) + sup
a∈A

{−⟨f(x, a),∇u(x)⟩ − h(x, a)} = g(x)

with a Borel measurable function g. Here ⟨·, ·⟩ denotes the standard Euclidean inner product. The
author established a general uniqueness result in the sense of lower semicontinuous solutions, which was
introduced by Barron and Jensen [3]. However, the uniqueness result does not apply to our setting since
the definition of solutions like lower semicontinuous solutions is not suitable for (1.4). The reason is that
it is impossible to choose the intuitive solution uc exclusively even if we impose an additional condition
about test functions from the opposite side no matter which definition of solutions (standard, D- or D-)
we use.

For the time-dependent problem, Camilli and Siconolfi [7] considered the equation ∂tu+H(x,∇u) =
0, where the Hamiltonian H(x, p) is measurable in x and convex, coercive in p. The convexity is used
to guarantee the Legendre transform and the equivalence of a.e. subsolution and viscosity subsolution.
For discontinuity of different types, there are a few works on the equations of the form

∂tu+ f(x, t)h(x,∇u) = 0

with discontinuous f , which has important applications in front propagations. Deckelnick and Elliott
[11] obtained the unique existence of continuous viscosity solutions for the one space dimensional case

when f(x, t) = a(x) and h(x, p) =
√

1 + p2, where a is assumed to be bounded, of bounded variation
and one-sided Lipschitz continuous. Afterwards Chen and Hu [8] studied a more general case when f
depends on t but h depends only on p. They assumed that f is positive, bounded and measurable and
h is non-negative and Lipschitz continuous. More recently, with the optimal control theory involved
De Zan and Soravia [12] discussed the unique existence of solutions when h depends also on x while f
is independent of t and piecewise Lipschitz continuous across Lipschitz hypersurfaces. Our results are
therefore different from these above. The discontinuity of Hamiltonians we are concerned with is given
as a source term instead of the jump of propagating speed, which is also studied recently in [16].
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For the second order equation, Caffarelli, Crandall, Kocan and Swiȩch [6] studied fully nonlinear
and uniformly elliptic PDEs by utilizing Lp-viscosity solution theory. However, the situation is quite
different from ours.

This paper is organized as follows. In Section 2 we first define some notions of solutions. Then we
establish two types of comparison principles for D-solutions; a general version which excludes (1.4) and
a Lipschitz version which includes (1.4) but needs Lipschitz continuity of solutions. Section 3 is devoted
to existence problems of solutions. We prove that there exists a unique envelope solution of (HJ) when
H is coercive. Section 4 deals with relaxed Hamiltonians. After introducing the relaxed Hamiltonians,
we deduce a unique existence result of envelope solutions without the coercivity assumption. Also, we
discuss the existence of D-solutions. Section 5 is dedicated to showing some examples of envelope solu-
tions. We also mention the relation between our envelope solutions and solutions of Dirichlet boundary
problems.

2 Proper definition of solutions and comparison principles

2.1 Definition of solutions

We first recall the notion of super- and subdifferentials to define a viscosity solution. For u : Q → R

and (x̂, t̂) ∈ Q we set a superdifferential D+
Qu(x̂, t̂) and an extended superdifferential D

+

Qu(x̂, t̂) by

D+
Qu(x̂, t̂)

:={(p, τ) ∈ Rn ×R | ∃ϕ ∈ C1(Q), max
Q

(u− ϕ) = (u− ϕ)(x̂, t̂), (p, τ) = (∇ϕ, ∂tϕ)(x̂, t̂)}, (2.1)

D
+

Qu(x̂, t̂)

:=


∃{(xm, tm)}m∈N ⊂ Q, ∃{(pm, τm)}m∈N ⊂ Rn ×R,

(p, τ) ∈ Rn ×R such that (pm, τm) ∈ D+
Qu(xm, tm), (xm, tm) → (x̂, t̂),

(pm, τm) → (p, τ), u(xm, tm) → u(x̂, t̂) as m→ ∞

 , (2.2)

whereN := {1, 2, 3, . . . }. We denote a subdifferentialD−
Qu(x̂, t̂) and an extended subdifferentialD

−
Qu(x̂, t̂)

by D−
Qu(x̂, t̂) := −D+

Q(−u)(x̂, t̂) and D
−
Qu(x̂, t̂) := −D+

Q(−u)(x̂, t̂). We can also define D−
Q and D

−
Q by

replacing, respectively, max by min in (2.1) and D+
Q by D−

Q in (2.2). Index Q is often omitted. It is

known that D+ and D− are closed convex subset of Rn ×R. (See [2, Lemma II.1.8.(a)].)
We call ϕ ∈ C1(Q) a corresponding test function for (p, τ) ∈ D+u(x̂, t̂), where ϕ appears in (2.1). One

can take such ϕ as a separated form, i.e., ϕ(x, t) = ψ(x)+ g(t) with ψ ∈ C1(Rn) and g ∈ C1(0, T ). (See
[15, Proposition 2.2.3.(i)].) Moreover we call {(xm, tm), (pm, τm)}m∈N ⊂ Q × D+u(xm, tm) a defining

approximate sequence for (p, τ) ∈ D
+
u(x̂, t̂), where (xm, tm) and (pm, τm) are given in (2.2).

Definition 2.1. Let H = H(x, p) be a real valued function defined in Rn×Rn and let u be a real valued
function in Q.

(1) We call u a (standard) viscosity supersolution (resp. subsolution) of (1.1) if u is bounded from
below (resp. from above) in Q and

τ +H∗(x̂, p) >= 0 for all (x̂, t̂) ∈ Q and (p, τ) ∈ D−
Qu∗(x̂, t̂). (2.3)

(resp. τ +H∗(x̂, p) <= 0 for all (x̂, t̂) ∈ Q and (p, τ) ∈ D+
Qu∗(x̂, t̂).)

We denote by SUP(H) and SUB(H) respectively the set of all supersolutions and subsolutions of
(1.1).

(2) If u ∈ SUP(H) (resp. u ∈ SUB(H)) defined in Q0 := Rn × [0, T ) is continuous on Rn × {0} and
satisfies the initial condition (1.2), it is called a viscosity supersolution (resp. subsolution) of (HJ)
and then we write u ∈ SUP(H,u0) (resp. u ∈ SUB(H,u0)).
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(3) We say that u is a viscosity solution if it is both a viscosity supersolution and a viscosity subsolution.
Define SOL(H) := SUP(H) ∩ SUB(H) and SOL(H,u0) := SUP(H,u0) ∩ SUB(H,u0).

Remark 2.2. (1) For any subset L ⊂ RN and h : L → R we denote the upper semicontinuous
envelope (resp. lower semicontinuous envelope) by h∗ (resp. h∗) : L → R ∪ {±∞}, which is as
follows:

h∗(z) := lim sup
y→z

h(y) = lim
δ↓0

sup{h(y) | y ∈ Bδ(z) ∩ L}

(resp. h∗(z) := lim inf
y→z

h(y) = lim
δ↓0

inf{h(y) | y ∈ Bδ(z) ∩ L}) (z ∈ L),

where Br(x) stands for the closed ball with center x and radius r. (We denote the open ball by
Br(x).) The function h∗ is characterized as the smallest upper semicontiuous function on L that
is greater than h on L, while h∗ is the greatest lower semicontiuous function on L that is smaller
than h on L.

(2) We can replace D−
Q in (2.3) by D

−
Q since H∗ is applied in the definition. This can be easily shown

by taking limits.

(3) It often assume one side local boundedness of sub- and supersolutions instead of global boundedness
in the literature. We impose the boundedness assumption to simplify the argument. Also, when
we think of the initial value problem (HJ), we require solutions to be continuous at t = 0 for the
sake of simplicity.

Example 2.3. Let us consider (HJ) with (1.3) and u0 ≡ 0. It is easy to verify that functions uα(x, t) :=
α(t − |x|)+ (0 <= α <= c) are all viscosity solutions of this initial-value problem in the standard sense
above. We must therefore strengthen the definition of solutions in order to get uniqueness. As mentioned
in Section 1, we adopt a new definition in which H instead of H∗ is used in (2.3). However, notice that

in this case the definition by D−
Q and that by D

−
Q are different.

Definition 2.4. Let u : Q→ R. We call u a D-viscosity supersolution (resp. D-viscosity supersolution)
of (1.1) if u is bounded from below in Q and

τ +H(x̂, p) >= 0 for all (x̂, t̂) ∈ Q and (p, τ) ∈ D−
Qu∗(x̂, t̂).

(resp. τ +H(x̂, p) >= 0 for all (x̂, t̂) ∈ Q and (p, τ) ∈ D
−
Qu∗(x̂, t̂).)

We denote by D-SUP(H) (resp. D-SUP(H)) a set which consists of all D-supersolutions (resp.
D-supersolutions) of (1.1). Moreover we similarly define a corresponding viscosity subsolution, solution,
solution of the initial-value problem, and set notations by marking D- or D-.

About three notions of supersolutions defined so far we have the inclusion relation SUP(H) ⊃
D-SUP(H) ⊃ D-SUP(H) in general, and these sets are the same for upper semicontinuous H. Since we
mainly think of a lower continuous H, as for subsolutions we have SUB(H) = D-SUB(H) = D-SUB(H)
in many cases.

Example 2.5. We revisit the Example 2.3. How about solutions of our equation in the sense of D-
or D-solutions? Since there is no smooth function that touches uα from below at (0, t̂) (t̂ > 0) when
α ∈ (0, c], they all become D-solutions. (When α = 0, the function u ≡ 0 is not a D-supersolution.) This
suggests thatD-solutions are still not unique. For this reason we adoptD-solutions as a proper definition
for the moment, and we will show comparison principles for such solutions in the next subsection.

2.2 Comparison principles

We will show comparison principles (CP for short), which are important to prove uniqueness of solutions.
The following two assumptions are standard for usual CP.

(Hp) There exists a modulus ω1 ∈ M such that |H(x, p)−H(x, q)| <= ω1(|p− q|) for all x, p, q ∈ Rn.
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(Hx) There exists a modulus ω2 ∈ M such that |H(x, p) − H(y, p)| <= ω2((1 + |p|)|x − y|) for all
x, y, p ∈ Rn.

Here we denote by M the set of all moduli of continuity, namely

M := {ω : [0,∞) → [0,∞) | ω(0) = 0, ω is continuous at 0 and nondecreasing on [0,∞).}.

We still use (Hp) now. Since we should treat discontinuous Hamiltonians with respect to the space
variable, we weaken (Hx) in the following manner.

(HxN ) There exist a modulus ω2 ∈ M and a constant N > 0 such that |H(x, p) − H(y, p)| <= ω2((1 +
|p|)|x− y|) for all x, y ∈ Rn and p ∈ Rn \BN (0).

This condition means that (Hx) holds if |p| is large. Note that (1.3) does not satisfy (HxN ).
Before stating our CP, we check that H satisfying (Hp) and (HxN ) is locally bounded in Rn ×Rn.

This fact will be used in the proof of CP. Since the local boundedness is clear in Rn× (Rn \BN (0)), we
show that H is bounded in B1(x)×B1(p) for any (x, p) ∈ Rn×BN (0). Take any (y, q) ∈ B1(x)×B1(p)
and p′ ∈ Rn such that N <= |p′| <= N + 1. Then, we calculate

|H(x, p)−H(y, q)| <= |H(x, p)−H(x, p′)|+ |H(x, p′)−H(y, p′)|+ |H(y, p′)−H(y, q)|
<= 2ω1(|p− p′|+ 1) + ω2((1 + |p′|)|x− y|)
<= 2ω1(2N + 2) + ω2(N + 2),

which yields our claim.

Theorem 2.6 (CP–general version). Assume that H satisfies (Hp) and (HxN ). Let u and v : Q0 → R
be, respectively, bounded from above and bounded from below in Q0. Assume that u ∈ D-SUB(H) and
v ∈ D-SUP(H). If u∗(·, 0) <= v∗(·, 0) in Rn, then u∗ <= v∗ in Q.

Though our assumption for H is weaker than the classical one, our definition of solutions is stronger,
and so we can keep balance.

Proof. 1. Suppose by contradiction that there would exist (x0, t0) ∈ Rn × (0, T ) such that u∗(x0, t0)−
v∗(x0, t0) =: A > 0. We define a function F : (Rn × [0, T ])2 → R ∪ {−∞} by

F(x, t, y, s) := u∗(x, t)− v∗(y, s)−Ψ(x, t, y, s)

with Ψ(x, t, y, s) :=
1

2ε2
(
|x− y|2 + |t− s|2

)
+ βf(x) +

α

T − t
,

where α ∈ (0, A(T − t0)), β > 0, ε > 0 and f(x) =
√
1 + |x− x0|2 − 1. Note that f >= 0, f ∈ C1(Rn)

and |∇f | <= 1. Also, by the choice of α, we have

F(x0, t0, x0, t0) = u∗(x0, t0)− v∗(x0, t0)−
α

T − t0
> 0.

Since u and −v are bounded from above, F attains its maximum in (Rn×[0, T ])2 at some (xε, tε, yε, sε) ∈
(Rn × [0, T ))2. Then, we see

F(xε, tε, yε, sε) >= F(x0, t0, x0, t0) > 0. (2.4)

2. Set M := supQ0
u∗ +supQ0

(−v∗) (<∞). Then we have βf(xε) < M by (2.4), and hence {xε}ε>0

is bounded. Furthermore, since we also have |xε − yε| <=
√
2Mε and |tε − sε| <=

√
2Mε by (2.4), we may

assume that there exists some (x̂, t̂) ∈ Rn × [0, T ] such that

lim
ε↓0

(xε, tε, yε, sε) = (x̂, t̂, x̂, t̂). (2.5)

Here, we claim that t̂ ∈ (0, T ). By (2.4) we observe

0 < lim sup
ε↓0

F(xε, tε, yε, sε) <= F(x̂, t̂, x̂, t̂).

8



However, since we have

F(x̂, 0, x̂, 0) = u∗(x̂, 0)− v∗(x̂, 0)− βf(x̂)− α

T
< 0,

F(x̂, T, x̂, T ) = −∞,

it follows that t̂ ̸= 0 and t̂ ̸= T .
3. We remark that

F(x̂, t̂, x̂, t̂) <= F(xε, tε, yε, sε) (2.6)

because (xε, tε, yε, sε) is the maximizer of F . In view of (2.6) we calculate

lim sup
ε↓0

1

2ε2
(
|xε − yε|2 + |tε − sε|2

)
<= lim sup

ε↓0

{
−F(x̂, t̂, x̂, t̂) + u∗(xε, tε)− v∗(y

ε, sε)− βf(xε)− α

T − tε

}
<=−F(x̂, t̂, x̂, t̂) + u∗(x̂, t̂)− v∗(x̂, t̂)− βf(x̂)− α

T − t̂
= 0.

Hence

lim
ε↓0

|xε − yε|
ε

= 0, lim
ε↓0

|tε − sε|
ε

= 0. (2.7)

Also, by (2.6) and the upper semicontinuity of F , we observe

F(x̂, t̂, x̂, t̂) <= lim inf
ε↓0

F(xε, tε, yε, sε) <= lim sup
ε↓0

F(xε, tε, yε, sε) <= F(x̂, t̂, x̂, t̂),

which means
lim
ε↓0

F(xε, tε, yε, sε) = F(x̂, t̂, x̂, t̂).

This equality and (2.7) implies

lim
ε↓0

{u∗(xε, tε)− v∗(y
ε, sε)} = u∗(x̂, t̂)− v∗(x̂, t̂).

Now, we also observe

u∗(x̂, t̂) >= lim sup
ε↓0

u∗(xε, tε) >= lim inf
ε↓0

u∗(xε, tε)

= lim inf
ε↓0

{(u∗(xε, tε)− v∗(y
ε, sε)) + v∗(y

ε, sε)}

>= (u∗(x̂, t̂)− v∗(x̂, t̂)) + v∗(x̂, t̂) = u∗(x̂, t̂).

Consequently it follows that

lim
ε↓0

u∗(xε, tε) = u∗(x̂, t̂), lim
ε↓0

v∗(y
ε, sε) = v∗(x̂, t̂). (2.8)

4. We next calculate the first derivatives of Ψ at (xε, tε, yε, sε).

pεx := ∇xΨ(xε, tε, yε, sε) =
1

ε2
(xε − yε) + β∇f(xε),

pεy := ∇yΨ(xε, tε, yε, sε) = − 1

ε2
(xε − yε),

τε := ∂tΨ(xε, tε, yε, sε) =
1

ε2
(tε − sε) +

α

(T − tε)2
,

σε := ∂sΨ(xε, tε, yε, sε) = − 1

ε2
(tε − sε).

9



By the definitions of D± we have {
(pεx, τ

ε) ∈ D+u∗(xε, tε),

(−pεy,−σε) ∈ D−v∗(y
ε, sε),

(2.9)

and therefore {
τε +H(xε, pεx) <= 0,

−σε +H(yε,−pεy) >= 0
(2.10)

since u ∈ D-SUB(H) and v ∈ D-SUP(H).
Here we discuss two different cases for subsequences of {pεy}ε>0:

There exists a sequence {ε(j)}j∈N such that ε(j) ↓ 0 (j → ∞) and

Case 1: |pε(j)y | → ∞.

Case 2: p
ε(j)
y → −p̄ for some p̄ ∈ Rn.

We will reach to contradiction for both cases. From now on we simply write ε for ε(j).
Case 1. In terms of (HxN ) it is enough to apply the classical method. Combining two inequalities

in (2.10), we have

α

(T − tε)2
<= {H(yε,−pεy)−H(xε,−pεy)}+ {H(xε,−pεy)−H(xε, pεx)}.

Letting ε small and applying (HxN ) and (Hp), we compute

α

(T − tε)2
<= ω2((1 + |pεy|)|xε − yε|) + ω1(|pεx + pεy|)

= ω2

(
|xε − yε|+ 1

ε2
|xε − yε|2

)
+ ω1(|β∇f(xε)|).

Sending ε ↓ 0 in the above and using 1/T 2 <= 1/(T − t̂)2, we obtain α/T 2 <= ω1(β|∇f(x̂)|) <= ω1(β). This
is a contradiction for very small β.

Case 2. By (2.10) we see

α

(T − tε)2
+H(xε, pεx) <= σε <= H(yε,−pεy).

Thus we may assume that σε converges to some −τ̄ as ε ↓ 0 by the local boundedness of H. Now, since
(2.5), (2.8) and

lim
ε↓0

(pεx, τ
ε, pεy, σ

ε) =

(
p̄+ β∇f(x̂),−p̄, τ̄ + α

(T − t̂)2
,−τ̄

)
hold, the definitions of D

±
yield
(
p̄+ β∇f(x̂), τ̄ + α

(T − t̂)2

)
∈ D

+
u∗(xε, tε),

(p̄, τ̄) ∈ D
−
v∗(y

ε, sε).

Therefore τ̄ +
α

(T − t̂)2
+H(x̂, p̄+ β∇f(x̂)) <= 0,

τ̄ +H(x̂, p̄) >= 0

since u ∈ D-SUB(H) and v ∈ D-SUP(H). Consequently

α

T 2
<= H(x̂, p̄)−H(x̂, p̄+ β∇f(x̂)) <= ω1(β|∇f(x̂)|) <= ω1(β),

which is a contradiction for very small β.
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Remark 2.7. (1) In general, whenever CP holds, we have ∥u1 − u2∥Q <= ∥(u1|t=0) − (u2|t=0)∥Rn

for any two solutions u1 and u2 of (1.1), no matter which definition of solutions we use. This is
continuous dependence of the solutions on the initial data. Here we write ∥f∥U := supU |f | for
f : U → R.

(2) The term βf(x) in the definition of Ψ is added in order that F attains the maximum in (Rn ×
[0, T ])2. If both u and v are periodic in Rn, namely u(x, t) = u(x+

∑n
i=1 ei, t) and v(x, t) = v(x+∑n

i=1 ei, t) for some linearly independent e1, . . . , en ∈ Rn, the function F attains the maximum
without βf(x), and then we have pεx = −pεy. Therefore it is unnecessary to assume (Hp) in this
periodic case.

Corollary 2.8 (uniqueness of D-solutions). Assume that H satisfies (Hp) and (HxN ). Then there exists
at most one D-solution of (HJ) and it is continuous.

Proof. Let u, v ∈ D-SOL(H,u0). Applying Theorem 2.6 to a subsolution u and a supersolution v, we
get u∗ <= v∗ in Q. Next changing roles of u and v, we also see v∗ <= u∗ in Q. Hence it follows that
u∗ <= v∗ <= v∗ <= u∗ in Q, which yields our claim.

The assumption (HxN ) was used only in Case1 in the proof of Theorem 2.6 for the situation that
elements in D+u∗ and D−v∗ are unbounded. For any Lipschitz continuous function w in Q, we have
|p| <= Lip[w] and τ <= Lip[w] whenever (p, τ) ∈ D+w(x̂, t̂) or (p, τ) ∈ D−w(x̂, t̂), where Lip[w] stands for
the Lipschitz constant of w. Therefore it is unnecessary to assume (HxN ) in order to prove CP when
one of solutions is Lipschitz continuous.

Theorem 2.9 (CP–Lipschitz version). Assume that H satisfies (Hp). Let u and v : Q0 → R be,
respectively, bounded from above and bounded from below in Q0. Assume that u ∈ D-SUB(H) and
v ∈ D-SUP(H). Furthermore assume that either u or v is (space-time) Lipschitz continuous in Q. If
u∗(·, 0) <= v∗(·, 0) in Rn, then u∗ <= v∗ in Q.

As mentioned in Remark 2.7 (2), the assumption (Hp) is unnecessary for the periodic case. It is not
difficult to find that this version of CP applies to (1.3).

3 Existence results

3.1 Unique existence of envelope solutions

We adopted D-solutions as a proper definition in Section 2.1 in order to guarantee the uniqueness of
solutions of (HJ) with (1.3) and u0 ≡ 0, but the existence turns out to be an issue for a discontinuous
Hamiltonian. We give two examples to show the non-existence of D-solutions.

Example 3.1. Let us consider (HJ) with (1.15) and u0 ≡ 0. Then u ≡ 0 is a subsolution but is not a
D-supersolution. Also, one observes that uε(x, t) = ctIε(x) with (1.7) is a D-supersolution but is not a
subsolution for each ε > 0. Therefore, if there would exist a D-solution v, then 0 <= v∗ <= v∗ <= uε in Q
by Theorem 2.9. Sending ε ↓ 0, we see 0 <= v∗ <= v∗ <= ctI(x). Hence v∗ ≡ 0 in Q, which contradicts the
fact that 0 is not a D-supersolution. (See Figure 3.)

Example 3.2. Let us consider (HJ) with (1.3) and u0 ≡ 0. The intuitive solution u(x, t) = c(t− |x|)+
is a subsolution but is not a D-supersolution because (p, c) ∈ D

−
u(0, 1) (|p| = c) and c − |p| < cI(0).

Now we think of approximate problems

(ε.HJ)

{
∂tu+Hε(x,∇u) = 0 in Q,

u|t=0 = u0 in Rn,

whereHε is given by (1.6). Since we can writeHε(x, p) = −maxa∈B1(0)
⟨a, p⟩−cIε(x), the representation

formula by the optimal control theory (see Section 5.1 for more details) implies that uε given by

uε(x, t) = sup
α∈A

∫ t

0

cIε(Xα(s))ds

11



Figure 3: D-supersolutions tIε(x) of ∂tu = I(x), u0 ≡ 0 (the left) and their limit tI(x) (the right). The
latter is an envelope solution.

is a unique viscosity solution of (ε.HJ). Here A = {α : [0, T ] → B1(0),measurable} and Xα(s) is the
solution of the state equation: X ′(s) = α(s) in (0, t), X(0) = x. In other words, Xα(s) describes a
trajectory which leaves at time 0 from x and moves at velocity 1 or less. In this case for each x ∈ Rn

the optimal control is the one that leads to a straight trajectory before it comes to the origin and stays
there after that moment. A direct calculation yields

uε(x, t)/c =


(
1− |x|

ε

)
t+

t2

2ε
(t <= |x|),

t− |x|2

2ε
(t >= |x|),

for |x| <= ε,

and uε(x, t)/c =


0 (t <= |x| − ε),

(t− |x|+ ε)2

2ε
(|x| − ε <= t <= |x|),

t− |x|+ ε

2
(t >= |x|),

for |x| >= ε.

The inequality H >= Hε implies that each uε is a D-supersolution of the original (HJ). However, since
uε ↓ u as ε ↓ 0, it is shown by the similar argument in the previous example that there is no D-solution
of (HJ). (See Figure 4.)

Figure 4: D-supersolutions uε of ∂tu − |∇u| = I(x), u0 ≡ 0 (the left) and their limit (t − |x|)+ (the
right). The latter is an envelope solution.

For (HJ) with (1.3) and u0 ≡ 0, there are infinite D-solutions while there is no D-solution. This
suggests that we must define another proper notion of solutions.
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Definition 3.3 (envelope solutions). Let S be a nonempty subset of D-SUP(H). If v := infw∈S w is
bounded from below in Q, it is said to be an envelope viscosity supersolution of (1.1). Let e.SUP(H)
denote the set of all such solutions. If v is also an envelope viscosity subsolution (write v ∈ e.SUB(H)),
i.e., v = supw∈T w for some T ⊂ D-SUB(H) and v is bounded from above in Q, we call it an en-
velope viscosity solution. Set e.SOL(H) := e.SUB(H) ∩ e.SUP(H). We also define e.SUB(H,u0),
e.SUP(H,u0) and e.SOL(H,u0) as the sets of all (sub, super)solutions of (HJ) similarly as before.

Remark 3.4. (1) The function ctI(x) is an envelope solution in Example 3.1 and c(t − |x|)+ is an
envelope solution in Example 3.2. Also, Example 3.1 suggests that our envelope solution is not
always continuous.

(2) Since standard viscosity supersolutions have stability, that is, the infimum of them is still a super-
solution (see for instance [9, Lemma 4.2]), the class of solutions does not become large by taking
infimum. As for D-supersolutions, however, we observed that infε>0 u

ε ̸∈ D-SUP(H) in Examples
3.1 and 3.2. In other words, stability under infimum does not hold for D-supersolutions in general.
By contrast, our envelope supersolutions have such stability by the definition. We also learn by
Example 3.2 that D-supersolutions are not stable even under the uniform limit.

(3) We have D-SUP(H) ⊂ e.SUP(H ) ⊂ SUP(H), but e.SUP(H ) ⊂ D-SUP(H) does not hold in
general. (See Figure 5.) The function ctI(x) in Example 3.1 is its counter-example. If H is lower
semicontinuous, then e.SUB(H ) = SUB(H).

D-SOL : no solution

D-SOL : infinitely many solutions

??? : a unique solution

SOL : infinitely many solutions

e.SOL !

Figure 5: The notion of envelope solutions.

As was pointed out in Remark 3.4 (2) we do not have the stability under infimum forD-supersolutions
in general, but it is shown that the infimum of finitely many D-supersolutions is still a D-supersolution.

Proposition 3.5 (stability under infimum of finitely many solutions). Let ui ∈ D-SUP(H) for all
i ∈ {1, 2, . . . ,M}. Then u := minMi=1 ui ∈ D-SUP(H).

Proof. We first remark that u∗ = minMi=1(ui)∗. Fix (x̂, t̂) ∈ Q, (p, τ) ∈ D
−
u∗(x̂, t̂) and take a defining

sequence (xm, tm) ∈ Q, (pm, τm) ∈ D−u∗(xm, tm) (m ∈ N). Then we have limm→∞ u∗(xm, tm) =
u∗(x̂, t̂), and there exists a subsequence {m(k)}k∈N of {m}m∈N such that

u∗(xm(k), tm(k)) = (ui)∗(xm(k), tm(k)) (∀k ∈ N)

for some i ∈ {1, 2, . . . ,M}. Observe that

u∗(x̂, t̂) = lim
m→∞

u∗(xm, tm)

= lim
k→∞

u∗(xm(k), tm(k))

= lim
k→∞

(ui)∗(xm(k), tm(k)) >= (ui)∗(x̂, t̂).

Therefore, it follows that u∗(x̂, t̂) = (ui)∗(x̂, t̂). We thus have

(pm(k), τm(k)) ∈ D−(ui)∗(xm(k), tm(k)), lim
k→∞

(ui)∗(xm(k), tm(k)) = (ui)∗(x̂, t̂),

and hence (p, τ) ∈ D
−
(ui)∗(x̂, t̂). Since ui ∈ D-SUP(H), we deduce that τ +H(x̂, p) >= 0.
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We now present the uniqueness result for envelope solutions.

Proposition 3.6 (uniqueness of envelope solutions). Assume that H satisfies (Hp) and (HxN ). Then
there exists at most one envelope solution of (HJ). Moreover if H is lower semicontinuous, the unique
envelope solution is upper semicontinuous.

Proof. Let u, v ∈ e.SOL(H,u0). We first use the fact that u ∈ e.SUB(H,u0) and v ∈ e.SUP(H,u0).
By the definition of envelope sub- and supersolutions there exists some T ⊂ D-SUB(H,u0) and S ⊂
D-SUP(H,u0) such that u = supw∈T w and v = infW∈S W . Then applying Theorem 2.6 to w ∈ T and
W ∈ S, we get w∗ <= W∗ in Q, which yields u <= v in Q. Next changing roles of u and v, we also see
v <= u in Q, and hence our first claim is proved.

If H is lower semicontinuous, we apply Theorem 2.6 to u and W ∈ S. Then we deduce that u∗ <=
W∗ in Q, hence that u∗ <= v in Q. Since we also have v∗ <= u in Q, it follows that u∗ <= v <= v∗ <= u in Q,
and so our second claim follows.

We next consider the existence of envelope solutions. We will construct the solution as the infimum
of uε, which are solutions for “good” Hamiltonians Hε approximating H. Here “good” means that
comparison and existence properties are ensured for solutions. We use the following assumption.

(Hε) There exists a family {Hε}ε>0 ⊂ C(Rn × Rn) such that Hε ↑ H (ε ↓ 0) pointwise, and for all
ε > 0 and u0 ∈ BUC (Rn) the following two statements hold.

(i) If wε ∈ SUB(Hε, u0) and v
ε ∈ SUP(Hε, u0), then (wε)∗ <= (vε)∗ in Q.

(ii) There exists a bounded solution uε ∈ SOL(Hε, u0).

If there is some uε ∈ SOL(Hε, u0), it is automatically continuous and a unique solution by the comparison
(i). Also, H satisfying (Hε) is lower semicontinuous.

We here recall the Perron’s method for constructing standard viscosity solutions. (See for instance
[9, Theorem 4.1.].) Let v ∈ SUB(H,u0), V ∈ SUP(H,u0) and v <= V in Q. Then u defined by

u := sup{w ∈ SUB(H,u0) | v <= w <= V in Q}

is a viscosity solution of (HJ). Functions v and V are called respectively a lower barrier and an upper
barrier. One can construct these barriers for all u0 ∈ BUC (Rn) provided that H(x, p) is bounded locally
in p (see [15, Lemma 4.3.4.]), i.e.,

(Hm) m(ρ) := sup{|H(x, p)| | (x, p) ∈ Rn ×Bρ(0)} <∞ for all ρ >= 0.

Proposition 3.7 (existence). Assume that H satisfies (Hε) and (Hm). Let uε ∈ SOL(Hε, u0) in (Hε).
Then u := infε>0 u

ε is an envelope solution of (HJ).

We call u constructed in this way a solution approximated from above. By the definition u is upper
semicontinuous.

Proof. We first show that uε is monotone in ε. Let 0 < ε < ε′. Then uε ∈ SUB(Hε, u0), and also we
see uε

′ ∈ SUP(Hε′ , u0) ⊂ SUP(Hε, u0) since Hε′ <= Hε. Therefore we conclude that uε <= uε
′
by the

comparison. This monotonicity implies that u = lim sup∗ε↓0 u
ε and that u is bounded from above. Now,

we are able to take an upper semicontinuous lower barrier v ∈ SUB(H,u0) on account of the assumption
(Hm). Since v ∈ SUB(Hε, u0), we see by the comparison that v <= uε, and so v <= u. We also find that
u is bounded from below.

Since uε ∈ SUB(Hε), we see u ∈ SUB(lim inf∗ε↓0H
ε) = SUB(H) by the stability of viscosity

subsolutions. Also, u is an envelope supersolution of (HJ) because u = infε>0 u
ε and uε ∈ SUP(Hε) ⊂

D-SUP(H). We finally show that u is continuous at the initial time. Take any x ∈ Rn and (y, s) ∈ Q0.
Then v(y, s)−u0(x) <= u(y, s)−u0(x) <= uε(y, s)−u0(x) and both v(y, s) and uε(y, s) converge to u0(x)
as (y, s) → (x, 0). As a result we deduce that u(y, s) → u0(x).
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Remark 3.8. For any subset L ⊂ RN and hε : L→ R (ε > 0) we denote the upper relaxed limit (resp.
lower relaxed limit) by h = lim sup∗ε↓0 h

ε (resp. h = lim inf∗ε↓0 h
ε) : L→ R∪{±∞}, which is as follows:

h(z) := lim sup
(ε,y)→(0,z)

hε(y) = lim
δ↓0

sup{hε(y) | y ∈ Bδ(z) ∩ L, 0 < ε < δ}

(resp. h(z) := lim inf
(ε,y)→(0,z)

hε(y) = lim
δ↓0

inf{hε(y) | y ∈ Bδ(z) ∩ L, 0 < ε < δ}) (z ∈ L).

The following properties are easily seen by the definition: If hε ≡ h, then h = h∗ and h = h∗. If
hε ↓ h (resp. hε ↑ h) monotonously, then h = h∗ (resp. h = h∗). Also, h = lim sup∗ε↓0(h

ε)∗ and
h = lim inf∗ε↓0(h

ε)∗ in general.

We next present examples of H which satisfies the assumption (Hε). In order to obtain the compar-
ison and existence properties in (Hε), it is sufficient that each Hε satisfies (Hp), (Hx) and (Hm).

Example 3.9. If H is lower semicontinuous and bounded in Rn × Rn, then (Hε) is fulfilled. In this
case we take Hε as the inf-convolution of H over Rn×Rn. (See below about sup- and inf-convolution.)
Each Hε satisfies (Hp) and (Hx) since it is globally Lipschitz continuous, and (Hm) is clear from the
boundedness of Hε.

Example 3.10. Let H have the form of (1.9) with r ∈ BUSC (Rn). Assume that H0 is uniformly
continuous in Rn ×Rn and satisfies (Hm). Then (Hε) is fulfilled. The conditions (Hp), (Hx), (Hm) are
all satisfied by Hε(x, p) = H0(x, p)− rε(x), where rε is the sup-convolution of r.

Remark 3.11 (sup- and inf-convolution). For bounded f : RN → R and ε > 0 we define the sup-
convolution fε (resp. inf-convolution fε) of f by

fε(x) := sup
y∈RN

{
f(y)− 1

2ε
|x− y|2

}
.

(
resp. fε(x) := inf

y∈RN

{
f(y) +

1

2ε
|x− y|2

}
.

)
The following properties are easily found, and so we omit the verification.

• −∥f∥Rn <= f <= fδ <= fε <= ∥f∥Rn for 0 < δ < ε.

• fε is Lipschitz continuous in RN .

• If f is upper semicontinuous, then fε(x) ↓ f(x) (ε ↓ 0) for each x ∈ RN .

• If f is uniformly continuous, then fε converges to f uniformly in RN .

We mainly use these convolutions in order to approximate semicontinuous functions by Lipschitz con-
tinuous ones.

Combining Proposition 3.6 and Proposition 3.7, we obtain the unique existence result.

Theorem 3.12 (unique existence–general version). Assume that H satisfies (Hp), (HxN ), (Hε) and
(Hm). Then u, a solution approximated from above, is a unique envelope solution of (HJ).

If we do not accept the assumption (HxN ), Lipschitz continuities of solutions are needed for CP.

Theorem 3.13 (unique existence–Lipschitz version). Assume that H satisfies (Hp), (Hε) and (Hm).
Let uε ∈ SOL(Hε, u0) in (Hε) and assume that uε (ε > 0) and infε>0 u

ε are Lipschitz continuous in Q.
Then u, a solution approximated from above, is a unique envelope solution of (HJ).

Proof. We only need to show the uniqueness. Let v ∈ e.SOL(H,u0). An analogue of the proof of
Proposition 3.6 works and yields the inequality u <= v∗ in Q (but we use Theorem 2.9 here). Next,
since v ∈ SUB(H,u0), u

ε ∈ D-SUP(H,u0) and uε is Lipschitz continuous, Theorem 2.9 yields that
v∗ <= uε in Q, and so v∗ <= u in Q. Thus u = v.
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Remark 3.14. Let u ∈ e.SOL(H,u0) and (Hp) hold. If there exists some T ⊂ D-SUB(H,u0)∩BLip(Q)
(resp. S ⊂ D-SUP(H,u0) ∩ BLip(Q)) such that u = supv∈T v (resp. u = infw∈S w), then u is the
minimal (resp. maximal) envelope solution. These facts are easily shown by using Theorem 2.9.

Remark 3.15. If the Lipschitz constants of uε are estimated uniformly in ε, then u = infε>0 u
ε is also

Lipschitz continuous (provided that uε are bounded uniformly in ε). In general, if uε have their modulus
ω ∈ M independent of ε, their infimum u also has the same ω as its modulus.

Example 3.16. In Example 3.2 the function u(x, t) = c(t − |x|)+ is a unique envelope solution by
Theorem 3.13 since uε and u are Lipschitz continuous. In Example 3.1, on the other hand, the envelope
solutions are not unique in that vα(x, t) = αtI(x) (α ∈ (0, c]) are all envelope solutions. Let us show
this claim. It is easily seen that they are all subsolutions. Set vα,ε(x, t) := αt{(1−

√
|x|/ε)+}2 for ε > 0.

(See Figure 6.) Then one observes that vα,ε ∈ D-SUP(H, 0) since ∂tv
α,ε >= 0 and D

−
vα,ε(0, t̂) = ∅.

Hence the equality vα = infε>0 v
α,ε implies our claim. Moreover v0 ≡ 0 is also an envelope solution

since v0 = infα∈(0,c],ε>0 v
α,ε. The function vc is the maximal envelope solution by Remark 3.14 because

vc(x, t) = infε>0 ctI
ε(x) and ctIε(x) ∈ D-SUP(H, 0) ∩ BLip(Q), where Iε(x) := (1 − |x|/ε)+. Also,

v0 ≡ 0 is the minimal envelope solution.
For a general initial data u0 ∈ BUC (Rn), it is also seen that u0(x) + αtI(x) (α ∈ [0, c]) are all

envelope solutions. Uniqueness, therefore, always goes wrong for the initial-value problem with the
equation ∂tu = cI(x). Such bad behavior can happen when a Hamiltonian is non-coercive. Indeed, we
establish the uniqueness result for coercive Hamiltonians in the next subsection (Theorem 3.22).

Figure 6: D-supersolutions vα,ε of ∂tu = I(x), u0 ≡ 0.

3.2 Coercive Hamiltonians

In order to apply Theorem 3.13, we need to know what conditions guarantee the Lipschitz continuities of
uε and infε>0 u

ε. We therefore consider in this subsection whether the solutions preserve the continuity
of initial data. For continuous Hamiltonians it is known that such preserving properties hold if they are
coercive, namely

lim
|p|→∞

inf
x∈Rn

H(x, p) = ∞ or lim
|p|→∞

sup
x∈Rn

H(x, p) = −∞.

The coercivity of H is equivalent to (HR+) or (HR−) below.

(HR+) R+(m) := sup{|p| | ∃x ∈ Rn, H(x, p) <= m} <∞ for all m >= 0.

(HR−) R−(m) := sup{|p| | ∃x ∈ Rn, H(x, p) >= −m} <∞ for all m >= 0.

Here we use the convention that sup ∅ = 0. We first present Lipschitz continuity and BUC (bounded
uniform continuity) preserving properties for continuous Hamiltonians. These results are more or less
known. See for example [7], where they discussed for a.e. (sub)solutions. We give here a proof based
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on the theory of viscosity solutions without using a.e. solutions. By using these results we establish our
preserving properties for discontinuous Hamiltonians via approximation by continuous ones.

For a function u : Q→ R, we define

Lipt[u] := sup
x∈Rn

sup
t,s∈(0,T )

t̸=s

|u(x, t)− u(x, s)|
|t− s|

,

Lipx[u] := sup
t∈(0,T )

sup
x,y∈Rn

x ̸=y

|u(x, t)− u(y, t)|
|x− y|

.

Proposition 3.17 (Lipschitz continuity preserving property). Assume that H satisfies (Hp), (Hx),
(Hm) and (HR+). Let u0 ∈ BLip(Rn) and u ∈ SOL(H,u0). Then u ∈ BLip(Q) with the Lipschitz
constant satisfying

Lipt[u] <= m, Lipx[u] <= R+(m),

where m := m(Lip[u0]) and m(·) is the function in (Hm).

The assumption (HR+) is able to be replaced by (HR−). (The same is valid for Proposition 3.20.)

Proof. We first remark that w(x, t) := u0(x) +mt ∈ SUP(H,u0). Take any (x̂, t̂) ∈ Q, h ∈ (0, T − t̂)
and define

ũ(x, t) :=

{
w(x, t) (t ∈ [0, h]),

u(x, t− h) +mh (t ∈ (h, T )).

We claim ũ ∈ SUP(H,u0). Let (p, τ) ∈ D−ũ(x̂, t̂). Then it follows easily that τ + H(x̂, p) >= 0 when
t̂ ̸= h, and so we only consider the case t̂ = h. Since u ∈ SUB(H,u0) and w ∈ SUP(H,u0), we see
by the comparison principle that u <= w in Q. Take (x, t) ∈ Rn × (h, T ), and substitute (x, t − h) into
the inequality. Then we find u(x, t− h) <= u0(x) +m(t− h), namely ũ(x, t) <= w(x, t). This implies the
relation D−ũ(x̂, h) ⊂ D−w(x̂, h), and hence our claim follows from w ∈ SUP(H,u0).

Applying the comparison principle to u ∈ SUB(H,u0) and ũ ∈ SUP(H,u0), we obtain u <= ũ in Q.
In particular, we have u(x̂, t̂+ h) <= ũ(x̂, t̂+ h) = u(x̂, t̂) +mh, that is

u(x̂, t̂+ h)− u(x̂, t̂)

h
<= m.

By the similar argument we also deduce

u(x̂, t̂+ h)− u(x̂, t̂)

h
>= −m

from the fact that u0(x)−mt ∈ SUB(H,u0) and so on. Thus Lipt[u] <= m is proved.
We next estimate Lipx[u]. Take any (p, τ) ∈ D+u(x̂, t̂). Since the estimate Lipt[u] <= m implies

|τ | <= m, we see from u ∈ SUB(H) that H(x̂, p) <= −τ <= m, hence that |p| <= R+(m) by (HR+). This
observation means

sup
(x̂,t̂)∈Q

(p,τ)∈D+u(x̂,t̂)

|p| <= R+(m),

and moreover Lemma 3.19 (1) and (2) below ensure that

sup
t̂∈(0,T )

sup
x,y∈Rn

x ̸=y

|u(x, t̂)− u(y, t̂)|
|x− y|

<= R+(m).

We thus conclude that Lipx[u] <= R+(m).

Remark 3.18. In order to prove this proposition in more generality, it is sufficient to assume that H
satisfies (HR+) or (HR−) only for all m ∈ I, where I is the range of m(·) in (Hm) on [0,∞). For example
H(x, p) = −|p|/(1 + |p|) is not coercive but the same conclusion in Proposition 3.17 still holds since we
have 0 <= m(ρ) < 1 (ρ >= 0) and R−(m) <∞ (0 <= m < 1).
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Lemma 3.19. (1) Let f : RN → R be bounded. Then we have

sup
x,y∈RN

x̸=y

|f(x)− f(y)|
|x− y|

= sup
x̂∈RN

p∈D+f(x̂)

|p|.

(2) Let u : Q→ R be continuous. Assume that Lipt[u] <∞. Then we have

sup
(x̂,t̂)∈Q

(p,τ)∈D+u(x̂,t̂)

|p| = sup
t̂∈(0,T )

sup
x̂∈Rn

p∈D+(u|t=t̂)(x̂)

|p|.

Proof. (1) Denote by Lf and Rf respectively the left hand side and the right hand side.
1. We first show Lf >= Rf . Fix any x̂ ∈ RN , p ∈ D+f(x̂) and take a corresponding test function

ϕ ∈ C1(RN ). Since there is some n0 ∈ Sn−1 such that |p| = |∇ϕ(x̂)| = ∂ϕ/∂n0(x̂), we calculate

|p| = ∂ϕ

∂n0
(x̂) = lim

t↓0

ϕ(x̂− tn0)− ϕ(x̂)

−t
<= lim

t↓0

f(x̂− tn0)− f(x̂)

−t
<= Lf .

Here we have used the maximality of f − ϕ at x̂. This inequality implies Rf <= Lf .
2. We next show Lf <= Rf . Take any x′, y′ ∈ Rn such that x′ ̸= y′. We may assume f(x′) < f(y′).

Set γ := (f(y′) − f(x′))/|x′ − y′| and ϕ(x) := γ|x − x′|. Since f − ϕ → −∞ as |x| → ∞ by the
boundedness of f , the function f − ϕ attains its maximum at some x̂ ∈ RN . We may let x̂ ̸= x′, for
otherwise we have f(x′) = f(x′) − ϕ(x′) = f(y′) − ϕ(y′) and y′ is another maximizer of f − ϕ we can
take. Then ϕ is C1 in some neighborhood of x̂ and ∇ϕ(x̂) ∈ D+f(x̂). In view of |∇ϕ(x̂)| = γ we have

f(y′)− f(x′)

|x′ − y′|
= γ <= Rf ,

which yields Lf <= Rf .
(2) Denote by Lu and Ru respectively the left hand side and the right hand side. Then we obtain

Lu <= Ru by the separation of variables of a test function. Let us show Lu >= Ru. Fix (x̂, t̂) ∈ Q, p ∈
D+(u|t=t̂)(x̂) and take a corresponding test function ψ ∈ C1(Rn). We may assume that u|t=t̂−ψ attains

its strict maximum at x̂. Define C := Lipt[u]+1, g(t) := C|t− t̂|, ϕ := ψ+g, gε(t) := C
√
|t− t̂|2 + ε and

ϕε := ψ + gε. Then u− ϕ attains its strict maximum at (x̂, t̂) and u− ϕε converges to u− ϕ uniformly.
Therefore, by the lemma on convergence of maximum points (see [15, Lemma 2.2.5]), there exists a
sequence {(xε, tε)}ε>0 such that (xε, tε) → (x̂, t̂) and u − ϕε attains its local maximum at (xε, tε) for
each ε > 0. Then we have (∇ψ(xε), (gε)′(tε)) ∈ D+uε(xε, tε) and ∇ψ(xε) → ∇ψ(x) = p, which yield
Lu >= Ru.

Proposition 3.20 (BUC preserving property). Assume that H satisfies (Hp), (Hx), (Hm) and (HR+).
Let u0 ∈ BUC (Rn) and u ∈ SOL(H,u0). Furthermore let {uδ0}δ>0 ⊂ BLip(Rn) and assume that uδ0
converges to u0 uniformly in Rn as δ ↓ 0. Then u ∈ BUC (Q) with modulus of continuity

ω(r) := inf
δ>0

(
2∥u0 − uδ0∥Rn +

√
(mδ)2 + (R+(mδ))2 r

)
,

where mδ := m(Lip[uδ0]), m(·) is the function in (Hm) and R+(·) is the function in (HR+).

For a given u0 ∈ BUC (Rn) one can always construct the family {uδ0}δ>0 like the above by taking
uδ0 as the sup- or inf-convolution of u0 for δ > 0.

In the following proof we use the fact that if uniformly continuous functions fδ (δ > 0) converges to
f uniformly as δ ↓ 0, then f is also uniformly continuous. Let ωδ be a modulus of fδ. Then

|f(x)− f(y)| <= |f(x)− fδ(x)|+ |fδ(x)− fδ(y)|+ |fδ(y)− f(y)|
<= 2∥f − fδ∥+ ωδ(|x− y|),
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and hence our claim follows. We also find that f has

ω(r) = inf
δ>0

(
2∥f − fδ∥+ ωδ(r)

)
as its modulus and that there is no need to assume the existence of a common modulus of fδ.

Proof. By the assumption (Hm) there exists a solution uδ ∈ SOL(H,uδ0) for each δ > 0, and Proposition
3.17 implies that uδ ∈ BLip(Q) since uδ0 ∈ BLip(Rn). Now, by using the inequality

∥u− uδ∥Q <= ∥u0 − uδ0∥Rn (3.1)

in Remark 2.7 (1) we find that uδ converges to u uniformly in Q as δ ↓ 0. Besides, recalling the remark
before this proof, we see u ∈ BUC (Q) and

ω0(r) := inf
δ>0

(
2∥u− uδ∥Q + Lip[uδ]r

)
is a modulus of u. Applying (3.1) and the estimate of Lip[uδ] in Proposition 3.17, we obtain the desired
form of ω.

Since we should treat discontinuous H, we apply the above results to the solutions uε of the approx-
imate equations and confirm that their infimum has a desired property. We use the fact in Remark 3.15
that if uε share a modulus independent of ε, then their infimum has the same modulus. In the case of
non-coercive Hamiltonian, solutions cannot preserve even continuity of the initial data as we observed in
Example 3.1, in which the envelope solution u(x, t) = ctI(x) is not continuous in contrast to the initial
data u0 ≡ 0.

Theorem 3.21. Assume that H satisfies (Hε), (Hm) and that each Hε in (Hε) satisfies (Hm), (HR+).
Assume furthermore that

sup
ε>0

mε(ρ) <∞, sup
ε>0

Rε
+(m) <∞

for all ρ >= 0 and m >= 0, where

mε(ρ) := sup{|Hε(x, p)| | (x, p) ∈ Rn ×Bρ(0)} (<∞),

Rε
+(m) := sup{|p| | ∃x ∈ Rn, Hε(x, p) <= m} (<∞).

Let u0 ∈ BUC (Rn). Then u, a solution approximated from above, has the following properties.

(1) u ∈ BUC (Q).

(2) If u0 ∈ BLip(Rn), then u ∈ BLip(Q).

(3) If H satisfies (Hp), then u is a unique envelope solution of (HJ).

The condition (HR+) is able to be replaced by (HR−). In this case, if H itself satisfies (HR−), then
the assumption supε>0R

ε
−(m) <∞ always holds since we have Rε

−(m) <= R−(m) by Hε <= H.

Proof. We first prove (2) and next show (1) by approximating the initial data. Take uε ∈ SOL(Hε, u0)
in (Hε).

(2) Denote l := Lip[u0]. Now, Proposition 3.17 ensures that uε ∈ BLip(Q) and

Lipt[u
ε] <= mε(l) <= sup

ε>0
mε(l), Lipx[u

ε] <= Rε
+(m

ε(l)) <= sup
ε>0

Rε
+(m

ε(l)).

Since both Lipschitz constants are estimated independently of ε, we conclude u = infε>0 u
ε ∈ BLip(Q).

(1) Let uδ0 = (u0)
δ be the sup-convolution of u0 and denote lδ := Lip[uδ0]. Then, Proposition 3.20

ensures that uε ∈ BUC (Q) and each uε has a modulus

ωε(r) := inf
δ>0

(
2∥u0 − uδ0∥Rn +

√
{mε(lδ)}2 + {Rε

+(m
ε(lδ))}2 r

)
.
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Since mε(lδ) and Rε
+(m

ε(lδ)) are similarly estimated independently of ε, there exists a common modulus
for uε. Thus we conclude u ∈ BUC (Q).

(3) Since uδ0 ∈ BLip(Rn), there exists a Lipschitz continuous envelope solution uδ ∈ e.SOL(H,uδ0)∩
BLip(Q) for each δ > 0 by (2) above. Moreover, there exist solutions of approximate equations (uδ)ε ∈
SOL(Hε, uδ0), which satisfy

uδ = inf
ε>0

(uδ)ε and (uδ)ε ∈ D-SUP(H,uδ0) ∩ BLip(Q).

Then, by Theorem 2.9 we have ∥v−uδ∥Q <= ∥u0−uδ0∥Rn for any envelope solution v of (HJ). Hence the
uniqueness of u follows because limδ↓0 ∥u0 − uδ0∥ = 0.

We have given some examples of H satisfying (Hε). In Example 3.9 Hε are not coercive because of
their boundedness. We therefore impose the coercivity assumption on H in Example 3.10 so as to apply
Theorem 3.21.

Theorem 3.22. Assume that H has the form of (1.9) with r ∈ BUSC (Rn). Assume that H0 is coercive,
uniformly continuous in Rn ×Rn and satisfies (Hm). Let u0 ∈ BUC (Rn). Then there exists a unique
envelope solution u of (HJ) and it has the following properties.

(1) u ∈ BUC (Q).

(2) If u0 ∈ BLip(Rn), then u ∈ BLip(Q).

Proof. We assume (HR+) because the proof in the case of (HR−) is similar. Let R0+(·) be the function
in (HR+) for H0. It is clear that the above H fulfills (Hm). As observed in Example 3.10, we also learn
that H satisfies (Hε) by the approximation Hε(x, p) = H0(x, p)− rε(x), where rε is the sup-convolution
of r. Thus by Proposition 3.7 we obtain a solution approximated from above u ∈ e.SOL(H,u0). It
remains to show the uniform boundedness of mε(ρ) and Rε

+(m) in ε in order to apply Theorem 3.21.
Since Hε <= |H0|+∥r∥Rn , we have mε(ρ) <= maxRn×Bρ(0)

|H0|+∥r∥ <∞, and hence supε>0m
ε(ρ) <∞.

Also, when m >= Hε(x, p), one observes that H0(x, p) <= m + rε <= m + ∥r∥ and so |p| <= R0+(m + ∥r∥)
by (HR+). Therefore we obtain Rε

+(m) <= R0+(m+ ∥r∥) <∞, which yields supε>0R
ε
+(m) <∞.

4 Relaxed Hamiltonians

In this section we establish a unique existence result without the coercivity assumption for H. Our
existence result (Proposition 3.7) does not require the coercivity. The problem lies in the uniqueness
part. In fact, we cannot expect the uniqueness in general as we observed in Example 3.16. However,
we are able to show the uniqueness for more restrictive Hamiltonians without the coercivity. To apply
our Lipschitz version of CP (Theorem 2.9) we need Lipschitz continuity of one of solutions, but the
continuity preserving property does not hold in general without the coercivity. On the other hand, our
general version of CP (Theorem 2.6) excludes Hamiltonians with discontinuous source terms. We solve
this difficulty by considering a relaxed problem. If an envelope solution u of (HJ) can be regarded as an
envelope solution of another problem (relaxed problem):

(r.HJ)

{
∂tu+ Ĥ(x,∇u) = 0 in Q, (4.1)

u|t=0 = u0 in Rn (4.2)

with a relaxed Hamiltonian Ĥ satisfying (HxN ), then we conclude the uniqueness of u as envelope
solutions of (HJ) by Theorem 2.6.

We define the relaxed Hamiltonians so that Ĥ >= H. Then it is obvious that a supersolution of (1.1)
is also a supersolution of (4.1). Therefore it is an important issue whether or not a subsolution of (1.1)
is also a subsolution of (4.1). We will solve this problem after defining Ĥ. In addition, as another topics
about Ĥ we discuss stability and existence of D-solutions which are not guaranteed for original H.
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4.1 Uniqueness revisited

In this section we treat special Hamiltonians with the following properties.

(Hr) (i) H is lower semicontinuous in Rn ×Rn and is continuous in (Rn \ Γ)×Rn for some Γ which
satisfies the following:

for every a ∈ Γ there exists a open set Va such that {a} = Γ ∩ Va. (4.3)

(ii) H∗ is continuous in Rn ×Rn.

(iii) H(a, p) <= inf0<=µ<=1H
∗(a, µp) for each a ∈ Γ and p ∈ Rn.

For such H, we define a relaxed Hamiltonian Ĥ : Rn ×Rn → R by

Ĥ(x, p) :=

{
H(x, p) (x ̸∈ Γ),

min{inf0<=µ<=1H
∗(x, µp), sup0<=µ<=1H(x, µp)} (x ∈ Γ).

(See Figure 7.) The continuity of H∗ implies that

H∗(x, p) = lim
(y,q)→(x,p)

y ̸=x

H(y, q) (4.4)

for all (x, p) ∈ Rn × Rn. Also, since H(x, p) <= sup0<=µ<=1H(x, µp) and (Hr)(iii) holds, we have H <=

Ĥ in Rn ×Rn. Besides, it is seen that Ĥ <= H∗ in Rn ×Rn and Ĥ is lower semicontinuous.

O p

Ĥ(0, p)

H∗(0, p)

H(0, p)

Figure 7: The definition of Ĥ(0, p) in the case 0 ∈ Γ.

Example 4.1. Let H have the form of (1.9). Then the following (i)′–(iii)′ is one sufficient condition
for (Hr).

(i)′ H0 is continuous in Rn ×Rn. r is upper semicontinuous in Rn and is continuous in Rn \ Γ for
some Γ which satisfies (4.3).

(ii)′ r∗ is continuous in Rn.

(iii)′ H0(a, p)− r(a) <= inf0<=µ<=1H0(a, µp)− r∗(a) for each a ∈ Γ and p ∈ Rn.

To show (iii)′ it is enough to prove that

a function µ 7→ H0(a, µp) is nonincreasing on {µ >= 0} for each a ∈ Γ and p ∈ Rn. (4.5)

We here assume (4.5) and let 0 ∈ Γ (, i.e., r is discontinuous at 0). Then, since H∗(0, µp) = H0(0, µp)−
r∗(0) and H(0, µp) = H0(0, µp)− r(0), we have

Ĥ(0, p) = min{H0(0, p)− r∗(0), H0(0, 0)− r(0)}
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for all p ∈ Rn. By this equality we find that Ĥ(0, p) is a constant H0(0, 0) − r(0) = H(0, 0) on
V := {p ∈ Rn | H0(0, p) >= H0(0, 0)− (r(0)− r∗(0))}. Furthermore, if V is bounded, namely V ⊂ BN (0)

for some N > 0, then Ĥ(x, p) = H0(x, p) − r∗(x) holds in Rn × (Rn \ BN (0)). Therefore assumptions
(Hp) and (HxN ) required in Theorem 2.6 are fulfilled if H0 and r∗ are uniformly continuous.

Example 4.2. We see for (1.3) that Ĥ(x, p) = −|p| − (cI(x)− |p|)+. As for a unique envelope solution
u(x, t) = c(t − |x|)+ with u0 ≡ 0, an easy computation shows that u ∈ SUB(Ĥ, 0), which implies
u ∈ e.SOL(Ĥ, 0). Moreover one can also verify u ∈ D-SOL(Ĥ, 0). This suggests that an envelope
solution of (HJ) has a more chance to be a D-solution of (r.HJ) than the original equation. The details
will be discussed in the next subsection.

Example 4.3. For (1.15) we have Ĥ = H. Hence the relaxation method does not give any new
information to us.

The following is the key fact for relaxed Hamiltonians.

Lemma 4.4. Assume that H satisfies (Hr). If u ∈ SUB(H), then u ∈ SUB(Ĥ).

Proof. We simply write u for u∗. Take any (x̂, t̂) ∈ Q and (p, τ) ∈ D+u(x̂, t̂). If x̂ ̸∈ Γ or p = 0, we
deduce τ + Ĥ(x̂, p) <= 0 since Ĥ(x̂, p) = H(x̂, p) and u ∈ SUB(H). Therefore we need only consider the
case that x̂ ∈ Γ and p ̸= 0. We may assume x̂ = 0 to simplify the notation. Our goal is now to show
τ + Ĥ(0, p) <= 0, namely

τ + inf
0<=µ<=1

H∗(0, µp) <= 0 or τ + sup
0<=µ<=1

H(0, µp) <= 0.

Define

Σ := {µ ∈ [0, 1] | (µp, τ) ∈ D+u(0, t̂)}, µ0 := inf{µ ∈ [0, 1] | [µ, 1] ⊂ Σ}.

Then 1 ∈ Σ and we also have µ0 ∈ Σ since superdifferentials are closed. We discuss two different cases
about µ0.

Case 1: µ0 = 0. Since (µp, τ) ∈ D+u(0, t̂) for each µ ∈ [0, 1], it follows from u ∈ SUB(H) that

τ +H(0, µp) <= 0.

Thus we obtain
τ + sup

0<=µ<=1
H(0, µp) <= 0.

Case 2: 0 < µ0 <= 1. Take a corresponding test function ϕ ∈ C1(Q) for (µ0p, τ) ∈ D+u(0, t̂). We
may assume u − ϕ attains its strict maximum at (0, t̂). By the definition of µ0 there exists a sequence
{µm}m∈N such that µm ↑ µ0 and µm ̸∈ Σ. Define

ϕm(x, t) = ϕ(x, t)− (µ0 − µm)⟨x, p⟩

for each m. Since ϕm converges to ϕ locally uniformly, there exists some sequence {(xm, tm)}m∈N such
that (xm, tm) → (0, t̂) and maxQ′(u− ϕm) = (u− ϕm)(xm, tm). Here Q′ is an arbitrary bounded open
subset of Q containing (0, t̂). The facts that µm ̸∈ Σ and ∇ϕm(0, t̂) = µmp imply (xm, tm) ̸= (0, t̂).
Moreover we find that xm ̸= 0 since ϕm(0, t) = ϕ(0, t). Thus it follows from u ∈ SUB(H) that

∂tϕ(xm, tm) +H(xm,∇ϕ(xm, tm)− (µ0 − µm)p) <= 0

and by letting m→ ∞ we obtain
τ +H∗(0, µ0p) <= 0

on account of (4.4). As a result we have

τ + inf
0<=µ<=1

H∗(0, µp) <= 0,

which concludes the proof.
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We present a uniqueness result in a general form.

Proposition 4.5 (uniqueness by relaxation). Assume that H satisfies (Hr) and that Ĥ satisfies (Hp),
(HxN ). Then there exists at most one envelope solution of (HJ) and it is upper semicontinuous.

Proof. If u1, u2 ∈ e.SOL(H,u0), then u1, u2 ∈ e.SOL(Ĥ, u0) by Lemma 4.4 and H <= Ĥ. Since Ĥ
satisfies (Hp), (HxN ) and is lower semicontinuous, we see u1 = u2 and they are upper semicontinuous
in terms of Proposition 3.6.

Here we give one sufficient condition to apply Proposition 4.5.

Proposition 4.6. Assume that H has the form of (1.9) with (1.11). Assume that H0 is uniformly
continuous in Rn ×Rn, satisfies (4.5) and

R(γ) := sup{|p| | ∃x ∈ Rn, H0(x, p) >= −γ} <∞, (4.6)

where γ := maxNj=1(cj −H0(aj , 0)). Then Ĥ satisfies (Hp) and (HxN ).

Proof. According to Example 4.1 we have

Ĥ(x, p) :=

{
H0(x, p) (x ̸= aj),

min{H0(aj , p), H0(aj , 0)− cj} (x = aj)

under the above assumptions. It suffices to check (HxN ). By (4.6) we see H0(aj , p) < H0(aj , 0)− cj for
all p ∈ Rn \BR(γ)(0) and j ∈ {1, 2, . . . , N}. Consequently

Ĥ(x, p) = H0(x, p) if (x, p) ∈ Rn × (Rn \BR(γ)(0)),

and so (HxN ) is satisfied.

Example 4.7. Let us consider the non-coercive Hamiltonian (1.16). Then (4.6) is fulfilled if and only
if 0 < c < 1, and therefore the uniqueness of envelope solutions follows. We will later see in Example
5.15 that there are infinitely many D-solutions even with u0 ≡ 0 when c > 1.

Theorem 4.8. Assume that H has the form of (1.16). Let u0 ∈ BUC (Rn) and 0 < c < 1. Then there
exists a unique envelope solution uc of (HJ). Moreover uc ∈ BLip(Q) provided that Lip[u0] < (1− c)/c.

Proof. Since H = Hc satisfies (Hε) and (Hm) for Proposition 3.7 (refer to Example 3.9 or 3.10 about
(Hε)), there exists uc ∈ e.SOL(Hc, u0), a solution approximated from above, and its uniqueness follows
from Example 4.7.

We next show the Lipschitz continuity preserving property of uc. Define Hc,ε(x, p) = −|p|/(1+ |p|)−
cIε(x) with (1.7). Observe that for fixed ρ0 > 0

mc,ε(ρ) := sup{|Hc,ε(x, p)| | (x, p) ∈ Rn ×Bρ(0)} <= c+
ρ0

1 + ρ0
(∀ρ ∈ [0, ρ0])

and
Rc,ε

− (m) := sup{|p| | ∃x ∈ Rn, Hc,ε(x, p) >= −m} <=
m

1−m
(∀m ∈ [0, 1)).

Therefore we learn by Remark 3.18 that solutions of (HJ) with Hc,ε are Lipschitz continuous provided
that c + ρ0/(1 + ρ0) < 1, i.e., ρ0 < (1 − c)/c. Furthermore, we see by the estimate above that their
Lipschitz constants are bounded uniformly in ε. Hence their infimum, which is uc by the uniqueness, is
also Lipschitz continuous if Lip[u0] < (1− c)/c.

We think that the Lipschitz continuity preserving property may not hold if Lip[u0] > (1− c)/c.
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4.2 Existence of D-solutions

For (HJ) with (1.3) and u0 ≡ 0, the unique envelope solution u(x, t) = c(t − |x|)+ is not only an
envelope solution of (r.HJ) but also a D-solution of (r.HJ). In other words, we obtained a D-solution
by the relaxation method while our original problem (HJ) has no D-solution. Unfortunately, for a
general initial-value it is not always true that u ∈ D-SOL(Ĥ, u0) when u ∈ e.SOL(H,u0). Its counter-
example is given by the lower right function in Figure 10 later. It is the envelope solution of (HJ) with
H(x, p) = −|p| − I(x), u0(x) = 2min{|x|, 1} and is written as

u(x, t) =

{
2min{|x|+ t, 1} (t <= 1),

(t− |x| − 1)+ + 2 (t >= 1).
(4.7)

For this u, we observe that u ̸∈ D-SOL(Ĥ, u0) because (0, 0) ∈ D
−
u(0, 1) and 0+ Ĥ(0, 0) = −1 < 0. In

this subsection we consider what conditions lead an envelope solution of (HJ) to a D-solution of (r.HJ).
Recall that an envelope supersolution is not always a D-supersolution because of a lack of stability. If

it is guaranteed for (r.HJ), one can obtain aD-solution. We here think of what is trouble in general about

the stability for (r.HJ). Let u := infε>0 u
ε, uε ∈ D-SUP(Ĥ), (p, τ) ∈ D

−
u∗(x̂, t̂) and take a defining

approximate sequence (pm, τm) ∈ D−u∗(xm, tm). Since uε ∈ SUP(Ĥ) in particular, the stability for
standard solutions ensures τm + (Ĥ)∗(xm, pm) >= 0. Sending m → ∞, we see τ + (Ĥ)∗(x̂, p) >= 0 and

τ + Ĥ(x̂, p) >= 0 if Ĥ is continuous at (x̂, p). Hence the remaining problem is whether τ + Ĥ(x̂, p) >= 0

holds for every (p, τ) ∈ D
−
u∗(x̂, t̂) such that (x̂, p) is a discontinuous point of Ĥ.

Let us come back to the example of (1.3). Since the set of discontinuous points of Ĥ(x, p) =

−|p|−(cI(x)−|p|)+ is {(0, p) | |p| < c}, the problem is whether τ−c >= 0 holds for all (p, τ) ∈ D
−
u∗(0, t̂)

such that |p| < c. This can be regarded as a condition about growth rates of u in the t-direction near
{0} × (0, T ) and is satisfied for example if u has the form u(x, t) = c(t − |x|)+ + k for some k ∈ R.
According to Example 5.7 later, if the initial-value u0 satisfies u0(x) < c|x|+ u0(0) for all x ∈ Rn \ {0},
then u(x, t) = c(t− |x|)+ + u0(0) near {0} × (0, T ). Thus we obtain a D-solution of (r.HJ).

Proposition 4.9. Let H(x, p) = −|p| − cI(x) for c > 0. Let u ∈ e.SOL(H,u0). If u0(x) < c|x|+ u0(0)
for all x ∈ Rn \ {0}, then u ∈ D-SOL(Ĥ, u0).

In order to treat more Hamiltonians, we impose additional assumptions on H satisfying (Hr). For
convenience we restrict discontinuous points of H.

(Hc) (i) H satisfies (Hr) with Γ = {0}.
(ii) There exists a constant cH such that cH = sup0<=µ<=1H(0, µp) for all p ∈ Rn.

(iii) inf0<=µ<=1H
∗(0, µp) = H∗(0, p) for all p ∈ P := {p ∈ Rn | inf0<=µ<=1H

∗(0, µp) < cH}.

When H fulfills (Hc), we have

Ĥ(0, p) =

{
cH (p ̸∈ P ),

H∗(0, p) (p ∈ P ).

Note that P is an open set by the continuity of H∗ and that Ĥ is continuous in {(x, p) | x ̸= 0 or p ∈ P}.
We here introduce a new notion of supersolutions for which one can easily show stability.

Definition 4.10 (singular supersolutions). Let H satisfy (Hc). A function u : Q → R is called a
singular supersolution of (4.1) if it is bounded from below, is continuous on {0} × (0, T ) and satisfies
the following:

(#1) τ + cH >= 0 for all t̂ ∈ (0, T ) and τ ∈ D−(u|x=0)(t̂).

(#2) τ + Ĥ(x̂, p) >= 0 for all (p, τ) ∈ D−u∗(x̂, t̂) satisfying x̂ ̸= 0 or p ∈ P .

We denote by SUP#(Ĥ) the set which consists of all singular supersolutions of (4.1).
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By virtue of the definition above, the standard argument of the stability for supersolutions applies.

Proposition 4.11 (stability for singular supersolutions). Assume that H satisfies (Hc). Let S be a
nonempty subset of SUP#(Ĥ). If u := infw∈S w is bounded from below and is continuous on {0}×(0, T ),
then u ∈ SUP#(Ĥ).

Since our original goal is the stability for D-supersolutions, we next show equivalence between D-
supersolutions and singular supersolutions under suitable assumptions.

Lemma 4.12. Assume that H satisfies (Hc). Let u : Q → R be Lipschitz continuous in Q and satisfy
the following.

(U1) For all t̂ ∈ (0, T ) there exist some d > 0, δ > 0 and C > 0 such that u|x=x′ + Ct2 is convex in
(t̂− δ, t̂+ δ) for each x′ ∈ Bd(0).

Then u ∈ D-SUP(Ĥ) if and only if u ∈ SUP#(Ĥ).

Remark 4.13. (1) The condition (U1) means a some kind of semiconvexity of u with respect to t.
Here we say a function f is semiconvex if there exists a constant C > 0 such that f(x) + C|x|2 is
convex. When f(x) + C|x|2 is convex, functions f(x) + C|x− a|2 are also convex for all a ∈ Rn.
This claim is confirmed by seeing f(x) + C|x − a|2 = f(x) + C|x|2 − 2C⟨x, a⟩ + C|a|2 since the
right hand side is the sum of two convex functions.

(2) If we do not assume (U1), the singular supersolutions are not necessarily D-supersolutions. Indeed,
u defined by (4.7) is not a D-supersolution but a singular supersolution of (r.HJ), where H(x, p) =
−|p| − I(x) and u0(x) = 2min{|x|, 1}. It does not satisfy (U1) at t̂ = 1.

Proof. 1. We first show that u satisfying (U1) has the following property.

τ ∈ D−(u|x=0)(t̂) for all t̂ ∈ (0, T ) and (p, τ) ∈ D
−
u(0, t̂). (4.8)

Let t̂ ∈ (0, T ), (p, τ) ∈ D
−
u(0, t̂) and take a defining approximate sequence (pm, τm) ∈ D−u(xm, tm)

and their corresponding test functions ϕm ∈ C1(Q). We may assume ϕm(x, t) = ψm(x) + gm(t) for
some ψm ∈ C1(Rn) and gm ∈ C1(0, T ). Since u|x=xm − gm attains its minimum at tm, the function
u|x=xm

+ C(t − tm)2 − gm also attains its minimum at tm, where C is the constant in (U1). Then
u|x=xm +C(t− tm)2 is convex in (t̂− δ, t̂+ δ) and so we may assume gm is linear, i.e., gm(t) = Lmt for
some Lm ∈ R. We find that Lm = g′m(tm) = τm → τ as m → ∞. Next, define ḡ(t) := τt. Then it is
easily seen that u|x=0 + C(t − t̂)2 − ḡ = u|x=0 − {ḡ − C(t − t̂)2} attains its local minimum at t̂ by the
continuity of u at (0, t̂). Thus we deduce τ ∈ D−(u|x=0)(t̂) since (d/dt){ḡ − C(t− t̂)2}(t̂) = τ .

2. We prove that a D-supersolution u of (4.1) is a singular supersolution. It is easy to confirm (#2),
and so we only need to show (#1). Fix t̂ ∈ (0, T ), τ ∈ D−(u|x=0)(t̂) and take a corresponding test
function g ∈ C1(0, T ). We may assume u|x=0−g attains its strict minimum at t̂. Define γ := Lipx[u]+1,
ψ(x) := −γ|x|, ϕ := ψ+g, ψε(x) := −γ

√
|x|2 + ε and ϕε := ψε+g. Then u−ϕ attains its strict minimum

at (0, t̂) and u − ϕε converges to u − ϕ uniformly. Therefore there exists a sequence {(xε, tε)}ε>0 such
that (xε, tε) → (0, t̂) as ε ↓ 0 and u − ϕε attains its local minimum at (xε, tε) for each ε > 0. Now,
since |∇ψε| <= γ for all ε > 0, we may let ∇ψε(xε) converge to some p̄ ∈ Rn. Since we also have

g′(tε) → g′(t̂) = τ as ε ↓ 0, we obtain (p̄, τ) ∈ D
−
u(0, t̂). Thus it follows from u ∈ D-SUP(Ĥ) that

0 <= τ + Ĥ(0, p̄) <= τ + cH .

3. We next show that a singular supersolution u of (4.1) is a D-supersolution. Fix (p, τ) ∈ D
−
u(x̂, t̂).

We first consider the case that x̂ ̸= 0 or p ∈ P . Take a defining approximate sequence (pm, τm) ∈
D−u(xm, tm). According to (#2) we have τm + Ĥ(xm, pm) >= 0 for very large m ∈ N. Sending m→ ∞,

we obtain τ + Ĥ(x̂, p) >= 0. If x̂ = 0 and p ̸∈ P , we have τ ∈ D−(u|x=0)(t̂) by (4.8). Hence τ + cH >= 0
in virtue of (#1).

We sum up the above results for the initial-value problem.

Proposition 4.14 (existence of D-solutions for relaxed problems). Assume that H satisfies (Hc). Let
u ∈ e.SOL(H,u0) ∩ BLip(Q). If u satisfies (U1), then u ∈ D-SOL(Ĥ, u0).
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Remark 4.15. The Lipschitz continuity of u is used to show the only-if-part (Step 2) in the proof of
Lemma 4.12. When u is not Lipschitz continuous in Q, we take ψ and ψε in the proof as

ψ(x) =

{
0 (x = 0)

−∞ (x ̸= 0)
, ψε(x) = −|x|2

ε
.

Indeed, because lim sup∗ε↓0 ψ
ε = ψ, there exists a similar sequence {(xε, tε)}ε>0 by taking subsequence

if necessary. However, since pε := ∇ψε(xε) = −2xε/ε in this case, the sequence {pε}ε>0 may be
unbounded. To deal with such case, it is sufficient to assume

lim sup
(x,p)→(0,∞)

H(x, p) <= cH . (4.9)

Let |pε| → ∞ in order to confirm this claim. Note that xε ̸= 0 for very small ε. Since (pε, g′(tε)) ∈
D−u∗(x

ε, tε) and u ∈ D-SUP(Ĥ), we have g′(tε) +H(xε, pε) >= 0. Taking lim sup∗ε↓0 in the inequality,
we obtain τ + cH >= 0 by (4.9).

5 Some examples of solutions

5.1 Representaion by optimal control theory

Let us recall the representation formula of viscosity solutions by optimal control theory. (See for instance
[14].) We consider the following state equation.

X ′(s) = f(X(s), α(s)) in (0, t), X(0) = x. (5.1)

Here the unknown is X : [0, t] → Rn and

• x ∈ Rn is a given initial state and t ∈ [0, T ] is a terminal time.

• A ⊂ Rm is a compact control set and α ∈ A := {α : [0, T ] → A, measurable} is a control.

• f = f(x, a) : Rn × A → Rn is a given bounded and continuous function. Moreover f(x, a) is
Lipschitz continuous in x uniformly in a, that is Lipx[f ] <∞.

As for this ODE there exists for each α ∈ A a unique Lipschitz continuous solution X(s) which
satisfies the first equation of (5.1) a.e. s ∈ (0, t). Let us write X(s) = Xα(s) = X(s;α, x, t) to denote
the solution. Since |Xα(s1) −Xα(s2)| = |

∫ s1
s2
f(Xα(s), α(s))ds| <= ∥f∥Rn×A · |s1 − s2| for each α ∈ A,

the solutions Xα are Lipschitz continuous uniformly in α with the Lipschitz constant smaller than ∥f∥.
Next, for given (x, t) ∈ Rn × [0, T ] and α ∈ A we define a corresponding cost functional Cx,t[α] by

Cx,t[α] :=

∫ t

0

r(Xα(s), α(s))ds+ u0(X
α(t)),

where

• r = r(x, a) : Rn × A → R is a given bounded and continuous function. Moreover r(x, a) is
Lipschitz continuous in x uniformly in a, that is Lipx[r] <∞.

• u0 ∈ BUC (Rn).

We call the above r a running cost function while u0 serves as a terminal cost function. Then the value
function u : Rn × [0, T ] → R is defined by

u(x, t) := sup
α∈A

Cx,t[α]. (5.2)

We are able to prove that u is a viscosity solution of a Hamilton-Jacobi-Bellman equation.
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Theorem 5.1 (a PDE for the value function). Let u be defined as above. Then u is a unique viscosity
solution of the initial-value problem

(HJB)

{
∂tu−max

a∈A
{⟨f(x, a),∇u⟩+ r(x, a)} = 0 in Q, (5.3)

u|t=0 = u0 in Rn. (5.4)

Remark 5.2. When the value function is defined as the infimum of costs, namely

u(x, t) := inf
α∈A

Cx,t[α], (5.5)

u becomes a solution of the same equation as above except that the max is replaced by min.

Our goal is to extend the classical theory above for discontinuous equations. Now we study Hamil-
tonians written by the form H(x, p) = −maxa∈A⟨f(x, a), p⟩ − r(x) with r ∈ BUSC (Rn). We hereafter
assume that running costs are independent of the control variable a. Recall that as Example 3.2 and
Proposition 3.7 we are able to construct an envelope solution by regularizing r from above to get rε (the
sup-convolution method enables us to do that) and taking the infimum of solutions of the approximate
problems. That means we take

uε(x, t) := sup
α∈A

Cε
x,t[α] with Cε

x,t[α] =

∫ t

0

rε(Xα(s))ds+ u0(X
α(t)), (5.6)

u(x, t) := lim
ε↓0

uε(x, t) = inf
ε>0

uε(x, t), (5.7)

and prove that u is an envelope solution. On the other hand, since upper semicontinuous functions are
integrable, it is possible to define a cost and value function for our original r which is not necessarily
continuous, that is

v(x, t) := sup
α∈A

Cx,t[α] with Cx,t[α] =

∫ t

0

r(Xα(s))ds+ u0(X
α(t)). (5.8)

What is the relationship between this v of the discontinuous problem and u via the approximation (5.7)?
Since problems including no ε-perturbation can be directly handled, if u = v, it characterizes the limit
of uε.

r

control

v = u

rε

uε

control

approximation

ε ↓ 0

?

Figure 8: Control theory for a discontinuous running cost. Is this diagram commutative?

In Example 3.2 we deduced that u(x, t) = limε↓0 u
ε(x, t) = c(t − |x|)+ by regarding the Hamilto-

nian as H(x, p) = −maxa∈B1(0)
⟨a, p⟩ − cI(x). On the other hand, as for discontinuous case v(x, t) =

supα∈A
∫ t

0
cI(Xα(s))ds, for each x ∈ Rn the optimal control is still the one that leads to a straight

trajectory before it comes to the origin and stays there after that moment. Therefore we conclude
that v(x, t) = c(t − |x|)+, and so u = v. However, situations are different for another compact set
A. For example if the control set A′ is taken as Sn−1, the resulting Hamiltonian is the same as
H(x, p) = −maxa∈Sn−1⟨a, p⟩ − cI(x). However, since Xα moves at a velocity of 1 all the time for
each control α, it cannot stay at the origin. Hence we conclude that v ≡ 0.

We here give one sufficient condition for guaranteeing u = v.

Lemma 5.3 (controllability). Let r ∈ BUSC (Rn), rε ∈ BLip(Rn) (ε > 0) and rε ↓ r in Rn pointwise,
and define uε, u and v by (5.6)–(5.8). Assume furthermore that
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(A1) there exists a measurable function θ : Rn × B∥f∥(0) → A such that p = f(x, θ(x, p)) for all

(x, p) ∈ Rn ×B∥f∥(0),

where ∥f∥ = supRn×A |f |. Then u = v.

Proof. 1. We find that v <= u because Cx,t[·] <= Cε
x,t[·] for all ε > 0. It remains to prove u <= v. Fix (x, t) ∈

Q. For each ε > 0 there is some αε ∈ A such that uε(x, t) − ε <= Cε
x,t[α

ε]. Set Xε(s) := X(s;αε, x, t),
then one can easily check that the family {Xε}ε>0 ⊂ C[0, t] is equicontinuous and uniformly bounded
by using Lipschitz continuities of Xα. Consequently Ascoli-Arzelà theorem ensures that there exists
a subseqence {Xε(j)}j∈N such that Xε(j) uniformly converges to some X̄ ∈ C[0, t] as j → ∞. The
estimate Lip[Xα] <= ∥f∥ (∀α) implies Lip[X̄] <= ∥f∥, and so X̄ is a.e. differentiable and X̄ ′(s) ∈ B∥f∥(0).
Therefore by setting ᾱ(s) := θ(X̄(s), X̄ ′(s)) we have X̄ ′(s) = f(X̄(s), ᾱ(s)) a.e. s, and also X̄(s) =
X(s; ᾱ, x, t).

2. Fix d > 0. If 0 < ε(j) < d, then we have

uε(j)(x, t) <= ε(j) + C
ε(j)
x,t [αε(j)] <= ε(j) + Cd

x,t[α
ε(j)]

and

lim
j→∞

Cd
x,t[α

ε(j)] = lim
j→∞

{∫ t

0

rd(Xε(j)(s))ds+ u0(X
ε(j)(t))

}
=

∫ t

0

rd(X̄(s))ds+ u0(X̄(t)).

Hence it follows that

u(x, t) <=

∫ t

0

rd(X̄(s))ds+ u0(X̄(t)).

Sending d ↓ 0, we obtain by monotone convergence theorem

u(x, t) <=

∫ t

0

r(X̄(s))ds+ u0(X̄(t)) = Cx,t[ᾱ] <= v(x, t),

which completes the proof.

Remark 5.4. To prove u = v in the case that value functions are defined by (5.5), there is no need
to assume (A1). It suffices to show u <= v again. Take a minimizing sequence {αm} of v(x, t) (, i.e.,
limm→∞ Cx,t[αm] = v(x, t)), and then uε(x, t) <= Cε

x,t[αm] holds for all ε and m. Letting ε ↓ 0, we see
that u(x, t) <= Cx,t[αm] by monotone convergence theorem. Finally send m→ ∞.

Let us calculate some examples of solutions by applying Lemma 5.3 or Remark 5.4.
At first we consider the case that H(x, p) = −|p| − r(x) = −maxa∈B1(0)

⟨a, p⟩ − r(x) with r ∈
BUSC (Rn). Then (A1) is satisfied by taking θ(x, p) = p, and so Lemma 5.3 guarantees that v defined
by

v(x, t) := sup
α∈A

{∫ t

0

r(Xα(s))ds+ u0(X
α(t))

}
is the unique envelope solution.

Example 5.5. Let us consider the case of (1.13) and u0 ≡ 0. In this case, for each x ∈ Rn the optimal
control forces the state to move straight towards the nearest point in S and to stop moving after the
arrival. Therefore we conclude that

v(x, t) = c(t− dist(x, S))+.

The solution in the case that S = [−1, 1] and c = 1 is given in Figure 9 (the left).

Example 5.6. Let us consider the case of (1.11) and u0 ≡ 0. In this case, since we have obtained the
optimal control for the case r(x) = cjI(x− aj) for every j (= 1, 2, . . . , N), we only need to pick up the
maximum of them. Hence we have

v(x, t) =
N

max
j=1

cj(t− |x− aj |)+.

The solution in the case that a1 = 1, v1 = 1, a2 = −1, v2 = 1/3 is given in Figure 9 (the right).
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Figure 9: The envelope solution of ∂tu − |∇u| = χ[−1,1](x), u0 ≡ 0 (the left) and that of ∂tu − |∇u| =
I(x+ 1)/3 + I(x− 1), u0 ≡ 0 (the right).

Example 5.7. Let us consider the case that r(x) = cI(x) (c > 0) with a general initial condition
u0 ∈ BUC (Rn). In this case, for each x ∈ Rn all of the controls can be categorized into two types. One
type is to force the state to approach the origin. The other type results in trajectories without passing
the origin. The optimal value for the former type is

max
s∈[0,t−|x|]

{
cs+ max

Bt−|x|−s(0)
u0

}
=: V (x, t)

provided that t >= |x| while
max
Bt(x)

u0

is the maximal value for the latter type. Thus we conclude that

v(x, t) =

{
maxBt(x)

u0 (t <= |x|),
max

[
maxBt(x)

u0, V (x, t)
]

(t >= |x|).

We will make this formula simpler by imposing some conditions on u0. Assume that u0(0) = 0 hereafter.

[1] The case that u0(x) <= c|x| in Rn. Since V (x, t) = c(t− |x|) (s = t− |x|), we have

v(x, t) =

{
maxBt(x)

u0 (t <= |x|),
max

[
maxBt(x)

u0, c(t− |x|)
]

(t >= |x|).

In particular, we see u(0, t) = ct for all t ∈ (0, T ) because maxBt(0)
u0 <= ct.

(a) If u0(x) <= 0 in Rn, then v(x, t) = c(t − |x|) for t >= |x|. The solution for c = 1 and
u0(x) = −|x|/(1 + |x|) is given in Figure 10 (the upper left).

(b) If u0(x) < c|x| in Rn \ {0}, then for all t̂ ∈ (0, T ) we have v(x, t) = c(t − |x|) in some
open neighborhood of (0, t̂) ∈ Q because maxBt(0)

u0 < ct. The solution for c = 1 and

u0(x) = |x|/(1 + |x|) is given in Figure 10 (the upper right).

(c) If there is some x̂ ̸= 0 such that u0(x̂) = c|x̂|, it is unable to take the open neighborhood
described in (b) at (0, |x̂|). The solution for c = 1 and u0(x) = 2min{(|x| − 1)+, 1} is given
in Figure 10 (the lower left), where x̂ = 2.

[2] The case that u0(x) ̸<= c|x| in Rn. We assume that u0 has the form u0(x) = b(|x|) and that
b(ρ2) − b(ρ1) > c(ρ2 − ρ1) (0 <= ρ1 < ρ2 <= R), b(ρ) = b(R) (ρ >= R) for some R > 0. Note
that we have maxBt(x)

u0 = b(|x| + t). Then we observe that V (x, t) = b(t − |x| − s) (s = 0) for
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Figure 10: The envelope solutions of ∂tu− |∇u| = I(x) under several initial data u0. The upper left is
the case that u0(x) = −|x|/(1 + |x|) and the solid curve is (x, t, u) = (s, |s|, 0). The upper right is the
case that u0(x) = |x|/(1 + |x|) and the solid curve is (s,

√
s2 + 2|s|,

√
s2 + 2|s| − s). The lower left is

the case that u0(x) = 2min{(|x|−1)+, 1}. The lower right is the case that u0(x) = 2min{|x|, 1}. Each
function is the unique envelope solution.

0 <= t−|x| <= R and it is smaller than b(|x|+t), and also V (x, t) = c(t−|x|−R)+b(R) (s = t−|x|−R)
for t− |x| >= R and it is bigger than b(|x|+ t) = b(R). Thus we conclude that

v(x, t) =

{
b(|x|+ t) (t <= |x|+R),

c(t− |x| −R) + b(R) (t >= |x|+R).

It is seen that v(x, t) ≡ b(R) if −|x|+ R <= t <= |x|+ R. In this case, there is no effect of the step
source by time R on account of rapid growth of the initial data and v becomes flat at time R. The
solution for c = 1 and b(ρ) = 2min{ρ, 1} (R = 1) is given in Figure 10 (the lower right).

We next consider the case that H(x, p) = |p|−r(x) = −mina∈B1(0)
⟨a, p⟩−r(x) with r ∈ BUSC (Rn),

which describes the isotropic shrink at a velocity of 1. Then Remark 5.4 guarantees that v defined by

v(x, t) := inf
α∈A

{∫ t

0

r(Xα(s))ds+ u0(X
α(t))

}
is the unique envelope solution.

Example 5.8. Let us consider the case of (1.11) with a general initial condition u0 ∈ BUC (Rn). In
this case, since for each x ∈ Rn the optimal control forces the corresponding state to go to the minimizer
of u0 on Bt(x) (and not to stay each aj for a positive time), we have

v(x, t) = min
Bt(x)

u0.

This coincides with the solution of ∂tu + |∇u| = 0, and hence we may think that there is no effect of
the source term r(x).
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Example 5.9. Let us consider the case of (1.13) and u0 ≡ 0. In this case, since for each x ∈ Rn the
optimal control forces the corresponding state to leave S for the shortest time and stay in the outside
of S after the exit, we have

v(x, t) = c ·min{t, dist(x, Sc)},

where Sc means a complementary set of S in Rn. In particular, if S has no interior point, we see
v(x, t) = 0, which reduces to a special case of Example 5.8. We also learn for a bounded S that
v(x, t) = c · dist(x, Sc) for every t >= supx∈Rn dist(x, Sc) ̸= ∞. The solution in the case that S = [−1, 1]
and c = 1 is given in Figure 11.

Figure 11: The envelope solution of ∂tu+ |∇u| = χ[−1,1](x), u0 ≡ 0.

5.2 Solutions without coercivity assumption

In this subsection we focus on the equations of the form

(HJ0)

{
∂tu−H1(∇u) = cI(x) in Q, (5.9)

u|t=0 ≡ 0 in Rn, (5.10)

i.e., H(x, p) = −H1(p) − cI(x) with H1 : Rn → R and c > 0. We do not impose the coercivity
assumption on H1 here. Also, without loss of generality we may take

H1(0) = 0; (5.11)

if not, we replace H1(∇u) in (5.9) with H1(∇u) − H1(0) and solve the new (HJ0). For any solution
u(x, t) of the new one, u(x, t) +H1(0)t is a solution of the original (HJ0).

The next proposition helps us to construct envelope supersolutions when the step source consists of
a singleton.

Proposition 5.10 (construction of envelope supersolutions). Assume (5.11). Assume that u : Q → R
is bounded from below and satisfies the following three conditions.

(i) τ +H(x̂, p) >= 0 for all (x̂, t̂) ∈ (Rn \ {0})× (0, T ) and (p, τ) ∈ D
−
u∗(x̂, t̂).

(ii) u is continuous on {0} × (0, T ).

(iii) u(0, t) = ct in (0, T ) and u(x, t) <= ct in Q.

Then u ∈ e.SUP(H).

SetQ∗ := (Rn\{0})×(0, T ). We say that u is aD-viscosity supersolution in Q∗ (write u ∈ D-SUP(H)
in Q∗) if u satisfies the condition (i) and is bounded from below.
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Proof. For ε > 0 we define
uε(x, t) := min{u(x, t) + εt, ct}.

(See Figure 12.) Then, we deduce by Proposition 3.5 that uε ∈ D-SUP(H) since we have the following
three facts.

• u(x, t) + εt ∈ D-SUP(H) in Q∗.

• ct ∈ D-SUP(H).

• u(x, t) + εt > ct in some open neighborhood of (0, t̂) ∈ Q, where t̂ ∈ (0, T ).

Also, it is clear that u = infε>0 u
ε. We thus conclude that u ∈ e.SUP(H).

O
u(x, t)

x

ct

u(x, t) + εt

Figure 12: The definition of uε.

Let a, b > 0 and define a “cone-shaped” function Wa,b(x, t) := (at − b|x|)+. Before describing the
first existence result of (HJ0), which claims that Wc,b is an envelope solution for suitable b and H1, we
give simple observations about sub- and superdifferentials of the cone-shaped functions.

(CS) Let (p+, τ+) ∈ D+Wa,b(x̂, t̂) and (p−, τ−) ∈ D−Wa,b(x̂, t̂) for (x̂, t̂) ∈ Q.

(1) If at̂ < b|x̂|, we have p± = 0 and τ± = 0.

(2) If at̂ > b|x̂| and x̂ ̸= 0, we have |p±| = b and τ± = a.

(3) If at̂ = b|x̂|, we have |p−| <= b, 0 <= τ− <= a and bτ− = a|p−|. Also, D+Wa,b(x̂, t̂) = ∅.
(4) If x̂ = 0, we have |p+| <= b and τ+ = a. Also, D−Wa,b(x̂, t̂) = ∅.

Proposition 5.11. Assume (5.11) and let b > 0. Assume that H1 satisfies the following.

0 <= H1(p) <=
c

b
|p| for all p ∈ Rn such that |p| <= b. (5.12)

H1(p) = c for all p ∈ Rn such that |p| = b. (5.13)

Then Wc,b(x, t) = (ct− b|x|)+ is an envelope solution of (HJ0).

Proof. In view of (5.12), (5.13) and (CS) we see that Wc,b is a D-subsolution of (5.9) and is a D-
supersolution of (5.9) in Q∗. Since Wc,b fulfills the assumptions in Proposition 5.10, we conclude that
Wc,b is an envelope solution of (HJ0).

Of course, if H1 fulfills the regularity assumption (Hp) required in our comparison principles, it
follows that the Lipschitz continuous function Wc,b is a unique envelope solution.

Example 5.12. We consider the case that H1(p) = |p|α with α > 1. Then, the conditions (5.12) and
(5.13) are satisfied if we take b = c1/α. Hence we see that Wc,b(x, t) = (ct − c1/α|x|)+ is an envelope
solution of (HJ0).
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Example 5.13. We next consider the case that H1(p) =
√

1 + |p|2 − 1. Then, the conditions (5.12)

and (5.13) are satisfied if we take b =
√
c2 + 2c. Hence we see that Wc,b(x, t) = (ct −

√
c2 + 2c|x|)+ is

a unique envelope solution of (HJ0). In other words, the function u(x, t) = (ct−
√
c2 + 2c|x|)+ + t is a

unique envelope solution of {
∂tu−

√
1 + |∇u|2 = cI(x) in Q,

u|t=0 ≡ 0 in Rn.

Unfortunately, Proposition 5.11 does not include the case that H1 is “spokewisely concave” from the
origin, that is, the case when

H1(p) = h(|p|), where h : [0,∞) → R is strictly concave. (5.14)

Here we say h is strictly concave if h((1 − λ)x + λy) > (1 − λ)h(x) + λh(y) for every λ ∈ (0, 1) and
x, y ∈ [0,∞) with x ̸= y. For the purpose of finding envelope solutions of (HJ0) in such cases we further
assume that

h ∈ C2(0,∞) ∩ C[0,∞), h is strictly increasing on [0,∞). (5.15)

Then, it is easily seen by (CS) that

Wa,h−1(a)(x, t) = (at− h−1(a)|x|)+

is a D-subsolution of (HJ0) for each a ∈ (0, c) with c <= ∥h∥[0,∞). Besides, it turns out that these
supremum

Uc(x, t) = sup
a∈(0,c)

(at− h−1(a)|x|) (c <= ∥h∥)

becomes an envelope solution of (HJ0).

Proposition 5.14. Assume (5.11), (5.14) and (5.15).

(1) Assume c < ∥h∥. Then Uc is a unique envelope solution of (HJ0).

(2) Assume c = ∥h∥. Then U∥h∥ is a D-solution of (HJ0) and a unique envelope solution.

(3) Assume c > ∥h∥. Then U∥h∥ + ktI(x) are D-solutions of (HJ0) for all k ∈ [0, c− ∥h∥].

We remark that the assumption (Hp) is satisfied because of the concavity of h; indeed, we now have
|H1(p)−H1(q)| <= h(|p− q|). Hence the uniqueness in (1) follows from the Lipschitz continuity of Uc.

Proof. At first, it is obvious that Uc is a standard subsolution due to the stability under supremum.
In order to prove that Uc is an envelope supersolution we utilize Proposition 5.10. Notice that Uc is
rewritten as

Uc(x, t) =


ct− b|x| (|x| <= h′(b)t),

h

(
g

(
|x|
t

))
t− g

(
|x|
t

)
|x| (h′(b)t < |x| < h′(0)t),

0 (h′(0)t <= |x|)

(5.16)

by a direct calculation. Here h′(0) means the right derivative at 0 and possibly equals +∞. Also, we
write b = h−1(c) and g = (h′)−1 for the inverse function of h′. If c = ∥h∥, we read (5.16) as

Uc(x, t) =


ct (x = 0),

h

(
g

(
|x|
t

))
t− g

(
|x|
t

)
|x| (0 < |x| < h′(0)t),

0 (h′(0)t <= |x|).

(5.17)
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By the formula (5.16) we find Uc ∈ C1(Q∗) and its derivatives are as follows:

∂tUc(x, t) =


c (|x| <= h′(b)t),

h

(
g

(
|x|
t

))
(h′(b)t < |x| < h′(0)t),

0 (h′(0)t <= |x|).

∇Uc(x, t) =


−b x

|x|
(0 < |x| <= h′(b)t),

−g
(
|x|
t

)
x

|x|
(h′(b)t < |x| < h′(0)t),

0 (h′(0)t <= |x|).

Thus we deduce that
∂tUc(x, t)− h(|∇Uc(x, t)|) = 0 for all (x, t) ∈ Q∗,

and hence Uc satisfies the condition (i) in Proposition 5.10. Since the conditions (ii) and (iii) are clear,
we conclude that Uc is an envelope supersolution. If c = ∥h∥ in particular, we see that Uc is also a

D-supersolution of (HJ0) since D
−
Uc(0, t) = ∅.

(2) To show the uniqueness of Uc as an envelope solution we use the idea of Remark 3.14. It
is seen that Uc is the minimal envelope solution because Uc = supa∈(0,c)Wa,h−1(a) and Wa,h−1(a) ∈
SUB(H, 0) ∩BLip(Q). Next, let uε(x, t) := min{Uc(x, t) + εt, ct} for ε > 0. As we showed in the proof
of Proposition 5.10, it turns out that uε ∈ D-SUP(H). We also have uε ∈ BLip(Q) and Uc = infε>0 u

ε,
and therefore Uc is the maximal envelope solution.

(3) This claim follows from (2) and the fact that (U∥h∥ + ktI(x))∗ = U∥h∥.

Example 5.15. We consider the case that H1(p) = |p|/(1 + |p|), which is a non-coercive Hamiltonian.
Then, by substituting

b =
c

1− c
, h(r) =

r

1 + r
, g(r) =

1−
√
r√

r

into (5.16) we see that

Uc(x, t) =

{
ct− c

1− c
|x| (|x| <= (1− c)2t),

{(
√
t−

√
|x|)+}2 (|x| >= (1− c)2t)

is a unique envelope solution of (HJ0) when c <= 1 = ∥h∥, and in particular U1(x, t) = {(
√
t−

√
|x|)+}2 is

a D-solution of (HJ0) with c = 1. In the case when c > 1, functions U1(x, t)+ktI(x) are all D-solutions
of (HJ0) for k ∈ [0, c−1]. (See Figure 13.) Also, we see that the Lipschitz continuity preserving property
breaks down for c >= 1 since U1 is not Lipschitz continuous in Q.

Example 5.16. We next consider the case that H1(p) = |p|α with 0 < α < 1. Then, by substituting

b = c1/α, h(r) = rα, g(r) =
(α
r

)1/(1−α)

into (5.16) we see that

Uc(x, t) =


ct− c1/α|x| (|x| <= αt/c(1−α)/α),(
αt

|x|

)α/(1−α)

t−
(
αt

|x|

)1/(1−α)

|x| (|x| >= αt/c(1−α)/α)

is a unique envelope solution of (HJ0) for any c > 0. This formula means that the present equation
(HJ0) has a some kind of infinite propagation property for a step source because u > 0 in Q. (See Figure
14.)

The formula (5.16) also applies to Hamiltonians with the hyperbolic tangent form ([26])

H(x, p) = −|p| tanh 1

|p|
− cI(x),

but it is complicated to calculate the inverse function g = (h′)−1 in this case.
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Figure 13: Solutions of ∂tu − |∇u|/(1 + |∇u|) = cI(x), u0 ≡ 0. The envelope solution for c = 1/2 (the
upper left), the D-solution for c = 1(the upper right) and one of the D-solutions for c = 2 (the bottom).

5.3 Remark on relation to Dirichlet boundary problems

Let u be the unique envelope solution of the problem with a single step source:{
∂tu− |∇u| = cI(x) in Rn × (0, T ),

u(x, 0) = u0(x) in Rn.

We study in this subsection whether u is also a solution of the Dirichlet boundary problem:

(Di)


∂tu− |∇u| = 0 in (Rn \ {0})× (0, T ),

u(x, 0) = u0(x) in Rn,

u(0, t) = ct in (0, T ).

To simplify the argument we assume u0(0) = 0. We first recall the following facts about u from the
observation in Example 5.7.

(1) u(0, t) >= ct for all t ∈ (0, T ).

(2) u(0, t) = ct for all t ∈ (0, T ) provided that u0(x) <= c|x| in Rn.

(3) If

u0(x) = 2cmin{|x|, 1}, (5.18)

whose slope is larger than c near the origin, then the unique envelope solution is

v(x, t) =

{
2cmin{|x|+ t, 1} (t <= 1),

c(t− |x| − 1)+ + 2c (t >= 1).

In particular, we have v(0, t) = min{2ct, c(t+ 1)} > ct.
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Figure 14: The envelope solution of ∂tu−
√
|∇u| = I(x), u0 ≡ 0.

We see by (1) that u is always a supersolution of (Di). Also, by virtue of (2), if u0(x) <= c|x| in Rn, then
u is a viscosity solution of (Di) which indeed attains the boundary condition. What happens in the case
that u0(x) ̸<= c|x| in Rn? Unfortunately, we cannot expect that u is a subsolution on the boundary even
in the weak sense, i.e., u(0, t) <= ct or τ − |p| <= 0 whenever (p, τ) ∈ D+

Rnu(0, t). In fact, when the initial
data is given by (5.18), we have v(0, 2) > 2c and τ − |p| > 0 for (p, τ) = (0, c) ∈ D+v(0, 2). Instead of
v, if we set

vτ (x, t) =


v(x, t) (t <= 1),

2c (1 <= t <= 1 + τ),

v(x, t− τ) (t >= 1 + τ),

then each vτ (τ >= 1) becomes a solution of (Di) with (5.18) in the weak sense. One can interpret the
constant τ as a “waiting time”. The Dirichlet problem (Di) forces its solution to stop the growth until
it satisfies the Dirichlet boundary data at the origin.

As an another type of the boundary condition in the weak sense, one may think of the dynamic
boundary condition ([13]); namely

(Dy)


∂tu− |∇u| = 0 in (Rn \ {0})× (0, T ),

u(x, 0) = u0(x) in Rn,

∂tu(0, t) = c in (0, T ).

However, one cannot expect the uniqueness of solutions for (Dy) as well. Indeed, each vτ (τ >= 0) is a
solution of (Dy) with (5.18).
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