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THE BOLTZMANN EQUATION
WITHOUT ANGULAR CUTOFF APPROXIMATION
– UNIQUENESS, EXISTENCE AND REGULARITY

OF SOLUTIONS

YOSHINORI MORIMOTO
KYOTO UNIVERSITY

In this talk we consider the Cauchy problem for the non-cutoff Boltzmann equation in
the whole space. The uniqueness of solutions is first discussed in different function spaces,
according to each of soft and hard potentials. Next we show the local existence of classical
solutions without assuming the smallness of initial data, and moreover we establish the
global existence of solutions in the framework of a small perturbation of an equilibrium
state, together with the regularizing effect and the time decay rate of the perturbation. Here
the regularizing effect means that the solution belongs toC∞ for the positive time, which is
the characteristic that the Boltzmann equation without angular cutoff approximation origi-
nally has. The contents of this talk are based on a series of joint-works with R. Alexandre,
S. Ukai, C.-J. Xu and T. Yang.
• Boltzmann equation and assumptions
Consider the Cauchy problem for the spatially inhomogeneous Boltzmann equation,

(1)
{

∂t f + v ·∇x f = Q( f , f ), x,v ∈ R
3, t > 0,

f (0,x,v) = f0(x,v) ,

where f = f (t,x,v) is the density distribution function of particles with position x ∈ R
3

and velocity v ∈ R
3 at time t. The term appearing in the right hand side of this equation is

the so-called quadratic Boltzmann collision operator associated to the Boltzmann bilinear
operator

Q( f ,g)(v) =
∫
R3

∫
S2
B(v− v∗,σ)

{
f ′∗g′ − f∗g

}
dσdv∗ ,

where f ′∗ = f (t,x,v′∗),g′ = g(t,x,v′), f∗ = f (t,x,v∗),g= g(t,x,v),

v′ =
v+ v∗
2

+
|v− v∗|
2

σ , v′∗ =
v+ v∗
2

− |v− v∗|
2

σ ,

for σ belonging to the unit sphere S2. Notice that the collision operator Q(· , ·) acts only on
the velocity variable v∈R

3. Those relations between the post and pre collisional velocities
follows from the conservations of momentum and kinetic energy in the binary collisions

v+ v∗ = v′+ v′∗ , |v|2+ |v∗|2 = |v′|2+ |v′∗|2 .
The non-negative cross section B(z,σ) depends only on |z| and the scalar product z|z| · σ .
In what follows we assume that it takes the form

B(|v− v∗|,cosθ) = Φ(|v− v∗|)b(cosθ), cosθ =
v− v∗
|v− v∗| · σ , 0≤ θ ≤ π

2
,

where the angular factor b(cosθ) is assumed to have the following singularity;

(2) b(cosθ)θ 2+2s → K as θ →+0,

－1－



Y.MORIMOTO

for 0< s< 1 and a constant K > 0, and the kinetic factor Φ = Φγ is given by

(3) Φγ(|v− v∗|) = |v− v∗|γ ,
for some γ > max{−3,−3/2− 2s}. If the inter-molecule potential satisfies the inverse
power law potential U(ρ) = ρ−(q−1),q > 2 (, where ρ denotes the distance between two
interacting molecules), then

Φ(|v− v∗|) = |v− v∗|(q−5)/(q−1) and
b(cosθ)θ 2+2s → K as θ →+0,

where K > 0 and 0< s= 1/(q−1)< 1. Namely, for this physical case, we have

γ =
q−5
q−1 = 1−4 1

q−1 = 1−4s

which is contained in our assumptions 0< s< 1 and γ >max{−3,−3/2−2s}.
• Uniqueness
We use the usual function spaces as follows: For p≥ 1 and β ∈ R, we set

‖ f‖Lpβ =

(∫
R3

|〈v〉β f (v)|pdv
)1/p

,

and for s ∈ R

‖ f‖Hsβ (R3v) =
(∫

R3
|〈Dv〉s

(〈v〉β f (v)
)|2dv)1/2.

Furthermore

‖ f‖Hsβ (R6x,v) =
(∫

R6
|〈Dx,Dv〉s

(〈v〉β f (x,v)
)|2dvdx)1/2.

For the uniqueness of solution, we first consider the function space with polynomial
decay in the velocity variable. For m ∈ R, �≥ 0, T > 0 set

Pm
� ([0,T ]×R

6
x,v) =

{
f ∈C0([0,T ];D ′(R6x,v));

s.t. f ∈ L∞([0,T ]×R
3
x ; Hm� (R

3
v))

}
.

Our first theorem concerns the uniqueness of solution for the case γ ≤ 0, which is called
soft potential case in the classical sense and Maxwellian molecule type.

Theorem 1. Assume that 0 < s < 1 and max
(− 3,−3/2− 2s)<γ ≤0. Let 0 < T < +∞

and let �0 ≥ 14. Suppose that the Cauchy problem (1) admits two solutions f1(t), f2(t) ∈
P2s

�0
([0,T ]×R

6
x,v) for the same initial datum f0 ∈ L∞(R3x ;H2s�0 (R

3
v)). If one solution is

non-negative then f1(t)≡ f2(t).

For the uniqueness of solution in the case γ > 0 which is called hard potential case in
the classical sense, we consider the function space with the Maxwellian type exponential
decay in the velocity variable. More precisely, for m ∈ R, set

Mm
0 (R

6
x,v) =

{
g ∈ D ′(R6x,v); ∃ρ0 > 0 s.t. eρ0〈v〉2g ∈ L∞(R3x ;Hm(R3v))

}
,

and for T > 0

Mm([0,T ]×R
6
x,v) =

{
f ∈C0([0,T ];D ′(R6x,v)); ∃ρ > 0

s.t. eρ〈v〉2 f ∈ L∞([0,T ]×R
3
x ; Hm(R3v))

}
.
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BOLTZMANN EQUATION WITHOUT ANGULAR CUTOFF

Theorem 2. Assume that 0< s< 1 andmax
(−3,−3/2−2s)<γ< 2−2s. Let 0<T <+∞

and suppose that the Cauchy problem (1) admits two solutions f1(t), f2(t) ∈ M 2s([0,T ]×
R
6
x,v) for the same initial datum f0 ∈ M 2s

0 (R6x,v). If one solution is non-negative then
f1(t)≡ f2(t).

• Existence
To consider time local solutions without specifying any limit behaviors at the spatial

infinity we use the uniformly local Sobolev space with respect to the space variable as
follows: For k ∈ N∩{0} we set

Hkul(R
6) = {g ∈ D ′(R6) ; ‖g‖Hkul

= ∑
|α+β |≤k

sup
a∈R3

∫∫
|φ(x−a)∂ α

β g(x,v)|2dxdv< ∞} ,

φ ∈C∞
0 (R

3), φ(x) = 1(|x|< 1), = 0(|x|> 2),
∂ α

β = ∂ α
x ∂ β

v (α,β ∈ N
3).

Similar to Theorem 2 we define the following function spaces with the Maxwellian type
exponential decay in the velocity variable. For k ∈ N, our function space of initial data is

E k0 (R
6) =

{
g ∈ D ′(R6x,v); ∃ρ0 > 0 s.t. eρ0〈v〉2g ∈ Hkul(R6x,v)

}
,

while the function space of solutions is , for T > 0,

E k([0,T ]×R
6
x,v) =

{
f ∈C0([0,T ];D ′(R6x,v)); ∃ρ > 0

s.t. eρ〈v〉2 f ∈C0([0,T ]; Hkul(R6x,v))
}
.

Theorem 3. Assume that 0< s< 1/2, γ >−3/2, and 2s+ γ < 1. If the initial datum f0 is
non-negative and belongs to the function space E k00 (R6) for some 4 ≤ k0 ∈ N, then there
exists T∗ > 0 such that the Cauchy problem (1) admits a non-negative unique solution f in
the function space E k0([0,T∗]×R

6).

In order to obtain time global solutions we consider the perturbation around a normal-
ized Maxwellian distribution

μ(v) = (2π)−
3
2 e−

|v|2
2 ,

by setting f = μ +
√μg. Since Q(μ ,μ) = 0, we have

Q(μ +
√

μg, μ +
√

μ g) = Q(μ ,
√

μ g)+Q(
√

μ g, μ)+Q(
√

μ g,
√

μ g).

Denote
Γ(g, h) = μ−1/2Q(

√
μ g,

√
μ h).

Then the linearized Boltzmann operator takes the form

L g= L1 g+L2 g=−Γ(
√

μ , g)−Γ(g,
√

μ ).

Now the original problem (1) is reduced to the Cauchy problem for the perturbation g

(4)
{
gt + v ·∇xg+L g= Γ(g, g), t > 0 ,
g|t=0 = g0.

According to each of γ +2s> 0 and γ +2s≤ 0 we have the following two theorems.
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Theorem 4. Assume that 0< s< 1 and γ +2s> 0. Let g0 ∈ Hk� (R6) for some k ≥ 6, � >
3/2+ 2s+ γ . There exists ε0 > 0, such that if ‖g0‖Hk� (R6) ≤ ε0, then the Cauchy problem
(4) admits a global solution

g ∈ L∞([0,+∞[ ; Hk� (R
6))∩C∞((0,∞[×R

6) .

Furthermore, if f0(x,v) = μ +
√μg0(x,v)≥ 0 then f (t,x,v) = μ +

√μg(t,x,v)≥ 0.
In the case γ + 2s ≤ 0 we introduce the weighted Sobolev space whose weight-order

changes, corresponding to the number of derivatives w.r.t. v variables. For k ∈N, � ∈R we
set

H̃ k
� (R

6) =
{
f ∈ S ′(R6x,v) ; ‖ f‖2H̃ k

� (R6)
= ∑

|α|+|β |≤k
‖W̃�−|β |∂ α

β f‖2L2(R6) <+∞
}
.

W̃ = 〈v〉|2s+γ|, W̃� = 〈v〉|2s+γ |�, ∂ α
β = ∂ α

x ∂ β
v (α,β ∈ N

3).

Theorem 5. Assume that 0 < s < 1, γ + 2s ≤ 0 and γ > max{−3,−2s− 3/2}. Let g0 ∈
H̃ N

� (R6) for N ≥ 5, � ≥ N. There exists ε0 > 0, such that if ‖g0‖H̃ N
� (R6) ≤ ε0, then the

Cauchy problem (4) admits a global solution
g ∈ L∞([0,+∞[ ; H̃ N

� (R6))∩C∞((0,∞[×R
6) .

Furthermore, if f0(x,v) = μ +
√μg0(x,v)≥ 0 then f (t,x,v) = μ +

√μg(t,x,v)≥ 0.
The time decay rate of the perturbation g and the regularity theorem of solutions will be

detailed in the talk.

REFERENCES
[1] R. Alexandre, L. Desvillettes, C. Villani, B. Wennberg, Entropy dissipation and long-range interactions,

Arch. Ration. Mech. Anal. 152 (2000), 327-355
[2] AMUXY, Uncertainty principle and kinetic equations, J. Funct. Anal., 255 (2008) 2013-2066.
[3] AMUXY, Regularizing effect and local existence for non-cutoff Boltzmann equation, Arch. Rational Mech.

Anal.,198 (2010), 39-123.
[4] AMUXY, Global existence and full regularity of the Boltzmann equation without angular cutoff, Comm.

Math. Phys .,3-4-2(2011),513-581.
[5] AMUXY, Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft poten-

tial, to appear in J. Funct. Anal., http://hal.archives-ouvertes.fr/hal-00496950/fr/
[6] AMUXY, Boltzmann equation without angular cutoff in the whole space: II, global existence for hard

potential, Analysis and Applications, 9-2(2011) 1-22.
[7] AMUXY, Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solu-

tions, Arch. Rational Mech. Anal. (2011) 63, http://hal.archives-ouvertes.fr/hal-00510633/fr/.
[8] AMUXY, Bounded solutions of the Boltzmann equation in the whole space, Kinet. Relat. Models, 4

(2011)17-40. .
[9] AMUXY, Smoothing effect of weak solutions for the spatially homogeneous Boltzmann equation without

angular cutoff, preprint. http://hal.archives-ouvertes.fr/hal-00589563/fr/.
[10] AMUXY, Uniqueness of solution for non cutoff Boltzmann Equation with the soft potential, to appear in

Kinet. Relat. Models, 4-4 (2011). http://hal.archives-ouvertes.fr/hal-00602975/fr/.
[11] L. Desvillettes and B. Wennberg, Smoothness of the solution of the spatially homogeneous Boltzmann

equation without cutoff. Comm. Partial Differential Equations, 29-1-2 (2004) 133–155.
[12] P.-T. Gressman, R.-M. Strain, Global classical solutions of the Boltzmann equation without angular cut-off.

J. Amer. Math. Soc. 24-3(2011) 771-847.
[13] Z. H. Huo, Y. Morimoto, S. Ukai and T. Yang, Regularity of solutions for spatially homogeneous Boltzmann

equation without angular cutoff. Kinet. Relat. Models, 1 (2008) 453-489.
[14] Y. Morimoto and S. Ukai, Gevrey smoothing effect of solutions for spatially homogeneous nonlinear Boltz-

mann equation without angular cutoff, J. Pseudo-Differ. Oper. Appl. 1 (2010), 139-159.
[15] Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Regularity of solutions to the spatially homogeneous Boltz-

mann equation without angular cutoff. Discrete Contin. Dyn. Syst. - Series A 24 1 (2009), 187-212.

－4－



Some Results on Nonlinear Singular Partial
Differential Equations I

Hua Chena

aWuhan University and Kyoto University

The 36th Sapporo Symposium on PDEs, August 22-24, 2011

Abstract

Let 𝐵 be a manifold with conical singularities, i.e. 𝐵 is paracompact,
dimension of 𝐵 = 𝑛+1, and with conical points 𝐵0 = {𝑏0, 𝑏1, ⋅ ⋅ ⋅ , 𝑏𝑀} ⊂ ∂𝐵,
and 𝐵 ∖𝐵0 is 𝐶∞ smooth.

Let 𝑋 a closed compact 𝐶∞ manifold, 𝑋Δ = ℝ+ × 𝑋/({0} × 𝑋), is
a local model interpreted as a cone with the base 𝑋, and 𝑋∧ = ℝ+ × 𝑋
is an open stretched cone with the base 𝑋. For every 𝑏 ∈ 𝐵0, there is an
open neighborhood 𝑈 in 𝐵, such that there is a homeomorphism 𝜑 : 𝑈 →
𝑋Δ for some closed compact 𝐶∞ manifold 𝑋 = 𝑋(𝑏), and 𝜑 restricts a
diffeomorphism 𝜑′ : 𝑈 ∖ {𝑏} → 𝑋∧.

The stretched manifold 𝔹 of 𝐵 is defined as a 𝐶∞ manifold with compact
𝐶∞ boundary ∂𝔹 ∼= ∪

𝑏∈𝐵0
𝑋(𝑏), with diffeomorphism: 𝐵 ∖𝐵0

∼= 𝔹 ∖ ∂𝔹 =
int(𝔹), defined as

𝑈1 ∖𝐵0
∼= 𝑉1 ∖ ∂𝔹 : {�̃� = (𝑡, 𝑥) ∈ 𝑉1

∣∣∣ �̃�∣�̃�∣ − 𝑥0∣ < 𝜖1 with ∣𝑥0∣ = 1},

where 𝑈1 ⊂ 𝐵, near points of 𝐵0, 𝑉1 ⊂ 𝔹. Thus 𝔹 = [0, 1) × 𝑋𝑏 (here we
can suppose 𝜖1 ≈ 1), ∂𝔹 = {0} ×𝑋𝑏.

Let 𝑔𝑋(𝑡) be an 𝑡-dependent family of Riemannian metric on a closed
compact 𝐶∞ manifold 𝑋, which is infinitely differentiable in 𝑡 ∈ ℝ+. Then

𝑔 := (
𝑑𝑡

𝑡
)2 + 𝑔𝑋(𝑡),

is a Riemannian metric on𝑋∧. In this case the gradient∇𝔹 = (𝑡∂𝑡, ∂𝑥1 , . . . , ∂𝑥𝑛)
and the Laplacian (Fuchsian type) Δ𝔹 = (𝑡∂𝑡)

2 + ∂2
𝑥1

+ ⋅ ⋅ ⋅ + ∂2
𝑥𝑛
, which is

IThis work is partially supported by the NSFC.
Email address: chenhua@whu.edu.cn (Hua Chen)

Preprint submitted to Elsevier July 17, 2011
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totally characteristic degenerate elliptic operator on the boundary 𝑡 = 0.
Thus the problem for a standard operator defined on 𝐵 near conical point
has been transposed as the problem for a singular (e.g. Fuchsian type)
operator defined on 𝔹.

In this talk, we would talk some recent results on

(I) Generalized Cauchy-Kowalevski Theorem and Summability
of Formal Solutions;

(II) Boundary-value problem for semilinear degenerate elliptic
equations on conical singular manifolds
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ABOUT THE LOCAL AND GLOBAL WELLPOSEDENSS OF THE

NAVIER-STOKES-MAXWELL COUPLED SYSTEM

SLIM IBRAHIM
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PO Box 3060 STN CSC, Victoria, BC, Canada, V8W 3R4

1. Introduction

This is the summary of joint works with S. Keraani (University of Lille 1, France) [8], and
more recently with N. Masmoudi (Courant Institute, NYU, USA) [9].

We investigate the wellposedness of solutions of a full Magneto-Hydro-Dynamic system
(MHD) in the space dimension two and three. The full MHD system is a coupling of a forced
Navier-Stokes equations with Maxwell equations. It reads as follows

(1.1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tv + v · ∇v − νΔv +∇p = j ×B

∂tE −∇×B = −j

∂tB +∇× E = 0

divv = divB = 0

σ(E + v ×B) = j

with the initial data

v|t=0 = v0, B|t=0 = B0, E|t=0 = E0.

Here, v,E,B : R+
t × R

d
x −→ R

3 are vector fields defined on R
d (d = 2 or 3). The vector

field v = (v1, ..., vd) represents the velocity of the fluid, and the positive constants ν and σ are
its viscosity and resistivity, respectively. The scalar function p stands for the pressure. The
vector fields E and B are the electric and magnetic fields of the fluid, respectively. The last
equation in the system expresses Ohm’s law for the electric current j. The force term j ×B
in the Navier-Stokes equations comes from Lorentz force under a quasi-neutrality assumption
of the net charge carried by the fluid. Note that the pressure p can be recovered from v and
j × B via an explicit Caldéron-Zygmund type operator (for example, see [4]). The second
equation in (1.1) is the Ampère-Maxwell equation for an electric field E. The third equation
is nothing but Farady’s law. For a detailed introduction to the MHD, we refer to Davidson
[6] and Biskamp [1].

Our main goal is to solve the system of equation (1.1). Before going any further, we first
recall a few fundamental known results for the standard Navier-Stokes equations.

The incompressible Navier-Stokes equations are

∂v

∂t
+ v · ∇v − νΔv +∇p = 0, ∇ · v = 0.(1.2)

From the one hand, multiplying (1.2) by v and integrating in space formally gives the energy
identity

1

2

d

dt
‖v‖2L2 + ν‖∇v‖2L2 = 0,(1.3)

which shows that the viscosity dissipates the energy. Given an L2 initial data, J. Leray [11]

constructed a global weak solution v ∈ L∞((0,∞), L2(Rd)) ∩ L2((0,∞), Ḣ1(Rd)) satisfying
the energy inequality.
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On the other hand, applying Leray’s projection P to (1.2) the pressure disappears and the
solution of (1.2) can be written in the integral form (mild solution)

v(t) = eνtΔv0 −
∫ t

0
eν(t−t′)ΔP∇(v ⊗ v)(t′) dt′.

With Ḣ
d
2
−1 initial data, Fujita and Kato [7] constructed a unique (in Ct(Ḣ d

2
−1) ∩ L2

t (Ḣ
d
2 ))

local mild solution which is global if the data is small. Moreover, u ∈ L4
t (Ḣ

d−1
2 ). When

the space dimension is two, the two above solutions coincide and therefore we have both
uniqueness and regularity of the solution. However, when the space dimension is three, the
questions of the uniqueness of Leray’s solutions and the global regularity of mild solutions
remain outstanding open problems in contemporary Mathematics.

Similarly, for the full MHD system (1.1), one can formally get the following energy identity

1

2

d

dt

[‖v‖2L2 + ‖B‖2L2 + ‖E‖2L2

]
+ ‖j‖2L2 + ν‖∇v‖2L2 = 0.

showing that both the viscosity and the resistivity effects dissipate the energy. Therefore,
one may wonder to extend Leray’s result of the existence of global weak solutions to (1.1).
Unfortunately, a such result remain an interesting open problem in both space dimension two
and three. Indeed, one cannot have compactness for the term E × B in the Lorentz force.
Recently, Masmoudi [12] constructed, in dimension two, a unique global strong solutions to

(1.1) starting from initial data (v0, E0, B0) ∈ L2(R2) × (
Hs(R2)

)2
with s > 0. This extra

regularity on the electromagnetic field was needed to get an L1
t (L

∞
x ) bound of the velocity

field through a standard bi-dimensional logarithmic estimate. One of our main goals in this
work is to reduce as much as possible the regularity required on the electromagnetic field.

Notice that in dimension two, if the electromagnetic field is just an L2 function, then the
term E ×B in the Lorentz force is just integrable, and therefore one cannot gain regularity
using the parabolic regularization of the Stokes operator. In addition, to define (in the
distributional sense) the trilinear term (v × B) × B, the vector field should (heuristically)
be a bounded function. Our first result then requires less regularity on the electromagnetic
field than Masmoudi’s one. The regularity we impose is the minimal that enables us to have
parabolic regularization. However, our condition on the velocity vector field is a little bit
more restrictive in order for us to define the trilinear term. To be more precise, let us first
set the functional spaces we work in.

Definition 1.1. • For s ∈ R, define the space Ḣs
log as the set of tempered distributions

that satisfy

‖ψ‖2
Ḣs

log
:=

∑
q≤0

22qs‖Δqψ‖2L2 +
∑
q>0

q22qs‖Δqψ‖2L2 < ∞.

Here, Δq stands for the dyadic localization operator in the frequency space.

• Recall the Besov space Ḃs
p,q defined by

‖u‖q
Ḃs

p,q
= Σj∈Z2qjs‖Δju‖qLp

• For every r ∈ [1,+∞] the space L̃r
TL

2
log is endowed with the norm

‖φ‖2
L̃r
TL2

log
:=

∑
q≤0

‖Δqφ‖2Lr
TL2 +

∑
q>0

q‖Δqφ‖2Lr
TL2 .

Our main Theorem is

Theorem 1.2. Let d = 2, and set

X2 := Ḃ0
2,1(R

2)× L2
log(R

2)× L2
log(R

2).
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There exists a small constant δ > 0 such that to any initial data (v0, E0, B0) ∈ X2 satisfying

‖(v0, E0, B0)‖X2 ≤ δ,

corresponds a unique global solution (v,E,B) of (1.1)

v ∈ C(R+; Ḃ0
2,1) ∩ L̃2(R+; Ḃ1

2,1), E, B ∈ L̃∞(R+;L2
log).

The proof of the above result goes by compactness. It basically relies on two major steps.
The first one is a microlocal refinement of the parabolic regularization given by the following
Lemma

Lemma 1.3. Let u be a smooth divergence free vectors fields solving

∂tu−Δu+∇p = F ×B, u|t=0 = 0,

on some time interval [0, T ]. Then,

‖u‖L̃2
T Ḃ1

2,1
� ‖F‖L2

TL2
log

(
‖B‖L̃∞

T L2
log

+ ‖B‖L2
TL2

H

)
.(1.4)

The norm in L2
H is given by

‖ψ‖2L2
H
:=

∑
q≤0

22q‖Δqψ‖2L2 +
∑
q≥0

‖Δqψ‖2L2 < ∞.

To use this Lemma, one has to prove a decay (in time) of the magnetic field. This is given
by the following result

Lemma 1.4. Let (E,B) be a smooth solution of

∂tE − curl B + E = f × g,

∂tB + curl E = 0

on some interval [0, T ]. Then, we have

‖E‖L̃∞
T L2

log
+ ‖E‖L2

TL2
log

+ ‖B‖L̃∞
T L2

log
� ‖(E0, B0)‖L2

log
+ ‖f × g‖L2

TL2
log
,

and

(1.5)

‖B‖L2
TL2

H
� ‖(E0, B0)‖L2 + ‖g‖L∞

T L2‖f‖L̃2
T Ḃ1

2,1
+

(
‖∇f‖L2

TL2 + ‖f‖L∞
T L2

)
‖g‖L2

TL2
H
.

Observe that the factor in front of ‖g‖L2
TL2

H
in (1.5) can be made arbitrary small when the

data is small. Thus, the term in (1.5) containing ‖g‖L2
TL2

H
can be absorbed in the left hand

side giving an à priori bound on ‖g‖L2
TL2

H
.

The proof of this lemma uses the representation of solutions of the damped wave equation
satisfied by B. For high frequencies, such an equation behaves like the damped wave and
therefore solutions decay exponentially in time. However, for low frequencies, it behaves like
the heat equation, and the decay rate is rather weak.

In the three dimensional case, we construct mild solution using a fixed point argument
based on the following nonlinear estimates

Lemma 1.5. There exists a constant C > 0 such that

‖FB‖
L̃2
T Ḃ

− 1
2

2,1

≤ C‖F‖
L2Ḣ

1
2
‖B‖

L̃∞
T Ḣ

1
2
,

‖vB‖
L2
T Ḣ

1
2

≤ C‖v‖
L̃2
T Ḃ

3
2
2,1

‖B‖
L̃∞
T Ḣ

1
2
,

‖uv‖
L1
T Ḃ

3
2
2,1

≤ C‖u‖
L̃2
T Ḃ

3
2
2,1

‖v‖
L̃2
T Ḃ

3
2
2,1

,

for all smooth functions F,B, v and u defined on some interval [0, T ].
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With a more careful study of the full MHD system, we recently obtained with N. Masmoudi
[9] the following result about the local and global wellposedness of (1.1).

Theorem 1.6. Let d = 2, 3, and set

Xd := Ḣ
d
2
−1 × Ḣ

d
2
−1

log (Rd)× Ḣ
d
2
−1

log (Rd).

For any Γ0 := (v0, E0, B0) ∈ Xd, there exists T > 0 and a unique mild solution Γ of (1.1)
with initial data Γ0 and

v ∈ C((0, T ); Ḣ d
2
−1) ∩ L̃2((0, T ); Ḣ

d
2 ) + L̃2((0, T ); Ḃ

d
2
2,1), E, B ∈ L̃∞(R+; Ḣ

d
2
−1

log ).

Moreover, the solution is global (i.e. T = ∞) if the initial data is sufficiently small.
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Homogenization of Hele-Shaw-type

problems in random and periodic media

Norbert Pozar

We consider an inhomogeneous Hele-Shaw-type problem in random and
periodic media. The aim of this talk is to present a recent result on the
asymptotic convergence of the solution as time t → ∞ to a symmetric self-
similar solution of the homogeneous Hele-Shaw problem with a point source.

Let n ≥ 2 be a dimension and let us fix the sets K ⊂ Ω0 ⊂ R
n, such

that 0 ∈ intK, K is a nonempty compact set and Ω0 is a bounded open set.
Moreover, we assume that K and Ω0 have smooth boundaries.

The (exterior) Hele-Shaw-type problem in random media can be for-
mulated as a nonlocal free boundary problem for the pressure v(x, t, ω) :
R
n × [0,∞)×A → R, formally

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Δv = 0 in {v > 0} \K,

v = 1 on K,

vt = g(x, ω)|Dv|2 on ∂{v > 0},
v(·, 0, ω) = v0 on Ω0 \K,

(HS)

where the initial data v0(x) : Rn → R is the harmonic function in Ω0 \ K
with v0 = 1 on K and v = 0 on Ωc

0. Moreover, Dv and Δv are, respectively,
the gradient and the Laplacian of v with respect to the space variable x,
and vt is the partial derivative of v with respect to the time variable t. One
can observe that if the free boundary, ∂{v > 0}, is a smooth curve and the
derivatives of v are continuous, the normal velocity V of the free boundary
can be expressed as V = vt

|Dv| = g(x, ω) |Dv|.
In this model, the random medium is described by the function g(x, ω) :

R
n × A → R, where (A,F , μ) is a probability space. To guarantee the

well-posedness of (HS), g(x, ω) has to be a continuous function in x for a.e.
ω ∈ A, satisfying

0 < m ≤ g(x, ω) ≤ M for all x ∈ R
n, a.e. ω ∈ A, (1)
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where m and M are positive constants. In order to observe some averag-
ing behavior as t → ∞, we assume that g is stationary ergodic. In other
words, we assume that we have a group {τx}x∈Rn of measure preserving
transformations τx : A → A such that

g(x+ x′, ω) = g(x′, τxω) for all x, x′ ∈ R
n and a.e. ω ∈ A., (2)

i.e. g is stationary. Furthermore, we require that {τx}x∈Rn is ergodic, that
is, if B ⊂ A such that τx(B) = B for all x ∈ R

n, then μ(B) = 0 or 1. For a
more detailed discussion on stationary ergodic media, see for instance [5,19].

The classical (homogeneous) Hele-Shaw problem, (HS) with g ≡ 1, was
introduced in [10] as a model of a slow flowing viscous fluid injected in
between two parallel plates small distance apart that form the so-called
Hele-Shaw cell. This problem naturally generalizes to all dimensions n ≥ 1.

The Hele-Shaw-type problem (HS) considered here describes a pressure-
driven motion of a fluid in an inhomogeneous random medium that influ-
ences the velocity law of the fluid at the free boundary. The set K represents
a source where the fluid is pumped in under a constant pressure and the fluid
initially fills the set Ω0. The expansion of this wet region as the fluid flows is
then captured by the evolution of the positivity set {v > 0}. Free boundary
problems with similar velocity laws have various applications in the plastics
industry [22, 24, 28], in electromechanical machining [18] and serve also as
a model of a flow in porous media, to name just a few. In fact, Hele-Shaw
problem can be thought of as a quasi-stationary limit of the one-phase Ste-
fan problem with a similar boundary velocity law, modelling a heat transfer,
see [2, 16, 21, 27].

Before proceeding onto the discussion of the asymptotic behavior of
(HS), we need to clarify the notion of solutions. Due to possible topological
changes of the interface, pinching, cusps and other singularity formation in
finite time even with smooth initial data, it is necessary to consider solutions
in a weak sense.

The notion of weak solutions for (HS) was introduced in [8] (see also [9])
using the natural monotonicity of the expansion of {v > 0}, by considering
the function u(x, t) : Rn × [0,∞) → R defined by

u(x, t) =

∫ t

0
v(x, s) ds,

instead of v. This transformation was first used for the porous dam problem
in [3] (see also [4]) and for the one-phase Stefan problem in [7]. For more
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details on the variational inequality framework, see also the survey [26]. The
function u formally solves the Euler-Lagrange equation⎧⎪⎪⎪⎨

⎪⎪⎪⎩

−Δu = − 1

g(x, ω)
χRn\Ω0

in {u > 0},

u = |Du| = 0 on ∂{u > 0},
u = t on K

(3)

of some obstacle problem. To be more specific, we have the following defi-
nition.

Definition 1. The function u(x, t) is called the weak solution of problem
(HS) if for every t ≥ 0, w = u(·, t) solves the obstacle problem

{
w ∈ Kt,∫
Rn Dw ·D(ϕ− w) dx ≥ ∫

Rn\Ω0
− 1

g(x)(ϕ− w) dx for all ϕ ∈ Kt,
(4)

where
Kt =

{
ϕ ∈ H1

0 (R
n), ϕ ≥ 0 in Ω, ϕ = t on K

}
.

The classical theory of obstacle problems applies and yields well-posedness,
comparison principle and regularity for u, see [8, 25].

Since (HS) satisfies a comparison principle, the notion of viscosity solu-
tions offers an alternative definition of weak solutions. They were first in-
troduced for (HS) in [11] (see also [13, 15]), where the comparison principle
and well-posedness were also established. It is in fact necessary to consider
merely semicontinuous viscosity solutions because a solution of (HS) might
jump in time if a topological change of the support occurs.

In this talk, we are concerned with the homogenization of the solutions
for large times in the sense of their asymptotic convergence to a certain
solution of the homogeneous (g ≡ 1) problem (HS). In order to formulate
the main result, Theorem 3, we need to introduce the natural scaling of the
solutions. Let us define the rescaled solution

vλ(x, t) = λ(n−2)/nv(λ1/nx, λt), if n ≥ 3,

vλ(x, t) = logR(λ)v(R(λ)x, λt), if n = 2,

for any λ > 1 and R > 0 is the unique solution of

R2 logR = λ.
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It is easy to see that the function vλ formally satisfies a rescaled version of
the problem (HS) with the free boundary condition

vλt = g(λ1/nx)
∣∣∣Dvλ

∣∣∣2 if n ≥ 3

vλt = g(logR(λ)x)
∣∣∣Dvλ

∣∣∣2 if n = 2.

on ∂
{
vλ > 0

}
.

Now as we send λ → ∞ (which for a fixed t corresponds to a long-time
behavior of v), we expect to see some averaging effect since g is assumed to
be stationary ergodic. This is captured by the following lemma.

Lemma 2 (cf. [13, Lemma 4.1]). For g that satisfies the assumptions above,

there exists a constant, denoted
〈
1
g

〉
, such that if Ω ⊂ R

n is a bounded

measurable set and if {uε}ε>0 ⊂ L2(Ω) is a collection of functions such that
uε → u strongly in L2(Ω) as ε → 0, then

lim
ε→0

∫
Ω

1

g(x/ε, ω)
uε(x) dx =

∫
Ω

〈
1

g

〉
u(x) dx a.e. ω (5)

At this point we are ready to state the main result presented here.

Theorem 3 ([20, Theorem 7.1]). There exists a constant C depending only
on K and n such that, for a.e. ω ∈ A, the rescaled viscosity solution vλ

converges locally uniformly to v in (Rn \ {0}) × [0,∞) as λ → ∞, where
v is the unique radially symmetric self-similar solution of the homogeneous
Hele-Shaw problem with a point source, formally

⎧⎪⎨
⎪⎩

−Δv = Cδ in {v > 0},
vt =

1〈
1
g

〉 |Dv|2 on ∂{v > 0}. (6)

Here δ is the Dirac δ-function with mass at the origin.
Furthermore the free boundary ∂

{
vλ > 0

}
converges locally uniformly to

the free boundary ∂{v > 0} with respect to the Hausdorff distance.

The homogenization of the Hele-Shaw-type problem (HS) was studied
recently in [13] (see also [14] for a similar result on the one phase Stefan
problem). In this setting, the free boundary condition in (HS) is set to
depend on a new parameter ε > 0 as gε(x, ω) := f

(
x
ε , ω

)
,

vεt = f
(x
ε
, ω

)
|Dvε|2 , on ∂{vε > 0}. (HSε)
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The parameter ε represents the “scale” of the oscillations of the medium. For
a given ε, the problem has the unique solution vε. When ε → 0 we expect
an averaging effect of the medium, due to our assumption of stationarity
and ergodicity of gε. In fact, it was shown in [13] that the weak solutions uε

converge locally uniformly to the weak solution u of (HS) with g ≡ 1
〈1/f〉 , the

constant from Lemma 2. Furthermore, the free boundary of vε converges
locally uniformly to the free boundary of v as ε → 0 with respect to the
Hausdorff distance. Their main tool was a new result on the correspondence
between the two notions of weak solutions.

A similar result to Theorem 3 was previously obtained in [23] for weak
solutions of the homogeneous Hele-Shaw problem (g ≡ 1). In the current
situation, however, the velocity law of the free boundary depends on the
position and therefore the techniques from [23] can only provide lower and
upper bounds on the free boundary radius. This requires us to use a more
refined method to prove the convergence of the solution to the self-similar
asymptotic profile. We combine the strengths of two notions of solutions of
(HS) – viscosity and weak – using their correspondence obtained in [13].
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GRADIENT ESTIMATES AND EXISTENCE OF MEAN CURVATURE
FLOW WITH TRANSPORT TERM

KEISUKE TAKASAO

Abstract. In this talk we consider a hypersurface of the graph of the mean curvature
flow with transport term. The existence of the mean curvature flow with transport term
was proved by Liu, Sato and Tonegawa [9] by using geometric measure theory. We give a
proof of the gradient estimates and the short time existence for the mean curvature flow
with transport term by applying the backward heat kernel [8].

1. Introduction

A family of hypersurfaces {Γ(t)}0≤t<∞ in R
n moves by mean curvature if the velocity of

{Γ(t)}0≤t<∞ is
VΓ = Hν on Γ(t), t ≥ 0.

Here ν = (ν1, ν2, . . . , νn) is the unit normal vector and H is the mean curvature of Γ(t).
Brakke proved the existence of the generalized evolution {Γ(t)}0<t<∞ by using varifold

methods from geometric measure theory [1]. Ecker and Huisken studied the interior regular-
ity estimates for the mean curvature flow [4, 5, 6]. In [2] and [7], they proved the existence
of the viscosity solutions of mean curvature flow by using the level set method. Colding and
Minicozzi proved the sharp estimates of the interior gradient and the area for the graph of
the mean curvature flow [3].

In this talk we consider the family of hypersurfaces {Γ(t)}0≤t<∞ in R
n whose velocity is

(1.1) VΓ = (F · ν)ν +Hν on Γ(t), t ≥ 0.

Here F is the transport term. We assume that νn > 0 on Γ(t) for t ≥ 0. From the
assumption there exists u = u(x, t) such that Γ(t) = {(x, u(x, t)) | x ∈ R

n−1} for t ≥ 0.
The main results are related to the pioneering work by Liu, Sato and Tonegawa [9]. They

proved the existence of the generalized evolution {Γ(t)}0<t<∞ in dimension n = 2, 3 by using
geometric measure theory by Brakke [1].

Our purpose is to give a simple proof of the gradient estimate of u, and to prove the short
time existence of the graph Γ(t) for any dimension.

2. Main results

Let n ≥ 2, Ω = (R/Z)n−1 � [0, 1)n−1 and F : Ω×R× [0,∞) → R
n be a C1 vector valued

function. We consider the mean curvature flow with transport term:

(2.1)

⎧⎨
⎩

∂tu

v
= H + F (x, u, t) · ν, (x, t) ∈ Ω× (0,∞),

u(x, 0) = u0(x), x ∈ Ω,

hereH = div

(
du

v

)
, du = (∂x1u, ∂x2u, . . . , ∂xn−1u), v = (1+|du|2) 1

2 and ν = (ν1, ν2, . . . , νn) =

(−du, 1)

v
. We remark that we may obtain this PDE from (1.1). LetG = sup

(x,y)∈Ω×R,t∈[0,1]
(|F |2+
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|DF |) and v0 = max
x∈Ω

v(x, 0), here DF = (dF, ∂xnF ). We denote QT = Ω × (0, T ) and

Qε
T = Ω× (ε, T ). The first main result is the following:

Theorem 2.1. Let u ∈ C([0, 1];C2(Ω)) ∩ C1((0, 1);C(Ω)) be a solution of (2.1). Assume
that F ∈ C1(Ω× R× [0, 1];Rn) and G < ∞. Then there exists T > 0 such that

(2.2) v(x, t) ≤ 2v20, (x, t) ∈ QT .

Furthermore the constant T > 0 is given by

T = min

{
C

Gv60
, 1

}
,

where C > 0 is a constant depending only on n.

By Theorem 2.1 we obtain the second main result:

Theorem 2.2. Fix α ∈ (0, 1). Assume that

K := max{‖DF‖L∞(QT ), ‖∂tF‖L∞(QT ), sup
c∈R

‖F (·, c, ·)‖
Cα,α2 (QT )

} < ∞

and u0 is a Lipschitz function, namely there exists L > 0 such that |u0(x)−u0(y)| < L|x−y|
for any x, y ∈ Ω. Then there exists a unique solution u ∈ C2+α,1+α

2 (QT ) ∩ C(QT ) of (2.1).
Furthermore there exists C > 0 depending only on n, α, L,K and ε > 0 such that

(2.3) ‖u‖
C2+α,1+α

2 (Qε
T )

< C.

3. Outline of the proof

First we define the backward heat kernel.

Definition 3.1. For s, t > 0 (s > t) and X, Y ∈ R
n we define ρ = ρ(Y,s)(X, t) by

ρ(Y,s)(X, t) =
1

(4π(s− t))
n−1
2

exp

(
−|X − Y |2

4(s− t)

)
.

We remark that for continuous function g and x, y ∈ R
n−1 we have

(3.1) lim
t↗s

∫
Γ(t)

g(·, u(·, t), t)ρ(y,u(y,s),s)(·, u(·, t), t) dHn−1 = g(y, u(y, s), s).

The following lemma, for the purpose of showing Theorem 2.1, is given by the modification
of the proof of Huisken’s monotonicity formula [8].

Lemma 3.2. Assume that u satisfies (2.1) and Γ(t) is the surface of (2.1) extended peri-
odically to all of x ∈ R

n−1. Let g = g(x, t) : Rn−1 × [0,∞) → [0,∞) be a non-negative C2,1

function. Then we have

d

dt

∫
Γ(t)

gρ dHn−1 ≤
∫
Γ(t)

ρ∂tg − ρΔΓ(t)g + ρ(dg · ν)∂tu
v

+
1

4
gρf 2(u) dHn−1,

(3.2)

here ΔΓ(t) is the Laplace-Beltrami operator on Γ(t), ν =
−du

v
and f(u) = F (x, u(x, t), t) · ν.
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We choose (y, s) ∈ Ω× [0, T ] such that v∞ = v(y, s). From (3.2) we obtain

(3.3)
d

dt

∫
Γ(t)

vρ∞ dHn−1 ≤ CGv4∞,

here ρ∞ = ρ(y,u(y,s),s) and C = C(n) > 0. On the other hand, we have

(3.4)

∫
Γ(t)

vρ∞ dHn−1

∣∣∣∣
t=0

≤
∫
Rn−1

ρ∞(x, 0)v20 dx ≤ v20,

here v0 = max
x∈Ω

v(x, 0) and dHn−1 = v dx. Hence by (3.1), (3.3) and (3.4) we obtain

(3.5) v∞ − v20 ≤
∫ s

0

d

dt

(∫
Γ(t)

vρ∞ dHn−1

)
dt ≤ C0Gsv4∞,

here C0 = C0(n) > 0. By (3.5) if s ≤ T :=
1

26C0Gv60
, then we obtain

v∞ ≤ 2v20.

Thus Theorem 2.1 is proved.
From Theorem 2.1, the equation (2.1) is uniformly elliptic. Hence standard Schauder

estimates imply Theorem 2.2.
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Numerical Study of Two-Dimensional Turbulence
on a Rotating Sphere1

Michio Yamada
Research Institute for Mathematical Sciences,
Kyoto University, Kyoto, 606-8502, Japan 2

Abstract

Viscous flow motion on a rotating sphere is discussed with an at-
tention focused into the stability and bifurcation structure of steady
solutions, and the formation of zonal3 flow and its long time asymptotic
behaviors.

1 Introduction

Flow motions governed by the Navier-Stokes equations have long been stud-
ied in relation to fluid phenomena of human sizes, and extensive experi-
mental studies have provided guidelines for theoretical analysis. Nowadays
we have detailed experimental knowledge on a set of basic fluid motions in
simple but important configulations. However, as the subject of research
extended to large-scale flows on the earth and other planets, experimental
observation in controled experiments became difficult or impossible, and we
have to perform theoretical or numerical research of a set of basic flows, for
example, on a rotating sphere, often by making use of large scale numerical
calculation. Below we present a piece of such research, focusing our at-
tention on the behavior of two-dimensional(2D) viscous flows on a rotating
sphere.

The 2D sphere, S2, is one of the typical 2D boundaryless compact sets,
along with 2D torus, T 2 on which detailed flow studies have been made since
the proposal of Kolmogorov in 1959 to investigate a simplest model to see the
origin of turbulent disturbance. The 2D flow on a 2D torus under a periodic
(in one of the coordinates) external force field is now called Kolmogorov
flow, in which several flow properties have been found including instability
and bifurcation of the basic flows, detailed structures of chaotic behaviors
(Inubushi, Kobayashi, Takehiro and MY [1]) and a symmetry restoration of
unstable steady solutions in the invisicd limit (Okamoto et al. [2], Kim et
al. [3]). Below we will see that some of these properties are shared with
2D flows on S2, but that the rotation has a strong influence on dynamical
properties of flow field.

From a geophysical point of view, the most distinguished property of
the flow on a rotating sphere may be a formation of zonal band structure

1Joint work with K.Obuse, E.Sasaki and S.Takehiro in RIMS, Kyoto University.
2yamada@kurims.kyoto-u.ac.jp
3Here ”zonal” means ”in the east-west direction”.
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as observed on Jupiter. Actually many solar planets more or less shows the
zonal flows although the width of the zonal band depends on planets. The
mechanism of the zonal band formation is, however, not well understood.
Here we discuss the zonal flow formation in the framework of 2D Navier-
Stokes flows on a rotating sphere, and show that the zonal jet flows emerges
in this simplest model, which, however, is not suitable for description of the
real zonal flows on the solar planets.

2 Steady Solutions in Non-Rotating and Rotating
Cases

We consider 2D flow fields on a rotating unit sphere governed by the Navier
Stokes equation for incompressible fluid,

∂ζ

∂t
+

(
∂ψ

∂φ

∂ζ

∂μ
− ∂ζ

∂φ

∂ψ

∂μ

)
+ 2Ω

∂ψ

∂φ
= F +

1
R

(∇2 + 2
)
ζ. (1)

Here, φ is the longitude, μ the sine of latitude, t the time, and ψ the stream
function such that (uφ, uμ) = (−

√
1 − μ2∂ψ/∂μ, (1/

√
1 − μ2)∂ψ/∂φ), and

ζ ≡ ∇2ψ the vorticity, where ∇2 is the horizontal Laplacian on the sphere.
Ω a dimensionless constant rotation rate of the sphere, R the Reynolds
number, and F = F (φ, μ, t) the vorticity forcing function. This 2D equation
is obtained by taking the limit of vanishing depth of thin fluid layer on the
sphere under the assumption that the velocity is proportional to the radius.
The viscous terms conserves the total angular momentum of the system as
expected (Silberman [14]).

A simplest zonal flow solution ψl = AY 0
l is realized by assuming a forcing

term F = A(l(l + 1)(2 − l(l + 1))/R)Y 0
l , where A is a constant4. The

steady solution ψ1 only expresses a uniform rotation which is invariant due
to the angular momentum conservation. In the case of l = 2, the steady
solution ψ2 (Fig.1) expresses zonal jets toward different directions in the
northern and the southern hemispheres. We can prove that for any solution

Figure 1: Zonal flow profiles of ψ2 (left) and ψ3 (right).

4Y m
l denotes a spherical harmonic function.
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Figure 2: Bifurcation diagram in non-rotating case. Flow patterns for the
bifurcating solutions are also shown (Sasaki, Takehiro and MY [8])

ψ(t) = ψ2 +ψrest(t), ‖ψrest(t)‖2 → 0 (t → ∞), the global asymptotic stability
of ψ2, similarly to the case of the Kolmogorov flow on T 2.

In contrast, in the case of l = 3, the zonal flow ψ3 (Fig.1) becomes
unstable as the Reynolds number increases. The bifurcation diagram from
the solution ψ3 for the case of Ω = 0 is shown in Fig.2, where we take the
Reynolds number as a bifurcation parameter. We see that all the solutions
found numerically are unstable at sufficiently large Reynolds numbers. The
zonal solution ψ3 (S) is uniform in the longitudinal direction, but every bi-
furcating solution has some longitudinal structure and its flow pattern is not
symmetric with respect to any meridional line, nor to the equator. Instead a

Figure 3: Symmetry restoration of the solution TW1. The flow pattern at
R = 30 (left) is not symmetric with respect to the equator, but is nearly
symmetric at R = 106 (right). (Sasaki, Takehiro and MY [8])
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Figure 4: Stable solutions for Ω �= 0. Flow patterns of the stable solutions
are also shown. There is no stable steady solution in white region. (Sasaki,
Takehiro and MY [8])

solution (TW1) is invariant to π/2-translation in the longitudinal direction
followed by the mirror transformation with respect to the equator, while
other solutions are not. It is interesting that the (unstable) solution recov-
ers the mirror symmetry when the Reynolds number is increased (Fig.3), as
has been observed in the planar Kolmogorov flows (Okamoto et al.[2], Kim
et al. [3]).

The rotation of the sphere has a significant effect on the bifurcation
structure as seen in Fig.4 which shows stable solutions in the case of l = 3
for −6 ≤ Ω ≤ 2.5 and 0 ≤ R ≤ 1000. We find that for Ω > 2.171 and

Figure 5: Flow patterns at R = 50 (left) and R = 106 (right) in rotating case
(Ω = 1.0). The vortices keep the staggered configulation at higher Reynolds
number. (Sasaki, Takehiro and MY [8])
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Ω < −5.726, the zonal flow φ3 is linearly stable at least up to R = 1000,
suggesting that it is linearly stable for an arbitrary Reynolds number. Thus
the rotation of the sphere greatly enhances the stability of the zonal flow
(S). We remark that the symmetry recovering with increasing R is not well
observed in the rotating case (Fig.5), where the staggered configulation of
positive and negative vortices remains at high Reynolds numbers.

3 Time Development in Non-Forced Case

2D Flow patterns on a rotating sphere has attracted much attention be-
cause it is expected to be a simplest model of large scale flows in planetary
atomosphere.

In a non-rotating planar case, while inviscid 3D flow conserves the en-
ergy which tends to cascades toward small scale motions, inviscid 2D flows
conserves both the energy and the enstrophy ‖ζ‖2

2 and then the energy
tends to cascade toward large scale motions, forming large coherent vortices
in the viscous case (inverse cascade). Similarly on a non-rotating sphere,
there appears large coherent vortices in 2D flow fields in the course of time
development.

However, the rotation interferes with the inverse cascade of energy. This
phenomena was first found by Rhines [4] who performed a numerical experi-
ment of 2D turbulence with the ”β-plane” approximation which takes a par-
tial account of the effect of rotation. He then found a multiple zonal-band
structure with alternating westward and eastward jets. Many succeeding
studies have confirmed the emergence of the multiple zonal-band structure
on both a β plane and a two-dimensional sphere by introducing several types
of the energy injection [5, 6]. The multiple zonal-band structure suggests
many fascinating problems such as the mechanism of energy’s concentration
to zonal jets [7, 9], and the asymmetry of the eastward and westward jets’

Figure 6: Circumpolar jet formation in non-forced 2D flow fields. The zonal
mean of the zonal velocity is shown. Strong westward jets is observed around
the north and the south poles.
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profiles. However, it does not seem to be clear whether the long-time asymp-
totic state is actually characterized by such multiple zonal band structure,
even in the β-plane approximation.

Recently, Yoden and Yamada [10] investigated the asymptotic states of
freely decaying two-dimensional barotropic incompressible flows on a rotat-
ing sphere. Interestingly, the asymptotic states are not necessarily char-
acterized by the multiple zonal-band structure but sharp strong westward
circumpolar jets along the north- and south-poles become prominent, al-
though there still exists weak multiple zonal band structure in the low and
middle latitudes (Fig.6). The scaling laws for this circumpolar jets are ob-
tained by Takehiro, Yamada and Hayashi [11]; when the rotation rate of the
sphere Ω increases, the strength of the jets increases as Ω

1
4 and the width

of the jets decreases as Ω− 1
4 .

4 Time Development with Small Scale Forcing

Real planetary flows are believed to have been maintained for a long time
by the energy injection, for example, in the form of sunshine or from inside
the planet. This should be a motivation of the introduction of a forcing and
of the study of long time asymptotic behaviors of the forced flow field.

For 2D incompressible flows on a rotating sphere, Nozawa and Yoden
[13] performed a series of numerical simulations, with a Markovian random
forcing of 18 cases with different combinations of a rotation rate of the
sphere and a forcing wavenumber. There, they showed that the generated
flow fields are characterized by a multiple zonal-band structure or a structure
with westward circumpolar jets. In contrast, Huang et al. [12] performed
simulations with a white noise forcing, and obtained an asymptotic state
consisting of only two zonal jets. They then inferred that the Markovian
random forcing in Nozawa and Yoden [13] may be regarded as a strong drag
with small wavenumber dissipation which maintains the formed multiple
zonal-band structure.

The numerical time integration of Nozawa and Yoden [13], however, does
not seem to be long enough to obtain long-time asymptotic states, since
the observed jets appear to be still changing. Therefore, we reexamine the
long-time asymptotic states with a small-scale, homogeneous, isotropic, and
Markovian random forcing (Obuse, Takehiro and MY [15]), extending the
integration time of numerical simulation to about 100 to 500 times of that
of Nozawa and Yoden [13].

The vorticity forcing function F is taken to be the same as that in
Nozawa and Yoden [13]; small-scale, homogeneous, isotropic, Markovian
random function is given by

F (φ, μ, jΔt) = RmF (φ, μ, (j − 1)Δt) +
√

1 − Rm
2 F̂ (φ, μ, jΔt), (2)
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Figure 7: Vorticity forcing field at dimensionless time t = 1000. nf of the
left, the middle and the right figures are 20, 40, and 79, respectively. (Obuse,
Takehiro and MY [15])

where Δt is the time step interval and Rm = 0.982 is the memory coefficient
(Fig.7). F̂ is a random source generated at each time step as

F̂ (φ, μ, jΔt) =
nf+Δn∑

n=nf−Δn

n∑
m=−n
m�=0

F̂m
n (j)Y m

n (φ, μ), (3)

where the phase of F̂m
n (m ≥ 0) are random and uniformly distributed on

[0, 2π]. The amplitude of F̂m
n are also random with ‖F‖2 being a prescribed

value, and Δn = 2. The parameters are set as [13]; ν = 3.46 × 10−6,
Ω/ΩJ = 0.25, 0.5, 1.0, 2.0, and 4.0, with ΩJ ≡ 2π, (nf , ‖F‖2) = (20, 1.412×
10−2), (40, 3.929 × 10−2), (79, 1.415 × 10−1) The spectral method with the
spherical harmonics, ψ(φ, μ, t) =

∑NT
n=0

∑n
m=−n ψm

n (t)Y m
n (φ, μ), with NT =

199 is used for numerical integration. The initial velocity field is u = 0 for
every case.

We show in Fig.8 time-development of zonal mean of zonal angular mo-
mentum,

[Llon] ≡ 1
2π

∫ 2π

0
ulon

√
1 − μ2 dφ, (4)

where ulon = −
√

1 − μ2 (∂ψ/∂μ) is the longitudinal component of velocity.
Nozawa and Yoden [13] performed the time integration up to t = 1000,

and reported that a multiple zonal-band structure appears in the course of
time development and then enters a quasi-steady state with little change in
its flow pattern. However, in the longer time integration, we find that the
zonal jets still merge or disappear. In most cases, two prograde jets merge
and a retrograde jet between the two prograde jets disappears. At the final
stage of the time integration, a zonal-band structure with only a few broad
zonal jets is realized; two jets remain in run 2−6, 8−12, 14and 15, and three
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Figure 8: Long-time development of the zonal-mean zonal angular momen-
tum The temporal integrations have performed t = 0 − 1 × 105 in run
2 − 6, 8, 9, 14, and 15, t = 0 − 1.2 × 105 in run 10, t = 0 − 2.5 × 105 in run
11, t = 0− 1.6× 105 in run 12, t = 0− 5.3× 105 in run 16, t = 0− 5.2× 105

in run 17, and t = 0 − 5.7 × 105 in run 18. (Obuse, Takehiro and MY [15])

jets in run 16−18 (Fig.8). The structure with two broad jets, which consists
of a eastward and a westward jets, shows no correlation with whether the
eastward jet covers the Northern hemisphere or the Southern hemisphere.

The structure with two broad zonal jets is one of the long-time asymp-
totic states of the system. The inverse cascade does not proceed any more,
and the two zonal jets cannot merge to one zonal jet because of the con-
servation law of the total angular momentum of the system. Therefore,
according to our numerical results, the asymptotic states of the flow in run
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2 − 6, 8 − 12, 14, and 15 consists of two broad zonal jets dominating over
the whole sphere. On the other hand, the final states in run 16, 17, and
18 consists of three broad zonal jets. We tested the stability of the 3-jet
states by adding some artificial disturbances of limited magunitude, and
they were found to return to the 3-jet states, suggesting that the 3-jet states
are asymptotic states. It may be interesting to note that if the final states
are taken as laminar ones, the 3-jet states are in the stable region of Fig.4,
and the 2-jet states are similar to the globally stable solution φ2.

Huang et al. [12] has argued that the inverse energy cascade reaches
the 2-jet state when the forcing is white noise, but not definitely when it
is a Markovian random forcing. In our case of Markovian random forcing,
however, the inverse energy cascade does not stop but proceeds down to
lower wavenumbers in the course of long-time evolution. This suggests that,
in the forced 2D incompressible flow on a rotating sphere, the inverse energy
cascade cannot be arrested irrespective of the kind of the forcing, and the
asymptotic states consists of a very small number of zonal jets. This may
also imply that a forced 2D incompressible flow on a rotating sphere is not
an appropriate model for the dynamics of the planetary atmospheres which
show multiple zonal-band structure as seen on the Jupiter, as far as long-
time asymptotic states are concerned.

Last but not least, we remark that the mergers/disappearances of the
zonal jets seen in the simulations in this paper appears not to be explained
by an instability of laminar jets, as the zonal jets have a meridional scale
large enough to be linearly stable. This strongly suggests that, although
the energy is almost concentrated on the zonal components. the turbulence
superimposed on the zonal jets is essential for the mergers/disappearances.
This point of view is supported by a weakly nonlinear analysis of the zonal
jet on β-plane taking into account a simple background wavy flow, which
concludes that the zonal jet becomes unstable and disappears under the
effect of the background flow (Obuse, Takehiro and MY [16]).
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Energetic Variational Approaches for Complex Fluids
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1 Complex fluids — fluids with microstructures

The most common origin and manifestation of anomalous phenomena in complex fluids are different
“elastic” effects [29]. They can be the elasticity of deformable particles; elastic repulsion between
charged liquid crystals, polarized colloids or multi-component phases; elasticity due to microstruc-
tures, or bulk elasticity endowed by polymer molecules in viscoelastic complex fluids. These elastic
effects can be represented in terms of certain internal variables, for example, the orientational order
parameter in liquid crystals (related to their microstructures), the distribution density function in
the dumb-bell model for polymeric materials, the electric, magnetic field in electrorheological and
magneto-hydrodynamic fluids, the volume fraction in mixture of different materials etc. The differ-
ent rheological and hydrodynamic properties can be attributed to the special coupling between the
kinematic transportation of the internal variable and the induced elastic stress. In our energetic
formulation, this contributes to a competition between the kinetic energy and the elastic energy.

In complex fluids, it is the interaction between the (microscopic) elastic properties and the
(macroscopic) fluid motions that gives not only the complicated rheological phenomena, but also
formidable challenges in analysis and numerical simulations of the materials. In electro- and
magneto-rheological fluids, material inhomogeneity and electro-magnetic effects can also lead to
viscoelastic phenomena [29, 46, 6, 14]. In particular, how the deformation tensor F transports in
the flow field and how elastic energy described by a functional of F , W (F ), competes with the
kinetic energy in the flow play an important role in the study of complex fluids. In principle,
the deformation tensor F carries all the transport/kinematic information of the microstructures,
patterns and configurations in complex fluids.

As an example, for an isotropic viscoelastic fluid system, the following action functional sum-
marizes the competition between the kinetic and elastic energy:

A(x) =

∫ T

0

∫
Ω0

1

2
ρ|xt(X, t)|2 − λW (F ) dXdt, (1)

where v = xt(X, t) is the fluid velocity, x(X, t) is the mapping between the Lagrange coordinate
and the Eulerian coordinate system of the fluid, λ represents the ratio between the kinetic and
elastic energies, Ω0 is the original domain occupied by the material in the Lagrange coordinate.
The fluid incompressibility implies J = detF = 1. Using the Least Action Principle, we can derive
the momentum transport equation [1, 2, 16, 29]:

ρ(vt + v · ∇v) +∇p = ∇ · τ + f, (2)

where p is the pressure, f is the external force density, and τ is the extra stress given by τ =
μD(v) + λ(1/J)S(F )F T . Here S(F ) = [∂W/∂F ] takes the Piola Kirchhoff form. The deformation
tensor is transported through:

Ft + v · ∇F = ∇v · F. (3)
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These constitute a closed hydrodynamical system describing isotropic viscoelastic fluids. In the
absence of the viscosity, the system provide an Eulerian description of incompressible elasticity
[23, 38, 36]. In the case of “linear” elasticity, where W (F ) = H

2 |F |2 = H
2 tr(FF T ), the system

describes the infinite Weissenberg number Oldroyd-B viscoelasticity [29, 42].
Note that the viscous stress can be derived by either postulating the dissipation functional and

then using the Maximum Dissipation Principle [14, 20, 19, 17] or using the stochastic approach
[43, 22]. The later is consistent with the fluctuation-dissipation theorem in thermodynamics [28].
With this, the system satisfies the energy estimate:

1

2

d

dt

∫
Ω
[ρ(φ)|v|2 + λ(1/J)W (F )]dx+

∫
Ω
μ(φ)|D(v)|2dx = 0. (4)

While the above viscoelastic models have been applied to various real materials, the study of
other elastic complex fluids can be framed in an unified energetic variational approaches. Note that
the above isotropic viscoelastic systems only reflect the transport part of the material. For other
specific complex fluids, the elastic energy will take other more specific forms, in particular as those
for MHD [12] and electro-kinetic fluids [44]. There the energy contributions will also take effects
in the microscopic configuration and evolution equations.

2 EnVarA — Energetic Variational Approaches

The general energetic variational framework for classical mechanics had been developed by Rayleigh
and Onsager in their seminal works published in 1873 [45] and 1936 [40].

In isothermal situations, a dissipative system satisfies the Second law of thermodynamics

d

dt
Etotal = −Δ,

where Etotal is the total energy, including both the kinetic energy and the internal energy (in this
case, we do not need to distinguish the Helmholtz free energy and the internal energy), and Δ is
the dissipation functional which is equal to entropy production in this situation.

The Least Action Principle, which states that the equation of motion for a Hamiltonian system
can be derived from the variation of the action functional with respect to the flow maps, is really
the manifestations of the following general rule:

δE = force · δx.

It gives a unique procedure to derive the conservative forces for the system.
The Maximum Dissipation Principle, variation of the dissipation functional with respect to the

rate (such as velocity), gives the dissipative force for the system:

δ
1

2
Δ = force · δu.

Basic mechanics. The good example to illustrate the procedure is the following Hookean spring
model:

mxtt + γxt + kx = 0.

The equation posses the following energy law:

d

dt
(
1

2
mx2t +

1

2
kx2) = −γx2t .
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From the Hamiltonian, we can obtain the Lagrangian of the system
∫

1
2mx2t − 1

2kx
2 dt. Employing

the Least Action Principle, we arrive at the conservative part of the system.
The dissipative (damping) term is really by the Maximum Dissipation Principle, i.e. the varia-

tion of the dissipation with respect to the velocity.
The whole system is really the balance of all the forces. Notice the conservative part of the

system really reflect the short time (near initial data) dynamics, the transient behavior of the whole
dynamics. The dissipation part reflects the long time, near equilibrium, part of the dynamics. The
choice of the dissipation functional, the quadratic form of the velocity, reflects the linear response
theory for the near equilibrium dynamics.
Newtonian fluids. Next we look at the familiar model of the Navier-Stokes equation for incom-
pressible Newtonian fluids:

ut + u · ∇u+∇p = μΔu,

with incompressible constraint ∇ · u = 0.
Again the system posses the energy law:

d

dt

∫
1

2
|u|2 dx = −

∫
μ|∇u|2 dx.

The Hamiltonian part of dynamics, from the Least Action Principle, is the Euler equation, which
represents the short time (near initial data) dynamics. The dissipation part from the Maximum
Dissipation Principle is the Stokes equation, for the long time dynamics near equilibrium.
Diffusion equations. Finally, we want to look at the following parabolic equations:

ft = cΔf

. We rewrite the system into the following equivalent coupled system:

ft +∇ · (uf) = 0,

∇(cf) = −fu.

The first equation is just the common conservation of mass, which is just a change of variable
from the Lagrangian particle coordinate to Eulerian coordinate. Set the left hand side p = cf , it
immediate resembles to the Darcy’s law, with compressible equation of states the same as that of
ideal gas. Indeed, according to the first law of thermodynamics, the corresponding internal energy
density will be cf ln f . Moreover,

d

dt

∫
cf ln f dx = −

∫
fu2 dx.

In fact, we can see that the force corresponding to the pressure ∇(cf) is obtained from the
variation of the left hand side of the above equation with respect to the flow map x, while the
dissipative force −fu is from the variation of the right hand side with respect to the velocity u.

3 Electrorheological fluids and ionic solutions

How microstructures affect the bulk rheology of complex fluids is exemplified by electrorheological
fluids. The hydrodynamical properties in a electrokinetic flow is determined by the coupling of the
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transport of the concentration of the charges and the induced elastic force (the Lorentz force). The
mathematical system can be illustrated in the following system [4, 5, 44, 11, 3, 47, 48]:

ρ(ut + u · ∇u) +∇π = νΔu+ (n− p)∇V, ∇ · u = 0, (5)

nt + u · ∇n = ∇ · (Dn∇n− μnn∇V ), (6)

pt + u · ∇p = ∇ · (Dp∇p+ μpp∇V ), (7)

∇ · (ε∇V ) = n− p. (8)

Equations (5) represents the momentum equations where u is the fluid velocity, π is the pressure, ρ
is the fluid density and ν the fluid viscocity. In equation (5), (n−p)∇V is the macroscopic Lorentz
(or Coulomb) force. Equations (6), (7) and (8) form the Nernst-Planck-Poisson system of a binary
charge system, n and p are the densities of diffuse, negative and positive charges respectively.
Dn, Dp are the respective diffusivity constants and μn, μp are the respective mobility constants.
Dn, Dp and μn, μp are related by Einstein’s relation and the valence of the charged particles.

The elastic energy combines both the electric energy and the entropy (contributes to the diffusion
of the charge density). These different energy functions will generate various microstructures, as
other elastic complex fluids. The induced Lorentz force is also due to the kinetic transport of the
charged particles and electric energy balance.

The above system is very important in understanding the complicated behaviors relevant to
electrophysiology.

In [49], we studied the stationary configurations of the stationary Ernest-Planck-Poisson equa-
tions and the limiting behavior as the (non-dimensional) Debye constant becomes small. We give
the rigirous proof of the different Debye layer configuration between the electrial neutral and non-
neutral cases [32]. These special boundary layer properties are crucial in the application [4, 5].

In [50] we reformulated the above hydrodynamical system of ER fluids, using different variational
procedures. The method reveals the fundamental structures of the coupling and transport in these
systems. We notice the work [41, 39] on the convection-diffusion equations. We obtained the well-
posedness results of the system, based on our energetic variational approach. Moreover, combined
with our diffusive interface methods, we developed systems/numerical algorithms to model the
deformation of the vesicle membranes with preferable charge (ions) selections.

In [53], a hydrodynamical model for non-diluted ER fluids had been established and the numer-
ical results had shown good agreements with the experimental data. We are studying the analytical
properties on these system with nonlocal interactions or correlations and extend the theory to the
ionic biological fluids and their interaction with proteins (ion channels) [24, 25].
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On the term-wise estimates for the norm-inflation
solution of the Navier-Stokes flows

Okihiro Sawada∗

1 Introduction

This note is based on the paper [13].

We consider the nonstationary incompressible viscous flow of the ideal fluid in

the whole space R3. This is mathematically described as the Cauchy problem of the

Navier-Stokes equations:

(NS)

⎧⎨
⎩

ut −Δu+ (u,∇)u+∇p = 0 in R3 × (0, T ),
∇ · u = 0 in R3 × (0, T ),
u|t=0 = u0 in R3.

This Cauchy problem is called (NS) in here. We define the notations of derivatives

as follows: ut := ∂tu := ∂u/∂t, ∂j := ∂/∂xj for j = 1, 2, 3, ∇ := (∂1, ∂2, ∂3),

Δ :=
∑3

j=1 ∂
2
j . Here, for vectors a = (a1, a2, a3) and b = (b1, b2, b3), a · b or

(a, b) denotes
∑3

j=1 a
jbj. The velocity (vector field) of the fluid u = (u1, u2, u3) =

(u1(x, t), u2(x, t), u3(x, t)) and its pressure (scalar) p = p(x, t) are unknown func-

tions at the place x ∈ R3 and time t ∈ (0, T ), while the initial velocity u0 =

(u1
0(x), u

2
0(x), u

3
0(x)) is given. It is natural to impose the compatibility condition on

u0, that is, ∇ · u0 = 0 holds for all x ∈ R3.

It is a famous open problem whether one can obtain the uniqueness and smooth-

ness of Leray’s weak solutions constructed in [11], that is, (NS) admits a time-global

unique solution in L2(R3). In this note our aim is different to this, so we do not

penetrate into its detail.

Bisides, by the Duhamel principle we derive the integral equation from (NS)

(INT) u(t) = etΔu0 −
∫ t

0

e(t−τ)ΔP(u(τ),∇)u(τ)dτ.

Here, we denote the heat semigroup etΔ := Gt∗, the Gauss kernelGt(x) :=
1

(4πt)3/2
e−

|x|2
4t ,

convolution with respect to spatial variables f ∗ g(x) :=
∫
R3 f(x − z)g(z)dz, the

∗Dep. Math. Design Eng., Gifu University, Yanagido 1-1, 501-1193, Japan
E-mail address : okihiro@gifu-u.ac.jp

－37－



Helmholtz projection P := (δij + RiRj)i,j=1,2,3, Kronecker’s delta δij = 1 if i = j,

δij = 0 if i �= j, the Riesz transform Ri := ∂i(−Δ)−1/2 := F−1
√−1ξi

|ξ| F . The Fourier

transform is defined by F , and F−1 is its inverse.

We call the solution of (INT) a mild solution. The formal equivalency be-

tween (INT) and (NS) can be justified in the classical sense when u has a sufficient

regularity, provided if p is under the suitable assumption, for example,

p =
n∑

i,j=1

RiRju
iuj. (1.1)

We rather discuss (INT) and mild solutions than (NS) and classical solutions. The

function space C([0, T ];X) is the natural one to which mild solutions belong as long

as mild solutions exist, when u0 ∈ X with a certain Banach space X. Mild solutions

are usually constructed by the limit of the successive approximation

u1(t) := etΔu0 and uj+1(t) := u1 − B(uj) for j ∈ N, (1.2)

where

B(u, v) :=
∫ t

0

e(t−τ)ΔP(u(τ),∇)v(τ)dτ and B(u) := B(u, u). (1.3)

We discuss on the ill-posedness of the Navier-Stokes equations in the whole space

with initial data in the critical spaces due to the behavior of mild solutions. This note

is contributed to understand for such a negative results by Bourgain and Pavlovic

[3]. In fact, they showed a lack of equicontinuity of mild solutions within Ḃ−1
∞,∞.

Theorem 1.1 (Bourgain-Pavlovic [3]). For δ ∈ (0, 1) and T ∈ (0, 1) there exists an

initial velocity u0 ∈ Ḃ−1
∞,∞(R3) such that ‖u0‖Ḃ−1∞,∞ < δ with ∇ · u0 = 0, there exists

a mild solution u in C([0, T ]; Ḃ−1
∞,∞) and ‖u(T )‖Ḃ−1∞,∞ > 1/δ.

The definition of function spaces will be denoted in Section 2. One of our pur-

poses is to give a rigorous proof of their assertion. We also state the following

results:

Theorem 1.2 (S. [13]). For T ∈ (0, 1) there exists a u0 such that ‖uj(T )‖Ḃ−1∞,∞(R3)

does not converge.

The proof of theorems will be given in Section 3. The assertion of Theorem 1.2

does not imply the blow-up of mild solutions. This says that one has to take a

subsequence of approximation for the convergence.

We now refer to the motivation of recent works related to the results above.

To solve (NS) uniquely and time-globally in 3-dimension, one may consider the

following steps: firstly the smooth time-local solution is constructed, secondly the
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solution is extended uniquely and time-globally. Along this strategy, Kato and Fujita

[4] introduced the notion of mild solutions, and proved that (NS) admits a unique

time-local smooth solution, when u0 ∈ H
n
2
−1(Rn).

Some researcher wanted to eliminate the smoothness on the initial data, since the

smoothness of the solutions is automatically obtained by the usual smoothing effect

of solutions to equations of parabolic type. For this purpose Kato [7] (in the whole

space) and Giga and Miyakawa [6] (in a bounded domain) studied the properties of

the heat semigroup in the Lebesgue spaces (using Lp−Lq smoothing estimates), and

they proved that (NS) admits a time-local unique smooth solution in Ln(Rn) for all

n ≥ 2. Note that Ln(Rn) is a scaling invariant space (to which self-similar solutions

blong) under the parabolic scaling uλ(x, t) := λu(λ2x, λt), that is, ‖u‖n = ‖uλ‖n for

all λ > 0. After their articles, there are a lot of contributions of local well-posedness

in several scaling invariant spaces. Actually, Kato and Ponce did it in Ḣ
n
2
−1

2 in [8],

Kozono and Yamazaki showed it in Ḃ
−1+n/p
p,∞ for p ∈ (n,∞) in [10]. In 2001 Koch

and Tataru proved it by [9] in BMO−1. The function spaces which are concerned

are wider and wider:

Ḣ
n/2−1
2 ⊂ Ln ⊂ Ḃ−1+n/p

p,∞ ⊂ BMO−1 = Ḟ−1
∞,2 ⊂ Ḟ−1

∞,∞ = Ḃ−1
∞,∞

for p ∈ (n,∞). These embeddings are continuous (in the norms). Notice that Ḃ−1
∞,∞

is possibly the biggest function space in the following sense: Ḃ−1
∞,∞ contains all scaling

invariant spaces, and one can solve the linearized problem (the heat equations) in

Ḃ−1
∞,∞. This implies that all self-similar solution belongs to Ḃ−1

∞,∞. Therefore, from

view point of pure mathematical interests, many researchers tried and still try to

investigate (NS) in such function spaces.

2 Function spaces

We introduce the function spaces in this section. Let n ∈ N, s ∈ R and let

1 ≤ p, q ≤ ∞. The set of test functions is denoted by D or, C∞
c (Rn). Its topological

dual stands for D′, which is the set of distributions. The set of rapidly decreasing

functions (in the sense of Schwartz) is written as S; the set of tempered distributions

is S ′. For p ∈ [1,∞], Lp := Lp(Rn) := {f ∈ L1
loc; ‖f‖p < ∞} is the Lebesgue space

of p-th integrable functions with the norm ‖ · ‖p. We often omit the notation of the

domain (Rn).

To define the Besov spaces we now introduce the Paley-Littlewood decomposi-

tion. Let us call {φj}∞j=−∞ the Paley-Littlewood decomposition if φ̂0 ∈ C∞
c (Rn),

supp φ̂0 ⊂ {
ξ; 1/2 ≤ |ξ| ≤ 2

}
, φ̂j(ξ) = φ̂0(2

−jξ) and
∑∞

j=−∞ φ̂j(ξ) = 1 except for

ξ = 0, that is, a dyadic decomposition of the unity in the phase space. Let Z ′ be
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the topological dual space of

Z :=
{
f ∈ S ; ∂αf̂(0) = 0, ∀α ∈ Nn

0

}
.

Definition 2.1. For s ∈ R and 1 ≤ p, q ≤ ∞ we define the homogeneous Besov

space by

Ḃs
p,q :=

{
f ∈ Z ′; ‖f‖Ḃs

p,q
< ∞

}
,

‖f‖Ḃs
p,q

:=
[∑∞

j=−∞ 2jsq‖φj ∗ f‖qp
]1/q

if q < ∞,

‖f‖Ḃs
p,∞

:= sup−∞≤j≤∞ 2js‖φj ∗ f‖p if q = ∞.

Note. (1) By the definition of φj it is clear that ‖f‖Ḃs
p,q

= 0 if f ∈ P :=

{polynomials}. Thus, ‖ · ‖Ḃs
p,q

and ‖ · ‖Ḟ s
p,q

are seminorms. The quotient spaces

divided by polynomials Ḃs
p,q/P and Ḟ s

p,q/P are Banach spaces. See e.g. [14]

(2) Ḃs
p,q is a subset of S ′ if the exponents satisfy

either “s < n/p” or “s = n/p and q = 1”. (2.1)

Under this conditions, the operators F , etΔ, P, Ri can be defined on the homoge-

neous spaces as the tempered distribution sense. Also, it is natural to select the

representative element such that

f =
∞∑

j=−∞
φj ∗ f in S ′. (2.2)

See the details in Bourdaud [1] or Kozono and Yamazaki [10]. Throughout of this

note, we only treat the homogeneous space under the exponents satisfying (2.1).

In this note we mainly deal with the case p = ∞. It is well-known that there are

several equivalent norms of the Besov norm, for example,

‖f‖Ḃ−1∞,∞ ∼ ‖f‖ := sup
ρ>0

√
ρ‖eρΔf‖∞ for f ∈ Ḃ−1

∞,∞.

We rather compute ‖·‖, in what follows, for the sake of simplicity of the dependance

of constants.

3 Outline of the proofs of Theorems

In this section we refer to the outline of the proofs of Theorem 1.1 and 1.2. Theorems

follow from the technique of Bourgain [2] for establishing the similar ill-posedness

theorem for the KdV equation. His method is so-called “norm inflation”. Before

stating the outline of the proof, we now fix the initial velocity, concretely. In what

follows, the initial velocity is fixed to be of the form

u0(x) :=
Q√
r

r∑
s=1

hs

[
e2 cos(ks · x) + e3 cos(ls · x)

]
, (3.1)
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that is to say,

u0 =
(
0,

Q√
r

r∑
s=1

hs cos(hsx1),
Q√
r

r∑
s=1

hs cos(hsx1 − x2)
)

with parameters Q > 0 and large r ∈ N; other notations are as follows:

e2 :=
−→e 2 := (0, 1, 0) (= vs),

e3 :=
−→e 3 := (0, 0, 1) (= v′s),

hs := h(s) := 2s(s−1)/2γs−1η for s ∈ N,
ks := (hs, 0, 0),
ls := (hs,−1, 0) (= k′

s).

Here γ, η ∈ N are also parameters; vs, v
′
s, k

′
s are the notation in [3]. The specific

time T when the norm-inflation occurs can be regarded as a parameter, replacing

the time variable [t �→ λt] with some λ > 0. Using this scaling argument, we can

relax the restriction T < 1. However, for the sake of simplicity of the proof, and for

the readers’ convenience, T remains as a given small number in this paper.

It is clear by definition that u0(x) = (0, u2
0(x1), u

3
0(x1, x2)) and u0 ∈ Ḃ−1

∞,∞ by the

simple caculation below. Moreover, since u0 is a uniformly continuous function, one

can get the continuity of mild solutions in time up to the initial time; see e.g. [12].

It should be emphasized that we are able to fix the directions of vs = e2 and v′s = e3
without loss of generality, since (NS) is invariant under the Galilee transformation.

In addition, it should be more emphasized that the selections of vs and v′s are slightly
different to those of [3]; that is a crucial point noticed by Yoneda.

It is easy to see that hs << hs+1 for large s or γ; this property is so-called ‘lacu-

nary’, and is benefit to control the effect of the interaction between each frequency.

The compatibility condition ∇ · u0 = 0 is satisfied by e2 · ks = 0 and e3 · ls = 0,

obviously. It is clear that u0 is a smooth periodic function. This implies that the

mild solution is also periodic with the period 2π, regarded as a function on the torus

(2πT)3, as long as the mild solution exists. So, the kinematic energy is bounded by

the initial energy 1
2
‖u0‖2L2((2πT)3); this is huge but finite.

Let u1 be the first approximation of iteration scheme, that is, the solution to the

heat equation with initial datum given by (3.1):

u1(x, t) =
Q√
r

r∑
s=1

hs

[
e2e

−h2
st cos(hsx1) + e3e

−(h2
s+1)t cos(hsx1 − x2)

]
.

For t > 0 we obtain that u1(t) := u1(·, t) ∈ L∞ ∩BMO−1, even though these norms

are large.

It is well-known that one can construct the unique mild solution with initial

velocity given by (3.1) in the L∞-framework. Moreover, in [5] one can estimate

for the possible existence time T∗ (until when we may construct a mild solution by
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iteration scheme in C([0, T∗];L∞)) bounded from below: T∗ ≥ C/‖u0‖2∞ ∼ h−2
r with

the universal constant C > 0. Indeed, by hr >> r we see that

‖u0‖∞ ∼ Q√
r

r∑
s=1

hs ∼ hr >> 1 if r >> 1.

Therefore, T∗ might be very tiny. However, we observe the Besov norm ‖ · ‖ as

‖u0‖ ∼ Q√
r
<< 1 if r >> 1. (3.2)

In fact,

‖u0‖ = supρ>0

√
ρ‖eρΔu0‖∞

= supρ

√
ρ Q√

r
supx

∣∣∣∑r
s=1 hs[e2e

−h2
sρ cos(ks · x) + e3e

−(h2
s+1)ρ cos(ls · x)]

∣∣∣
≤ C∗

Q√
r

with the numerical constant C∗ independent of parameters. Roughly speaking, we

derive these estimate replaced from sum by integration.

Now we recall the successive approximation and its modification of convergence

version. A mild solution u is usually constructed as the limit of function series

{uj}∞j=1 (or, its subsequence if necessary) defined by (1.2). Since u0 ∈ BUC, {uj}∞j=1

is a Cauchy sequence in C([0, T∗];BUC) provided T∗ is chosen small enough as h−2
r .

Thus, it has a uniform convergence limit u as the mild solution in [0, T∗]. In order

to observe the norm inflation of mild solutions, we always concern at T > T∗.
Throughout this paper, we use the standard terminology that the bilinear terms

denote by (1.3). Let us put the sequence {vk}∞k=1 as

v1(t) := u1(t) := etΔu0,
vk+1(t) := uk+1(t)− uk(t) = −B(uk) + B(uk−1)

for k ∈ N. Therefore, we may rewrite uj and the mild solution u = limj→∞ uj as

uj(t) =

j∑
k=1

vk(t) and u(t) =
∞∑
k=1

vk(t). (3.3)

In what follows, we shall calculate vk(t) and estimate the Besov norm of them at

t = T . Moreover, we easily notice that

vk = (0, 0, v3k(x1, x2, t)) for k ≥ 2. (3.4)

proof of Theorem 1.1. The proof of Theorem 1.1 is carried out by the suitable se-

lection of the parameters (Q, r, γ, η) for each δ, T ∈ (0, 1). We see that ‖u0‖ < δ as

well as

‖v1(T )‖ ≤ ‖Gt‖1‖u0‖ ≤ C∗
Q√
r
=: S < δ. (3.5)
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Also, v2 = M2 +R2 and M2 := e3
Q2

4
e−t sinx2 with

‖v2(T )‖ � ‖M2(T )‖ = C�Q
2 =: L ≥ 2

δ
. (3.6)

Here A � B means the almost equal, that is, A = B + R such that |R| < 1
3
|B| for

the positive (scalar) valued, and ‖R‖ < 1
3
‖B‖ for functions; C� > 0 is a numerical

constant. We may see that M2 is the major term of v2 at t � T . Reversely, R2 is

the collection of the remainder terms of v2 at t � T , that is, ‖R2‖ ≤ 1
3
‖M2‖. It

is remarkable that Mk(t) no longer might be the leading term if we take neither a

different norm nor t << T . We further prove that v3 = M3 +R3 with

M3 := − Q3

8
√
r
te−t

r∑
s=1

hse
−h2

st{cos(hsx1 + x2) + cos(hsx1 − x2)}e3,

‖R3(T )‖ < 1
3
‖M3(T )‖ and

‖v3(T )‖ � ‖M3(T )‖ � Q3
√
T

8
√
2er

� Q2

4η
S (3.7)

for t � T � η−2. Moreover, we see that for v4

v4(T ) = M4(T ) + R4(T ), M4(T ) = −KM2(T ), K :=
(1− 3e−2)Q2

8rη2
> 0.

By induction one may also show that vk(T ) = Mk(T ) + Rk(T ) with ‖Rk(T )‖ <
1
3
‖Mk(T )‖ and

M2k−1(T ) = (−K)k−2M3(T ) and M2k(T ) = (−K)k−1M2(T ) (3.8)

for k ≥ 2 with t � T � η−2. Once we obtain these estimates, it follows from (3.3):

‖u(T )‖ ≥ ‖v2(T )‖ −
∞∑
k=2

(
4K

3

)k−1

‖v2(T )‖ ≥ L

2
,

if K < 1/4. Here we simply discard the sum of odd numbers, since S is much smaller

than L. Finally, the choice of parameters yields that S � δ and L � 2
δ
.

We refer to the selection of the parameters (Q, r, γ, η). Firstly, we always fix

γ := 3. We impose that η ∈ N with η ≥ 2 large such that η ∼ T−1/2 for T ∈ (0, 1).

For any δ ∈ (0, 1), we fix Q > 1 large such that Q >
√

3
C�δ

. Finally, we choose

r ∈ N large such that r > 4C2
∗δ

−4, T ∼ η−2 > h−2
r and K < 1

4
. This completes the

proof of Theorem 1.1.

proof of Theorem 1.2. Let us assume T < 1/4 without loss of generality. We choose

the initial datum u0 given by (3.1). Determine γ = 3 and r = 2. Select η ∈ N as
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η ≥ 2 and η � T−1/2. Let Q be taken large such that K > 4. Since ‖Rk(T )‖ <
1
3
‖Mk(T )‖ for k ∈ N, by (3.3) one can easily observe that

‖u4j+2(T )‖ �
2j+1∑
k=1

(−K)k−1‖M2(T )‖

for all j. We, in here, discard the odd numbers and the remainder terms for the sake

of simplicity. As conclusion, ‖u4j+2(T )‖ tends to infinity as j → ∞. This completes

the proof of Theorem 1.2.
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1 Introduction

1.1 Problem

We study the life span of positive solutions of the Cauchy problem for a semi-
linear heat equation

⎧⎨
⎩

∂u

∂t
= Δu + F (u), (x, t) ∈ R

n × (0,∞),

u(x, 0) = φ(x) ≥ 0, x ∈ R
n,

(1)

where n ≥ 2. Let φ be a bounded continuous function on R
n. Throughout this

talk, we assume that F (u) satisfies

F (u) ≥ up for u ≥ 0, (2)

with p > 1.
In this talk, we show a upper bound on the life span of positive solutions of

equation (1) for non-decaying initial data. We define the life span (or blow up
time) T ∗ as

T ∗ = sup{T > 0 | (1) possesses a unique classical solution in R
n × [0, T )}.

(3)

1.2 Known results for F (u) = up

Results in [1, 2, 6, 7, 9, 16] are summarized as follows:
(i) Let p ∈ (1, 1+2/n]. Then every nontrivial solution of the equation (1) blows
up in finite time.
(ii) Let p ∈ (1 + 2/n,∞). Then the equation (1) has a time-global classical
solution for some initial data φ.

Especially for non-decaying initial data, it was shown that the solution of
the equation (1) blows up in finite time for any p > 1. This result was proved
in [8, 10].
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Recently, several studies have been made on the life span of solutions for (1).
See [3, 4, 5, 8, 11, 12, 13, 14, 15, 17, 18], and references therein.

Gui and Wang [5] proved the following results when initial data takes the
form φ(x) = λψ(x).
(i) limλ→∞ T ∗ · λp−1 = 1

p−1‖ψ‖1−p
L∞(Rn).

(ii) If lim|x|→∞ ψ(x) = k, then limλ→0 T ∗ · λp−1 = 1
p−1k1−p.

The purpose of this talk is to give a upper bound of the life-span of the
solution for the equation (1) with initial data having positive inferior limit at
space infinity.

2 Main results

2.1 Conic neighborhood

In order to state main results, we prepare several notations. For ξ′ ∈ S
n−1, and

δ ∈ (0,
√

2), we set conic neighborhood Γξ′(δ):

Γξ′(δ) =
{

η ∈ R
n \ {0};

∣∣∣∣ξ′ − η

|η|
∣∣∣∣ < δ

}
, (4)

and set Sξ′(δ) = Γξ′(δ) ∩ S
n−1. Define

φ∞(x′) = lim inf
r→+∞ φ(rx′)

for x′ ∈ S
n−1. We note that φ∞ ∈ L∞(Sn−1).

2.2 Main results

Now, we state a main result.

Theorem 1. Let n ≥ 2. Assume that there exist ξ′ ∈ S
n−1 and δ > 0 such that

ess.inf
x′∈Sξ′ (δ)

φ∞(x′) > 0. Then the classical solution for (1) blows up in finite time,

and the blow up time is estimated as

T ∗ ≤ 1
p − 1

(
ess.inf

x′∈Sξ′ (δ)
φ∞(x′)

)1−p

. (5)

Once we admit Theorem 1, we can prove the following corollary immediately.

Corollary 1. Suppose that ‖φ∞‖L∞(Sn−1) > 0. Assume that for arbitrary small
ε > 0 there exist η′ ∈ S

n−1 and δ > 0 such that

ess.inf
x′∈Sη′ (δ̃)

φ∞(x′) ≥ ‖φ∞‖L∞(Sn−1) − ε. (6)

Then the classical solution for (1) blows up in finite time, and the blow up time
is estimated as

T ∗ ≤ 1
p − 1

‖φ∞‖1−p
L∞(Sn−1). (7)
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Proof of Corollary 1. For arbitrary small ε > 0, we obtain

T ∗ ≤ 1
p − 1

(‖φ∞‖L∞(Sn−1) − ε
)1−p (8)

from Theorem 1. Taking ε → 0, we obtain the desired result.

3 Outline of proof

3.1 Preliminaries

For ξ′ ∈ S
n−1 and δ > 0 as in the theorem, we first determine the sequences

{aj} ⊂ R
n and {Rj} ⊂ (0,

√
2). Let {aj} ⊂ R

n be a sequence satisfying
that |aj | → ∞ as j → ∞, and that aj/|aj | = ξ′ for any j ∈ N. Put Rj =
(δ
√

4 − δ2/2)|aj |.
For Rj > 0, let ρRj be the first eigenfunction of −Δ on BRj (0) = {x ∈

R
n; |x| < Rj} with zero Dirichlet boundary condition under the normalization∫

BRj
(0)

ρRj (x)dx = 1. Moreover, let μRj be the corresponding first eigenvalue.

For the solutions for (1), we define

wj(t) =
∫

BRj
(0)

u(x + aj , t)ρRj (x)dx. (9)

Here, we introduce the properties of the initial value {wj(0)}.
Proposition 1. (i) We have

lim inf
j→+∞

wj(0) ≥ ess.inf
x′∈Sξ′ (δ)

φ∞(x′). (10)

(ii) We have

lim
j→+∞

log
(
1 − μRj

w1−p
j (0)

)
−μRj w

1−p
j (0)

= 1. (11)

Proof. (i) Changing the variable and using the relation ρπ
2
(x) = (2Rj/π)nρRj (2Rjx/π),

we have

wj(0) =
∫

BRj
(0)

φ(x + aj)ρRj (x)dx

=
(

2Rj

π

)n ∫
B π

2
(0)

φ

(
2Rj

π
x + aj

)
ρRj

(
2Rj

π
x

)
dx

=
∫

B π
2

(0)

φ

(
2Rj

π
x + aj

)
ρπ

2
(x) dx. (12)
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By Fatou’s lemma, we obtain

lim inf
j→∞

wj(0) ≥
∫

B π
2

(0)

lim inf
j→∞

φ

(
2Rj

π
x + aj

)
ρπ

2
(x) dx. (13)

In order to complete the proof of Proposition 1, we prepare the following lemma.

Lemma 1. For x ∈ Bπ
2
(0), the following properties hold.

(i)
(2Rj/π)x + aj

|(2Rj/π)x + aj | =
(2Rk/π)x + ak

|(2Rk/π)x + ak| for any j, k ∈ N.

(ii) (2Rj/π)x + aj ∈ BRj (aj) ⊂ Γξ′(δ).
(iii) |(2Rj/π)x + aj | → ∞ as j → ∞.

Proof of Lemma 1. See [17].

Using the lemma, we obtain

lim inf
j→∞

wj(0)

≥
∫

B π
2

(0)

lim inf
j→∞

φ

(
2Rj

π
x + aj

)
ρπ

2
(x) dx

=
∫

B π
2

(0)

lim inf
j→∞

φ

⎛
⎝

∣∣∣∣2Rj

π
x + aj

∣∣∣∣ ·
2Rj

π x + aj∣∣∣ 2Rj

π x + aj

∣∣∣

⎞
⎠ ρπ

2
(x) dx

=
∫

B π
2

(0)

lim inf
r→∞ φ

⎛
⎝r ·

2Rj

π x + aj∣∣∣ 2Rj

π x + aj

∣∣∣

⎞
⎠ ρπ

2
(x) dx

≥ ess.inf
x′∈Sξ′ (δ)

φ∞(x′)
∫

B π
2

(0)

ρπ
2

(x) dx

= ess.inf
x′∈Sξ′ (δ)

φ∞(x′). (14)

(ii) From the fact that

0 ≤ lim sup
j→∞

μRj w
1−p
j (0) ≤ lim

j→∞
μRj ·

(
lim inf
j→∞

wj(0)
)1−p

= 0, (15)

we have

lim
j→∞

μRj w
1−p
j (0) = 0. (16)

Hence, we obtain (11).
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3.2 Proof of Theorem 1.

First, we shall focus on the upper bound of the life span of wj . Multiplying
both sides of the equation (1) by ρRj and integrating over BRj (0), we obtain
the following ordinary differential inequality of Bernoulli type:⎧⎪⎨

⎪⎩
w′

j ≥ wp
j − μRj wj , t ∈ (0, T ∗

wj
),

wj(0) =
∫

BRj
(0)

φ(x + aj)ρRj (x)dx,
(17)

where T ∗
wj

is the life span of wj . By a simple calculation, the life span T ∗
wj

is
estimated from above as follows:

T ∗
wj

≤
log

(
1 − μRj w

1−p
j (0)

)
−(p − 1)μRj

. (18)

Using (10) and (11), we see that

lim sup
j→∞

T ∗
wj

≤ lim sup
j→∞

log
(
1 − μRj w

1−p
j (0)

)
−(p − 1)μRj

= lim sup
j→∞

log
(
1 − μRj w

1−p
j (0)

)
−μRj w

1−p
j (0)

· w1−p
j (0)
p − 1

=
1

p − 1
lim

j→∞

log
(
1 − μRj w

1−p
j (0)

)
−μRj w

1−p
j (0)

·
(

lim inf
j→∞

wj(0)
)1−p

≤ 1
p − 1

(
ess.inf

x′∈Sξ′ (δ)
φ∞(x)

)1−p

. (19)

On the other hand, we have

lim sup
j→∞

T ∗
wj

≥ T ∗. (20)

Indeed, for fixed j ∈ N and t ∈ (0, T ∗), if u(t) remains bounded then wj(t) is
finite. This completes the proof. �
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Bifurcation analysis for the Lugiato-Lefever equation

Tomoyuki Miyaji∗ Isamu Ohnishi § Yoshio Tsutsumi¶

1 Introduction
We show some results on bifurcation analysis and numerical simulation for the
Lugiato-Lefever equation (LLE) on a 2-dimensional domain. LLE is a cubic nonlin-
ear Schrödinger equation (NLS) with damping, detuning and driving force. It is a
model for describing the evolution of transversal patterns in an optical cavity with a
Kerr medium [1]. It is given by

∂tE = − (1 + iθ)E + ib2ΔE + i|E|2E + Ein, x ∈ Ω, t > 0, (1)

where x = (x1, . . . , xd)
T ,Ω ⊆ Rd, and Δ = ∂2

x1
+ · · ·+ ∂2

xd
is the Laplacian.

The parameters b2, θ ∈ R are diffraction and detuning parameters, respectively.
E = E(x, t) ∈ C denotes a slowly varying envelope of electric field. Ein ≥ 0 denotes
the intensity of spatially homogeneous driving field, and it is a main control parameter.

Numerical simulations suggest that LLE in 1- or 2-dimensional space has solitary
wave solutions in a certain range of parameters[2]. See Figure 1.

In contrast to NLS, LLE does not satisfy any conservation law of NLS. Typically,
a solitary wave solution of LLE appears as an equilibrium point. Moreover, for 2D
LLE, a localized spot can undergo a Hopf bifurcation, and it results in a spatially
localized and temporally oscillating solution called oscillon [3]. Such solutions are
understood as dissipative structures resulting from the balance between gain and loss
of energy. Besides, no explicit analytical solutions are known for LLE. The authors
have studied stability and bifurcation of a stationary solution for 1D LLE [4], [5].
They have proved that a small localized roll can bifurcate from homogeneous state in
Ω = R, and that two mixed-mode solutions can bifurcate as a secondary bifurcation
in Ω = T1 � (−1/2, 1/2) ⊂ R, which are considered to be “germs” of localized
structures[4]. In addition, they have proved the Strichartz estimates for the linear
damped Schrödinger equation with potential and external forcing and investigate the
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Fig. 1 Stationary solitary waves. (Left) Ω = (0, 64) ⊂ R1, b2 = 1, θ = 1.7, Ein �
1.21491; (right) Ω = (0, 96)2 ⊂ R2, b2 = 1, θ = 1.2, Ein � 0.990454.

stability of certain stationary solutions for LLE on T1 under the initial perturbation
within the framework of L2[5].

We are interested in oscillons for 2D LLE. As a first step, we study steady-state
bifurcation of spatially homogeneous steady state in a mathematically rigorous sense,
because it is responsible for the occurrence of stationary localized patterns. For
this purpose, we apply the center manifold reduction and group theoretic bifurcation
theory [6].

2 Preliminaries
Here we note some basic results on spatially homogeneous state. It serves a foundation
of bifurcation analysis. See also [2].

The spatially homogeneous steady state ES is given implicitly by

ES =
Ein

1 + i(θ − α)
, (2)

where α = |ES |2. Note that if θ <
√
3, then Ein ≥ 0 and α ≥ 0 have one-to-one

correspondence because they are related by the following equation:

E2
in = α

{
1 + (θ − α)2

}
. (3)

Thus we can regard α as a bifurcation parameter instead of Ein. For the convenience
of bifurcation analysis, we introduce new unknown functions u1, u2 by E = ES(1 +
u1 + iu2). u1 and u2 are real-valued functions satisfying

{
∂tu1 = −u1 + (θ − α)u2 − b2Δu2 − α

{
2u1u2 + u2(u

2
1 + u2

2)
}
,

∂tu2 = (3α− θ)u1 − u2 + b2Δu1 + α
{
3u2

1 + u2
2 + u1(u

2
1 + u2

2)
}
.

(4)

ES corresponds to the trivial equilibrium point of this system.
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Linear stability analysis reveals that the trivial equilibrium of (4) is linearly stable
for α < 1 and it loses stability at α = 1.

3 Discussion
First, we study (4) on Ω = (−1/2, 1/2)2 ⊂ R2 with periodic boundary conditions.
It is the same setting as numerical simulation. Taking into account of the symmetry
of the system, we can obtain a catalog of model-independent bifurcation behaviors.
Then we apply the center manifold reduction near the modulational instability of
homogeneous state. The symmetry of LLE restricts the function form of the vector
field on the center manifold. It helps to study model-specific behaviors. The symmetry
of LLE is described by Γ = D4 � T2, where � means semidirect product of groups.
D4 is generated by the reflection across x2 = x1 and π/2-rotation about the origin.
T2 is a group of translations modulo 1.

Suppose that k = (l, n) ∈ Z2 is a critical wave vector of modulational instability.
We may assume l ≥ n ≥ 0 without loss of generality. Since we consider single-mode
bifurcations, we assume that the solution (l, n) ∈ Z2 to l2+n2 = k for a given k ∈ N is
unique in the above sense, There are three cases to be distinguished: i) l = n > 0; ii)
l > n = 0; iii) l > n > 0. In the first two cases, the center manifold is 4-dimensional,
while that is 8-dimensional in the third case.

We classify the possible bifurcations for (4) in a small neighborhood of the bifur-
cation point in a mathematically rigorous sense. Especially, it turns out that all
bifurcating solutions are unstable near the bifurcation point. However, numerical
simulations suggest that there exist stable patterns. In order to capture them, we
have to study bifurcations with higher codimension.
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Reaction-diffusion approximation and related topics

Hirokazu Ninomiya∗

The dynamics in nature are quite complicated. One of the reasons is the coexistence
of spatio-temporal stages of phenomena. A system can include the several scales, for
the simplest case. For example, it includes fast reaction terms when compared with
the other terms. To decompose two scales, a singular limit analysis is a powerful tool.
This type of the singular limit is called a fast reaction limit or a reaction-diffusion
approximation. The interest of this study is two-fold : on the one hand, we derive the
limit problem for reaction-diffusion systems with fast large terms, on the other hand we
provide approximations of non-reaction-diffusion systems by means of reaction-diffusion
systems.

In this talk we consider the following reaction-diffusion system with a small param-
eter ε:

uε
t = DΔuε + F (uε) +

1

ε
G(uε), (1)

where uε ∈ R
m and F ,G are smooth functions from R

m to R
m, D is a diagonal matrix

with positive (or nonnegative) components. Multiplying ε to the above equation, we
have

εuε
t = εDΔuε + εF (uε) +G(uε).

We may expect
G(lim

ε→0
uε) = 0.

This suggests that the solution converges to the equilibria of the fast reaction system
εut = G(u). The null set of G is denoted by E, i.e.,

E := {u ∈ R
m | G(u) = 0}.

If E consists of discrete points, the limit problem possesses the transition layers (for
example, see [2]).

In this talk we consider when E is a curve or a two dimensional surface. However the
situation may change by the singularity of E. For example, let us consider the following

∗Department of Mathematics, Meiji University, 1-1 Higashi Mita, Tama-ku, Kawasaki, 214-8571
Japan

－54－



two-component problem [3], which we will refer to as Problem (P ε),

(P ε)

⎧⎪⎨
⎪⎩

u1t = d1Δu1 + f(u1)− 1

ε
s1u1u2, in Ω× R

+,

u2t = d2Δu2 + g(u2)− 1

ε
s2u1u2, in Ω× R

+,

with the Neumann boundary conditions and the initial conditions where Ω is a smooth
domain of RN , and ε, s1, s2, d1, d2, λ and μ are positive constants, f(s) = λs(1 − s),
g(s) = μs(1− s). In this case E consists of two segments:

{(u1, u2) | u1 ≥ 0, u2 = 0} ∪ {(u1, u2) | u1 = 0, u2 ≥ 0}.

Since E is not continuously differentiable at the origin, the flux of the limit problem
becomes discontinuous and then the limit problem turns out to be a two-phase Stefan
problem without latent heat. See [3] for the Neumann boundary conditions and [1] for
the inhomogeneous Dirichlet boundary conditions. To create the latent heat (transition
layer) we need to introduce the new variable and three-component reaction-diffusion
system converges to the two-phase Stefan problem with positive latent heat [6]. However
since there are different functions G with the same null set E, E do not characterize all
the information of the limit problem.

When E is continuously differentiable, we can show that some types of nonlinear
diffusion can be approximated by the reaction-diffusion system, see [10, 11, 16]. This
means that the rather complicated diffusion process can be realized by the usual random
movement together with a reaction mechanism. I will also focus on the relationship
between E and the limit problem and summarize the recent research in this topics.
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Standing waves for a system of nonlinear

Schrödinger equations ∗

Masahito Ohta (Saitama University)

1 Introduction

We consider the following system of nonlinear Schrödinger equations

{
i∂tu1 = −Δu1 − κ|u1|u1 − γu1u2

i∂tu2 = −2Δu2 − 2|u2|u2 − γu2
1

(1)

for (t, x) ∈ R× R
N , where u1 and u2 are complex-valued functions of (t, x),

κ ∈ R and γ > 0 are constants, and N ≤ 3. System (1) is related to the

Raman amplification in a plasma (see [2, 3, 4, 5]). A similar system also

appears as an optics model with quadratic nonlinearity (see [8, 9, 14]).

We regard L2(RN ,C) as a real Hilbert space with the inner product

(u, v)L2 = �
∫
RN

u(x)v(x) dx,

and define the inner products of real Hilbert spaces H = L2(RN ,C)2 and

X = H1(RN ,C)2 by

(�u,�v)H = (u1, v1)L2 + (u2, v2)L2 , (�u,�v)X = (�u,�v)H + (∇�u,∇�v)H .

Here and hereafter, we use the vectorial notation �u = (u1, u2).

The energy E and the charge Q are defined by

E(�u) =
1

2
‖∇�u‖2H − κ

3
‖u1‖3L3 − 1

3
‖u2‖3L3 − γ

2
�
∫
RN

u2
1u2 dx,

Q(�u) =
1

2
‖�u‖2H .

∗This talk is based on a joint work [6] with Mathieu Colin (Université Bordeaux 1).
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For θ ∈ R, we define G(θ) and J by

G(θ)�u = (eiθu1, e
2iθu2), J�u = (iu1, 2iu2), �u ∈ X,

and 〈G(θ)�f, �u〉 = 〈�f,G(−θ)�u〉, 〈J �f, �u〉 = −〈�f, J�u〉 for �f ∈ X∗ and �u ∈ X,

where X∗ is the dual space of X. For y ∈ R
N , we define τy�u(x) = �u(x − y)

for �u ∈ X and x ∈ R
N . Then, (1) is written as

∂t�u(t) = −JE ′(�u(t)) in X∗,

and E(G(θ)τy�u) = E(�u) for all θ ∈ R, y ∈ R
N and �u ∈ X.

By the standard theory (see, e.g., [1, Chapter 4]), we see that the Cauchy

problem for (1) is globally well-posed in X, and the energy and the charge

are conserved.

For ω > 0, we define the action Sω by

Sω(�v) = E(�v) + ωQ(�v), �v ∈ X. (2)

The Euler-Lagrange equation S ′
ω(
�φ) = 0 is written as{ −Δφ1 + ωφ1 = κ|φ1|φ1 + γφ1φ2

−Δφ2 + ωφ2 = |φ2|φ2 + (γ/2)φ2
1

(3)

and if �φ ∈ X satisfies S ′
ω(
�φ) = 0, then G(ωt)�φ is a solution of (1).

Definition 1. We say that a standing wave solution G(ωt)�φ of (1) is stable

if for all ε > 0 there exists δ > 0 with the following property. If u0 ∈ X

satisfies ‖�u0 − �φ‖X < δ, then the solution �u(t) of (1) with �u(0) = �u0 exists

for all t ≥ 0, and satisfies

inf
θ∈R,y∈RN

‖�u(t)−G(θ)τy�φ‖X < ε

for all t ≥ 0. Otherwise, G(ωt)�φ is called unstable.

Let ϕω ∈ H1(RN) be a unique positive radial solution of

−Δϕ+ ωϕ− ϕ2 = 0, x ∈ R
N . (4)

The following result was essentially obtained by [4, 5].

Theorem 1. Let N ≤ 3, κ ∈ R, γ > 0, ω > 0, and let ϕω be the positive ra-

dial solution of (4). Then, the semi-trivial standing wave solution (0, e2iωtϕω)

of (1) is stable if 0 < γ < 1, and it is unstable if γ > 1.

We remark that the stability property of the semi-trivial standing wave

of (1) is independent of κ for the case γ �= 1. On the other hand, we will see

that the sign of κ plays an important role for the case γ = 1 (see Theorems

4 and 5 below).
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2 Main Results

We look for solutions of (3) of the form �φ = (αϕω, βϕω) with (α, β) ∈]0,∞[2,

where ϕω is the positive radial solution of (4). If (α, β) ∈]0,∞[2 satisfies

κα + γβ = 1, γα2 + 2β2 = 2β, (5)

then (αϕω, βϕω) is a solution of (3). For κ ∈ R and γ > 0, we define

Sκ,γ = {(α, β) ∈]0,∞[2: κα + γβ = 1, γα2 + 2β2 = 2β}.
Note that γx2 + 2y2 = 2y is an ellipse with vertices (x, y) = (0, 0), (0, 1),

(±1/
√
2γ, 1/2), and that Sκ,γ ⊂ {(x, y) : 0 < y < 1}.

To determine the structure of the set Sκ,γ, we define

α± =
(2− γ)κ± γ

√
κ2 + 2γ(γ − 1)

2κ2 + γ3
,

β± =
κ2 + γ2 ± κ

√
κ2 + 2γ(γ − 1)

2κ2 + γ3
,

α0 =
(2− γ)κ

2κ2 + γ3
, β0 =

κ2 + γ2

2κ2 + γ3
.

We also divide the parameter domain D = {(κ, γ) : κ ∈ R, γ > 0} into the

following sets.

J1 = {(κ, γ) : κ ≤ 0, γ > 1} ∪ {(κ, γ) : κ > 0, γ ≥ 1},
J2 = {(κ, γ) : 0 < γ < 1, κ >

√
2γ(1− γ)},

J3 = {(κ, γ) : 0 < γ < 1, κ =
√

2γ(1− γ)},
J0 = {(κ, γ) : κ ∈ R, γ > 0} \ (J1 ∪ J2 ∪ J3).
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Note that for 0 < κ ≤ 1/
√
2, the equation 2γ(1 − γ) = κ2 has solutions

γ = γ± := (1 ± √
1− 2κ2)/2. By elementary computations, we obtain the

following.

Proposition 1. (0) If (κ, γ) ∈ J0, then Sκ,γ is empty.

(1) If (κ, γ) ∈ J1, then Sκ,γ = {(α+, β−)}.
(2) If (κ, γ) ∈ J2, then Sκ,γ = {(α+, β−), (α−, β+)}.
(3) If (κ, γ) ∈ J3, then Sκ,γ = {(α0, β0)}.
Remark 1. (1) When κ ≤ 0, (α+, β−) → (0, 1) as γ → 1 + 0. That is, the

branch {(α+ϕω, β−ϕω) : γ > 1} of positive solutions of (3) bifurcates from

the semi-trivial solution (0, ϕω) at γ = 1.

(2) When κ > 0, (α−, β+) → (0, 1) as γ → 1 − 0. That is, the branch

{(α−ϕω, β+ϕω) : γm < γ < 1} of positive solutions of (3) bifurcates from the

semi-trivial solution (0, ϕω) at γ = 1, where γm = inf{γ : (κ, γ) ∈ Sκ,γ}, and
it is given by γm = 0 if κ > 1/

√
2, and γm = γ+ if 0 < κ ≤ 1/

√
2.

Figures: Cases κ = 1.1 (upper left), κ = 0.8 (upper right),

κ = 0.7 (lower left), κ = −0.5 (lower right).

Blue: γ �→ α2
+ + β2

− (lower curves), Purple: γ �→ α2
− + β2

+ (upper curves).
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Recall that ϕω is the positive radial solution of (4).

Theorem 2. Let N ≤ 3 and (κ, γ) ∈ J1 ∪ J2. For any ω > 0, the standing

wave solution G(ωt)(α+ϕω, β−ϕω) of (1) is stable.
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Theorem 3. Let N ≤ 3 and (κ, γ) ∈ J2. For any ω > 0, the standing wave

solution G(ωt)(α−ϕω, β+ϕω) of (1) is unstable.

Remark 2. In this talk, we do not study the case (κ, γ) ∈ J3.

Remark 3. The proof of Theorem 2 is based on the abstract stability the-

orem of Grillakis, Shatah and Strauss [7]. While, the proof of Theorem 3

relies on the abstract instability theorem of [11] (see also Maeda [10]), which

is a generalization of the classical result of [13, 7].

We also obtain the stability and instability results of semi-tirivial standing

wave at the bifurcation point γ = 1. The results depend on the sign of κ.

Theorem 4. Let N ≤ 3, κ > 0 and γ = 1. For any ω > 0, the standing

wave solution (0, e2iωtϕω) of (1) is unstable.

Theorem 5. Let N ≤ 3, κ ≤ 0 and γ = 1. For any ω > 0, the standing

wave solution (0, e2iωtϕω) of (1) is stable.

Remark 4. The linearized operator S ′′
ω(0, ϕω) around the semi-trivial stand-

ing wave is independent of κ. Therefore, Theorems 4 and 5 are never obtained

from the linearized analysis only. The proof of Theorem 4 is based on [11].

While, the proof of Theorem 5 relies on the variational method of Shatah

[12] and on the characterization of the ground states in Theorem 6 below.

Remark 5. For the case γ = 1, the kernel of S ′′
ω(0, ϕω) contains a nontriv-

ial element (ϕω, 0) other than the elements ∇(0, ϕω) and J(0, ϕω) naturally

coming from the symmetries of Sω.

Next, we consider the ground state problem for (3). The set Gω of the

ground states for (3) is defined as follows.

Aω = {�v ∈ X : S ′
ω(�v) = 0, �v �= 0},

d(ω) = inf{Sω(�v) : �v ∈ Aω},
Gω = {�u ∈ Aω : Sω(�u) = d(ω)}.

We define

κc(γ) =
1

2
(γ + 2)

√
1− γ, 0 < γ < 1. (6)

Then, κc is strictly decreasing on the open interval ]0, 1[, κc(0) = 1 and

κc(1) = 0. We define a function γc on ]0, 1[ by the inverse function of κc. We
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divide the parameter domain D = {(κ, γ) : κ ∈ R, γ > 0} into the following

sets.

K1 = {(κ, γ) : κ ≤ 0, γ > 1} ∪ {(κ, γ) : κ ≥ 1, γ > 0}
∪ {(κ, γ) : 0 < κ < 1, γ > γc(κ)},

K2 = {(κ, γ) : κ ≤ 0, 0 < γ ≤ 1} ∪ {(κ, γ) : 0 < κ < 1, 0 < γ < γc(κ)},
K3 = {(κ, γ) : 0 < κ < 1, γ = γc(κ)}.

Remark that since
√
2γ(1− γ) < κc(γ) for 0 < γ < 1, we have J0 ⊂ K2.

Moreover, we define

G0
ω = {G(θ)τy(0, ϕω) : θ ∈ R, y ∈ R

N},
G1
ω = {G(θ)τy(α+ϕω, β−ϕω) : θ ∈ R, y ∈ R

N}.

Then, the set Gω of the ground states for (3) is determined as follows.

Theorem 6. Let N ≤ 3 and ω > 0.

(1) If (κ, γ) ∈ K1, then Gω = G1
ω.

(2) If (κ, γ) ∈ K2, then Gω = G0
ω.

(3) If (κ, γ) ∈ K3, then Gω = G0
ω ∪ G1

ω.
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