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1 Introduction

As a continuation of [GG98Ar], [GG01Ar] this paper studies a degenerate
nonlinear parabolic equation (in one space dimension) whose diffusion effect
is very strong at particular slopes of unknown functions. We are in par-
ticular interested in an equation, where the driving force term is spatially
inhomogeneous. A typical example is a quasilinear equation

ut = a(ux)[W
′(ux)x + σ(t, x)], (1.1)

where W is a given convex function on R but may not be of class C1 so
that its derivative W ′ may have jump discontinuities; here a is a given non-
negative continuous function and σ is a given smooth function depending on
x and also on t, where ut and ux denote the time and the space derivative of
u = u(t, x).

As explained in detail in [GG98Ar] the equation is viewed as an evolution
law of the graph of u moved by an anisotropic mean curvature flow V =
M(n) (κγ + σ) with a singular interfacial energy density γ, where κγ is a
weighted curvature and M is mobility; V denotes the normal velocity of
the evolving curve in the direction of n. (The quantity κγ formally equals
(γ′′+γ)κ with curvature κ and γ = γ(θ) is an interfacial density as a function
of the argument θ of n = (cos θ, sin θ).)

Our eventual goal is to establish a kind of the theory of viscosity solutions
for a class of equations including (1.1) as a particular example so that we
are able to construct a global-in-time solution for example for periodic initial
data. In this paper we give a new notion of viscosity solutions for (1.1) and
establish a comparison principle.

If σ in (1.1) is independent of x, the theory of viscosity solutions has been
already established in [GG98Ar], [GG01Ar]. Even in this simpler case the
quality (W ′(ux))x turns to be nonlocal so conventional viscosity theory does
not work. For example if W (p) = |p|, then W ′′(p) is twice the delta function
so that (1.1) becomes

ut = a(ux)[2δ(ux)uxx + σ(t)] (1.2)

which is of course, not a classical partial differential equation. If u = u(t, x)
has a flat part (called a facet) with zero slope, it is expected to move with
speed ut = a(0)[2χ/L + σ] provided that a facet persists and it does not
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break. Here L is the length of a facet (which is a nonlocal quantity) and
χ = ±1, 0 is a transition number of the facet depending upon local behavior
of u near facet. For example, if u is ‘concave’ near the facet, then χ should be
−1. When σ is spatially homogeneous, this hypothesis that a facet does not
break is justified either by viscosity theory developed by [GG98Ar], [GG99]
or by subdifferential theory [FG] (in the case σ ≡ 0), in the sense that such
a solution is an appropriate limit of solutions to strictly parabolic problems.
When W is piecewise linear and σ is independent of x, then (1.1) is analyzed
in [T], [AG1] for a very restrictive class of piecewise linear unknown functions
whose slopes belong to jump discontinuities of W . Their ’admissible’ solution
is actually a solution in viscosity sense [GG98Ar].

If σ depends on the space variable, the hypothesis that all facets do not
break is no longer true. For example, if we postulate this hypothesis, then
the speed ut of a facet with slope zero of u of (1.2) equals a(0)[2χ/L+−

∫
σdx],

where −
∫

denotes the average over the facet. As noticed in [GG98Pit] if we
assigned the speed in this way the solution may not enjoy in general the
comparison principle. This shows that such a ’solution’ is not obtained as a
limit of approximate problems satisfying the comparison principle. On the
other hand if |σx| is sufficiently small compared with the length of facets,
such a solution is known to enjoy comparison principle [BGN].

If a is a constant, say a ≡ 1, and σ is independent of t, (1.1) can be
viewed as a subdifferential formulation

ut ∈ −∂ϕ(u), (1.3)

where ϕ is an energy which formally equals

ϕ(u) =

∫

T

[W (ux)− σ(x)u]dx;

for simplicity we assumed here a periodic boundary condition so that T =
R/ωZ. As observed in [GG98DS] for (1.3) a general theory of subdifferential
equations in a Hilbert space L2(T) provides not only unique existence of the
solution but also the value of right derivative du+/dt (of u as a function with
value in H). A general theory further yields

d+u/dt = −∂0ϕ(u),

where ∂0ϕ is the canonical restriction of a closed convex set ∂ϕ (u(t)), i.e.

∂0ϕ(u) = arg min{||f ||H |f ∈ ∂ϕ(u) ⊂ H}.
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In [GG98DS] it is observed that ∂0ϕ can be calculated by solving an obstacle
problem. Let us review their observation. Since the condition

f ∈ −∂ϕ(u)

is equivalent to

f(x) = ηx(x) + σ(x), η(x) ∈ ∂W (ux(x)), a.e. x ∈ T,

the quantity

−∂0ϕ(u) =

{
(W ′(ux(x)))x + σ(x) if ux /∈ P
η0

x(x) + σ(x) if ux ∈ P,
(1.4)

where P is the jump discontinuity of W ′ and u is assumed to be of class C2

and P -faceted [GG98Ar]. Here, η0 minimizes

{
∫

F

|ηx + σ|2dx ; η ∈ ∂W (ux(x))} (1.5)

under suitable boundary condition at the end of the facet F depending on
whether u is ‘convex’ or ‘concave’ near F . This is a convex minimizing
problem so a unique minimizer always exists. Moreover, if σ is independent
of x, ηx must be constant and η0

x + σ = χ/L+ σ. If σ depends on x, η0
x + σ

may not be a constant over F and this is one reason why the speed may
not be a constant on F when σ depends on x. The subdifferential equation
(1.3) can be approximated by a smooth parabolic problem, so the solution is
expected to enjoy the comparison principle. Thus, it is natural to guess that
η0

x + σ gives a candidate for the value of

Λσ
W (u)(x)) = (W ′(ux))x + σ(x) (1.6)

when W ′ has jump discontinuities. Note that this quantity agrees with the
minimal velocity profile proposed by [Rs] as observed in [GG98DS].

Unfortunately, a general equation (1.1) cannot be viewed as a subdiffer-
ential equation (1.3). However, we still use the value (1.4) to define (1.6).
We establish a notion of viscosity solutions by assigning the value Λσ

W by
(1.4) for test functions which we call admissible. The class of test func-
tions is the same as [GG98Ar] so a facet of a test function never vanishes or
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breaks. The idea of the proof of the comparison principle is similar to that
of [GG98Ar] except for a simplification of handling end points of facets ob-
served by [GG01Ar] and the use of continuity of Λσ

W (u) under translation of
a faceted region which is obvious when σ is constant. So we have to study an
obstacle problem in this paper carefully. Let Λ(F )(x) be a quantity defined
by

Λ(F )(x) = η0
x(x) + σ(x) , x ∈ F,

where η0 is the minimizer of (1.5). In particular, we prove that

Λ(F µ) (x− µ) → Λ(F ) (x)

as µ→ 0, where F µ = F − µ = {x|x+ µ ∈ F} provided that σx is bounded.
Moreover, the convergence is uniform with respect to F provided that F
is bounded. This problem can be viewed as a stability problem for (1.5)
with respect to perturbations of σ. Since our obstacle problem is convex,
it is not difficult to prove these facts. We also need comparison results
(maximum principle) for Λσ

W so see that it behaves like curvature or usual
second derivatives. It is often convenient to consider ξ = η +

∫ x
σ as a

variable, instead of η itself, so we shall use variable ξ. We warn the reader
that in Section 5 we will use differently defined ξ.

To establish the comparison principle we argue by contradiction using the
doubling variables technique. Let u be a subsolution and v be a supersolution.
We are interested in maximizers of

u(t, x)− v(s, y)−Bε(x− y)− (t− s)2/δ − γ/(T − t)− γ/(T − s)

for small ε, δ, γ > 0. Here Bε = εB(x/ε) , B(x) v x2 for large x and B
is a (non-negative) faceted C2 convex function with B(0) = 0. This choice
of a test function B is different from [GG98Ar] and this choice simplifies
the argument. We use sup-convolutions with a faceted function to regularize
the problem as in [GG98Ar]. The quantity Λσ

W behaves like usual second
derivative in the sense that it satisfies the maximum principle. At the final
stage we have to compare Λ(F µ) and Λ(F ) which is trivial when σ is constant,
because it is independent of µ.

Although this paper focuses on comparison principle for (1.1), as observed
in [GG01Ar], the method developed here is fundamental to establish a level
set method for V = M(n) (κγ + σ) when σ depends on x. For a standard
level set method for smooth γ see [CGG1], [ES1], [G]. Also a stability result
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is expected [GG99] but we do not intend to include any progress in this
direction in the present paper. A general existence result through Perron’s
method is almost the same as that in [GG98Ar], though we do not state it
explicitly. Instead, we give a couple of examples of solutions.

Recently, besides examples in [GG98DS] several semi-explicit variational
solutions are constructed for (1.1) for a special choice of M , σ and γ by
solving a free boundary problem [GR1], [GR2], [GGR]. Their variational
solutions are expected to be our viscosity solutions. In this paper we shall
confirm this consistency at least for some typical examples.

We do not know much about surface evolutions. In surface evolving
problems a facet may not stay as a facet even if σ ≡ 0 see e.g. [BNP],
[BNP1], [BNP2] and [BNP3]. A notion of a generalized solution is established
and a comparison principle is proved in [BN], see also [BGN]. However, the
existence of solution is known only when initial surface is convex see [BCCN];
note that their problem is formulated for V = γκγ where mobility parallels
the interfacial energy.

The bibliographies of review papers [GGK], [G04], [GG04], [GG10] in-
clude several articles dealing with anisotropic curvature flow equations with
singular interfacial energy or singular diffusion equations. Here we only men-
tion a few recent works related to this topic but not included there. In partic-
ular, we have in mind the approach developed by Mucha and Rybka, which
is based on an original definition of composition of multivalued operators,
see [MR1], [MR2]. So far it is restricted to one dimension by allows to study
facet evolution for quite general data and regularity of solutions.

This paper is organized as follows. We first study an obstacle problem
in Section 2. In Section 3, we establish a notion of viscosity solutions. In
Section 4, we prove our main comparison theorem. In section 5 we shall
prove that the semi-explicit solutions in [GR1] are indeed solutions in our
viscosity sense.
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2 Variational properties of nonlocal curvature

with a nonuniform driving force term

We shall give a variational characterization of the quantity Λσ
W , which is

formally defined by

Λσ
W (u) (x) = (W ′(ux))x + σ(x), (2.1)

by solving an obstacle problem. This characterization enables us to derive
various important properties to establish the theory of viscosity solutions for
singular diffusion equations.

2.1 An obstacle problem

Let Z be a real-valued C2 (or C1,1) function defined in a bounded interval
I, where I = (a, b). For a given ∆ > 0 let KZ

χlχr
be the set of all ξ ∈ H1(I)

satisfying

Z(x)−∆/2 ≤ ξ(x) ≤ Z(x) + ∆/2 for x ∈ I (obstacle condition) (2.2)

and

ξ(a) = Z(a)− χl∆/2, ξ(b) = Z(b) + χr∆/2 (boundary condition). (2.3)

Here, χl and χr take values ±1. Let JZ
χlχr

be the functional on L2(I) defined
by

JZ
χlχr

(ξ) =

{∫ b

a
|ξ′(x)|2 dx, ξ ∈ KZ

χlχr

∞, otherwise.

In this subsection, we suppress the dependence with respect to Z since we fix
Z. By the definition of Jχlχr , it is easy to see that inf Jχlχr is the H1 distance
from zero to convex closed set Kχlχr in H1. Thus, Jχlχr admits a unique
absolute minimizer denoted by ξχlχr . Evidently, ξχlχr ∈ H1(I) ⊂ C1/2(I)
by the Sobolev embedding. In fact, it is C1,1 as proved in [[KS], Chap II
Theorem 7.1]. (In [KS] the regularity of multidimensional obstacle problem
is also discussed.) In our one-dimensional case it is easy to prove that ξχlχr

is C1,1 since the obstacle is C1,1 as described below.

For ξ ∈ H1(I) let D±(ξ) be the coincidence set defined by

D± = D±(ξ) = {x ∈ I | ξ(x) = Z(x)±∆/2}.
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We say thatD+ is the upper coincidence set whileD− is the lower coincidence
set.

Definition 2.1. We say that ξ ∈ Kχlχr satisfies the concave-convex condition
if ξ is concave outside the upper coincidence set D+ and convex outside the
lower coincidence set D−, i.e., ξ′′ ≤ 0 outside D+ and ξ′′ ≥ 0 outside D−. In
particular, ξ is C1,1 in I and ξ′′ = 0 outside D− ∪ D+.

Proposition 2.2 (A characterization of the minimizer). The function
ξ ∈ Kχlχr is the minimizer of Jχlχr if and only if ξ fulfills the concave-convex
condition. In particular, ξχlχr is C1,1 in I and

sup
x∈I

|ξ′′χlχr
(x)| ≤ sup

x∈I
|Z ′′(x)|. (2.4)

Proof. By convexity of Jχlχr and the uniqueness of the minimizer, ξ ∈ Kχlχr

is the absolute minimizer if and only if ξ is a local minimizer of Jχlχr i.e.,

∫

Dc
+

ξ′ϕ′dx ≥ 0,

∫

Dc
−

ξ′ϕ′dx ≤ 0

for all ϕ ∈ H1(I) satisfying ϕ(a) = ϕ(b) = 0 and ϕ ≥ 0 in Dc
+ = I\D+ and

for all ϕ ∈ H1(I) satisfying ϕ(a) = ϕ(b) = 0 and ϕ ≥ 0 in Dc
− = I\D− by the

obstacle condition (2.2) and the boundary condition (2.3). This is equivalent
to the concave-convex condition; for equivalence of convexity in distribution
sense and strong convexity see e.g., Schwartz [S] or Hörmander [H]. The
remaining statement is a simple consequence of the concave-convexity con-
dition. ¤

As a trivial application we give two cases, where the minimizer is explicitly
written.

Corollary 2.3.

(i) If the concave hull Zcave of Z in I is smaller than Z + ∆, i.e., Zcave ≤
Z + ∆ in I, then ξ+− = Zcave −∆/2.

(ii) If the straight line function ξ(x) = ξ(a)+(Z(b)−Z(a)+∆) (x−a)/(b−a)
fulfills the obstacle condition (2.2), it is the minimizer of J++ provided
that ξ(a) = Z(a) − ∆/2 and ξ(b) = Z(b) + ∆/2. Here, J++ = Jχlχr

when χl = χr = 1.
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2.2 Comparison principle

So far we have fixed the interval I to define ξχlχr . We shall study the depen-
dence of ξ′χlχr

upon I. To clarify this we write Jχlχr, I instead of JZ
χlχr

and
ξχlχr, I instead of ξZ

χlχr
. We set

ΛZ′
χlχr

(x, I) =
dξχlχr, I(x)

dx
. (2.5)

It is easy to observe that this quantity agrees with η0
x + σ, when Z equals

a primitive of σ. It is sufficient to take ξ = η + Z. The reason we write Z ′

instead of Z is that the derivative of ξZ
χlχr

depends on Z only through its
derivative. We suppress Z ′ in (2.5) when we fix Z. We shall write Λ−+ etc.
instead of writing Λ{−1},{+1}.

Theorem 2.4 (Comparison principle). Assume that I1 and I2 are bounded
open intervals.

(i) If I2 ⊂ I1, then

Λ−−(x, I2) ≤ Λ±±(x, I1) ≤ Λ++(x, I2) for x ∈ I2. (2.6)

(ii) If a ≤ c < b ≤ d for I1 = (a, b), I2 = (c, d), then for x ∈ (c, b)

Λ±−(x, I1) ≤ Λ+±(x, I2), Λ−±(x, I2) ≤ Λ±+(x, I1). (2.7)

This can be proved by a comparison principle for parabolic equations by an
approximation as is done in Giga-Gurtin-Matias [GGM]. However, since the
problem is one dimensional, we rather give an elementary proof.
Proof. It suffices to prove

(a) Λ++(x, I1) ≤ Λ++(x, I2), Λ−−(x, I2) ≤ Λ−−(x, I1) for x ∈ I2 ⊂ I1,

(b) Λ−+(x, I1) ≤ Λ++(x, I1), Λ−−(x, I1) ≤ Λ−+(x, I1) and

Λ+−(x, I1) ≤ Λ++(x, I1), Λ−−(x, I1) ≤ Λ+−(x, I1) for x ∈ I1.
We begin with the proof of (a). Since the argument is symmetric, it

suffices to prove the first inequality. We may assume that one of the end
point of I1 and I2 is the same. By symmetry, it suffices to prove that

Λ++(x, I1) ≤ Λ++(x, I2), x ∈ I2
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with I1 = (a, c), I2 = (a, b) for c (≥ b) sufficiently close to b. We divide the
situation into two cases depending on the structure of the coincidence set of
the minimizer ξ2 = ξ++,I2 .

Case 1. There is δ > 0 such that (b − δ, b) is not included in any
coincidence set and the point b− δ is a point of lower coincidence set.

In this situation the graph of ξ2 is a straight line on (b− δ, b) and ξ2(b) =
Z(b) + ∆/2. We extend ξ2(x) for x ≥ b such that the slope of ξ2 is constant
for x ≥ b− δ. The extension is still denoted ξ2. If Z(c) + ∆/2 ≥ ξ2(c), it is
clear that ξ1 = ξ2 on I2, where ξ1 = ξ++,I1 . If Z(c) + ∆/2 < ξ2(c) and c is
close to b, the graph of ξ1 is a straight line from (b − δ′, c), 0 < δ′ < δ and
ξ1(b− δ′) = Z(b− δ′)−∆/2 with ξ′1(b− δ′) = Z ′(b− δ′). Moreover, ξ1 (≤ ξ2)
agrees with the concave hull of Z(x)−∆/2 in (b− δ, b− δ′). Thus, it is clear
that ξ′1 ≤ ξ′2 for x ∈ (b− δ, b) where ξ′i = dξi/dx.

Case 2. The minimizer ξ2 agrees with the convex hull of Z(x) + ∆/2 in
(b− δ, b) for some (small) δ > 0.

If c is sufficiently close to b, then ξ1 agrees with the convex hull of Z(x)+
∆/2 in (b− δ, c). By comparison of slopes of the convex hull it is clear that
ξ′1 ≤ ξ′2 on (b− δ, c). This completes the proof of (a).

We next prove (b). By symmetry it suffices to prove one of four inequal-
ities. We shall prove that Λ−−(x, I1) ≤ Λ−+(x, I1).

Let ξ = ξ−−,I1 be the minimizer such that ξ′ = Λ−−(x, I1) and η (= ξ−+,I2)
be the minimizer such that η′ = Λ−+(x, I2). By the structure of minimizer
(Proposition 2.2) if ξ(x0) = η(x0) for a < x0 < b, then ξ = η on (a, x0).
Thus there exists the maximum x∗ ≥ a such that ξ = η on (a, x∗). If
ξ(x∗) = η(x∗) = Z(x∗)+∆/2, then η is a convex hull of Z(x)+∆/2 in (x∗, b)
while ξ is a concave hull of max (Z(x)−∆/2, ξ(x∗)I(x)) where I(x) = −∞ for
x 6= x∗ and I(x∗) = 1. Thus it is easy to see that ξ′ ≤ η′ on I1. A symmetric
argument in the case of ξ(x∗) = η(x∗) = Z(x∗) − ∆/2 yields ξ′ ≤ η′ on I1.
We have thus proved that Λ−− ≤ Λ−+.

2.3 Stability of curvature like quantity

Our goal in this section is to show that the curvature like quantity Λχlχr(x, I)
defined by (2.5) is ’continuous’ with respect to change of the interval I.
Stability result for Λ of the convex obstacle problem with respect to Z is
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essentially known in the literature e.g. [Rd, p.156, Chapter 5, Theorem 4.5
and Remark 4.6]. However, we rather give a proof for the reader’s convenience
since the situation is slightly different.

We recall several stability properties of Jχlχr . Let {Zk}∞k=1 be a sequence
of real-valued C2 (or C1,1) functions in I, where I = (a, b). In this subsection
we fix χlχr, so we often suppress its dependence and simply write JZ

χlχr
for

J and JZk

χlχr
instead of Jk.

Proposition 2.5 (Lower semicontinuity). Assume that Zk uniformly
converges to Z as k → ∞, i.e., Zk → Z in C(I). Assume that ξk weakly
converges to ξ in L2(I) as k →∞. Then J(ξ) ≤ lim infk→∞ Jk(ξk).
Proof. We may assume that ξk ∈ KZk

. Since ξk − Zk converges to ξ − Z
weakly in L2(I) and sign is conserved through weak limit, we observe that
ξ ∈ KZ . The desired conclusion now follows from the lower semicontinuity
of H1-norm with respect to L2-weak convergence. ¤
Proposition 2.6 (Approximability). Assume that Zk converges to Z,
with its first derivative, uniformly in I as k → ∞, i.e., Zk → Z in C1(I).
Then for each ξ ∈ L2(I) there is a sequence ξk → ξ in L2(I) such that
J(ξ) = limk→∞ Jk(ξk).
Proof. We may assume that ξ ∈ KZ since otherwise ξ /∈ KZk

for sufficiently
large k. We set ξk = ξ − Z + Zk and observe that ξk is in KZk

by (2.3) and
(2.4). Since Zk → Z, (Zk)′ → Z ′ uniformly in I as k →∞, the convergence
J(ξk) → J(ξ) and ξk → ξ (as k →∞) in L2(I) is easily verified. ¤

These two above Propositions say that Jk converges to J in the sense of
Mosco, i.e., both strong and weak Γ− limits of Jk equal J . Thus we easily
obtain the convergence of minimizers.

Proposition 2.7 (Convergence of minimizers). Assume that Zk → Z
in C1(I) as k →∞. Let ξk

χlχr
be the minimizer of Jk

χlχr
. Then ξk

χlχr
converges

to ξχlχr in L2(I) which is the minimizer of Jχlχr .

Proof. Applying Proposition 2.6 to ξχlχr , we observe that {min Jk}∞k=1 is
bounded. Since H1(I) is compactly embedded in L2(I), ξk

χlχr
subsequently

converges to an element ζ ∈ L2(I) as k →∞. By Proposition 2.5, we observe
that

J(ζ) ≤ lim inf
k→∞

min Jk.

For a given ξ ∈ L2(I), due to Proposition 2.6, there is always a sequence
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ξk → ξ in L2(I) such that Jk(ξk) → J(ξ) as k →∞. Thus

J(ζ) ≥ lim inf
k→∞

min Jk.

Therefore, J(ζ) ≤ J(ξ) so ζ must be the unique minimizer of J . Thus ξk
χlχr

converges ξχlχr without taking a subsequence. ¤
We define Λk

χlχr
(x, I) by (2.5) where Z is replaced by Zk. We simply

write Λk
χlχr

in place of Λk
χlχr

(x, I) and Λχlχr instead of ΛZ′
χlχr

(x, I) in the next
Theorem.

Theorem 2.8 (Continuity with respect to Z ′). Assume that

sup
k≥1

sup
x∈I

|(d/dx)2Zk(x)| <∞ and (Zk)′ → Z ′ in C(I).

Then Λk
χlχr

→ Λχlχr in C(I) as k →∞.

Proof. We may assume that Zk → Z in C1(I) by adding a constant to fix a
value at some point of I, for example Zk((a + b)/2) = 0, Z((a + b)/2) = 0.
By Proposition 2.7 we observe that ξk

χlχr
→ ξχlχr in L2(I). By Proposition

2.2 our assumption on the bound of the second derivative of Zk implies
that |(d/dx)2ξk

χlχr
| is bounded by (2.4). Thus ξk

χlχr
→ ξχlχr in C1(I) so

Λk
χlχr

→ Λχlχr in C(I). ¤
We are now in position to state continuity of Λχlχr with respect to I.

This notion will be explained below.
Theorem 2.9.

(i) Let Z be a C2 (or locally C1,1) function on R. Then ΛZ′
χlχr

(x, I) is
continuous with respect to I.

(ii) Assume furthermore that |Z ′′(x)| is bounded in R. Then for each r > 0

lim
µ→0

sup
0<b−a<r

sup
a<x<b

|ΛZ′
χlχr

(x, (a, b))− ΛZ′
χlχr

(x− µ, (a− µ, b− µ))| = 0.

(The convergence is uniform in Z ′ for Z such that |Z ′′| ≤ M0 for a given
constant M0 > 0.)

We have to clarify the continuity with respect to I. For two bounded
intervals I = (a, b) and J = (c, d) there is a unique affine map A: x 7→ y =
αx + β (dilation and translation) with α > 0 such that A(I) = J . Assume
that an open interval Ik converges to I as k → ∞, i.e., the end points
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ak, bk of Ik = (ak, bk) tend to a and b, respectively. Let F be a mapping:
I 7→F (I) ∈ C(I). We say that F is continuous with respect to I if F (Ik) ◦Ak

converges to F (I) in C(I), as k →∞ for any Ik → I, where Ak is the affine
map which maps I to Ik.

Proof. These assertions easily follow from Theorem 2.8, once we compare
ΛZ′

χlχr
(x, I) with ΛZ′

χlχr
(Ak(x), Ik), both defined on I, here Ak is the affine

transformation mapping I to Ik, when Ik → I. (In the assertion (ii) this
affine map is just a translation.) ¤

2.4 Nonlocal curvature with a nonuniform driving force
term

In order to define the nonlocal curvature Λσ
W (u) formally given by (2.1) we

recall basic assumptions on W as in [GG98Ar] and a class of function u so
that Λσ

W (u) is well-defined.

(W) Let W be a convex function on R with values in R. Assume
that W is of class C2 outside a closed discrete set P and that W ′′ is
bounded in any compact set except all points in P .

We shall always assume (W) in this paper. By definition the set P is
either a finite set or a countable set having no accumulation points in R. If
P is nonempty, P is of form {pj}m

j=1, {pj}∞j=−∞, {rj}−1
j=−∞ or {pj}∞j=1 with

limj→∞ pj = ∞, limj→−∞ rj = −∞, where the pj’s and rj’s are arranged in
strictly increasing sequences pj < pj+1, rj < rj+1 and m is a positive integer.

We recall a notion of a faceted function. Let Ω be an open interval. A
function f in C(Ω) is called faceted at x0 with slope p on Ω (or p-faceted at
x0) if there is a closed nontrivial finite interval I(⊂ Ω) containing x0 such
that f agrees with an affine function

`p(x) = p(x− x0) + f(x0) in I

and f(x) 6= `p(x) for all x ∈ J\I with some neighborhood J(⊂ Ω) of I.
The interval I is called a faceted region of f containing x0 and is denoted by
R(f, x0). A function f is called P -faceted at x0 if it is p-faceted at x0 for
some p ∈ P .
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We introduce the left transition number χl = χl(f, x0) and the right tran-
sition number χr = χr(f, x0) by

χl =

{
+1 if f ≥ `pi

in {x ∈ J |x ≤ x0}
−1 if f ≤ `pi

in {x ∈ J |x ≤ x0}

χr =

{
+1 if f ≥ `pi

in {x ∈ J |x ≥ x0}
−1 if f ≤ `pi

in {x ∈ J |x ≤ x0}
if f is pi-faceted at x0. The quantity χ = (χl + χr)/2 is called the transition
number describing the sign of Λσ

W when σ ≡ 0.

Definition 2.10. We assume that σ is a real-valued Lipschitz function on
an open interval Ω and Z is its primitive, moreover, (W) holds. We assume
that f ∈ C(Ω) pi-faceted at x0 ∈ Ω with pi ∈ P . Then we define the nonlocal
curvature Λσ

W by
Λσ

W (f) (x0) = ΛZ′
χlχr

(x, I);

the right hand side is defined by (2.5) with ∆ = W ′(pi + 0) − W ′(pi − 0)
and I is the faceted region R(f, x0). If f is twice differentiable at x0 and
f ′(x0) /∈ P , we set, as expected,

Λσ
W (f) (x0) = W ′′ (f ′(x0)) f

′′(x0) + σ(x0).

Remark 2.11. If σ is a constant, so that Z is an affine function, the min-
imizer ξχlχr of JZ

χlχr
is always a straight line function (cf. Corollary 2.3 for

the case χ = 1 or −1). Thus, it is easy to observe that

Λσ
W (f) (x0) = χ∆/L(f, x0) + σ(x0)

when f is pi-faceted at x0, where L(f, x0) is the length of the faceted region
R(f, x0). In particular, our new quantity agrees with the weighted curvature
ΛW (f, x0), defined in [GG98Ar] when σ ≡ 0. Like ΛW (f, x0), the quantity
Λσ

W depends on W only through its second distributional derivative.

We conclude this section by rewriting Comparison Principle and Conti-
nuity with respect to translation in terms of Λσ

W . Let C2
P (Ω) be the set of

f ∈ C2(Ω) such that f is P -faceted at x0 whenever f ′(x0) ∈ P . For such
a class of function the nonlocal curvature Λσ

W (f) (x) is well-defined for all
x ∈ Ω provided that σ is locally Lipschitz. The next two results are imme-
diate consequences of Theorem 2.4 and Theorem 2.9, respectively.
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Theorem 2.12 (Comparison). Assume (W) and that σ is locally Lipschitz
and in addition f, g ∈ C2

P (Ω) and x0 ∈ Ω. If maxΩ(f − g) = (f − g) (x0),
then Λσ

W (f) (x0) ≤ Λσ
W (g) (x0).

Theorem 2.13 (Continuity). Let us suppose that the hypotheses of The-
orem 2.12 concerning W and σ. We assume that f ∈ C(Ω) is pi-faceted
at x0 − η and g be pi-faceted at x0 − η and pi ∈ P . Assume moreover,
R(f, x0)− η = R(g, x0 − η). Then

Λσ
W (g) (x0 − η) → Λσ

W (f) (x0) as |η| → 0.

3 Definitions of generalized solutions

The goal of this section is to define a generalized solutions (in the viscosity
sense) for evolution equations of the form

ut + F (t, ux,Λ
σ
W (u)) = 0 (3.1)

when W is a singular interfacial energy. Such a notion is given when σ ≡ 0
in [GG98Ar]. Our definition will be a natural extension to the case when
σ 6≡ 0. In this section, we shall also give several equivalent definitions for
later use.

3.1 Admissible functions and definition

We first recall a natural class of test function. Let us set Q = (0, T ) × Ω,
where Ω is an open interval and T > 0. Let AP (Q) be the set of all admissible
functions ψ on Q in the sense of [GG98Ar] i.e., ψ is of the form

ψ(x, t) = f(x) + g(t), f ∈ C2
P (Ω), g ∈ C1(0, T ).

For our equation we often assume that

(F1) F is continuous in [0, T ]×R×R with values in R,

(F2) (Monotonicity) F (t, p,X) ≤ F (t, p, Y ) for X ≥ Y, t ∈ [0, T ], p ∈ R,
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(FL) (Lipschitz continuity.) There is a constant C = CF,T such that

|F (t, p,X)−F (t, p, Y )| ≤ C(1+|p|) |X−Y | for all t ∈ [0, T ], p,X, Y ∈ R.

(FT) (Uniform continuity in curvature and time.) For each K the function
F (t, p,X) is uniformly continuous in [0, T ]× [−K,K]×R.

The third assumption in rather standard when W ≡ 0 and σ is Lipschitz so
that Λσ

W (u) = σ. A typical example of (3.1) satisfying (F1), (F2), (FL) and
(FT) is of the form

ut − a(ux) Λσ
W (u)− C(t) = 0 (3.2)

where
F (t, p,X) = −a(t, p)X;

here a ∈ C(R) satisfies 0 ≤ a(p) ≤ C(|p| + 1) for all p ∈ R, C ∈ C[0, T ]. If
a(p) = (1 + p2)1/2 and C ≡ 0, then (3.2) says that the normal velocity V of
the graph of u equals the nonlocal curvatures i.e., V = Λσ

W . The condition
(FT) is redundant if F is independent of t since (FL) implies (FT).

The driving force term σ may depend on t. Here is an assumption we
often use.

(S) The function σ ∈ C
(
[0, T ]× Ω

)
is Lipschitz in space uniformly in time,

i.e. there is a constant LT such that

|σ(t, x)− σ(t, y)| ≤ LT |x− y|
for all t ∈ [0, T ], x, y ∈ Ω.

We are now in position to give a notion of a generalized solution in the
viscosity sense.

Definition 3.1. Assume (W), (S), (F1), (F2). A real-valued function u
on Q is a (viscosity) subsolution of (3.1) in Q if the upper-semicontinuous
envelope u∗ <∞ in [0, T )× Ω and

ψt(t̂, x̂) + F
(
t̂, ψx(t̂, x̂), Λ

σ(t̂,·)
W (ψ(t̂)) (x̂)

)
≤ 0 (3.3)

whenever
(
ψ, (t̂, x̂)

) ∈ AP (Q)×Q fulfills

max
Q

(u∗ − ψ) = (u∗ − ψ) (t̂, x̂). (3.4)
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Here ψ(t̂) is a function on Ω defined by ψ(t̂) = ψ(t̂, ·) and u∗ is defined by

u∗(t, x) = lim
ε↓0

sup{u(s, y)| |s− t| < ε, |x− y| < ε, (s, y) ∈ Q}

for (t, x) ∈ Q and u∗ = (−u∗). A (viscosity) supersolution is defined by
replacing u∗(< ∞) by the lower-semicontinuous envelope u∗(> −∞), max
by min in (3.4) and the inequality (3.3) by the opposite one. If u is both
a sub- and supersolution, u is called a viscosity solution or a generalized
solution. Hereafter we avoid using the word viscosity. Function ψ satisfying
(3.4) is called a test function of u at (t̂, x̂). The monotonicity (F2) and the
convexity (W) say that the equation is at least degenerate parabolic, so by
comparison (Theorem 2.12) it is easy to see that ψ ∈ AP (Q) is a subsolution
in Q if (and only if) ψ satisfies

ψt(t, x) + F
(
t, ψx(t, x), Λ

σ(t,·)
W (ψ(t))(x)

)
≤ 0

for all (t, x) ∈ Q.

3.2 An equivalent definition

To show comparison principle for sub- and supersolutions, it is convenient
to recall equivalent definitions. One of them is regarded as an infinitesimal
version. Such a definition is given in [GG98Ar] when σ ≡ 0. It is simplified
by [GG01Ar]. We give a definition which is a natural extension of the one in
[[GG01Ar], Theorem 4.3].

We first recall upper time derivations on a faceted region. Let ϕ be a
function on Q and (t̂, x̂) ∈ Q. Assume that ϕ(t̂, ·) ∈ C(Ω) is p-faceted at
x ∈ Ω with p ∈ P . We define

T +
P ϕ(t̂, x̂) = {τ ∈ R | there are a modulus

ω and three positive numbers δ, δ+, δ− such that
ϕ(t, x)− ϕ(t̂, x̂) ≤ τ(t− t̂) + p(x− x̂) + ω(|t̂− t|) |t− t̂|

for (t, x) ∈ (t̂− δ, t̂+ δ)× Ñ−1(ϕ(t̂, ·), t̂; δ+, δ−)},
where Ñ−1 denotes a semineighborhood of R(ϕ(t̂, ·), x̂) defined in [GG98Ar];
by a modulus ω we mean that ω : [0,∞) → [0,∞) is nondecreasing, contin-
uous with ω(0) = 0. For the reader’s convenience, we recall the definition of

17



Ñ−1. Let f ∈ C(Ω) be p-faceted at x0 ∈ Ω with p ∈ P . We set

Nχr(f, x0; δ+) =

{
{x ∈ Ω| supR(f, x0) < x ≤ supR(f, x0) + δ+} if χr(f, x0) = −1,

∅ if χr(f, x0) = 1

Nχl
(f, x0; δ−) =

{
{x ∈ Ω| inf R(f, x0)− δ− ≤ x < inf R(f, x0)} if χl(f, x0) = −1,

∅ if χl(f, x0) = 1

and the set Ñ−1 is defined by

Ñ−1(f, x0; δ−, δ+) = R(f, x0) ∪Nχr(f, x0; δ+) ∪Nχl
(f, x0; δ−).

The set Ñ+1 is defined by

Ñ+1(f, x0; δ−, δ+) = Ñ−1(−f, x0; δ−, δ+).

An element of T +
P ϕ(t̂, x̂) is an upper time derivative at (t̂, x̂). The set of

lower time derivative defined by

T −
P ϕ(t̂, x̂) = −T +

−P (−ϕ) (t̂, x̂).

We next recall a class of functions (not necessarily admissible) for which
upper time derivative is well-defined on a faceted region. The following defi-
nition is an improved one in [GG01Ar] not the original one in [GG98Ar]. In
[GG01Ar] Q may not be noncylindrical but here we consider a simple case
Q = (0, T )× Ω.

Definition 3.2. Let ϕ : Ω → R be an upper-semicontinuous function. For
(t̂, x̂) ∈ Q assume that ϕ(t, ·) ∈ C(Ω) for t near t̂. We say that ϕ is an
(infinitesimally) admissible superfunction at (t̂, x̂) in Q if one of following
three conditions holds.

(A) The function ϕ(t̂, ·) is P -faceted (in Ω) at x̂ ∈ int R(ϕ(t̂, ·), x̂). The
set T +

P ϕ(t̂, x̂) is nonempty.

(B) There is (τ, p,X) ∈ P+ϕ(t̂, x̂) with p /∈ P , where P+ denotes the set of
parabolic semijets in Q [CIL], [GG98Ar].

(C) The function ϕ(t̂, ·) is P -faceted at x̂ but x̂ ∈ ∂R(ϕ(t̂, ·), x̂). There is
an element (τ, p, 0) ∈ (P+ϕ(t̂, x̂)) for some τ ∈ R.
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We say that ϕ is an admissible subfunction at (t̂, x̂) in Q if ϕ is an ad-
missible superfunction with P replaced by −P . We implicitly assume that
R

(
ϕ(t̂, ·), x̂) does not touch the boundary of Ω. We are now in position to

give a definition of subsolution in the infinitesimal sense.

Definition 3.3. Assume (W), (S), (F1), (F2). A real-valued function u on
Q is a subsolution in the infinitesimal sense of (3.1) (in Q) if u∗ < ∞ in
[0, T ) × Ω and the following conditions are fulfilled. For (t̂, x̂) let ϕ be an
admissible superfunction at (t̂, x̂) in Q such that ϕ is a test function of u at
(t̂, x̂), i.e., (3.4) holds. Then

(i) τ + F
(
t̂, ϕx(t̂, x̂),Λ

σ(t̂,·)
W (ϕ(t̂, ·))(x̂)

)
≤ 0 for all τ ∈ T +

P ϕ(t̂, x̂) if (A) in

Definition 3.2 holds;

(ii) τ + F (t̂, p,W ′′(p)X + σ(t̂, x̂)) ≤ 0 for all (τ, p,X) ∈ P+ϕ(t̂, x̂) if (B) in
Definition 3.2 holds;

(iii) τ + F (t̂, p, σ(t̂, x̂)) ≤ 0 for all (τ, p, 0) ∈ P+ϕ(t̂, x̂) if (C) in Definition
3.2 holds and

(u∗ − ϕ) (t̂, x) < max
Q

(u∗ − ϕ)

for all x ∈ R (
ϕ(t̂, ·), x̂) \{x̂} near x̂.

The definition of supersolution in the infinitesimal sense is given by re-
placing u∗(< ∞) by u∗(> −∞), max by min in (3.4), supersolution by
subfunction, T +

P by T −
P ,P+ by P− and the inequalities in (i), (ii), (iii) by

the opposite ones. It turns out that Definition 3.1 and Definition 3.3 are
equivalent.

Theorem 3.4 (Equivalence). Assume (W), (S), (F1), (F2). A real-valued
function u on Q is a subsolution (resp. supersolution) of (3.1) in Q if and only
if u is a subsolution (resp. supersolution) of (3.1) in Q in the infinitesimal
sense.

The proof essentially parallels that of [[GG98Ar], Theorem 6.9] and [[GG01Ar],
Theorem 4.3]. In the proof of the ’only part’, (iii) follows from the zero-
curvature lemma [[GG01Ar], Lemma 4.2] with a trivial modification. We
give a modified version of this lemma for reader’s convenience. We do not
repeat the tedious detail of the proof of the ’only if’ part. The proof of the
’if’ part is easier and written in the proof of [[GG01Ar], Theorem 4.3]; of
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course we need trivial modifications for example ΛW

(
ψ(t̂, ·), x̂) < 0 should

be replaced by χ
(
ψ(t̂, ·), x̂) < 0.

Lemma 3.5 (Zero curvature). Let u be a subsolution of (3.1) in Q.
Assume that ϕ ∈ AP (Q) and that

max
Q

(u∗ − ϕ) = (u∗ − ϕ) (t̂, x̂)

for (t̂, x̂) ∈ Q. If x̂ is an end point of a faceted region R
(
ϕ(t̂, ·), x̂) with

ϕx(t̂, x̂) ∈ P and (u∗−ϕ) (t̂, x) < (u∗−ϕ) (t̂, x̂) for all x ∈ R (
ϕ(t̂, ·), x̂) near

x̂, then
ϕt(t̂, x̂) + F

(
t̂, ϕx(t̂, x̂), σ(t̂, x̂)

) ≤ 0.

4 Comparison principle

We state our main comparison result for equation (3.1).

Theorem 4.1 (Comparison). Assume that condition (W), (S), (F1), (F2),
(FL) and (FT) hold. Assume that P is a finite set. Let u and v be respectively
sub- and supersolutions of (3.1) in Q = (0, T )×Ω, where Ω is a bounded open
interval. If u∗ ≤ v∗ on the parabolic boundary ∂pQ(= [0, T )× ∂Ω∪ {0}×Ω)
of Q, then u∗ ≤ v∗ in Q.

The proof will be given in the remaining part of this section. The basic strat-
egy is in finding suitable test functions of u and v to obtain a contradiction
after having assumed that the conclusion u∗ ≤ v∗ had been false. This basic
strategy is the same as in [GG98Ar]. However, the nonlocal curvature may
depend on x even if x is in a faceted region. So one should be careful on
this issue. This is a new aspect of the problem. On the other hand since the
infinitesimal version of definitions of sub- and supersolutions are simplified
compared with [GG98Ar], we need not to avoid to handle the case where
functions take a maximum value at end points of faceted regions. In fact, it
is mentioned in [GG01Ar] that the proof of [GG98Ar] is simplified.

4.1 Doubling variables

As usual we double the variables. For z = (t, x), z′ = (s, y) ∈ Q, we set

w(z, z′) = u(z)− v(z′).
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We take a barrier function which is different from the one in [GG98Ar]. Let
B ∈ C2

P (R) be a function such that B is convex, xB′(x) ≥ 0 for all x ∈ R
with B(0) = 0 and

0 < lim|x|→∞B
′(x)/x, lim|x|→∞B

′(x)/x <∞.

Moreover, the length of all faceted regions is the same. It is easy to find the
derivative B′ of such a function by modifying y = x, so that B is obtained as
its primitive. We consider its rescaled version: Bε(x) = εB(x/ε) for ε > 0.
Clearly, Bε ∈ C2

P (R) and satisfies the same properties as B’s. We consider
’barrier functions’ of the diagonal z = z′:

Ψ(z, z′; ε, δ, γ, γ′) = Bε(x− y) + S(t, s; δ, γ, γ′)

S(t, s, δ, γ, γ′) = (t− s)2/δ + γ/(T − t) + γ′/(T − s)

for positive parameters ε, δ, γ, γ′. (In [GG98Ar] we use |x−y−ζ|2/ε2 instead
of Bε(x− y), where ζ is an extra shift parameter used to avoid the situation
when a point we are dealing with is an end point of faceted regions.) We often
write Ψ(z, z′) and S(t, s) instead of showing the dependence on all positive
parameters. As usual, we shall analyze maximizers of

Φ(z, z′) = w(z, z′)−Ψ(z, z′).

4.2 Choice of parameters

We shall choose ε, δ, γ, γ′ sufficiently small as usual. The next statement for
behavior of maximizer of Φ is rather standard in the process of doubling
variables; see e.g., [GGIS], [[GG98Ar] Proposition 7.1], [G].

Proposition 4.2. Assume that u and −v are upper-semicontinuous in
[0, T )× Ω with values in R ∪ {−∞} and u = u∗, v = v∗ including {T} × Ω,
where Ω is an open set in R. Assume that m0 = supz∈Qw(z, z) > 0.

(i) For eachm′
0, (0 < m′

0 < m0), there are γ0, γ
′
0 > 0 such that supQ×Q Φ >

m′
0 for all ε > 0, δ > 0, γ0 > γ > 0, γ′0 > γ′ > 0.

(ii) (Behavior of a maximizer) Let (ẑ, ẑ′) = (t̂, x̂, ŝ, ŷ) be a maximizer of Φ
over Q×Q. Then

|t̂− ŝ| ≤Mδ1/2, Bε(x̂− ŷ) ≤M

with M = supQ×Qw for all ε > 0, δ > 0, γ0 > γ > 0 and γ′0 > γ′ > 0.

Moreover, |t̂−ŝ|2/δ → 0, Bε(x̂−ŷ) → 0 since M → m as ε→ 0, δ → 0.
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(iii) (Effect of boundary condition) Assume that u ≤ v on ∂pQ(= ∂pQ) and
that Ω is a bounded open interval. Then, there are ε0, δ0 such that
(ẑ, ẑ′) is an (interior) point of Q×Q for all 0 < ε < ε0, 0 < δ < δ0, 0 <
γ < γ0, 0 < γ′ < γ′0.

Remark 4.3. Since w is upper-semicontinuous, we may assume in (iii) that
for each ξ > 0

w(z, z′) ≤ ξ for (z, z′) ∈ ∂pQ×Q ∪Q× ∂pQ

satisfying Bε(x− y) < M, |t− s|2/δ < M with z = (t, s), z′ = (s, y).
In the sequel, we assume that m0 > 0 with ξ = 1

4
m0, m

′
0 = m0− ξ/2 and

we fix ε0, δ0, γ0, γ
′
0 so that all properties (i)-(iii) and these in Remark 4.3 hold.

4.3 Maximizers in a faceted region of test functions

We shall consider three cases depending on the location of maximizers (ẑ, ẑ′) =
(t̂, x̂, ŝ, ŷ) of Φ over Q×Q.

Case A: p̂ = B′(x̂− ŷ) ∈ P and x̂− ŷ ∈ int R(Bε, x̂− ŷ).

Case B: p̂ = B′(x̂− ŷ) /∈ P .

Case C: p̂ = B′(x̂− ŷ) ∈ P and x̂− ŷ ∈ ∂R(Bε, x̂− ŷ).

Proposition 4.4. Assume the conditions of Case A for (ẑ, ẑ′) = (t̂, x̂, ŝ, ŷ)∈Q×
Q . Let u0 and v0 denote

u0(t, x) = u(t, x)− p̂x, v0(s, y) = v(s, y)− p̂y

with p̂ = B′(x̂− ŷ). Then u0(t̂, ·), −v0(ŝ, ·) take their local maxima at x̂ and
ŷ respectively. Moreover,

u0(t, x)− v0(s, y)− S(t, s) ≤ u0(t̂, x̂)− v0(ŝ, ŷ)− S(t̂, ŝ)

for all (x, y) ∈ Σκ, t, s,∈ [0, T ] for sufficiently small κ > 0 where

Σκ = {(x, y) ∈ Ω× Ω | |x− y − (x̂− ŷ)| < κ}.
This follows from definition since Bε is a P -faceted function. (We even do

not invoke Proposition 4.2.)
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Proposition 4.5 (No touching of faceted region on the boundary).
Assume the conditions of Case A for (ẑ, ẑ′) and choose parameters ε0, δ0, γ0, γ

′
0

as in Remark 4.3. Assume that 0 < ε < ε0, 0 < δ < δ0, 0 < γ < γ0, 0 <
γ′ < γ′0. Let Ω denote Ω = (a, b). Then there is x1 ∈ (x̂, b1) or y1 ∈ (ŷ, b2)
such that

u0(t̂, x1) < u0(t̂, x̂) or v0(ŝ, y1) > v0(ŝ, ŷ)

with η = x̂− ŷ, b1 = min(b, b+ η), b2 = min(b, b− η). The same assertion is
valid if (x̂, b1) and (ŷ, b2) are replaced by (a, x̂) and (a2, ŷ) respectively, with
a1 = max(a, a+ η), a2 = max(a, a− η).

For the proof, we invoke Remark 4.3. The proof depends on the boundary
condition (Proposition 4.2. (iii)) and it parallels that of [[GG98Ar], Proposi-
tion 7.10].

4.4 Existence of admissible superfunctions

Unfortunately, functions u0 and v0 may not be faceted at x̂ and ŷ. We have
to regularize them by taking sup-convolution with faceted functions. For
ρ > 0 let ϑ(x, ρ) denote

ϑ(x, ρ) =





(x− ρ)2/ρ, x > ρ,

0 |x| ≤ ρ,

(x+ ρ)2/ρ x < −ρ.

We consider sup-convolutions of u0 and −v0 by ϑ. For α > 0 let uα
0 be the

sup-convolution of u0 in the x-direction, i.e.,

uα
0 (t, x) = (u0(t, ·))α = sup{u0(t, ξ)− ϑ(ξ − x, α); ξ ∈ R}

where we use the convention that u0 = −∞ if ξ /∈ Ω. The inf-convolution
of v0 is defined by v0ρ = −(−v0)

β for β > 0. Functions uα
0 , v0β are defined

in [0, T ] × R. Basing on these regularizations and the maximum principle
for faceted sub- and supersolutions, the desired admissible super- and sub-
functions are constructed. The proof is essentially the same as in [[GG98Ar],
Proposition 7.12-7.15]. Although it is highly nontrivial, we do not repeat the
proof.

Theorem 4.6. Assume the condition of Case A and choose parameters
ε0, δ0, γ0, γ

′
0 as in Remark 4.3. Let 0 < ε < ε0, 0 < δ < δ0, 0 < γ < γ0
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and 0 < γ′ < γ′0. Then, there exists an admissible superfunction U at (t̂, x̂)
in Q and an admissible subfunction V at (ŝ, ŷ) in Q satisfying the following
properties.

(i) U and V are test functions of u and v at (t̂, x̂) and (ŝ, ŷ) respectively.
In fact,

max
Q

(u− U) = (u− U)(t̂, x̂) = 0, min
Q

(v − V ) = (v − V )(ŝ, ŷ) = 0.

(ii) U(t̂, ·) is p̂-faceted at x̂ ∈ int R
(
U(t̂, ·), x̂) and T +

P U(t̂, x̂) 3 St(t̂, ŝ);

V (ŝ, ·) is p̂-faceted at ŷ ∈ int R (V (ŝ, ·), ŷ) and T −
P V (ŝ, ŷ) 3 Ss(t̂, ŝ).

(iii) R
(
(U(t̂, ·), x̂) = R (V (ŝ, ·), ŷ) + (x̂− ŷ). In particular, L

(
U(t̂, ·), x̂) =

L (V (ŝ, ·), ŷ).
(iv) χ

(
U(t̂, ·), x̂) + χ (−V (ŝ, ·), ŷ) ≤ 0.

The function uα
0 + p0x is essentially an admissible superfunction so we

are tempted to set U = uα
0 + p0x. However, faceted region may contain the

boundary point of ∂Ω. Since

uα
0 (t, x)−v0α(s, y) ≤ uα

0 (t̂, x̂)−v0α(ŝ, ŷ)+ϑ

(
x− y − η,

λ0

2

)
+S(t, s)−S(t̂, ŝ)

on ([0, T ] ×R)2 for sufficiently small α as observed in [[GG98Ar], Proposi-
tion 7.13] we are able to apply the maximum principle for faceted functions
[[GG98Ar], Corollary 4.6] to construct U . The properties (ii)–(iv) are ob-
tained by the comparison principle for Λσ

W (Theorem 2.4, Theorem 2.12).

4.5 Proof of comparison theorem

We are now in position to prove Theorem 4.1. Suppose that the conclu-
sion were false. We may assume that u and v satisfy the assumptions of
Proposition 4.2 by considering u∗ and v∗ on Q. In particular, we may as-
sume m0 > 0. We shall fix ε0, δ0, γ0, γ

′
0 as in Remark 4.3 and assume that

0 < ε < ε0, 0 < δ < δ0, 0 < γ < γ0 and 0 < γ′ < γ′0. Since Q is com-
pact and u and −v are upper-semicontinuous, there is always a maximizer
(ẑ, ẑ′) = (t̂, x̂, ŷ, ŝ) of Φ over Q × Q and it is in Q × Q by the choice of
parameters (Proposition 4.2 (iii) and Remark 4.3). We shall fix γ and γ′. We
divide the situations into three cases.
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Case I. For sufficiently small ε, δ(> 0) say ε < ε1(< ε0), δ < δ1(< δ0) there
is a maximizer (ẑ, ẑ′) such that Case A occurs (for x̂ and ŷ).

Case II. There is a sequence εj → 0, δj → 0 such that there is a maximizer
(ẑ, ẑ′) such that Case B occurs.

Case III. There is a sequence εj → 0, δj → 0 such that there is a maximizer
(ẑ, ẑ′) such that Case C occurs and there is no maximizer (ẑ, ẑ′) such
that either Case A or Case B occurs.

In the Case I we invoke Theorem 4.6. Since U is an admissible superfunction
at (t̂, x̂) in Q and since u is a subsolution we have, by Definition 3.2 and
Theorem 4.6 (i), (ii).

St(t̂, ŝ) + F
(
t̂, p̂,Λ

σ(t̂,·)
W (U(t̂, ·))(x̂)

)
≤ 0 (4.1)

Similarly,

−Ss(t̂, ŝ) + F
(
ŝ, p̂,Λ

σ(ŝ,·)
W (V (ŝ, ·))(ŷ)

)
≥ 0. (4.2)

By Theorem 4.6 (iv) we have

Λ
σ(t̂,·)
W (U(t̂, ·))(x̂) = Λ

σ(t̂,·)
χU

l χU
r
(x̂, IU) ≤ Λ

σ(t̂,·)
χV

l χV
r
(x̂, IU), (4.3)

IU = R(U(t̂, ·), x̂)
where χU

l and χU
r denote the transition numbers of U(t̂, ·) on IU and χV

l and
χV

r denote the transition numbers of V (ŝ, ·) on IV = R(V (ŝ, ·), ŷ). Since we
have assumed that P is a finite set, there is K such that P ⊂ [−K,K]. Thus,
by (FT) and (F2), inequalities (4.1) and (4.3) yield

St(t̂, ŝ) + F
(
ŝ, p̂,Λ

σ(t̂,·)
χV

l χV
r
(x̂, IU)

)
− ωK(t̂− ŝ) ≤ 0 (4.4)

with some modulus ωK . By definition inequality (4.2) can be rewritten as

−Ss(t̂, ŝ) + F
(
ŝ, p̂,Λ

σ(ŝ,·)
χV

l χV
r
(ŷ, IV )

)
≥ 0. (4.5)

Subtracting (4.5) from (4.4) yields

γ

(T − t̂)2
+

γ′

(T − ŝ)2
+F

(
ŝ, p̂,Λ

σ(t̂,·)
χV

l χV
r
(x̂, IU)

)
−F

(
ŝ, p̂,Λ

σ(ŝ,·)
χV

l χV
r
(ŷ, IV )

)
≤ ωK(|t̂−ŝ|).
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This implies

(γ + γ′)/T 2 ≤ C(1 +K)|Λσ(t̂,·)
χV

l χV
r
(x̂, IU)− Λ

σ(ŝ,·)
χV

l χV
r
(ŷ, IV )|+ ωK(|t̂− ŝ|) (4.6)

by (FL). By Theorem 4.6(iii) we know IU = IV + x̂− ŷ. Sending ε to zero we
observe that x̂− ŷ → 0 by Proposition 4.2 (ii). By (S) we know that σx(s, ·)
is uniformly bounded. We now invoke continuity results (Theorem 2.8 and
Theorem 2.9 (ii)) to get

Λ
σ(t̂,·)
χV

l χV
r
(x̂, IU) → Λ

σ(t,·)
χV

l χV
r
(x, I),

Λ
σ(ŝ,·)
χV

l χV
r
(ŷ, IV ) → Λ

σ(s,·)
χV

l χV
r
(x, I) (4.7)

as ε→ 0, where x(= y), t, s is a subsequent limit of x̂, ŷ, t̂, ŝ as ε→ 0 and I
is a subsequent limit of IU which is the same as the limit of IV . Note that
U and V depend ε, so do IU and IV . However, the convergence is uniform
with respect to the interval and σ, so we are able to obtain (4.7). Applying
Theorem 2.8 and Theorem 2.9(ii) again to (4.7), we let δ → 0 and observe
that the right hand sides of (4.7) converge to the same value. We now send
ε→ 0 and then δ → 0 in (4.6) to get (γ+γ′)/T 2 ≤ 0, which is a contradiction.

Case II is rather standard [GG98Ar], [CIL], [G]. The assumptions (FL)
and (S) are useful in this step. Case III is essentially the same as Case I (or
even easier) if one admits the zero curvature lemma (Lemma 3.5). ¤

4.6 Periodic version

As noted in [GG98Ar] a similar argument yields the comparison principle
under spatially periodic boundary conditions. In fact, the argument is even
simpler because there is no lateral boundary of Q = (0, T )×T, T = R/ωZ,
ω > 0. For the reader’s convenience we state the comparison principle for
the periodic boundary condition.

Theorem 4.7 (Comparison). Let us assume that the conditions (W), (S),
(F1), (F2), (FL) and (FT) hold and in addition set P is finite. Let u and v be
respectively sub- and supersolutions of (3.1) in Q = (0, T ) ×T, T = R/ωZ
with period ω. If u∗ ≤ v∗ at t = 0, then u∗ ≤ v∗ in Q.

Remark 4.8. As usual Theorem 4.1 and 4.7 can be extended to the case
when F = F (u, t, p,X) depends also on the value of u explicitly, provided
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that u 7→ F (u, t, p,X) + ku =: F̃ is nondecreasing for some k ≥ 0 and F̃
is continuous as a function of (u, t, p,X). Of course, the assumptions (FL)
and (FT) should be uniform for all u with |u| ≤ K for a given K. If k = 0,
the proof is the same except the trivial modification of the way of comparing
(4.4) and (4.5). If k > 0, we have to introduce a new variable ũ = u exp(−kt)
and reduce the problem to the case k = 0. Note that, differently from
the standard case [G], when the singularity set P is empty, our singular
set (jump discontinuity) for ũx depends on time which apparently yields an
extra difficulty. However, we are able to circumvent this difficulty by using
old variables to calculate Λ and the slope, while using new variable ũ and ṽ
to find maximizer of Φ.

5 Examples of solutions

In [GR1], [GR2], [GGR] we constructed variational solutions to

βV − κγ = σ, (5.1)

while increasing generality of the setting, where β = M−1 is the kinetic
coefficient. We considered graphs, possibly satisfying additional boundary
condition, and simple closed Lipschitz curves we called bent rectangles. We
will show that the variational solutions to (5.1) for evolution of graphs are
viscosity solutions in the sense of the present paper. For the sake of illus-
tration the theory we will not consider the general case of [GGR] but only
simple ones presented in [GR1]. To be precise, we dealt with a simplification
of the case studied in [GR1], where we investigated graphs of functions de-
fined over a finite interval J . We considered solutions having exactly three
facets and two of them touched the boundary at the right angle. Here, we
study a graph over R, with some restrictions on the data.

We expect that the results of the present paper may be applied to closed
curves, but we will not elaborate upon this.

An advantage of studying graphs in the parametric approach is that the
set of parameters is independent of time. Thus, the main difficulty is in-
terpreting (5.1) in a local coordinate system. We present the setting after
[GR1].

We specify the surface energy density (or anisotropy function) by formula

γ(p1, p2) = |p1|γΛ + |p2|γT , γΛ, γT > 0; (5.2)
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we assume a simplifying form of the kinetic coefficient β = 1/M

β(n1, n2) =
1

max(|n1|, |n2|) , (5.3)

for n2
1 + n2

2 = 1. Subsequently, β is extended by 1-homogeneity to R2.

5.1 Graphs over R

We consider evolution of a graph Γ(t) = {(x, y) ∈ R2 : y = d(t, x)},
where d(t, ·) : R → R+. For the sake of simplicity we assume that function
d(t, ·) is admissible (in x) for all t ≥ 0. We shall say that a function d is
admissible provided that:
(a) d is Lipschitz continuous;
(b) d is even;
(c) it is bounded;
(d) (λ0,+∞) 3 x 7→ d(x) is strictly increasing, for a positive λ0;
(e) {dx = 0} = (−λ0, λ0).

The last condition means that we consider a simple yet nontrivial case
when d has exactly one faceted region. We stress, however, that the facet
(−l0, l0) may be strictly included in (−λ0, λ0).

We have to explain the definition of κγ. Formally,

κγ = −divS(∇ζγ(n)), (5.4)

where n is the outer normal to Γ and for γ, given by (5.4), we have,

∇γ(p1, p2) = (γΛsgn(p1), γT sgn(p2)).

In the present case n = (−dx, 1)/
√

1 + d2
x. Thus, we immediately obtain

β(n)dt√
1 + d2

x

= σ + γΛ
∂

∂x

(
d

dp1

|dx|
)
. (5.5)

This is exactly equation (1.1) with W (p1) = γΛ|p1| and a(p1) = max{|p1|, 1},
hence our theory applies.

In [GR1], we interpreted (5.1) differently. Namely, we replaced gradient,
∇ζγ, which is defined only almost everywhere by the subdifferential, ∂ζγ,
which is well defined for all p ∈ R2, because γ is convex. However, we had to
consider sections ξ of the subdifferential, i.e. ξ(x) ∈ ∂ζγ(n(x)). That is here,
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where we change notation as compared with the Introduction and Section
2. In the Introduction our present ξ was denoted by η. On the other hand,
writing ξ(x) ∈ ∂ζγ(n(x)) is consistent with the papers being the source of
our examples. ξ(x) ∈ ∂ζγ(n(x)).

As a result, we ended up with

β(n)dt√
1 + d2

x

= σ − τ · ∂ξ
∂τ
, (5.6)

where τ is a unit tangent, (see [GR1, eq. (2.3)]).
In order to select ξ we introduced a functional

E(ξ) =
1

2

∫

Γ(t)

|σ − divSξ|2 dH1 (5.7)

defined over D,

D = {ξ ∈ L∞(Γ) : ξ(x) ∈ ∂γ(n(x)), divSξ ∈ L2(Γ)}. (5.8)

The graph of Γ(t) has infinite one-dimensional Hausdorff measure. But the
condition divSξ ∈ L2(Γ) does not introduce additional unexpected restric-
tions, because outside of the facets we have ξ = ∇γ(n), where n 6= nΛ,nR

and nΛ = (1, 0), nR = (0, 1).
We call a couple (Γ, ξ) a variational solution to (5.1) provided that Γ is

the graph of an admissible function d, as described above, and at each time
instant t, the vector field ξ(t, ·) : Γ → R2 is a minimizer of E , i.e.

E(ξ) = min{E(ζ) : ζ ∈ D}. (5.10)

We can show that under natural conditions on σ, equation (5.1) takes a
form suitable for analysis.

We notice that if ξ is a solution to (5.10), then the boundary of the
coincidence set ±l0 need not coincide with boundary of the flat region ±λ0

postulated by the definition of the admissible function, thus l0 ≤ λ. For the
sake of simplicity of notation we shall write

R0 := d|(−l0,l0).

Once we settle the notation we establish the following fact.
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Proposition 5.1 We assume that σ, σx,∈ C(R+×R) and σ satisfies the
following conditions:

σ(t,−x) = σ(t, x), x
∂σ

∂x
(t, x) > 0, for x 6= 0. (5.11)

Let us suppose that (Γ, ξ) is a variational solution to (5.1), where Γ = Γ(d)
is the graph of d, such that at each time instant t ≥ 0 d(t, ·) has exactly
one faceted region, (−l0, l0). Furthermore, for all t ≥ 0 function d(t, ·) is
piecewise C1. Then,

(a) We have the following formula for ξ1 for each time t ≥ 0

ξ1(t, x) =





x

(∫ x

0

− σ(t, s) ds−
∫ l0

0

− σ(t, s) ds

)
− x

l0
γ(nΛ) for x ∈ [0, l0);

−γ(nΛ) for x ∈ [l0,∞);
(5.12)

where we write
∫

A
− f dµ = 1

µ(A)

∫
A
f dµ. In addition, Ṙ0 > 0.

(b) Equation (5.1) (and hence (5.6)) takes the following form,

Ṙ0 =

∫ l0

0

− σ(t, s) ds+
γ(nΛ)

l0
on (−l0, l0);

dt = σ on [l0,∞). (5.13)

Remark 5.2. The above result is based upon [GR1, Proposition 2.5], [GR2,
Proposition 3.2] derived for graphs over [−L,L] having three facets, two of
them touching the boundary of [−L,L]. In the absence of the additional
facets the argument gets simpler than in [GR1] and [GR2] and it is omitted.

Let us warn the reader that we use the notion ‘faceted region’ in the sense
defined in the present paper. In [GR1], [GR2] its meaning is different.

It turns out that l0(·) is a genuine free boundary. We obviously need
information about its behavior. Without it the above system is not closed.

Let us suppose that t ≥ 0, the necessary and sufficient condition for
continuity of the function given below

χ[0,l0(t)]R0(t) + χ(l0(t),∞)d(t, x)
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is the following matching condition

R0(t) = d(t, l0). (5.14)

In addition, since we have a faceted region, the coincidence set of the ob-
stacle problem (5.10) may not be empty. By definition, ±l0 form its bound-
ary, i.e., l0 ≤ λ0, then at such a point

∂ξ

∂x
(l0) = 0. (5.15)

We shall say that (Γ, ξ) satisfies the tangency condition at l0.
However, if d+

x (l0(t), t) > 0, then we just have a boundary condition at
this point and (5.15) does not hold.

We have the following two existence results.

Theorem 5.3 Let us assume (5.3) and consider system (5.13) augmented
with initial condition (Γ0, ξ0), where

Γ0 = {(x, y) ∈ R2 : x ∈ R, y = d0(x)},

d0 is an admissible function, satisfying |d0,x(x)| < 1 for all x ∈ R. In partic-
ular, the real, positive numbers l00 R00 = d|(−l00,l00), are given. We assume
that σ satisfies (5.11) Moreover, we impose the following conditions:

(a) d0 ∈ C1(R\ (−l00, l00)) and for all x ∈ R\ (−l00, l00) the derivative d0,x

is different from zero;

(b) there is exactly one faceted region of d0, where Γ(0) = Γ(d0), namely
it is (−l00, l00);

(c) the matching condition (5.14) holds at t = 0, i.e. R00 = d0(l00);

(d) the tangency condition (5.15) is satisfied at t = 0, i.e.

σ(0, l00) =

∫ l00

0

− σ(0, s) ds+
γ(nΛ)

l00

,

(e)

Σ0 =

∫ l00

0

−σt(0, y) dy − σt(0, l00) < 0.
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Then,

(i) There exists a unique local in time solution to (5.13), R0 and d(t, ·) ∈
C1((−∞,−l0] ∪ [l0,∞)) and d(t, ·) is strictly increasing, whose deriva-
tive dx(t, x) never vanishes for x ∈ R \ (−l0(t), l0(t));

(ii) The matching (5.14) and tangency (5.15) conditions hold for all times
t > 0, that is if we extend d(t, ·) to R by

d̄(t, x) =

{
d(t, x) if |x| ∈ [l0,∞);
R0(t) if |x| ∈ [0, l0),

(5.16)

then d̄(t, ·) is Lipschitz continuous on R. (Subsequently we drop the
bar over the extension.)

(iii) If ξ1(t, x) is given by formula (5.12) for x > 0 and we set ξ1(t, x) =
−ξ1(t,−x) for x < 0, then (Γ(d(t, ·)), ξ(t, ·))t∈[0,T ) is a variational solu-
tion to (5.1), provided that ξ(t, ·) = (ξ1(t, ·), γ(nR)) .

Remark 5.4. Let us stress again that l00 is defined as the boundary of the
coincidence set

{x : |ξ1(x)| = γΛ},
where ξ is a solutions to the variational problem (5.10). We note, that in
general

[−l0, l0] ⊂ {x : dx(t, x) = 0}
and the inclusion may be strict.

Theorem 5.5 Let us suppose that all the assumptions of Theorem 5.2 hold,
except (d) i.e. the tangency condition (5.15) and the inequality sign in (e) is
reversed, i.e. we have

Σ0 > 0.

Instead of (5.15) the following inequality is satisfied

σ(0, l00)−
∫ l00

0

−σ(0, s) ds+
γ(nΛ)

l00

< 0.

Moreover, we assume that d0 ∈ C1,1([l00,∞)), the right derivative d+
x (0, l00)

is positive and σ ∈ C1,1. Then, there is a unique local in time solution
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to (5.13), such that at no time t > 0 the tangency condition (5.15) holds.
Subsequently, if ξ(t, ·) is defined as in Theorem 5.3, (iii), then (Γ(d(t, ·), ξ(t, ·))
is a variational solution to (5.1).

Remark 5.6. We note that l0 is a genuine free boundary, its behavior is
determined by σ. For instance if σ is independent of time and σ = σ(x),
then l0(t) = l00. The type of behavior of the interfacial curve is determined
by Σ0, this quantity is defined by [GR2, eq. (3.14)] and the properties of l0
are presented in [GR2, Proposition 3.4].

These two Theorems are based upon [GR1, Theorem 2.10] and the analy-
sis of [GR2, Section 3.1]. The present statements are easier than the original
ones in [GR1, Theorem 2.10] and in [GR2, Section 3.1], because we deal with
a single facet for a graph of an admissible function, but the main difference
is that here we have an unbounded domain. For the sake of completeness,
we offer a sketch of the proof in the Appendix.

5.2 Variational solutions are viscosity solutions and
they are unique

Here, we shall see that our variational solution over R can be regarded as
the viscosity solutions. Hence, they will be unique. The comparison prin-
ciple has been shown for equation on a bounded domain, but our sub- and
supersolutions are fully determined for large values of |x|, thus a comparison
principle for bounded |x| is sufficient. We will explain it in Corollary 5.8
following Theorem 5.7.

Theorem 5.7. Under the conditions specified above the variational solutions
constructed in Theorem 5.3 and in Theorem 5.5 are viscosity solutions in the
sense of the present paper, as long as |dx| ≤ 1.

Proof. Of course equation (5.5) augmented with the initial condition may
be written as {

dt + a(dx)Λ
σ
W (d) = 0,

d(x, 0) = d0(x)

where Λσ
W (d) = d

dx
ζχlχr is given by (2.5) and the signs of χr, χl depend upon

the point we consider. We will show that if (Γ(d), ξ) is a variational solution,
then Λσ

W (d) = σ − ∂ξ
∂x

, where ξ is given by (5.12) in Proposition 5.1. The
interval (−l0, l0) is the inverse image of a faceted region of Γ in the language
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of [GR1], [GR2], it is the faceted region in the present paper sense. If I is any
interval containing (−l0, l0), then ξ̄ = ξ|I is a solution to the minimization
problem,

min{EI(ζ) : ζ ∈ DI}. (5.17)

We write, ΓI(t) = {(x, y) ∈ Γ(t) : x ∈ I} and

EI(ζ) =
1

2

∫

ΓI(t)

|σ − divSζ|2 dH1,

DI = {ζ ∈ L∞(ΓI) : ζ(x) ∈ ∂γ(n(x)), divSζ ∈ L2(ΓI), ζ = ξ|∂I}.
The pictures below illustrate the cases l0 = l1 and l0 < l1 appearing in the
coincidence set, where I is of the form (−i0, i0) containing (−l1, l1).

−l   = −l  0  1

l = l0 1

Λ

G(x)+

G(x)

ζ
I

x

γΛ

γG(x) −     

I =(−i   , i   )0 0

i

−i

0

0

Figure 1: Graph of ζI (case l0 = l1)
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G(x)+

G(x)−

−i 

γ

γ

ζ I

Λ

Λ

0

−l 0
−l 1

l 0 l
1

i
0 x

0 0I = (− i  , i  )

Figure 2: Graph of ζI (case l0 < l1)

Indeed, if there existed ζI , a solution to (5.17) such that EI(ζI) < EI(ξI),
then this indicates that ξ is not a solution to (5.10), which is not possible.

We have to justify possibility of taking the boundary conditions in the
definition of DI . We know that ξ is a solution to the obstacle problem (5.10)
and (−∞,−l0) ∪ (l0,∞) is the coincidence set. Using the argument of the
proof of [GR1, Proposition 2.5], [GR2, Proposition 3.2] one can show that
ξ|(−∞,−l0] = γΛ and ξ|[l0,∞) = −γΛ. Thus, ξ restricted to each connected
component of the I \ [−l0, l0] is constant.

Let us now calculate Λσ
W . For points of the coincidence set, it is clear

that Λσ
W = σ as desired. Let us consider interval [−l0, l0]. By the definition,

see (2.5), Λσ
W = d

dx
ζχlχr,I , where ζχlχr,I is a solution to the following obstacle

problem,
min{JZ

χlχr
(ω, I) : ω ∈ KZ

χlχr
}, (5.18)
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where Z(x) =
∫ x

0
σ(t, s) ds and for [−l0, l0], we have χl = +1 = χr,

KZ
++ = {ω ∈ H1 : Z(x)−γΛ ≤ ω(x) ≤ Z(x)+γΛ, x ∈ [−l0, l0], ω(±l0) = Z(±l0)±γΛ}.

Since the boundary conditions in KZ
++ are that of D[−l0,l0], we immediately

conclude by previous considerations that ζ defined by Z − ξ is the solution
to (5.18). Hence, Λσ

W = σ − ∂ξ
∂x
.

After these preparation, we may check that a variational solution is a
viscosity solution. First, we shall see that d is a supersolution. For this
purpose we take a test function ϕ ∈ AP (Q) such that d−ϕ attains a minimum
at (x0, t0), where t0 ∈ (0, T ). We have to show that

ϕt − Λσ
W ≥ 0. (5.19)

Inequality (5.19) (and (5.22) below) is to be checked at each point. We
have to consider two cases for the interfacial curves: (a) the free boundary
l0 is a tangency curve (b) the free boundary l0 is a matching curve and the
tangency condition is violated.

In the course of proving (5.19) we will consider three cases separately:
(i) |x0| > l0(t0), (ii) |x0| ∈ [0, l0(t0)), (iii) |x0| = l0(t0).

We begin with (i). Since we assumed that d0 ∈ C1, we know (see Theorem
5.3 or Theorem 5.5) that at (x0, t0) function d is differentiable. Hence for
ϕ(x, t) = f(x) + g(t) with d− ϕ ≥ 0 in a neighborhood of (x0, t0) we have

dx(x0, t0) = f ′(x0), dt(x0, t0) = g′(t0).

Due to Definition 2.10 we have Λσ
W (ϕ) = σ = Λσ

W (d). As a result,

0 = dt − σ = g′ − Λσ
W (ϕ) = ϕt − Λσ

W (ϕ),

as desired.
Now we look at (ii). The argument depends on the type of the interfacial

curve l0. Let us first assume that l0 is tangency curve.
In the considered case d is also differentiable at (x0, t0). If ϕ is a test

function such that d− ϕ attains its minimum at (x0, t0), then

dx(x0, t0) = 0 = f ′(x0), dt(x0, t0) = g′(t0).

Since f ∈ C2
P (Ω), we immediately see that I = R(f, x0), the faceted region

of ϕ at (x0, t0), must contain [−l0, l0]. Let us suppose that ξI is the solution
to

min{EI(ω) : ω ∈ DI}.
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By the geometric interpretation of the obstacle problem (5.10), [GR1, Propo-
sition 2.3], the coincidence set is I \ (−l0, l0). This is the place, where we use
the fact that the tangency condition holds at x0.

As a result of the above observation, we have Λσ
W (d) = Λσ

W (ϕ). Moreover,

Λσ
W (d) = σ − ∂ξ

∂x

=

∫ l0

0

− σ(t, s) ds+
γ(nΛ)

l0
.

Thus, by (5.13)

0 = Ṙ0 −
∫ l0(t0)

0

− σ(s) ds− γ(nΛ)

l0(t0)
= dt − Λσ

W (d) = ϕt − Λσ
W (ϕ),

as desired.
Let us note that this argument works well for (x0, t0) = (l0(t0), t0) if the

tangency condition holds, so (iii) holds in this case.
We continue our analysis of case (ii). We have to consider the situation

when l0 is a matching curve. We will have to compare Λσ
W (d) and Λσ

W (ϕ).
One way is to invoke Theorem 2.12, but we think it is instructive to check it
directly.

Let us suppose that I = [−a, b] is the faceted region of ϕ containing
(x0, t0). We consider the minimization problem (5.18) defining ζI on that
interval. Without loss of generality, we may restrict our attention to a subin-
terval [µ0, µ1] ⊂ [−a, b] such that dζI

dx
is constant on [µ0, µ1]. Let us first

consider that situation when µ0 = −µ1. We have to compare velocities dζI

dx

and dξ
dx

on [−l0, l0]. Since the tangency condition is violated at l0, then there

is a possibility of bigger faceted regions containing [−l0, l0]. Moreover, dζI

dx
is

a slope of a line connecting 0 and Z(µ1) + γΛ, while dξ
dx

is a slope of a line
connecting 0 and Z(l0) + γΛ. Since Z is strictly increasing, we deduce that
dζI

dx
< dξ

dx
. The same observation applies when we want to compare slopes

of minimizers to (5.18) on [−a, b] and [−µ1, µ1] and a = µ1 or b = µ1 but
[−a, b] ⊃ [−µ1, µ1]. Thus, we have

ϕt − Λσ
W (ϕ) ≥ dt − Λσ

W (d)

= Ṙ0 −
∫ l0

0

− σ(t, s) ds− γ(nΛ)

l0
(5.20)

= 0.
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(iii) In order to complete the discussion of the facet we have to consider
the case when at the interfacial point the tangency condition is violated. Let
us suppose that this happens at x0 = l0, (the case x0 = −l0 is analogous). At
this point d(t0, x0) need not be differentiable with respect to x. Hence, if ϕ
is a test function such that d−ϕ attains its minimum, then d−x (l0(t0), t0) = 0
and d+

x (l0(t0), t0) ≥ 0.
The point (l0(t0), t0) belongs to the faceted region of d, hence it belongs to

the faceted region of the test function ϕ. As a result, the above consideration
on Λσ

W (ϕ) is valid. Hence, the series of inequalities (5.20) is valid too.

We also have to check that d is a subsolution. Similarly to the above
considerations, for the purpose of checking that d is a subsolution, we take a
test function ϕ ∈ AP (Q) such that

max(d− ϕ) = d(t0, x0)− ϕ(t0, x0). (5.21)

We shall show that
ϕt − Λσ

W ≤ 0. (5.22)

We consider the same three cases. They are handled in an analogous way, we
exploit the fact that d(t, ·) is a C1 function on (−l0, l0) and on R \ [−l0, l0].

The case (i) is handled as before, because of differentiability of d and ϕ
at (x0, t0).

(ii) If |x0| < l0(t), then the faceted region of ϕ is contained in [−l0(t0), l0(t0)].
By the previous analysis, we conclude that Λσ

W (ϕ) ≥ Λσ
W (d). Hence,

ϕt − Λσ
W (ϕ) ≤ dt − Λσ

W (d) = 0.

Case (iii) is handled in a completely analogous way as before. We omit
the details. ¤
Corollary 5.8. Let us suppose that the assumption of Theorem 5.7 hold.
The variational solutions constructed in Theorem 5.3 and 5.5 are unique, as
long as |dx| ≤ 1 and the initial condition d0 is strictly increasing on [l00,∞).

Proof. Let us suppose that (Γ(di), ξi) are two variational solutions, with
initial data Γ(d0), where d0 is admissible. We notice that it is sufficient to
show that d1 = d2.

Let us set A = maxt∈[0,T ) l0(t) + 1. Due to (5.11) by formula (6.2) we
conclude that di

x(t, x) 6= 0 for all (t, x) ∈ (0, T ) × (A,∞). Since we solve
an ODE for |x| > A, by inspection of equation (6.1) we immediately see
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that if v := d1 is a supersolution and u := d2 is a subsolution to (6.1), then
v ≥ u. Subsequently, by interchanging the roles of d1 and d2 we conclude
that d1 = d2 for (t, x) ∈ [0, T ) ×R \ (−A,A). As a result, we can see that
an application of the Comparison Principle on (−A,A) yields that d1 = d2

for all (t, x) ∈ [0, T )×R. ¤

6 Appendix

Here we give a sketch of proof of Theorems 5.3 and 5.5 by pointing to the
main differences with [GR1, Theorem 2.10] and [GR2, Section 3.1].

In [GR1] we considered equation (5.6) on a bounded interval J . The
initial condition, hence the solution had three facets, two of them touching
the endpoint of J . Here, we consider (5.6) on R and the data d0 has a
single facet, hence the same will hold for the solution. We have to check the
existence of a solution for all x ∈ R for all t ∈ [0, T ]. Here, the limitations
arise from the constructions of the free boundary l0 performed in [GR2,
Section 3.1]. We have already mentioned that the construction essentially
depends upon the sign of Σ0, but it is local in the sense that it uses the data
from a neighborhood of l00.

Thus, we have to make sure that we can solve (5.6)2, i.e.,

dt(t, x) = σ(t, x), d(0, x) = d0(x) (6.1)

for all large x, e.g. x > A > l00 for a constant A and all t ∈ [0, T ]. This
problem can be solved for all x ≥ l00 uniformly in t > 0,

d(t, x) =

∫ t

0

σ(s, x) ds+ d0(x), (6.2)

since we assumed that σx ∈ C(R+ × R). Moreover, the solution will be
Lipschitz continuous if for all t ≥ 0 we have that Lip (σ(t, ·)) ≤ L.

We notice that for all t > 0 function d(t, ·) is not only strictly increasing
in x, but also the derivative dx(t, x) is positive for all x > l00.

We also have to check that the Cahn-Hoffman vector ξ specified in the
statements of Theorems 5.3 and 5.5 is a unique minimizer of E . This easy task
is left to the reader. Hence, (Γ(d(t, ·), ξ(t, ·))t∈[0,T ) is a variational solutions.

Remark 6.1. We notice that the same kind of argument shows that Theorem
5.3 and 5.5 are valid also if σ = σ(x1, x2) and it satisfies and extension of
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condition (5.11), i.e.

σ(±x1,±x2) = σ(x1, x2),
∂σ

∂xi

(x1, x2)xi > 0 for xi 6= 0.

Moreover, by Remark 4.8 the Comparison Principle (Theorem 4.1) holds too
in this case.
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Mathématique de l’Université de Strasbourg, Hermann, Paris (1966).

[T] J. Taylor, Constructions and conjectures in crystalline nondifferential
geometry, In: Differential geometry, (eds. B. Lawson and K. Tanen-
blat), Proceedings of the Conference on Differential Geometry, Rio de
Janeiro, Pitman Monographs in Pure and Applied Math., 52 (1991),
pp. 321-336, Pitman, London.

43


