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A random dynamics is extracted from time series of laminar-turbulent transition in rotating fluid
in an open cylinder. We focus on the dynamics of the surface height in the central region and
measure switching dynamics between different quasi-stationary states and intensity of underlying
turbulence. Density of return map is constructed from an one dimensional map with an stochastic
term from the experimental data. It is shown that the random dynamics whose noise amplitude
depends on the slow variable describes the observed macroscopic features of rotating fluid in terms
of noise-induced phenomena.
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Multiscale phenomena in dynamical systems with large
degree of freedom is an important problem in nonlin-
ear physics. In number of studies, abstract dynamical
systems models have been used to analyze hierarchical
state space structure. A typical multiscale phenomena
which has been analyzed with dynamical systems theory
is laminar-turbulent transition [1]. Recently, in the tur-
bulence of pipe flow, transient dynamics has been inves-
tigated discussing the lifetime of transitory behavior in
the limit of the large Reynolds number [2]. In these mod-
els, the set of initial conditions separating eventual state,
either laminar or turbulent, forms a chaotic attractor ex-
cept one dimensional unstable manifold. The finite life-
time implies that the set of turbulent state is not closed,
and any states in the turbulent state come back to the
laminar state within finite time. The pipe flow has a sim-
ple geometry, which enables us to obtain mathematically
clean models. However, many other laminar-turbulent
transition including free surface flow, which we treat in
this paper, does not have such advantage. Several theo-
retical models based on the separation between fast mo-
tion and slow motion has been also proposed; models by
the extraction of slow motion, models using appropriate
coarse-graining of phase space, or fully phenomenological
models by using stochastic dynamics [3, 4].

Here, we focus a macroscopic motion of the surface
shape of fluid, which is called “surface switching”, in an
open cylinder driven by constant rotation of the bottom
[5]. Around the critical Reynolds number for the laminar-
turbulent transition, the surface deformation shows ir-
regular switching between axisymmetric shapes and non-
axisymmetric ones even when the rotation speed is con-
stant. While the time scale of the switching phenom-
ena is considerably slow compared to the rotation speed,
the motion of the surface height in the central region
is strongly correlated with the underlying turbulence in-
tensity. In other words, the surface shape plays a role
of high-dimensional control parameter of the flow states,
and the flow state determines the surface shape, in turn.

The turbulent flow generates large fluctuation affecting
the macroscopic dynamics of the surface height.
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FIG. 1: (Top-Left) Experimental set-up for the measurements
slow and fast motion of the flow and the experimental time
series of the surface height and rotating flow. (Top-Right) In
time series, horizontal axis denotes time [sec] and vertical axis
is for the ratio of the surface height x and the ratio of the tur-
bulence intensity V/2πΩR, which are both normalized in [0, 1]
with respect to the maximum. (Bottom) The global surface
shape of (a) axisymmetric state, (b) non-axisymmetric defor-
mation, and (c) double-well shape detached from the bottom.
(d) axisymmetric state elongated to the bottom.

In this paper, we reduce experimental data into simple
random dynamical systems model. It is shown that one
dimensional map with noise whose amplitude depends on
the slow variable describes the observed macroscopic fea-
tures of the surface switching phenomena. The return
map and embedding methodology [6] is extended with
an appropriately designed stochastic term to describe
macroscopic slow motion in deterministic dynamical sys-
tems with a large degrees of freedom. We succeed in
reproducing the switching phenomena between multiple
quasi-stationary states, which has a globally disordered
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flow patten, and qualitative bifurcation structure includ-
ing hysteresis. It is also shown that the noise amplitude
depending on the state is crucial, suggesting that studies
on noise-induced phenomena can be a good theoretical
approaches to this multiscale phenomena.

A schematic outline of the experimental set-up to ob-
serve the surface switching is shown in FIG. 1, Top-
Left [7]. The open ended cylindrical vessel is made of
acrylic resin; the inner radius is R = 42 mm. A glass
disk mounted at the bottom of the vessel is connected
to a stepping motor through a shaft. There is a gap of
∆R = 0.3 mm between the disk and the sidewall of the
vessel, which works as a trigger noise source. The ves-
sel was filled with tap water; the liquid height at rest
was H = 40 mm. Particles of porous resin were mixed
into the water as tracers for the velocity profile measure-
ments. The rotating speed of the disk Ω was varied from
300 to 850 rpm. In this range, the Reynolds number
Re = 2πΩR/ν, where ν is the kinematic viscosity of wa-
ter, varies from 0.55 × 105 to 1.57 × 105. An ultrasonic
transducer is mounted at the disk to measure the moving
average of the height of the center of the surface h giving
a normalized slow variable x = h/H, and to measure the
normalized turbulence intensity V/2πΩR, where V is the
spatial average of the root mean square of the flow veloc-
ity urms(r) distributed over the radius r. In this way, we
measure time series with two largely different time scales
at the same time (FIG. 1, Top-Right).

A typical surface switching proceeds as follows (FIG.
1, Bottom): (i) the bottom of the axisymmetric surface
elongates and attaches to the rotating disk; (ii) the ax-
isymmetry of the free surface breaks down and the tran-
sition to a double-well shape occurs; (iii) the horizontal
deformation of the free surface becomes larger and fi-
nally the surface is fully detached from the bottom; (iv)
the bottom of the surface moves to a higher position and
the surface rotates uniformly with a double-well shape
with two distinct humps; (v) the free surface reverts to
an axisymmetric shape and is elongated to the bottom.

We set Reynolds number close to the critical value for
the laminar-turbulent transition, and measure two physi-
cal quantities; surface height in the central region, and in-
tensity of turbulence outside the central region. Around
this region, roughly, when the surface height is large and
the surface shape is non-axisymmetric, the flow is tur-
bulent with large energy dissipation. When the height
is small and the shape is axisymmetric, the flow is lam-
inar with small energy dissipation. The heterogeneity of
energy dissipation rate depending on the surface height
makes the switching motion a robustly observed phe-
nomenon.

The return plot of the maximum and the minimum
of the moving averaged time series of the surface height
(FIG. 2, Top-Left) has an uni-modal structure with par-
tial one dimensionality (FIG. 2, Top-Right), indicating
that the slow motion involves stochastic causality. There
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FIG. 2: (Top-Left) The experimental time series of the surface
height. Three quasi-stable states, RO, FR, and LTS are indi-
cated in the time series. (Top-Right) the return plot and the
model for deterministic term based on Eq. (2) with A = 0.38,
β1 = 200, β2 = −20, p = 0.0215, q = 0.39. (Bottom, left) In-
tensity of turbulence and the model for stochastic term based
on Eq. (3) with B = 0.04, β3 = 15, β4 = 50, r = 0.4, and
δ = 10−8. (Bottom-Right) Return map density p(xn, xn+1)
generated by the model (1). It is a normalized histogram of
numerical simulation data with 108 iterations of the random
map for the orbit xn with random initial conditions, multi-
plied by 106 different independent noise realization of ξn. The
density at the origin p(0, 0) ∼ 10−4.75 is denoted with a black
point.

are three experimentally observed quasi-stationary states
in the rotating fluid; regular oscillation (RO), flat ro-
tation (FR), and laminar-turbulent switching (LTS) [7],
which is depicted in the time series. Taking the average
over each x the deterministic return map is given as a
function f(x). The experimental data of the intensity
of turbulence is given in FIG. 2, Bottom-Left. The av-
erage of the turbulence intensity is given as a function
ε(x). Unlike the standard return map methodology, our
interpretation of the results is that one dimensional de-
terministic dynamics is observed for small x close to 0 and
higher dimensional or stochastic dynamics is observed for
larger x.

We introduce a simple random dynamical system
model to describe the motion of surface height;

xn+1 = f(xn) + ξn(xn) (1)

For the deterministic term, we give the following model
approximately obtained from the return plot of the slow
surface motion (Fig. 2, Top-Right);

f(x) =


A

[
1

1+e−β1(x−p) − 1
1+eβ1p

+ 1
1+e−β2(x−q) − 1

1+eβ2q

]
(x ≥ 0)

0 (x < 0)

(2)
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The stochastic term ξn(xn) is modeled by a random vari-
able obeying white Gaussian distribution, whose ampli-
tude is a function of the surface height, ξn(x) = ε(x)ξn,
where

ε(x) = B

[
eβ3r − e−β3(x−r)

(1 + e−β3(x−r))(1 + eβ3r)
+

1 − e−β4x

2(1 + e−β4x)
+ δ

]
(3)

and ξn ∼ N(0, 1), which is also approximately obtained
from the integrated fast motion (FIG. 2, Bottom-Left).

By using the model (1), we numerically generate “re-
turn map density” p(xn, xn+1), which is the orbit den-
sity at the point (xn, xn+1) (FIG. 2, Bottom-Right), and
is interpreted as the natural invariant density for possi-
ble return maps. Note that the return map density is
not a simple combination of deterministic and stochastic
term in the model (1). It is a density deformation in-
duced by interaction between deterministic dynamics and
stochastic noise. Generated density represents stochastic
causality of slow motion embedded in high-dimensional
dynamics. High density region indicates each of three
quasi-stationary states, RO, FR, and LTS.

We study bifurcation of the model (1) numerically. We
are interested in the system behavior near the critical pa-
rameters given as in FIG. 2. For increasing the nonlin-
earity of the map A causes instability, we assume that
A corresponds to the Reynolds number. In FIG 3, Top-
Left illustrates the phase diagram for the parameters A
and B. There are five phase; (i) Irregular motion due to
strong noise, (ii) Attractor selection (irregular selection
of two attractors due to large noise), (iii) Bistabe, (iv)
Surface switching, and (v) Local switching (switching be-
tween RO and FR with small noise.). The deterministic
bifurcation varying the parameter A with B = 0 fixed, is
shown in FIG 3, Middle-Left. In the bifurcation diagram,
A1 = 0.3715 is a deterministic period-doubling bifurca-
tion point. The bistability ends at the point A3 = 0.3798
with disappearance of the fixed point x = 0. The sur-
face switching begins at A2 = 0.372; The small noise
effectively destabilizes the stable fixed point x = 0 be-
fore the deterministic saddle-node bifurcation point A3.
The model (1) with the parameters in FIG. 2 reproduces
the observed macroscopic feature qualitatively in a broad
region of the phase diagram (FIG 3, Top-Left).

The deterministic term described by f(x) can poten-
tially show both type I and III intermittency. When
A = 0.38 and B ∼ 0, we have two unstable fixed points; a
nearly tangential fixed point M0 at x = 0, whose deriva-
tion of the map is close to 1, and a weakly repelling fixed
point M1 at x ∼ 0.311 whose derivation of the map is
close to −1. A period two limit cycle M2 surrounding the
unstable fixed point M1 is globally asymptotically stable.
Based on these state space structures, M0, M1, and M2,
depicted in FIG. 3, Bottom,the three quasi-stationary
states, LTS, FR, and RO emerges by noise. With the
stochastic term B > 0, the radius of period two cycle

FIG. 3: (Top-Left) Phase diagram of the dynamics in the
model (1) for A ∈ [0.36, 0.39] and B ∈ [0.0, 0.15] with the
other parameter set to the same as those in FIG. 2. (Middle-
Left) The bifurcation of the deterministic limit, xn+1 = f(xn)
with B = 0, is also shown below for a reference. A1 = 0.3715
is a deterministic bifurcation point. A2 = 0.372 is the point
where the surface switching begins. Deterministic bistability
ends at the point A3 = 0.3798. (Top-Right) With A = 0.38
and varying B, local switching (B = 0.01), global surface
switching (B = 0.04), and irregular motion (B = 0.1), are
observed in each region, respectively. (Bottom) Fixed points
and limit cycle in the deterministic limit are shown for A =
0.37, A = A2 = 0.372, and A = 0.38. Black and white circles
denotes stable and unstable fixed points.

may fluctuate to switch M1 and M2, corresponding FR
and RO. The weakly repelling properties of the unstable
fixed point M1 supports emerging stagnant motion near
M1 as a noise-induced phenomenon. When the fluctua-
tion becomes large, x can be larger and then go back near
x = 0. Close to M0, the orbits are trapped by the almost
deterministic tangency, resulting LTS. After escaping the
narrow channel, the local switching between RO and FR
recovers. As a result, we observe three quasi-stationary
states of slow motion and switching between them.

Phenomenological interpretation is the following. The
deterministic term f(x) describes energy injection and
A plays the role of energy injection rate. The stochas-
tic term ξn(x) describes energy dissipation and B plays
the role of energy dissipation rate. Starting with local
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switching between RO and FR with underlying turbu-
lent flow, the total energy dissipation is growing and,
eventually, the flow becomes laminar and the surface is
deformed to the axisymmetric shape going down to the
bottom. At the bottom, with the constant energy injec-
tion and the small dissipation, the total energy amount
is growing. Finally, the surface is deformed to the non-
axisymmetric shape and the flow becomes turbulent, re-
sulting LTS. Thus, balancing energy injection and dissi-
pation, the switching phenomenon between three quasi-
stationary states, RO, FR, and LTS are robustly ob-
served.

We adopt equation (3) to reproduce experimentally
observed hysteresis of the time average of turbulence
intensity V/2πΩR based on the underlying bifurcation
along A in the model (1). Without stochastic term, the
model (1) shows bistability and the period-doubling bi-
furcation for larger A. With B = 0.04, the hysteresis
in the time average of the noise amplitude ε(x) occurs
from A = A0 ∼ 0.10 to A = A2 ∼ 0.372, when we slowly
varies A from small value to large value and vise versa
(FIG. 4). These hysteresis mainly depends on the struc-
ture of the deterministic return map. We note that, in
our model, the unbounded noise in the stochastic term
makes dynamics eventually converge to one of the quasi-
stationary state in theoretical limit. On the other hand,
three quasi-stationary states are not strongly attracting
and dynamics is almost always transitory. Thus, in nu-
merical simulation of our model, the parameter range
of occurrence of the hysteresis changes by trials with a
large variance, implying that it is a phenomenon observed
on finite time scales. However, we expect that a sim-
ilar mechanism exists also in the experiments, which is
based on a single long-run measurement and slowly vary-
ing Reynolds number, again, on finite time scales. If the
relative noise effect is much larger than the present set-
ting, this hysteretic phenomenon should disappear. A
new experiment controlling the trigger noise (e.g. those
with different ∆R) seems to be successful for controlling
the width of the hysteresis region, which is expected from
the presented theory.

We presented a random dynamical system model of
surface switching in rotating fluid, which is directly ex-
tracted from experimental time series. The return map
density describes the stochastic causality in the slow
motion in the deterministic high-dimensional dynamics.
Macroscopic features of the phenomena, irregular switch-
ing and hysteresis of turbulence intensity are reproduced
by the model and the resulting numerical simulation are
interpreted as a noise-induced phenomenon. For fur-
ther development of this framework, we refer to studies
on more complex noise induced phenomena in generic
nonlinear dynamics with presence of strong perturba-
tion, which has been extensively investigated recently [8].
This paper established possible theoretical connections
between presented random dynamics modeling for multi-
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FIG. 4: (Left) Hysteresis of time average of turbulence inten-

sity V/2πΩR in the experiment. (Right) Hysteresis of time

average of the noise amplitude ε(x) in the model (1) with
B = 0.04. Hysteresis with slowly varying Re and A from
small value to large value and vise versa, are depicted based
on a single long path for both the experiment and the model.
Reb = 1.29×105 and A0 = 0.10 are the point where the bista-
bility begins, and Rec = 1.40 × 105 and A2 = 0.372 are the
point where the bistability ends and switching phenomenon
begins, in the average in the experiment and in the model,
respectively.

scale dynamics and studies on noise induced phenomena.
The presented framework may shed a light on under-
standing complex multiscale dynamics, when the random
dynamics model is extended to the one over several scales.
The techniques for extracting random dynamics from ob-
served time series should be directly applicable to various
types of laminar-turbulent transition, as well as any other
physical systems when such a stochastic causal struc-
ture exists at macroscopic levels. Studies on extracting
methods of random dynamics from higher-dimensional
deterministic dynamics, investigation of return map den-
sities and its applications, and rigorous analysis of the
extracted models in terms of random dynamical systems
theory [9] will be done elsewhere.
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