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1 Introduction

1.1 Analyticity of the Stokes semigroup

We consider the initial-boundary problem for the Stokes equations

vt −∆v +∇q = 0 in Ω× (0, T ) (1.1)

div v = 0 in Ω× (0, T ) (1.2)

v = 0 on ∂Ω× (0, T ) (1.3)

v(x, 0) = v0 on Ω× {t = 0} (1.4)

in a domain Ω in Rn with n ≥ 2. It is well-known that the solution operator
S(t) : v0 7−→ v(t) = v(·, t) forms an analytic semigroup in the solenoidal Lr space,
Lr

σ(Ω) for r ∈ (1,∞) for various kind of domains Ω including a smoothly bounded
domain [52], [26]. However, it has been a long-standing open problem whether or not
the Stokes semigroup {S(t)}t≥0 is analytic in L∞-type space even if Ω is bounded.
When Ω is a half space it is known that the Stokes semigroup {S(t)}t≥0 is analytic
in L∞-type space since explicit solution formulas are available [12], [42], [56].

The goal of this paper is to give an affirmative answer to this open problem at
least when Ω is bounded as a typical example. For a precise statement let C0,σ(Ω)
denote the L∞-closure of C∞

c,σ(Ω), the space of all smooth solenoidal vector fields
with compact support in Ω. When Ω is bounded, C0,σ(Ω) agrees with the space of
all solenoidal vector fields continuous in Ω̄ vanishing on ∂Ω [41]. One of our main
results is

Theorem 1.1 (Analyticity in C0,σ). Let Ω be a bounded domain in Rn with C3

boundary. Then the solution operator (the Stokes semigroup) S(t) : v0 7→ v(t)(t ≥ 0)
is a C0-analytic semigroup in C0,σ(Ω).
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For the Laplace operator or general elliptic operators it is well-known that the
corresponding semigroup is analytic in L∞-type space. The first pioneering work
goes back to K. Yosida [64] for second order operators in R. Unfortunately, it seems
difficult to extend his method to multi-dimensional elliptic operators. K. Masuda
[43], [44] (see [45]) first proved the analyticity of the semigroup generated by a
general elliptic operator (including higher order operators) in C0(R

n), the space
of continuous functions vanishing at the space infinity. A key idea is to derive a
corresponding resolvent estimate by a localization method together with Lp-estimates
and interpolation inequalities. It is extended by H. B. Stewart for Dirichlet problems
[59] and for more general boundary conditions [60]. (A complete proof is given by
[4, Appendix].) The reader is referred to a book by A. Lunardi [40, Chapter 3]
for this Masuda-Stewart method which applies to many other situations. By now,
analyticy results in L∞ spaces are established in various settings [4], [6], [61], [35],
[40]. However, it seems that their localization argument does not apply to the Stokes
equations and this may be a reason why this problem had been open for a long time.

1.2 Blow-up arguments

Our approach to prove the analyticity is completely different from conventional ap-
proaches. We appeal to a blow-up argument which is often used in a study of non-
linear elliptic and parabolic equations. Let us give a heuristic idea of our argument.
A key step (to prove analyticity in Theorem 1.1) is to establish a bound for

N(v, q)(x, t) =
∣∣v(x, t)∣∣+ t

1
2

∣∣∇v(x, t)∣∣+ t
∣∣∇2v(x, t)

∣∣+ t
∣∣∂tv(x, t)

∣∣+ t
∣∣∇q(x, t)∣∣ (1.5)

of the form
sup

0<t<T0

∥∥N(v, q)
∥∥
∞(t) ≤ C‖v0‖∞ (1.6)

for some T0 > 0 and C depending only on the domain Ω, where ‖v0‖∞ = ‖v0‖L∞(Ω)

denotes the sup-norm of |v0| in Ω.
We argue by contradiction. Suppose that (1.6) were false for any choice of T0 and

C. Then there would exist a sequence {(vm, qm)}∞m=1 of solutions of (1.1)-(1.4) with
v0 = v0m and a sequence τm ↓ 0 such that‖N(vm, qm)‖∞(τm) > m‖v0m‖∞. There is
tm ∈ (0, τm) such that∥∥N(vm, qm)

∥∥
∞(tm) ≥ 1

2
Mm, Mm = sup

0<t<τm

∥∥N(vm, qm)
∥∥
∞(t).

We normalize vm, qm by dividing Mm to observe that

sup
0<t<tm

∥∥N(ṽm, q̃m)
∥∥
∞(t) ≤ 1, (1.7)∥∥N(ṽm, q̃m)

∥∥
∞(tm) ≥ 1/2, (1.8)

‖ṽ0m‖∞ < 1/m (1.9)
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with ṽm = vm/Mm, q̃m = qm/Mm. We rescale (ṽm, q̃m) around a point xm ∈ Ω
satisfying ∣∣N(ṽm, q̃m)(xm, tm)

∣∣ ≥ 1/4 (1.10)

to get a blow-up sequence of (vm, qm) of the form

um(x, t) = ṽm(xm + t
1
2
mx, tmt), pm(x, t) = t

1
2
mq̃m(xm + t

1
2
mx, tmt).

(Such an xm exists because of (1.8).) Because of the scaling invariance of the equa-
tions (1.1) and (1.2), the rescaled function (um, pm) solves (1.1) and (1.2) in a rescaled
domain Ωm × (0, 1). Note that the time interval is normalized to a unit inteval and
Ωm tends to either a half space or the whole space Rn as m→∞.

The basic strategy is to prove that the blow-up sequence {(um, pm)}∞m=1 (sub-
sequently) converges to a solution (u, p) of (1.1)-(1.4) with zero initial deta. If the
convergence is strong enough, (1.10) implies that N(u, p)(0, 0) ≥ 1/4. If the limit
(u, p) is unique, it is natural to expect u ≡ 0, ∇p ≡ 0. This evidently yields a
contradiction to N(u, p)(0, 0) ≥ 1/4. The first part corresponds to ”compactness” of
a blow-up sequence and the second part corresponds to ”uniqueness” of a blow-up
limit. (Similar rescaling argument is explained in detail in a recent textbook [25].)
When the problem is the heat equation, this strategy is easy to realize. However, for
the Stokes equations it turns out that this procedure is highly nontrivial because of
the presence of the pressure.

A blow-up argument was first introduced by E. De Giorgi [11] to study regularity
of a minimal surface. B. Gidas and J. Spruck [23] adjusted a blow-up argument to
derive a priori bound for solutions of a semilinear elliptic problem. It seems that
the first application to (semilinear) parabolic problems to get a priori bound goes
back to [27] (see also [30]). The method has been further developed in recent years
to obtain several priori bounds; see e.g. [48] and [47]. However, it is quite recent to
apply to the Navier-Stokes equations. For example, a blow-up argument was used
to conclude non-existence of type I blow-up for axisymmetric solutions [36], [49] and
solutions having continuously varying vorticity directions [33].

1.3 Pressure gradient estimates and admissible domains

To derive both compactness of the blow-up sequence {(um, pm)}∞m=1 and uniqueness of
its limit we invoke the fact that the pressure is determined by the velocity through the
Helmholtz decomposition. Take the divergence of (1.1) to observe that q is harmonic
in Ω (for each time). If one takes the normal component of (1.1), it turns out that
q solves the Neumann problem

−∆q = 0 in Ω, ∂q/∂nΩ = ∆v · nΩ on ∂Ω (1.11)
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where nΩ is the outward unit normal vector field of ∂Ω. The correspondence ∆v 7→
∇q is nothing but the projection operator Q = I − P where P is the Helmholtz
projection at least formally.

A key observation is that this harmonic pressure gradient is estimated by the
velocity gradient of the form

sup
x∈Ω

dΩ(x)
∣∣∇q(x, t)∣∣ ≤ C‖∇v‖L∞(∂Ω)(t) (1.12)

with C depending only on Ω at least when Ω is bounded. Here dΩ(x) denotes the
distance from ∂Ω to x ∈ Ω. This follows from a following regularizing type estimate
for the Neumann problem (1.11) which depends only on Ω:

sup
x∈Ω

dΩ(x)
∣∣Q[∇ · f ]

∣∣ ≤ C‖f‖L∞(∂Ω) (1.13)

for all matrix-valued function f ∈ C1(Ω̄) satisfying ∇·f = (
∑n

j=1 ∂jfij) ∈ L2∩Lr(Ω)
for some r ≥ n such that

tr f = 0 and ∂lfij = ∂jfil, (1.14)

where tr f =
∑n

i=1 fii and ∂l = ∂/∂xl. If (1.13) is valid, then (1.12) follows by setting
fij = ∂jv

i in (1.13). Since (1.13) may not be true for a general domain, we say that
Ω is admissible if (1.13) holds for f satisfying (1.14). It is easy to prove that a half
space Rn

+ is admissible by using an explicit representation formula of the solution of
(1.11); see Remark 2.4 (iv). In this paper we shall prove that a bounded C3-domain
is admissible by a blow-up argument as explained later in the introduction.

1.4 Compactness and uniqueness

We now study compactness of the blow-up sequence {(um, pm)}∞m=1. The situation
is divided into two cases depending on whether the limit of Ωm is a half space or
the whole space Rn. Let us consider the case when the limit is the whole space Rn

because it is easier than the half space case. We would like to prove that N(um, pm)
converges to N(u, p) near (0, 1) ∈ Rn × (0, 1] uniformly by taking a subsequence.
For this purpose it is enough to prove that the local space-time Hölder norm in
Rn × (0, 1] near (0, 1) for um, ∇um, ∇2um, ∇pm is bounded as m → ∞. We are
tempted to derive such as interior regularity estimate from (1.7) by localizing the
problem. This idea works for the heat equation but for the Stokes equations it does
not work (Remark 3.3(i)). In fact, if we consider a solution of (1.1)-(1.2) of the
form v = g(t), q = −g′(t) · x for g ∈ C1[0, 1], we do not expect the (local) Hölder
continuity in time for∇q and vt although N(v, q) is bounded in Rn×(0, 1]. We invoke
the admissibility of Ω and derive a uniform time Hölder estimate for dΩm(x)∇pm in
Ωm × (δ, 1](δ > 0) from (1.12). Then one can use usual parabolic interior regularity
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theory [39] to derive necessary interior regularity estimate. Note that the constant
in (1.12) is independent of the rescaling procedure so our Hölder estimate is uniform
in m.

The case when Ωm tends to a half space is more involved. We still use the
admissibility of Ω to derive necessary Hölder estimates for pm. Then instead of using
conventional parabolic local Hölder estimate, we are forced to use Schauder estimates
for the Stokes equations and Helmholtz decomposition for Hölder spaces developed
by V. A. Solonnikov [58] since the boundary value problem for the Stokes equations
cannot be reduced to usual parabolic theory [39].

We also invoke admissibility of Ω to derive uniqueness of the blow-up limit (u, p).
If Ωm tends to the whole space, by (1.12) we observe that ∇pm tends to zero locally
uniformly in Rn × (0, 1]. This reduces the problem to the uniqueness result for
the heat equation. If Ωm tends to a half space, we use a uniqueness result for
spatially non-decaying velocity in the half space Rn

+ = {(x′, xn)| xn > 0, x′ ∈ Rn−1}
which is essentially due to V. A. Solonnikov [56]. Note that to assert the uniqueness
of solutions (u, p) of the Stokes equations (1.1)-(1.4) with zero initial data and a
bound for ‖N(u, p)‖∞(t), we need to assume some decay for ∇p, otherwise there
is a counterexample (Remark 4.2). In fact, it suffices to assume that ∇p → 0 for
xn →∞. In our setting since (1.12) is a scaling invariant, this estimate is inherited to

(um, pm). Since xn = dRn
+
(x), we are able to conclude that t

1
2xn|∇p(x, t)| is bounded

in Rn
+ × (0, 1), which is enough to apply this available uniqueness result. Note that

in the above uniqueness result we do not assume any spatial decay condition for
velocity fields at the space infinity.

1.5 A priori L∞ estimates for L̃r-solutions

As we have seen above a blow-up argument yields a key estimate (1.6) for a solution
of the Stokes equations (1.1)-(1.4) provided that ‖N(v, q)‖∞(t) (see (1.5)) is finite for
t > 0 as far as Ω is admissible not necessarily bounded. A question is whether or not
such a solution actually exists. It is by now well-known [22] that if a uniformly C3-
domain admits the Helmholtz decomposition in Lr, there exists an Lr-solution and
the Stokes semigroup S(t) is analytic in Lr

σ, the closure of C∞
c,σ(Ω) in Lr. However, in

general, it is also known that the Helmholtz decomposition in Lr space may not hold
(see [9], [46]), unless r = 2. Fortunately, R. Farwig, H. Kozono and H. Sohr [14],
[15], [16] established an L̃r-theory with L̃r

σ = Lr
σ ∩ L2

σ for r ≥ 2 for any uniformly
C2-domain for (1.1)-(1.4); in particular, they showed that the Stokes semigroup is
analytic in L̃r

σ space. For an application to the Navier-Stokes equations see [19]. It
turns out that their solution (called an L̃r-solution) has a property

sup
0<t<T

∥∥N(v, q)
∥∥
∞(t) <∞
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provided that r > n and v0 is sufficiently regular. So one can claim a priori L∞-
estimates (1.6) for an L̃r-solution which is very useful to study a domain not neces-
sarily bounded. Here is our main result.

Theorem 1.2 (A priori L∞-estimates). Let Ω be an admissible, uniformly C3-
domain in Rn with r > n. Then there exists positive constants C and T0 depending
only on Ω such that (1.6), i.e.

sup
0<t<T0

∥∥N(v, q)
∥∥
∞(t) ≤ C‖v0‖∞ (1.15)

holds for all L̃r-solution (v, q) of (1.1)-(1.4) with v0 ∈ C∞
c,σ(Ω).

1.6 General analyticity result

By a density argument with (1.15) we are able to construct a solution semigroup
S(t) for (1.1)-(1.4) in C0,σ(Ω). In particular, the estimate

sup
0<t<T0

t‖vt‖∞(t) ≤ C‖v0‖∞

from (1.15) shows that this semigroup is analytic in C0,σ(Ω). Let us give a precise
form of our result which includes Theorem 1.1 as a particular example.

Theorem 1.3 (Analyticity for a general domain). Let Ω be an admissible, uniformly
C3-domain in Rn. Then the Stokes semigroup S(t) is uniquely extendable to a C0-
analytic semigroup in C0,σ(Ω). Moreover, the estimate (1.15) holds with some C > 0
and T0 > 0 for v = S(t)v0, v0 ∈ C0,σ(Ω) with a suitable choice of pressure q.

Although there are several results on analyticity of S(t) in Lr
σ for various domains

such as a half space, a bounded domain [26], [52], an exterior domain [10], [34],
an aperture domain [18], a layer domain [1], a perturbed half space [17] (even for
variable viscosity coefficients) [3], [2], the result corresponding to Theorem 1.3 is
available only for a half space [12], [42], [56] (and the whole space, where the Stokes
semigroup agrees with the heat semigroup.)

We do not touch the problem for the large time behavior of the Stokes semigroup.
In particular, we do not know in general whether or not the Stokes semigroup is
bounded in time. This is known for a half space [12], [42], [56]. For a bounded
domain it is not difficult to derive even exponential decay as t → ∞. In fact,
for a bounded domain we prove that S(t) is a bounded analytic semigroup in C0,σ

(Remark 5.4 (i)). Moreover, the operator norm of ‖S(t)‖ is bounded in t when Ω is
bounded. Such a type of results is called a maximum modulus result and studied in
the literature [63], [54], [55] (Remark 5.4 (ii)).
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1.7 Admissible domains

We also use a blow-up argument to prove that a bounded C3-domain is indeed an
admissible domain. Suppose that (1.13) does not hold for f satisfying (1.14). There
would exist a sequence of functions {Φm}∞m=1 with ∇Φm = Q[∇ · fm] and a sequence
of points {xm}∞m=1 ⊂ Ω such that

1

2
≤ dΩ(xm)

∣∣∇Φm(xm)
∣∣ ≤ sup

x∈Ω
dΩ(x)

∣∣∇Φm(x)
∣∣ = 1 (1.16)

and fm tends to zero uniformly on ∂Ω. If a subsequence of {xm}∞m=1 converges to
an interior point, the limit Φ solves the homogeneous Neumann problem (for the
Laplace equation) with a bound

sup
x∈Ω

dΩ(x)
∣∣∇Φ(x)

∣∣ <∞. (1.17)

So if the solution of this problem is unique (i.e. ∇Φ ≡ 0), then one gets a contradic-
tion. Note that Φm is harmonic so compactness part is easy. If {xm}∞m=1 converges
to a boundary point (by taking a subsequence), we rescale Φm around xm and set

Ψm(x) = Φm(xm + dmx) with dm = dΩ(xm).

Then the rescaled domains Ωm expands to a half space and the limit Ψ solves the
homogeneous Neumann problem in a half space with an estimate inherited by (1.16).
We prove its uniqueness by reducing the problem to the whole space via a reflection
argument. The compactness part is easy since the distance between the origin for
Ψm and the boundary ∂Ωm is always one.

It is possible to prove that an exterior domain or a perturbed half space is admis-
sible but we do not discuss these problems in the present paper. We expect that a
layer domain Ω = {a < xn < b} is not admissible since the uniqueness under (1.17)
is not valid. For example Φ(x) = x1 is a nontrivial solution satisfying (1.17) for the
homogeneous Neumann problem in Ω. We conjecture that an unbounded domain
(with smooth boundary) is admissible if and only if Ω is not quasicylindrical (see [5,
6.32]), i.e. lim|x|→∞dΩ(x) = ∞.

1.8 Extension to L∞σ space

It is natural to extend the Stokes semigroup in L∞σ , the solenoidal L∞ space defined
by

L∞σ (Ω) =
{
f ∈ L∞(Ω)

∣∣∣ ∫
Ω

f · ∇ϕdx = 0 for all ϕ ∈ Ŵ 1,1(Ω)
}
,

where Ŵ 1,1(Ω) is the homogeneous Sobolev space of the form

Ŵ 1,1(Ω) =
{
ϕ ∈ L1

loc(Ω)
∣∣ ∇ϕ ∈ L1(Ω)

}
.
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When Ω is bounded, the Stokes semigroup S(t) is defined in Lr
σ(Ω)(1 < r <∞) and

L∞σ ⊂ Lr
σ one is able to extend the estimate (1.15) when initial data v0 is merely

in L∞σ by an approximation argument. Note that C∞
c,σ (or C0,σ) is not dense in L∞σ

so one cannot approximate v0 by elements of C∞
c,σ in a uniform topology. However,

by a mollifying procedure keeping the divergence free condition there is a sequence
{v0m}∞m=1 ⊂ C∞

c,σ converges to v0 a.e. and ‖v0m‖∞ ≤ C‖v0‖∞ with C independent of
v0. This is very easy to prove when Ω is star-shaped while in general it is nontrivial.
We localize the problem to reduce it to star-shaped case. Since Ω is bounded, v0m → v
in Lr

σ so we extend the estimate (1.15) to v = S(t)v0 with the associated pressure q
when v0 ∈ L∞σ . Thus we have

Theorem 1.4 (Analyticity in L∞σ for a bounded domain). Let Ω be a bounded C3-
domain in Rn. Then the Stokes semigroup S(t) is a (non C0-) analytic semigroup
in L∞σ (Ω).

Since smooth functions are not dense in L∞σ (Ω) and S(t)v0 is smooth for t > 0,
S(t)v0 → v0 as t ↓ 0 in L∞σ does not hold for some v0 ∈ L∞σ (Ω). This means S(t) is
a non C0-semigroup.

To extend analyticity in L∞σ in a general admissible domain we have to construct
S(t) in L∞σ in a unique way since L̃r

σ does not contain L∞σ . This attempt is so far
carried out for a half space in [12], where an explicit solution formula is available.
Moreover, it is also shown in [12] that S(t) is a C0-analytic semigroup in

BUC σ(Ω) =
{
f ∈ BUC (Ω)

∣∣ divf = 0 in Ω, f = 0 on ∂Ω
}
,

when Ω is a half space; see also [56]. Here BUC (Ω) denotes the space of all bounded,
uniformly continuous functions. We shall discuss these problems for a general un-
bounded admissible domain in forthcoming papers. (Note that BUC σ(Ω) = C0,σ(Ω)
when Ω is bounded.) The analyticity as well as (1.15) is fundamental to study the
Navier-Stokes equations. So far L∞-type theory is only established when Ω = Rn

[29], [31] and Rn
+ [56], [7]. We shall also discuss the nonlinear problem in forthcoming

papers.
This paper is organized as follows. In Section 2 we define an admissible domain

and prove that a bounded C3-domain is admissible by a blow-up argument. In Section
3 we derive local Hölder estimates both interior and up to boundary which are key
to derive necessary compactness for a blow-up sequence. In Section 4 we review a
uniqueness result for spatially non-decaying solutions for the Stokes equations as well
as the heat equation. In Section 5 we prove key a priori estimates (Theorem 1.2) by
a blow-up argument. As an application we prove Theorem 1.3 (and Theorem 1.1 as
a particular example.) In Section 6 we prove Theorem 1.4.

The authors are grateful to Professor Kazuaki Taira for informing them of early
stage of L∞-theory for elliptic operators. The work of the second author is partly
supported by Grant-in-Aid for Scientific Research No.21224001 (Kiban S), the Japan
Society of the Promotion of Science.
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2 Admissible domains

In this section we introduce the notion of an admissible domain and prove that a
bounded domain is admissible by a blow-up argument. We also give a short proof
that a half space is admissible. We first recall the Helmholtz decomposition.

2.1 Helmholtz decomposition

Let Ω be an arbitrary domain in Rn(n ≥ 2). Let Lr
σ(Ω)(1 < r < ∞) denote the

Lr-closure of C∞
c,σ(Ω), the space of all smooth solenoidal vector fields with compact

support in Ω. The Helmholtz decomposition is a topological direct sum decomposi-
tion of the form

Lr(Ω) = Lr
σ(Ω)⊕Gr(Ω), Gr(Ω) =

{
∇p ∈ Lr(Ω)

∣∣ p ∈ Lr
loc(Ω)

}
.

Although this decomposition is known to hold (see e.g. [20, III.1]) for various
domains like a bounded or exterior domain with smooth boundary, in general there
is a domain with (uniformly) smooth boundary such that the Lr-Helmholtz decom-
position does not hold (cf. [9], [46]). Note that this decomposition is an orthogonal
decomposition if r = 2 and that the case r = 2 is valid for any domain Ω.

In [14] Farwig, Kozono and Sohr introduced an L̃r space and proved that Helmholtz
decomposition is valid for any uniformly C2-domain for n = 3. Later, it is gener-
alized for arbitrary uniformly C1-domain for n ≥ 2 [15]. Let us recall their results.
We set

L̃r(Ω) =

{
L2(Ω) ∩ Lr(Ω), 2 ≤ r <∞
L2(Ω) + Lr(Ω), 1 < r < 2.

Note that L̃r1 ⊂ L̃r for r1 > r. We define L̃r
σ and G̃r in a similar way. We then recall

a definition of uniformly Ck-domain for k ≥ 1; see e.g. [51, I.3.2].

Definition 2.1 (Uniformly Ck-domain). Let Ω be a domain in Rn with n ≥ 2.
Assume that there exists α, β,K > 0 such that for each x0 ∈ ∂Ω, there exists Ck-
function h of n− 1 variable y′ such that

sup
|l|≤k,|y′|<α

∣∣∂l
y′h(y

′)
∣∣ ≤ K, ∇′h(0) = 0, h(0) = 0

and denote a neighborhood of x0 by

Uα,β,h(x0) =
{
(y′, yn) ∈ Rn

∣∣ h(y′)− β < yn < h(y′) + β, |y′| < α
}
.

Assume that up to rotation and translation we have

Uα,β,h(x0) ∩ Ω =
{
(y′, yn)

∣∣ h(y′) < yn < h(y′) + β, |y′| < α
}
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and
Uα,β,h(x0) ∩ ∂Ω =

{
(y′, yn)

∣∣ yn = h(y′), |y′| < α
}
.

Then we call Ω a uniformly Ck-domain of type α, β,K. Here ∂l
x = ∂l1

x1
· · · ∂ln

xn
with

multi-index l = (l1, . . . , ln) and ∂xj
= ∂/∂xj as usual and ∇′ denotes the gradient in

y′ ∈ Rn−1.

Proposition 2.2 ([14], [15]). Let Ω be a uniformly C1-domain of type α, β,K > 0
and 1 < r < ∞. Then L̃r(Ω) has a topological direct sum decomposition L̃r(Ω) =
L̃r

σ(Ω)⊕ G̃r(Ω). Let P (= Pr) be the projection to L̃r
σ(Ω) associated to this decompo-

sition. Then there is a constant C = C(r, α, β,K) > 0 such that the operator norm
of P is bounded by C.

The operator P is often called the Helmholtz projection. In this paper we shall
use L̃r space for r ≥ 2 so L̃r norm is given as

‖f‖L̃r = max
(
‖f‖Lr , ‖f‖L2

)
.

2.2 Definition of an admissible domain

We give a rigorous definition of an admissible domain. Let dΩ(x) denote the distance
function from ∂Ω, i.e.,

dΩ(x) = inf
{
|x− y|

∣∣ y ∈ ∂Ω
}
.

Let Qr = I − Pr be the projection to G̃r(Ω) associated to the Helmholtz decompo-
sition. We shall suppress a subscript r of Qr.

Definition 2.3 (Admissible domain). Let Ω be a uniformly C1-domain in Rn(n ≥ 2)
with ∂Ω 6= ∅. We call Ω admissible if there exists r ≥ n and a constant C = CΩ such
that

sup
x∈Ω

dΩ(x)
∣∣Q[∇ · f ](x)

∣∣ ≤ CΩ‖f‖L∞(∂Ω)

holds for all matrix-valued function f = (fij)1≤i,j≤n ∈ C1(Ω̄) which satisfies ∇ · f(=∑n
j=1 ∂jfij) ∈ L̃r(Ω),

tr f = 0 and ∂lfij = ∂jfil (2.1)

for all i, j, l ∈ {1, . . . , n}.

Remark 2.4. (i) We note that ∇q = Q[∇ · f ] is formally obtained by solving the
Neumann problem {

−∆q = div(∇ · f) in Ω,

∂q/∂nΩ = nΩ · (∇ · f) on ∂Ω,
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where nΩ is the exterior unit normal of ∂Ω. In particular q (and also ∇q) is harmonic
in Ω since

div(∇ · f) =
∑

1≤i,j≤n

∂i∂jfij =
∑

1≤i,j≤n

∂j∂jfii = 0

(ii) The left hand side of the inequality in Definition 2.3 is always finite. Indeed,
since ∇q is harmonic, the mean value theorem (see e.g. [13, 2.2.2]) implies that

∇q(x) =
1∣∣Bρ(x)

∣∣ ∫
Bρ(x)

∇q(y)dy for ρ < dΩ(x),

where Bρ(x) is the closed ball of radius ρ centered at x and |Bρ(x)| denotes its
volume. Applying the Hölder inequality yields∣∣∇q(x)∣∣ ≤ ∣∣Bρ(x)

∣∣−1/p ‖∇q‖p, 1/p+ 1/p′ = 1,

≤ Cρ−n/p ‖∇ · f‖L̃r for 2 ≤ p ≤ r

by Proposition 2.2. If dΩ(x) < 1, we take p = n. If dΩ(x) ≥ 1, we take p = 2. Since
n ≥ 2, this choice implies that |∇q(x)|dΩ(x) is bounded in Ω. Although |∇q(x)|dΩ(x)
is continuous in Ω, this quantity may not be continuous up to the boundary.
(iii) Although the constant C = CΩ in Definition 2.3 depends on a domain, it is
independent of dilation and translation. In other words, CλΩ+x0 = CΩ for x0 ∈ Rn,
λ > 0.
(iv) It is easy to see that the half space Rn

+ = {(x′, xn) | xn > 0} is admissible. In
this case

Q[∇ · f ] = ∇q, q(x′, xn) =

∫ ∞

xn

Ps

[
−nΩ · (∇ · f)

]
ds,

where Ps denotes the Poisson semigroup, i.e.

Ps[h] = Ps ∗ h with Ps(x
′) = as/

(
|x′|2 + s2

)n/2
, x′ ∈ Rn−1,

where 2/a is the surface area of the n− 1 dimensional unit sphere. Since

−nΩ · (∇ · f) =
∑

j

∂jfnj =
∑

1≤j≤n−1

∂jfnj −
∑

1≤i≤n−1

∂nfii =
∑

1≤j≤n−1

∂j(fnj − fjn)

by (2.1), we end up with

∇q(x) =
∑

1≤j≤n−1

∇∂j

∫ ∞

xn

Ps[fnj − fjn] ds.

By an explicit form of the Poisson semigroup it is easy to see that∥∥∂jPs[h]
∥∥

L∞(Rn−1)
(s) ≤ c‖h‖L∞(Rn−1)/s for s > 0, 1 ≤ j ≤ n− 1
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with c > 0 independent of s and h. Thus

‖∂kq‖L∞(Rn−1)(xn) ≤
n−1∑
j=1

∫ ∞

xn

∥∥∂k∂jPs[hj]
∥∥

L∞(Rn−1)
ds, hj = fnj − fjn

≤ c2(n− 1)

∫ ∞

xn

1

s2
ds max

1≤j≤n−1
‖hj‖L∞(Rn−1) ≤ C ′‖f‖L∞/xn

for k ≤ n− 1. For k = n it is easier to obtain a similar estimate so we observe that
the half space is admissible since xn = dΩ(x).

2.3 Blow-up arguments

Our goal in this subsection is to prove

Theorem 2.5. A bounded domain with C3 boundary is admissible.

We shall prove this theorem by an indirect method - a blow-up argument al-
though it might be possible to prove directly. For this purpose we first derive a weak
formulation for ∇Φ = Q[∇ · f ].

Lemma 2.6. Let Ω be a C1-domain. Assume that f = (fij) ∈ C1(Ω̄) satisfies (2.1)
with ∇ · f ∈ L2(Ω) so that ∇Φ = Q[∇ · f ] ∈ G2(Ω). Then

−
∫

Ω

Φ∆ϕdx =
n∑

i,j=1

∫
∂Ω

fij(x)
(
nj

Ω(x)∂iϕ(x)− ni
Ω(x)∂jϕ(x)

)
dHn−1 (2.2)

for all ϕ ∈ C2
c (Ω̄) satisfying ∂ϕ/∂nΩ = 0 on ∂Ω, where dHn−1 is the surface element

of ∂Ω, and nΩ(x) =
(
n1

Ω(x), . . . nn
Ω(x)

)
.

Proof. The L2-Helmholtz decomposition says that for h = ∇ · f there is a unique
h0 ∈ L2

σ(Ω) and Q[h] ∈ G2(Ω) such that h = h0 + Q[h] with Q[h] = ∇Φ. Multiply
∇ϕ with h and use the orthogonality to get∫

Ω

h · ∇ϕ dx =

∫
Ω

∇ϕ · ∇Φ dx. (2.3)

Since ∂ϕ/∂nΩ = 0 on ∂Ω, we have∫
Ω

∇ϕ · ∇Φ dx = −
∫

Ω

Φ∆ϕ dx (2.4)

by integration by parts. (Note that Φ ∈ L2
loc(Ω̄) by the Poincaré inequality e.g. [13].)

We now calculate the left hand side of (2.3). We observe that

(∂jfij)(∂iϕ) = ∂j(fij∂iϕ)− fij∂i∂jϕ,

fij∂i∂jϕ = ∂i(fij∂jϕ)− (∂ifij)∂jϕ, 1 ≤ i, j ≤ n.
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Since
n∑

i=1

∂ifij =
n∑

i=1

∂jfii = 0

by (2.1), we now obtain an identity∫
Ω

h · ∇ϕdx =
n∑

i,j=1

∫
∂Ω

fij(n
i
Ω∂iϕ− ni

Ω∂jϕ)dHn−1. (2.5)

Identities (2.3)-(2.5) yield (2.2).

Proof of Theorem 2.5. We argue by contradiction. Suppose that the condition were
false. Then there would exist a sequence {f̃m}∞m=1 ⊂ C1(Ω̄) satisfying (2.1) such that

∞ > Mm = sup
x∈Ω

dΩ(x)
∣∣∇Φ̃m(x)

∣∣ > m‖f̃m‖L∞(∂Ω)

with ∇Φ̃m = Q[∇ · f̃m]. (Note that Mm is always finite by Remark 2.4 (ii)). We
normalize by Φm = Φ̃m/Mm and fm = f̃m/Mm. There is a sequence of points
{xm}∞m=1 ⊂ Ω such that

sup
x∈Ω

dΩ(x)
∣∣∇Φm(x)

∣∣ = 1, (2.6)

dΩ(xm)
∣∣∇Φm(xm)

∣∣ ≥ 1/2, (2.7)

‖fm‖L∞(∂Ω) < 1/m. (2.8)

Since Ω̄ is compact, xm subsequently converges to some x∞ ∈ Ω̄ as m→∞.

Case 1. x∞ ∈ Ω. We may assume Φm(x∞) = 0. Since ∇Φm is harmonic, (2.6) implies
that {Φm}∞m=1 subsequently converges to some function Φ ∈ C∞(Ω) locally uniformly
in Ω with its all derivatives. By (2.6) the sequence {Φm} is bounded in Lr(Ω) for
any r ∈ [1,∞) so Φm subsequently converges to Φ weakly in Lr(1 < r < ∞). We
apply Lemma 2.6 with Φ = Φm and f = fm and send m → ∞ to observe that
Φ ∈ L1(Ω) ∩ C∞(Ω) fulfills ∫

Ω

Φ(x)∆ϕ(x)dx = 0

for all ϕ ∈ C2
c (Ω̄)

(
= C2(Ω̄)

)
satisfying ∂ϕ/∂nΩ = 0 on ∂Ω since the right hand side of

(2.2) converges to zero by (2.8). Thus Φ formally solves the homogeneous Neumann
problem so that ∇Φ ≡ 0. (In fact we apply Lemma 2.8 in the next subsection for a
rigorous proof.)

Since ∇Φm subsequently converges to ∇Φ locally uniformly in Ω, (2.7) implies
that dΩ(x∞)|∇Φ(x∞)| ≥ 1/2. This contradicts the fact ∇Φ ≡ 0 so we get a contra-
diction for the case 1.
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Case 2. x∞ ∈ ∂Ω. By taking a subsequence we may assume that xm → x∞. We
rescale Φm and fm around xm so that the distance from the origin to the boundary
equals 1. More precisely, we set

Ψm(x) = Φm(xm + dmx), gm(x) = fm(xm + dmx)

with dm = dΩ(xm). It follows from (2.6)-(2.8) that

sup
x∈Ωm

dΩm(x)
∣∣∇Ψm(x)

∣∣ = 1, (2.9)∣∣∇Ψm(0)
∣∣ ≥ 1/2, (2.10)

‖gm‖L∞(∂Ωm) < 1/m. (2.11)

Here Ωm is the rescaled domain of the form

Ωm =
{
x ∈ Rn

∣∣∣ x =
y − xm

dm

, y ∈ Ω
}
.

We apply (2.2) for Ψm, gm and Ωm and send m → ∞. Since the domain is
moving, we have to take ϕm satisfying ∂ϕm/∂nΩm = 0 so that it converges to some
function ϕ. If ∂Ω is Ck(k ≥ 2), there exists µ > 0 such that dΩ(x) ∈ Ck(ΓΩ,µ) with
a tubular neighborhood ΓΩ,µ = {x ∈ Ω̄ | dΩ(x) < µ} and that, for any z ∈ ΓΩ,µ there
is a unique projection zp ∈ ∂Ω to ∂Ω i.e. |z − zp| = dΩ(z); cf. Proposition 3.6 (i).
Let xp

m ∈ ∂Ω be the projection of xm to ∂Ω for sufficiently large m. The sequence of
unit vector (xm − xp

m)/dm converges to a unit vector e. By translation and rotation
we may assume that e = (0, . . . , 0, 1). Then Ωm converges to a half space Rn

+,−1,
where

Rn
+,c =

{
(x′, xn)} ∈ Rn

∣∣ xn > c
}
.

More precisely, for any R > 0 there is m0 such that for m ≥ m0 there is hm ∈
C2

(
Bn−1

R (0)
)

converging to −1 up to third derivatives with the property

Ωm ∩Bn−1
R (0)× [−R,R] =

{
(x′, xn) ∈ Rn

∣∣ R > xn > hm(x′), x′ ∈ Bn−1
R (0)

}
,

where Bn−1
R (0) denotes the closed ball in Rn−1 with radius R centered at the origin.

Let ϕ ∈ C2
c (R̄n

+,−1) satisfy ∂ϕ/∂xn = 0 on {xn = −1}. We may assume ϕ ∈ C2
c (Rn)

by a suitable extension. Take R > 0 large so that the support of ϕ is included in the
interior of Bn−1

R (0)× [−R,R]. We take a normal coordinate associated with Ωm. Let
Fm be the mapping defined by

x = (x′, xn) 7−→ X = z + dΩm(x)∇dΩm(z) with z =
(
x′, hm(x′)

)
.

We set ϕm(X) = ϕ
(
F−1

m (X)
)
. This is well-defined for sufficiently largem. We further

observe that ∂ϕm/∂nΩm = 0 on ∂Ωm since nΩm = −∇dΩm . If ∂Ω is C3, then F−1
m is

still C2. Thus ϕm ∈ C2
c (Ω̄m) for sufficiently large m. Here we invoke C3 regularity.
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Since we may assume that Ψm(0) = 0, by (2.9) the sequence {Ψm} is bounded in
Lr(Ωm ∩ BR(0)× [−R,R]), r ∈ (1,∞) for any R > 1. Since {∇Ψm} is harmonic in
Ωm, Ψm subsequently converges to some function Ψ ∈ C∞(Rn

+,−1) locally uniformly
with its all derivatives and weakly in Lr

loc(R̄
n
+,−1)(1 < r < ∞). Since (2.11) implies

that gm → 0 uniformly, we apply (2.2) with Ψm, ϕm and gm and send m→∞ to get∫
Rn

+,−1

Ψ∆ϕdx = 0 (2.12)

since F−1
m converges to the identity in C2 so that ϕm → ϕ in C2 in a neighborhood

of the support spt ϕ. We thus observe that (2.12) is valid for all ϕ ∈ C3
c (Rn

+,−1) with
∂ϕ/∂xn = 0 on {xn = −1}. We apply a uniqueness result for the Neumann problem
with an estimate supxn|∇Ψ|(x′, xn) ≤ 1 obtained from (2.9) to get ∇Ψ ≡ 0. (One
should apply Lemma 2.9 in the next subsection for a rigorous proof.)

Since ∇Ψm subsequently converges to ∇Ψ locally uniformly in Rn
+,−1, (2.10)

implies |∇Ψ(0)| ≥ 1/2. This contradicts the fact ∇Φ ≡ 0 so the proof is now
complete.

Remark 2.7. (i) Even in Case 1 the estimate (2.6) does not imply that {∇Ψm} is
uniformly bounded in any Lebesgue spaces on Ω. Thus it is not clear that∫

Ωm

∇Φm · ∇ϕdx→
∫

Ω

∇Φ · ∇ϕdx

though we know

−
∫

Ωm

Φm∆ϕdx→ −
∫

Ω

Φ∆ϕdx

since Φm converges weakly in all Lr(1 < r < ∞) spaces as m → ∞ by taking a
subsequence. This is a reason we need to assume that ϕ is at least C2 and ∂ϕ/∂nΩ = 0
on the boundary.
(ii) The proof of Theorem 2.5 actually yields an estimate

sup
x∈Ω

dΩ(x)
∣∣Q[∇ · f ](x)

∣∣ ≤ CΩ

∥∥nΩ · (f − tf)
∥∥

L∞(∂Ω)

which is stronger than (1.13). Here, nΩ · f =
∑n

j=1 n
j
Ωfij and tfij = fji.

If fij = ∂jv
i with div v = 0, the quantity nΩ ·(f− tf) is nothing but the tangential

trace of the vorticity, i.e. ω× nΩ when n = 3. Moreover, the right hand side of (2.2)
equals ∫

∂Ω

(ω × nΩ) · ∇ϕdHn−1.

Since ∂ϕ/∂nΩ = 0 so that ∇ϕ = ∇tanϕ and since ω× nΩ is a tangent vector field on
∂Ω, the above quantity equals

−
∫

∂Ω

(
div∂Ω(ω × nΩ)

)
ϕdHn−1.
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This implies formally that Φ with f = ∂jv
i solves

−∆Φ = 0 in Ω, ∂Φ/∂nΩ = −div∂Ω(ω × nΩ) on ∂Ω,

where div∂Ω denotes the surface divergence see e.g. [28], [50]. In general, since
nΩ · (f − tf) is tangential, we have

∂Φ/∂nΩ = −div∂Ω

(
nΩ · (f − tf)

)
on ∂Ω.

2.4 Uniqueness of the Neumann problem

We shall give uniqueness results which are used in the proof of Theorem 2.5.

Lemma 2.8 (Uniqueness for bounded domains). Let Ω be a bounded domain with
C3 boundary. Assume that Φ ∈ L1(Ω) ∩ C(Ω) satisfies∫

Ω

Φ(x)∆ϕ(x)dx = 0 (2.13)

for all ϕ ∈ C2(Ω̄) satisfying ∂ϕ/∂nΩ = 0 on ∂Ω. Then Φ is a constant.

Proof. We consider a dual problem

−∆ϕ = div ψ in Ω, ∂ϕ/∂nΩ = 0 on ∂Ω.

For arbitrary ψ ∈ C∞
c (Ω), there exists a solution ϕ ∈ W 3,r(Ω) for all r > 1 (see e.g.

[34, Lemma 2.3].) By the Sobolev embedding we conclude that ϕ ∈ C2(Ω̄). From
(2.13) it follows that ∫

Ω

Φ div ψ dx = 0

for all ψ ∈ C∞
c (Ω). This implies ∇Φ = 0, so Φ is a constant.

Lemma 2.9 (Uniqueness for the half space). Let Φ ∈ L1
loc(R̄

n
+) satisfy∫

Rn
+

Φ(x)∆ϕ(x)dx = 0

for all ϕ ∈ C∞
c (R̄n

+) satisfies ∂ϕ/∂xn = 0 on {xn = 0}. Assume that Φ satisfies

sup
x∈Rn

+

xn

∣∣∇Φ(x)
∣∣ <∞ (2.14)

Then Φ is a constant.
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Proof. The problem can be reduced to the whole space. Let Φ̃ be an even extension
of Φ to the whole space i.e. Φ̃(x′, xn) = Φ(x′,−xn) for xn < 0. For arbitrary
ϕ ∈ C∞

c (Rn) let ϕeven and ϕodd are even and odd part of ϕ, i.e.,

ϕeven(x) =
ϕ(x′, xn) + ϕ(x′,−xn)

2
, ϕodd(x) =

ϕ(x′, xn)− ϕ(x′,−xn)

2
.

The integration by parts yields∫
Rn

Φ̃(x)∆ϕ(x)dx =

∫
Rn

Φ̃(x)∆
(
ϕeven(x) + ϕodd(x)

)
dx

=

∫
Rn

Φ̃(x)∆ϕeven(x)dx

=2

∫
Rn

+

Φ(x)∆ϕeven(x)dx.

Since ϕeven satisfies ∂ϕeven/∂xn = 0 on {xn = 0}, we conclude that∫
Rn

Φ̃(x)∆ϕ(x)dx = 0. (2.15)

By (2.14) we know Φ̃ is locally integrable in Rn. Since (2.15) says that Φ̃ is weakly
harmonic, Φ̃ = ηε ∗ Φ̃ by the mean value theorem if ηε is a symmetric mollifier
i.e. ηε is radially symmetric (see e.g. [13, 2.2.3]). Moreover, by integrating Φ̃ from
x0 =

(
0, (x0)n

)
∈ Rn, (x0)n 6= 0 to x, we observe that (2.14) yields∣∣Φ̃(x)

∣∣ ≤ C
(
1 +

∣∣log |xn|
∣∣ + |x|

∣∣log |xn|
∣∣)

for x′ ∈ Rn, |xn| < 1/2 with some constant C independent of x. This implies that
∇Φ̃ = ∇ηε ∗ Φ̃ enjoys an estimate∣∣∇Φ̃(x)

∣∣ ≤ Cε

(
1 + |x|

)
(2.16)

for x′ ∈ Rn−1, |xn| < 2ε with Cε independent of x. By (2.14) we conclude that ∇Φ̃
satisfies (2.16) for all x ∈ Rn. Since Φ̃ is weakly harmonic, (2.16) implies that ∇Φ̃
is harmonic in Rn. By (2.16) the classical Liouville theorem implies that ∇Φ̃ is a
polynomial of degree one. However, by the decay estimate (2.14) for |xn| → ∞ this
polynomial must be zero. Thus ∇Φ̃ = 0 i.e. Φ is a constant.

Remark 2.10. We actually need only C2-regularity of the boundary ∂Ω in the Case 1
of the proof of Theorem 2.5. Note that the identity (2.2) is still valid for ϕ ∈ W 2,2(Ω)
having compact support in Ω̄. (In this paper Wm,r(Ω) denotes the Lr-Sobolev space
of order m.) When ∂Ω is C2, a slightly modified version of Lemma 2.8 is valid. In
fact, for Φ ∈ L2(Ω) we still assert ∇Φ ≡ 0 if (2.13) is fulfilled for all ϕ ∈ W 2,2(Ω)
with ∂ϕ/∂nΩ = 0 on ∂Ω. (The constructed ϕ in the proof is now in W 2,2(Ω) not
necessarily in W 3,r(Ω).) Based on these assertions the proof of Case 1 goes through
with trivial modifications.
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3 Uniform Hölder estimates for pressure gradients

The goal of this section is to establish local Hölder estimates for second spatial
derivatives and the time derivative of the velocity solving the Stokes equations both
interior and up to boundary. This procedure is a key to derive necessary compactness
for blow-up sequences. Unlike the heat equation the result is not completely local
even interior case since we need a uniform Hölder estimates in time for pressure
gradients. For this purpose we invoke admissibility of domains.

3.1 Interior Hölder estimates for pressure gradients

We use conventional notation [39] for Hölder (semi)norms for space-time functions.
Let f = f(x, t) be a real-valued or an Rn-valued function defined in Q = Ω× (0, T ],
where Ω is a domain in Rn. For µ ∈ (0, 1) we set several Hölder semi-norms

[f ]
(µ)
(0,T ](x) = sup

{∣∣f(x, t)− f(x, s)
∣∣/|t− s|µ

∣∣∣ t, s ∈ (0, T ], t 6= s
}

[f ]
(µ)
Ω (t) = sup

{∣∣f(x, t)− f(y, t)
∣∣/|x− y|µ

∣∣∣ x, y ∈ Ω, x 6= y
}

and
[f ]

(µ)
t,Q = sup

x∈Ω
[f ]

(µ)
(0,T ](x), [f ]

(µ)
x,Q = sup

t
[f ]µΩ(t).

In the parabolic scale for γ ∈ (0, 1) we set

[f ]
(γ,γ/2)
Q = [f ]

(γ/2)
t,Q + [f ]

(γ)
x,Q .

For later convenience we also define the case γ = 1 so that

[f ]
(1,1/2)
Q = ‖∇f‖L∞(Q) + [f ]

(1/2)
t,Q .

If l = [l] + γ where [l] is a nonnegative integer and γ ∈ (0, 1), we set

[f ]
(l,l/2)
Q =

∑
|α|+2β=[l]

[∂α
x ∂β

t f ]
(γ,γ/2)
Q

and the parabolic Hölder norm

|f |(l,l/2)
Q =

∑
|α|+2β≤[l]

‖∂α
x ∂β

t f‖L∞(Q) + [f ]
(l,l/2)
Q .

When f is time-independent, we simply write [f ]
(µ)
x,Q by [f ]

(µ)
Ω .

Let Ω be a uniformly C2-domain in Rn. For a given v0 ∈ L̃r
σ(Ω), 1 < r <∞ it is

proved in [14], [16] that there exists a unique solution (v, q) of the Stokes equations
(1.1)-(1.4) satisfying vt, ∇q, ∇2v, ∇v, v ∈ L̃r(Ω) at each t ∈ (0, T ) such that the
solution operator S(t) : v0 7→ v(·, t) is an analytic semigroup in L̃r

σ(Ω). Here T > 0
is taken arbitrary large. In this paper we simply say that (v, q) is an L̃r-solution of
(1.1)-(1.4). Note that ∇q = Q[∆v] for an L̃r-solution.
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Lemma 3.1. Let Ω be an admissible, uniformly C2-domain in Rn (with r ≥ n).
Then there exists a constant M(Ω) > 0 such that

[dΩ(x)∇q](1/2)
t,Qδ

≤ M

δ
sup

{(
‖vt‖∞(t) + ‖∇2v‖∞(t)

)
t
∣∣∣ δ ≤ t ≤ T

}
holds for all L̃r-solution (v, q) of (1.1)-(1.4) and all δ ∈ (0, T ), where Qδ = Ω×(δ, T ).
The constant M can be taken uniform with respect to translation and dilation i.e.,
M(λΩ + x0) = M(Ω) for all λ > 0 and x0 ∈ Ω.

Proof. By an interpolation inequality (e.g. [62], [38, 3.2]) there is a dilation invariant
constant C such that for any ε > 0 the estimate

‖∇v‖∞(t) ≤ ε‖∇2v‖∞(t) + (C/ε)‖v‖∞(t)

holds. Since our solution is an L̃r-solution, we have

∇q = Q[∇ · f ], f = (fij) = ∂jv
i

and moreover
∇q(x, t)−∇q(x, s) = Q[∆v(x, t)−∆v(x, s)].

Since Ω is admissible, we have

dΩ(x)
∣∣∇q(x, t)−∇q(x, s)

∣∣ ≤ C(Ω)
∥∥∇(

v(·, t)− v(·, s)
)∥∥

∞

≤ C(Ω)[εmax
(
‖∇2v‖∞(t), ‖∇2v‖∞(s)

)
+ (C/ε)

∥∥v(·, t)− v(·, s)
∥∥
∞

]
.

Since ∥∥v(·, t)− v(·, s)
∥∥
∞ ≤ |t− s| sup

{
‖vt‖∞(τ)

∣∣ τ is between t and s
}
,

≤ |t− s| 1

δ
sup

{
τ‖vt‖∞(τ)

∣∣ δ ≤ τ ≤ T
}

for t, s ≥ δ, the desired inequality follows by taking ε = |t − s|1/2. Since CΩ is also
dilation and translation invariant by Remark 2.4 (iii), so is M(Ω).

Proposition 3.2 (Interior Hölder estimates). Let Ω be an admissible, uniformly C2-
domain in Rn (with r ≥ n). Take γ ∈ (0, 1), δ > 0, T > 0, R > 0. Then there exists
a constant C = C

(
M(Ω), δ, R, d, γ, T

)
such that the estimate

[∇2v]
(γ,γ/2)
Q′ + [vt]

(γ,γ/2)
Q′ + [∇q](γ,γ/2)

Q′ ≤ CNT (3.1)

holds for all L̃r-solution (v, q) of (1.1)-(1.4) provided that BR(x0) ⊂ Ω and x0 ∈ Ω,
where Q′ = intBR(x0)× (δ, T ] and d denotes the distance of BR(x) and ∂Ω. Here

NT = sup
0<t<T

∥∥N(v, q)
∥∥
∞(t) <∞ (3.2)

and M(Ω) is the constant in Lemma 3.1.
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Proof. Since ∇q is harmonic in Ω, the Cauchy type estimate implies

sup
x∈BR+d/2(x0)

∣∣∇2q(x, t)
∣∣ ≤ C0

d
‖∇q‖L∞(Ω)(t), BR+d/2(x0) ⊂ Ω,

where C0 depends only on n. This together with Lemma 3.1 implies

[∇q](1,1/2)
Q′′ ≤

(C0R
′

d
+M

)1

δ
NT , R′ = R + d/2

for any x0 ∈ Ω, R > 0, δ > 0, where Q′′ = intBR+d/2(x0)× (δ/2, T ]. By the standard
local Hölder estimate for the heat equation

vt −∆v = −∇q in Q′′

this pressure gradient estimate implies estimates for ∇2v, vt for Q′ [39, Chapter IV,
Theorem 10.1].

Remark 3.3. (i) We are tempted to claim that if (v, q) solves the Stokes system
(1.1)-(1.2) without boundary and initial condition, then the desired interior Hölder
estimate would be valid. Such a type estimate is in fact true for the heat equation
[39, Chapter IV, Theorem 10.1]. However, for the Stokes equations this is no longer
true. In fact, if we take v(x, t) = g(t) and p(x, t) = −g′(t) · x with g ∈ C1[0,∞),
this is always a solution of (1.1)-(1.2) satisfying NT1 <∞ for any T1 > 0. However,
evidently vt may not be Hölder continuous in time unless ∇p is Hölder continuous
in time. This is why we use a global setting with admissibility of the domain.
(ii) In the constant C the dependence of Ω is through M(Ω) so it is invariant under
a dilation provided that d and R are taken independent of a dilation.

3.2 Local Hölder estimates up to the boundary

The regularity up to boundary is more involved. We begin with the statement and
give a proof in subsequent sections.

Theorem 3.4 (Estimates near the boundary). Let Ω be an admissible, uniformly C3-
domain of type (α, β,K) in Rn (with r ≥ n). Then there exists R0 = R0(α, β,K) > 0
such that for any γ ∈ (0, 1), δ ∈ (0, T ) and R ≤ R0/2 there exists a constant

C = C
(
M(Ω), δ, γ, T, R, α, β,K

)
such that (3.1) is valid for all L̃r-solution (v, q) of (1.1)-(1.4) with

Q′ = Q′
x0,R,δ = Ωx0,R × (δ, T ], Ωx0,R = intBR(x0) ∩ Ω

provided that x0 ∈ ∂Ω.
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The proof is more involved. We first localize the Stokes equations near the bound-
ary by using cut-off technique and the Bogovskǐı operator [20, III.3] to recover di-
vergence free property. Then we apply a global Schauder estimate for the Stokes
equations in a localized domain. As in the interior case we use the admissibility of
the domain to obtain the Hölder estimate for the pressure in time.

We begin with Hölder estimates for q in time since we are not able to control the
Hölder norm of ∇q up to the boundary.

Lemma 3.5. Assume the same hypotheses of Lemma 3.1. Then there exists R0 =
R0(α, β,K) > 0 such that for ν ∈ (0, 1) and R ∈ (0, R0] there exists a constant
C0 = C0

(
M(Ω), ν, α,R, β,K

)
such that

[q]
(ν,ν/2)
Q′ ≤ C0NT/δ. (3.3)

is valid for all L̃r-solution (v, q) of (1.1)-(1.4) and Q′ = Q′
x0,R,δ for x0 ∈ ∂Ω.

For this purpose we prepare a basic fact for a distance function.

Proposition 3.6. Let Ω be a uniformly C2-domain of type (α, β,K).
(i) There is a constant R∗ = R∗(α, β,K) > 0 such that x ∈ ΓΩ,R∗ = {x ∈ Ω | dΩ(x) <
R∗} has the unique projection xp ∈ ∂Ω (i.e., |x− xp| = dΩ(x)) and x is represented
as x = xp − dnΩ(xp) with d = dΩ(x). The mapping x 7→ (xp, d) is C1 in ΓΩ,R∗.
(ii) There is a positive constant R1 = R1(α, β,K) ≤ R∗ such that Ωx0,R1 ⊂ Uα,β,h(x0)
and the projection xp of x ∈ Ωx0,R1 is on x0 + graph h.
(iii) For each R ∈ (0, R1) and ν ∈ [0, 1) there is a constant C = C(α, β,K,R, ν)
such that∣∣q̃(x)−q̃(y)∣∣ ≤ C‖dν

Ω∇q̃‖L∞(Ω)

{∣∣dΩ(y)1−ν−dΩ(x)1−ν
∣∣+|xp−yp|

/
max

(
dΩ(x)ν , dΩ(y)ν

)}
for x, y ∈ Ωx0,R

for all q̃ ∈ C1(Ω) and x0 ∈ ∂Ω.

Proof of Proposition 3.6. (i) This is nontrivial but well-known. See e.g. [24] or [37,
4.4].
(ii) This is easy by taking R smaller. The smallness depends on a bound for the
second fundamental form of ∂Ω.
(iii) For x ∈ Ωx0,R (R ≤ R1) we consider its normal coordinate (xp, d). Since Ωx0,R ⊂
Uα,β,h(x0), there is unique x′p ∈ Rn−1 such that xp =

(
x′p, h(x

′
p)

)
. Moreover, we are

able to use (x′p, d) as a coodinate system. For x, y ∈ Ωx0,R with x =
(
x′p, dΩ(x)

)
, y =(

y′p, dΩ(y)
)

with dΩ(y) > dΩ(x) we estimate∣∣q̃(x)− q̃(y)
∣∣ ≤ ∣∣q̃(x)− q̃(z)

∣∣ +
∣∣q̃(z)− q̃(y)

∣∣
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with z =
(
x′p, dΩ(y)

)
. Thus we connect x and z by a straight line which parallels to

nΩ(xp) and observe that

∣∣q̃(x)− q̃(z)
∣∣ ≤ |z − x|

∫ 1

0

1

dν
Ω(xτ )

∣∣dν
Ω∇q̃(xτ )

∣∣ dτ, xτ = x(1− τ) + τz (0 ≤ τ ≤ 1)

≤
∫ dΩ(y)

dΩ(x)

1

sν
ds‖dν

Ω∇q̃‖L∞(Ω)

≤
(
dΩ(z)1−ν − dΩ(x)1−ν

)
‖dν

Ω∇q̃‖L∞(Ω)(1− ν)−1.

It remains to estimate |q̃(z)− q̃(y)|. We connect z and y by a curve Cz,y of the form

Cz,y =
{
x(τ)

∣∣∣ 0 ≤ τ ≤ 1, x′p(τ) = x′p(1− τ) + τy′p, dΩ

(
x(τ)

)
= dΩ(y)

}
so that the projection in Rn−1 is a straight line connecting x′p and y′p. We now
estimate ∣∣q̃(z)− q̃(y)

∣∣ ≤ ∫
Cz,y

1

dΩ(y)ν
dν

Ω(y)|∇q̃|(x) dH1(x)

=
1

dΩ(y)ν
H1(Cz,y)‖dν

Ω∇q̃‖L∞(Ω).

Since H1(Cz,y) ≤ C|xp − yp|, the proof is now complete.

Proof of Lemma 3.5. We take R1 > 0 as in Proposition 3.6. For x0 ∈ ∂Ω we take
x̃0 = x0 − R1

2
nΩ(x0). We may assume that q(x̃0, t) = 0 for all t ∈ (0, T ). Since[
dΩ(x)ν∇q

](1/2)

t,Qδ
≤

(
[dΩ(x)∇q](1/2)

t,Qδ

)ν(
2‖∇q‖L∞(Qδ)

)1−ν
,

Lemma 3.1 implies that

∥∥dΩ(x)ν∇q̃(x, ·)
∥∥

L∞(Ω)
(t, s) ≤ MνNT 2

δ

1−ν

|t− s|ν/2 for t, s ∈ (δ, T ]

with q̃(x, t, s) = q(x, t)− q(x, s). We now apply Proposition 3.6 (iii) with y = x̃0 to
get

∣∣q(x, t)− q(x, s)
∣∣ ≤ C

(
dΩ(x̃0)

1−ν + |xp − x0|dΩ(x̃0)
−ν

)MνNT 2

δ

1−ν

|t− s|ν/2

for t, s ∈ (δ, T ] and all x ∈ Ωx0,R , R ≤ R0 = R1/4. Since dΩ(x̃0) = 2R0 and
|xp − x0| < R, the above inequality implies

[q]
(ν/2)
t,Q′ ≤ C0NT/δ, C0 = C

(
(2R0)

1−ν +R(2R0)
−ν

)
Mν21−ν .
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For the Hölder estimate in space we simply apply Proposition 3.6 (iii) with ν = 0
to get∣∣q(x, t)− q(y, t)

∣∣ ≤ C‖∇q‖L∞(Ω)(t)
(∣∣dΩ(y)− dΩ(x)

∣∣ + |xp − yp|
)

≤ C‖∇q‖L∞(Ω)(t)|x− y|, x, y ∈ Ωx0,R, R ≤ R0, t ∈ (0, T ).

This implies
[q]

(ν)
x,Q′ ≤ C0NT/δ

so the proof is now complete.

3.3 Helmholtz decomposition and the Stokes equations in Hölder
spaces

To prove local Hölder estimates up to boundary (Theorem 3.4) we recall several
known Hölder estimates for the Helmholtz decomposition and the Stokes equations
established by [52], [58] via potential theoretic approach. We recall notions for the
spaces of Hölder continuous functions. By Cγ(Ω̄) with γ ∈ (0, 1) we mean the space

of all continuous functions in Ω̄ with [f ]
(γ)
Ω <∞. Similarly, we use Cγ,γ/2(Q̄) for the

space of all continuous functions in Q̄ with [f ]
(γ,γ/2)
Q <∞.

Proposition 3.7 (Helmholtz decomposition). Let Ω be a bounded C2+γ-domain in
Rn with γ ∈ (0, 1).
(i) For f ∈ Cγ(Ω̄) there is a (unique) decomposition f = f0 + ∇Φ with f0, ∇Φ ∈
Cγ(Ω̄) such that ∫

Ω

f0 · ∇ϕdx = 0 for all ϕ ∈ C∞(Ω̄). (3.4)

(ii) There is a constant CH > 0 depending only on γ and Ω only through its C2+γ

regularity such that

|f0|(γ)
Ω + |∇Φ|(γ)

Ω ≤ CH |f |(γ)
Ω for all f ∈ Cγ(Ω̄). (3.5)

(iii) For each ε ∈ (0, 1− γ) there is a constant C ′
H > 0 depending only on γ,ε and Ω

only through its C2+γ regularity such that

|f0|(γ,γ/2)
Q + |∇Φ|(γ,γ/2)

Q ≤ C ′
H |f |(γ+ε, γ+ε

2
)

Q for all f ∈ Cγ,γ/2(Q̄). (3.6)

Proof. The part (i) and (ii) are established in [52], [58]; the dependence of the con-
stant is not explicit but it is observed from the proof.

In [58, Corollary on p.175] it is proved that the left hand side of (3.6) is domineted
by a (similar type) constant multiple of

|f |(γ,γ/2)
Q + sup

x,y∈Ω
t,s∈(0,T ]

∣∣(f(x, t)− f(x, s)
)
−

(
f(y, t)− f(y, s)

)∣∣
|x− y|µ · |t− s| γ

2

(3.7)
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for arbitrary µ ∈ (0, 1). By the Young inequality we observe to get

1

|x− y|ε|t− s|γ/2
≤ ε

γ + ε

1

|x− y|γ+ε
+

γ

γ + ε

1

|t− s| γ+ε
2

.

Thus we take µ = ε to see that the second term of (3.7) is dominated by

2ε

γ + ε
sup

t∈(0,T ]

[f ]
(γ+ε)
Ω (t) +

2γ

γ + ε
sup
x∈Ω

[f ]
( γ+ε

2
)

(0,T ] (x).

Thus the estimate (3.6) follows and (iii) is proved.

Remark 3.8. The operator f 7→ f0 is essentially the Helmholtz projection P for
Hölder vector fields since (3.4) implies that div f = 0 in Ω and f · nΩ = 0 on ∂Ω.
The estimate (3.5) shows the continuity of P in the Hölder space Cγ(Ω̄). However,
it is mentioned in [58] (without a proof) that P is not continuous in Cγ,γ/2(Q̄). In
other words, one cannot take ε = 0 in the estimate (3.6).

We next recall Schauder type estimates for the Stokes system

vt −∆v +∇q = f0 in Ω× (0, T ) (3.8)

div v = 0 in Ω× (0, T ) (3.9)

v = 0 on ∂Ω× (0, T ) (3.10)

v = 0 on Ω× {t = 0}. (3.11)

Proposition 3.9. Let Ω be a bounded C2+γ-domain in Rn with γ ∈ (0, 1) and
T > 0. Then for each f0 ∈ Cγ,γ/2(Q̄) satisfying (3.4) there is a unique solution
(v,∇q) ∈ C2+γ,1+γ/2(Q̄) × Cγ,γ/2(Q̄) (up to an additive constant for q) of (3.8)-
(3.11). Moreover, there is a constant CS dependeng only on γ, T and Ω only through
its C2+γ-regularly such that

|v|(2+γ,1+γ/2)
Q + |∇q|(γ,γ/2)

Q ≤ CS|f0|(γ,γ/2)
Q (3.12)

Remark 3.10. (i) This result is a special case of a very general result [58, Theorem
1.1] where the viscosity constant in front of ∆ in (3.8) depends on space and time
and the boundary and initial data are inhomogeneous. Note that the divergence free
condition (3.4) for f0 is assumed to establish (3.12).
(ii) If the domain is a bounded C3-domain, clearly it is a uniformly C3-domain of
type (α, β,K) with some (α, β,K). The constans CH , C ′

H and CS in Propositions 3.7
and 3.9 depends on Ω only through this (α, β,K) when Ω is a bounded C3-domain
(which is of course a C2+γ-domain for all γ ∈ (0, 1)).
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3.4 Localization procedure

We shall prove Theorem 3.4 by Lemma 3.5 and a localization procedure with nec-
essary Hölder estimates (Propositions 3.7 and 3.9). We first recall the Bogovskǐı
operator BE in [8]. Let E be a bounded subdomain in Ω with a Lipschitz boundary.
The Bogovskǐı operator BE is a rather explicit operator but here we only need a
few properties. This linear operator BE is well-defined for average-zero function i.e.∫

E
gdx = 0. Moreover, divBE(g) = g in E and if the support spt g ⊂ E, then

spt BE(g) ⊂ E.
The operator BE fulfills estimates∥∥BE(g)

∥∥
W 1,p(E)

≤ CB‖g‖Lp(E) for g ∈ Lp(E) satisfying

∫
E

gdx = 0 (3.13)∥∥BE(g)
∥∥

Lp(E)
≤ CB‖g‖W−1,p

0 (E) for h ∈ W−1,p
0 (E) =

(
W 1,p′(E)

)∗
(3.14)

with some constant CB independent of g, where 1/p′ + 1/p = 1 with 1 < p < ∞.
In particular BE is bounded from Lp

av = {g ∈ Lp(E)}|
∫

E
gdx = 0} to the Sobolev

space W 1,p(E). The result (3.14) is a special case of that of [21, Theorem 2.5] which
asserts that BE is bounded from W s,p

0 (Ω) to W s+1,p
0 (Ω) for s > −2+1/p. The bound

CB depends on p but its dependence on E is through Lipschitz regularity constant
of ∂E.

Proof of Theorem 3.4. We take R0 as in Lemma 3.5 and take R ≤ R0/2. For x0 ∈ ∂Ω
we take a bounded C3-domain Ω′ such that Ωx0,3R/2 ⊂ Ω′ ⊂ Ωx0,2R. Evidently
∂Ωx0,R ∩ ∂Ω is strictly included in ∂Ω′ ∩ ∂Ω. Moreover, one can arrange that Ω′

is of type (α′, β′, K ′) such that (α′, β′, K) depends on (α, β,K) and R. Such Ω′ is
constructed for example by considering Ω′′ = Ωx0,7R/4 and mollify near the set of
intersection ∂B7R/4(x0) and ∂Ω in a suitable way to get Ω′.

Let θ be a smooth cut-off function of [0,1] supported in [0, 3/2), i.e. θ ∈ C∞[0,∞)
such that θ ≡ 1 on [0, 1] and 0 ≤ θ ≤ 1 with spt θ ⊂ [0, 3/2). We set θR(x) = θ(|x−
x0|/R) which is a cut-off function of Ωx0,R supported in Ω′. Because of construction,
its derivatives depend only on R. We also take a cut-off function ρδ in time variable.
Let ρ ∈ C∞[0,∞) satisfies ρ ≡ 1 on [1,∞) and ρ = 0 on [0, 1/2) with 0 ≤ ρ ≤ 1. For
δ > 0 we set ρδ(t) = ρ(t/δ). We set ξ = θRρδ and observe that u = vξ and p = qξ
solves

ut −∆u+∇p = f, div u = g

in U = Ω′ × (0, T ) with

f = vξt − 2∇v · ∇ξ − v∆ξ + q∇ξ, g = v∇ξ
(
= div(vξ)

)
.

We next use the Bogovskǐı operator BΩ′ so that the vector field is solenoidal. We set
u∗ = BΩ′(g) and ũ = u− u∗. Then (ũ, p) solve

ũt −∆ũ+∇p = f̃ , div ũ = 0 in U
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with f̃ = f +u∗t −∆u∗. We shall fix Ω′ so that C ′
H in (3.6) and CS in (3.12) depends

on Ω′ only through (α, β,K) and R. If we know f̃ ∈ Cγ+ε, γ+ε
2 (Ū) with ε ∈ (0, 1− γ)

then by the Helmholtz decomposition in Hölder spaces (Proposition 3.7), one finds
f̃ = f0 +∇Φ with f0 ∈ Cγ,γ/2(Ū) satisfying (3.4) and

|f0|(γ) + |∇Φ|(γ) ≤ C ′
H |f̃ |(γ+ε), (3.15)

where we use a short hand notation |f |(γ) = |f |(γ,γ/2)
U . If we set p̃ = p−Φ, then (ũ, p̃)

solves (3.8)-(3.11) with Ω = Ω′, where f0 satisfies the solenoidal condition (3.4).
Applying the Schauder estimate (3.12) yields

|ũ|(2+γ) + |∇p̃|(γ) ≤ CS|f0|(γ). (3.16)

By definition of f̃ we observe that

|f̃ |(γ+ε) ≤ |f |(γ+ε) + |u∗t |(γ+ε) + |∆u∗|(γ+ε)

≤ c0

(
|v|(γ+ε, γ+ε

2
)

Ω′×( δ
2
,T ]

+ |∇v|(γ+ε, γ+ε
2

)

Ω′×( δ
2
,T ]

+ |q|(γ+ε, γ+ε
2

)

Ω′×( δ
2
,T ]

)
+ |u∗|(2+γ+ε)

with c0 depends only on R, T , δ and γ + ε. Since NT in (3.2) is finite, by an

interpolation inequality as in the proof of Lemma 3.1 we have |∇v|(1/2)
t,Qδ

≤ CNT/δ
with C depending only on (α, β,K). We now apply this estimate together with
estimate (3.3) for q in Lemma 3.5 to get

|f̃ |(γ+ε) ≤ CNT + |u∗|(2+γ+ε) (3.17)

with a constant C = C
(
M(Ω), γ + ε, α, β,K,R, δ

)
. Since

|v|(2+γ,1+γ/2)
Q′ ≤ |u|(2+γ) ≤ |ũ|(2+γ) + |u∗|(2+γ)

|∇q|(γ,γ/2)
Q′ ≤ |∇p̃|(γ) + |∇Φ|(γ),

the desired estimates follow from (3.15)-(3.17) once we have established that

|u∗|(2+γ+ε) ≤ CNT .

with C = C
(
M(Ω), γ + ε, α, β,K,R, δ

)
.

We shall present a proof for

[u∗t ]
(µ/2)
t,U ≤ CNT (3.18)

for µ ∈ (0, 1) since other quantities can be estimated in a similar way and even easier.
By (3.13) and (3.14) we have

‖u∗t‖Lp(Ω′) ≤ CB‖div ut‖W−1,p
0 (Ω′) (3.19)

‖u∗t‖W 1,p(Ω′) ≤ CB‖div ut‖Lp(Ω′). (3.20)
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To estimate ‖div ut‖W−1,p
0 (Ω′) we use the equations vt −∆v +∇q = 0 and div v = 0.

For an arbitrary ϕ ∈ W 1,p′(Ω′) we have∫
Ω′
ϕ div ut dx =

∫
Ω′

(ϕ vt · ∇ξ + ϕ ∇ξt · v) dx

=

∫
Ω′

(
ϕ ∇ξ · (∆v −∇q) + ϕ ∇ξt · v) dx

=

∫
Ω′

{
−

n∑
i=1

∂xi
(ϕ∇ξ) · ∂xi

v + q div(ϕ∇ξ) + ϕ∇ξt · v
}

dx

+

∫
∂Ω′
{ϕ ∇ξ · ∂v/∂nΩ′ − qϕ ∂ξ/∂nΩ′} dHn−1.

This implies∣∣∣∫
Ω′
ϕ div utdx

∣∣∣ ≤ Cξ

{
‖∇v‖∞ + ‖q‖∞ + ‖v‖∞

}(
‖ϕ‖W 1,1(Ω′) + ‖ϕ‖L1(∂Ω′)

)
(3.21)

with Cξ depending only on R and δ (independent of t), where L∞-norm is taken on
Ω′. By a trace theorem (e.g. [13, 5.5, Theorem 1]) there is a constant C (depending
only on Lipschitz regularity of the domain) such that

‖ϕ‖L1(∂Ω′) ≤ C‖ϕ‖W 1,1(Ω′).

By the Hölder inequality ‖ϕ‖W 1,1(Ω′) ≤ C ′‖ϕ‖W 1,p(Ω′) with C ′ depending on the vol-
ume of Ω′. Thus (3.21) yields

‖div ut‖W−1,p
0 (Ω′) ≤ C0

(
‖∇v‖∞ + ‖q‖∞ + ‖v‖∞

)
with C0 depending only on δ, R and Ω′ through its (α, β,K). By (3.19) this yields

‖u∗t‖Lp(Ω′) ≤ CBC0

(
‖∇v‖∞ + ‖q‖∞ + ‖v‖∞

)
. (3.22)

We next estimate ‖u∗t‖W 1,p . By (3.20) a direct computation shows that

‖u∗t‖W 1,p(Ω′) ≤ C0CB

(
‖v‖∞ + ‖vt‖∞

)
(3.23)

since div ut = div ∂t(ξv) = ∂t(∇ξ · v) by div v = 0.
We now apply the Gagliardo-Nirenberg inequality (e.g. [25])

‖u∗t‖∞ ≤ c‖u∗t‖1−σ
Lp(Ω′)‖u

∗
t‖σ

W 1,p(Ω′), σ = n/p

to (3.22) and (3.23) to get

‖u∗t‖∞ ≤ C1CB

(
‖v‖∞ + ‖vt‖∞

)σ(‖∇v‖∞ + ‖v‖∞ + ‖q‖∞
)1−σ
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with C1 depending only on δ, R and Ω′ through its (α, β,K). We replace u∗ by
u∗(·, t)− u∗(·, s) and observe that∥∥u∗t (·, t)− u∗t (·, s)

∥∥
∞ ≤ C1CB

(∥∥∇v(·, t)−∇v(·, s)
∥∥
∞ +

∥∥q(·, t)− q(·, s)
∥∥
∞

+
∥∥v(·, t)− v(·, s)

∥∥
∞

)1−σ(
2NT/t ∧ s)

)σ
, t, s > 0, (3.24)

where t ∧ s = min(t, s). As observed in the end of the proof of Lemma 3.1, we have

[∇v](1/2)
t,Qδ

≤ CNT/δ.

By (3.3) we now conclude that

sup
x∈Ω′

[∇v](µ
′)

t,Ω′×( δ
2
,T ]

+ sup
x∈Ω′

[q]
(µ′)

t,Ω′×( δ
2
,T ]
≤ CNT/δ, µ

′ =
µ

2(1− σ)

provided that µ′ < 1/2 (i.e. p > n/(1−µ)). Dividing both sides of (3.24) by |t−s|µ/2

and take the supremum for s, t ≥ δ/2 to get (3.18) since u∗ = 0 for t ≤ δ/2.

4 Uniqueness for the Stokes equations in a half space

The goal of this section is to establish a uniqueness theorem for the Stokes equations
in a half space Rn

+ = {(x′, xn)|xn > 0} to characterize the limit of rescaled limits
in our blow-up argument. The result presented below is by no means optimal but
convenient to apply.

Theorem 4.1 (Uniqueness). Assume that (v, q) satisfies

v ∈ C
(
R̄n

+ × (0, T )
)
∩ C2,1

(
Rn

+ × (0, T )
)
, ∇q ∈ C

(
Rn

+ × (0, T )
)

(4.1)

and ∫ T

0

∫
Rn

+

{
v · (ϕt + ∆ϕ)− ϕ · ∇q

}
dxdt = 0 (4.2)

for all ϕ ∈ C∞
c

(
Rn

+ × [0, T )
)

with (1.2), (1.3) for Ω = Rn
+. Assume that

sup
0<t<T

∥∥N(v, q)
∥∥
∞(t) <∞ (4.3)

and
sup
x∈Rn

+
0<t<T

t1/2xn

∣∣∇q(x, t)∣∣ <∞. (4.4)

Then v ≡ 0 and ∇q ≡ 0.
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Remark 4.2. Without decay condition (4.4) for the pressure gradient there is a non-
trivial solution. In fact, let vi = vi(xn, t) be the solution of the heat equation

vi
t − ∂2

xn
vi = ai in {xn > 0} × (0, T )

vi = 0 on {xn = 0}
vi = 0 on {t = 0}

for i = 1, . . . , n−1 with ai ∈ C1[0, T ] (independent of x). We set v = (v1, . . . , vn−1, 0)
and q(x, t) = −

∑n−1
i=1 a

i(t)xi. Then (v, q) solves the Stokes equations (1.1)-(1.4) with
Ω = Rn

+ and v0 = 0. It fulfills (4.3) but it does not satifies (4.4). This is a nontrivial
solution unless ai ≡ 0 for all i = 1, . . . , n − 1. Note that (4.2) is fulfilled for this
(v, q) since (v, q) satisfies (1.1)-(1.4) with v0 = 0. So this example shows that the
uniqueness of Theorem 4.1 is no longer true without (4.4).

This result is easily reduced to the uniqueness theorem essentially due to Solon-
nikov [56]. Although it is stated in a different way [56, Theorem 1.1], his proof
based on the duality argument (proving the solvability of the dual problem) yields
the following uniqueness result (Lemma 4.3). Note that for a half space the Stokes
semigroup is not bounded in L1 (for each t > 0) [12] although the derivative fulfills
usual regularizing effect ‖∇S(t)v0‖L1(Rn

+) ≤ Ct−1/2‖v0‖L1(Rn
+) as proved in [32].

Lemma 4.3. Assume that (v, q) satisfies (4.1)-(4.2) and (1.2)-(1.3) with Ω = Rn
+.

Assume that
sup

δ<t<T

∥∥N(v, q)
∥∥
∞(t) <∞ (4.5)

for any δ ∈ (0, T ). Assume that |∇q(x, t)| → 0 as xn → ∞ for t ∈ (0, T ). If v(·, t)
converges ∗-weakly to 0 in L∞(Rn

+) as t ↓ 0, then v ≡ 0, ∇q ≡ 0.

Proof of Theorem 4.1. To apply this uniqueness result it suffices to prove that

v(·, t) → 0 (∗-weakly in L∞) as t ↓ 0.

Since (v, q) solves (1.1), multiplying ϕ ∈ C∞
c

(
Rn

+ × [0, T )
)

and integration by parts
yield ∫ T

δ

∫
Rn

+

{
v · (ϕt + ∆ϕ)− ϕ∇q

}
dxdt+

∫
Rn

+

v(x, δ)ϕ(x, δ)dx = 0.

By (4.2) we easily observe that∫
Rn

+

v(x, δ)ϕ(x, δ)dx→ 0

as δ → 0. In particular,
∫
Rn

+
v(x, δ)ψdx → 0 for all ψ ∈ C∞

c (Rn
+). Since v is

bounded by (4.3) and C∞
c (Rn

+) is dense in L1(Rn
+), this implies v(·, t) → 0 (∗-weakly

in L∞).
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Remark 4.4. (i) The continuity assumption (in Theorem 4.1 and Lemma 4.3) v ∈
C

(
R̄n

+ × (0, T )
)

in (4.1) is redundant if one assumes (4.3) or (4.5).
(ii) Without the decay condition on the pressure gradient ∇q as xn → ∞, one still
concludes that v depends only on xn and t; see [56, proof of Theorem 1.1]. Since
div v = 0 and v vanishes on the boundary, this implies that the normal component
vn (of v) vanishes identically so that ∂q/∂xn = 0. Thus vi (1 ≤ i ≤ n − 1) solves
the heat equation with a spatially constant external source term ai which agrees
with the counterexample for uniqueness without decay of ∇q as xn → ∞. This
observation shows that to establish uniqueness it suffices to assume the decay of
∂q/∂xj (j = 1, . . . , n− 1) as xn →∞.

We conclude this section by giving a uniqueness result for the heat equation which
is very easy to prove.

Lemma 4.5. Assume that u ∈ L1
loc

(
Rn × [0, T )

)
satisfies∫ T

0

∫
Rn

u(x, t)
(
ϕt(x, t) + ∆ϕ(x, t)

)
dxdt = 0 (4.6)

for all ϕ ∈ C∞
c

(
Rn × [0, T )

)
. Assume that

sup
t∈(0,T )

‖u‖∞(t) <∞. (4.7)

Then u ≡ 0.

Proof. We prove this statement by a duality argument. We first observe that (4.6)
holds for

ψ ∈ C∞(
Rn × [0, T )

)
with ψ,∇ψ,∇2ψ, ψt ∈ L1

(
Rn × [0, T )

)
(4.8)

and spt ψ ⊂ Rn × [0, T ). This is easily proved by setting ϕ = θRψ in (4.6) and by
sending R→∞, where θR is a cut-off function defined in the proof of Theorem 3.4.
The procedure is justified by (4.7).

For an arbitrary f ∈ C∞
c

(
Rn × [0, T )

)
we solve

ψt + ∆ψ = f in Rn × [0, T ),

ψ(x, T ) = 0 for x ∈ Rn.

It is not difficult to see that ψ ∈ C∞(
Rn × [0, T )

)
satisfies (4.8) so we conclude that∫ T

0

∫
Rn

ufdxdt = 0

for all f ∈ C∞
c

(
Rn × [0, T )

)
. This implies that u ≡ 0.
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5 Blow-up arguments - a priori L∞ estimates

In this section we shall prove Theorem 1.2 by a blow-up argument. We then de-
rive Theorem 1.3 which deduces Theorem 1.1 since a bounded domain is admissible
(Theorem 2.5).

5.1 A priori estimates under stronger regularity assumption

Proposition 5.1. The assertion of Theorem 1.2 holds under extra restriction that
v(·, t) ∈ C2(Ω̄) for t ∈ (0, 1) and ‖N(v, q)‖∞(t) is bounded in (0, 1) as a function of
t.

Proof. We argue by contradiction. Suppose that (1.15) were false for any choice of T0

and C. Then there would exist an L̃r-solution (vm, qm) of (1.1)-(1.4) with v0 = v0m ∈
C∞

c,σ(Ω) and sequence τm ↓ 0 (as m→∞) such that ‖N(vm, qm)‖∞(τm) > m‖v0m‖∞.
There is tm ∈ (0, τm) such that∥∥N(vm, qn)

∥∥
∞(tm) ≥ 1

2
Mm, Mm = sup

0<t<τm

∥∥N(vn, qm)
∥∥
∞(t).

Note that thanks to our extra assumption Mm is finite. We normalize vm, qm by
defining ṽm = vm/Mm, q̃m = qm/Mm. Then (ṽm, q̃m) enjoys estimates (1.7)-(1.9).
Since (ṽm, q̃m) is an L̃r-solution, we have ∇q̃m = Q[∆ṽm]. Since Ω is admissible, (1.7)
implies that there is a dilation and translation invariant constant CΩ independent of
m such that

sup
{
t1/2dΩ(x)|∇q̃m(x, t)|

∣∣ x ∈ Ωm, t ∈ (0, tm)
}
≤ CΩ. (5.1)

Here we have invoked the assumption v(·, t) ∈ C2(Ω̄) to apply the estimate for Q. We
rescale (ṽm, q̃m) around a point xm ∈ Ω satisfying (1.10) to get a blow-up sequence
(um, pm) of the form

um(x, t) = ṽm(xm + t
1
2
mx, tmt), pm(x, t) = t

1
2
mq̃m(xm + t

1
2
mx, tmt).

By the scaling invariance of the Stokes equations (1.1), (1.2) this (um, pm) solves the
Stokes equations in a rescaled domain Ωm × (0, 1], where

Ωm =
{
x ∈ Rn

∣∣ x = (y − xm)
/
t1/2
m , y ∈ Ω

}
.

It follows from (1.7), (5.1) and (1.10) that

sup
0<t<1

∥∥N(um, pm)
∥∥

L∞(Ωm)
≤ 1, (5.2)

sup
{
t1/2dΩm(x)|∇pm(x, t)|

∣∣ x ∈ Ωm, 0 < t < 1
}
≤ CΩ, (5.3)

N(um, pm)(0, 1) ≥ 1/4. (5.4)
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Moreover, for initial data v0m the condition (1.9) implies ‖u0m‖L∞(Ωm) → 0 (as
m→∞). The situation is divided into two cases depending on whether or not

cm = dΩ(xm)/t1/2
m

tends to infinity as m → ∞. This cm is the distance from zero to ∂Ωm, i.e.
cm = dΩm(0).

Case 1. limm→∞cm = ∞. We may assume that limm→∞ cm = ∞ by taking a
subsequence. In this case the rescaled domain Ωm expands to Rn. Thus for any
ϕ ∈ C∞

c

(
Rn × [0, 1)

)
the blow-up sequence (um, pm) satisfies∫ 1

0

∫
Rn

{
um(ϕt + ∆ϕ)−∇pm · ϕ

}
dxdt = −

∫
Rn

um(x, 0)ϕ(x, 0)dx

for sufficiently large m > 0. By (5.2) and Proposition 3.2 we have a necessary
compactness to conclude that there exists a subsequence of solutions still denoted by
(um, pm) such that (um, pm) converges to some (u, p) locally uniformly in Rn × (0, 1]
together with ∇um, ∇2um, umt, ∇pm. (Note that the constant C in (3.1) is invariant
under dilation and translation of Ω so (3.1) for (um, pm) gives equi-continuity of
∇2um, umt and ∇pm.) Since for each R > 0

inf
{
dΩm(x)

∣∣ |x| ≤ R
}
→∞ as m→∞,

the estimate (5.3) implies that ∇p = 0. Thus the limit u ∈ C
(
Rn × (0, 1]

)
solves∫ 1

0

∫
Rn

u(ϕt + ∆ϕ) dxdt = 0

for all ϕ ∈ C∞
c

(
Rn × [0, 1)

)
since ‖u0m‖L∞(Ωm) → 0 as m→∞. Since u is bounded

by (5.2), applying the uniqueness of the heat equation (Lemma 4.5) we conclude that
u ≡ 0. However, (5.4) implies N(u, p)(0, 1) ≥ 1/4 which is a contradiction so Case 1
does not occur.

Case 2. limm→∞cm <∞. By taking a subsequence we may asuume that cm converges
to some c0 ≥ 0. We may also assume that xm converges to a boundary point x̂ ∈ ∂Ω.
By rotation and translation of coordinates we may assume that x̂ = 0 and that
exterior normal nΩ(x̂) = (0, . . . , 0,−1). Since Ω is a uniformly C3-domain of type
(α, β,K), the domain Ω is represented locally near x̂ of the form

Ωloc =
{
(x′, xn) ∈ Rn

∣∣ h(x′) < xn < h(x′) + β, |x′| < α
}

with a C3-function h such that ∇′h(0) = 0, h(0) = 0, where derivatives up to third
order of h is bounded by K. If one rescales with respect to xm, Ωloc is expanded as

Ωm loc =
{
(y′, yn) ∈ Rn

∣∣ h(t1/2
m y′+x′m) < t1/2

m yn+(xm)n < h(t1/2
m y+x′m)+β, |t1/2

m y′| < α
}
.
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Since dΩ(xm)/(xm)n → 1 as m→∞ and x′m → 0, this domain Ωm loc converges to

Rn
+,−c0

=
{
(x′, xn) ∈ Rn

∣∣ xn > −c0
}
.

In fact, if one expresses

Ωm loc =
{
(y′, yn) ∈ Rn

∣∣ hm(y′) < ym < βm + hm(y′), |y′| < αm

}
with αm = α/t

1/2
m , βm = β/t

1/2
m , hm(y′) = h(t

1/2
m y′ + x′m)/t

1/2
m − (xm)n/t

1/2
m , then

hm → −c0 locally uniformly up to third derivatives and αm, βm → ∞. Note that
|∂µ

xhm| for µ, 1 ≤ |µ| ≤ 3 is uniformly bounded by K.
Thus, (um, pm) solves (1.1)-(1.4) in Ωm loc × (0, 1]. By (5.2) and Theorem 3.4 we

have a necessary compacatness to conclude that there exists a subsequence (um, pm)
converges to some (u, p) locally uniformly in R̄n

+,−c0
×(0, 1] together with∇um, ∇2um,

umt, ∇pm as interior case. (Note that Ωm is still of type (α, β,K) which is uniform
in m).

Now we observe that the limit (u, p) solves the Stokes equations (1.1)-(1.4) in a
half space with zero initial data in a weak sense. In fact, since (um, pm) fulfills∫ 1

0

∫
Rn

+,−c0

{
um(ϕt + ∆ϕ)− ϕ · ∇pm

}
dxdt = −

∫
Rn

+,−c0

um(x, 0)ϕ(x, 0)dx

for all ϕ ∈ C∞
c

(
Rn

+,−c0
× (0, 1)

)
. We note that (5.2) and (5.3) are inherited to (u, p),

in particular

sup
{
t1/2(xn + c0)

∣∣∇p(x, t)∣∣ x′ ∈ Rn−1, xn > −c0, t ∈ (0, 1)
}
≤ CΩ.

Since the convergence of um is up to boundary, the boundary condition is also pre-
served. We thus apply the uniqueness to the Stokes equations in a half space (The-
orem 4.1) to conclude u ≡ 0 and ∇p ≡ 0.

However, (5.4) implies N(u, p)(0, 0) ≥ 1/4 which is a contradiction so Case 2 does
not occur neither.

We have thus proved (1.15).

5.2 Regularity for L̃r-solutions

We shall prove that the extra condition for v in Proposition 5.1 can be removed. For
example we have

Proposition 5.2. Let Ω be a uniformly C3-domain in Rn. Let (v, q) be an L̃r-
solution of (1.1)-(1.4) for r > n. Assume that v0 ∈ D(Ãr), where Ãr is the Stokes
operator in L̃r

σ(Ω), i.e. −Ãr is the generator of the Stokes semigroup in L̃r
σ(Ω). Then

v(·, t) ∈ C2(Ω̄) for all t > 0. Moreover, for each T > 0 we have

sup
0<t<T

∥∥N(v, q)
∥∥
∞(t) <∞. (5.5)
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Proof. We shall claim a stronger statement

sup
0<t<T

{
‖v‖W 1,r

ul
(t)+t1/2‖∇v‖W 1,r

ul
(t)+t

(
‖∇2v‖W 1,r

ul
(t)+‖∂tv‖W 1,r

ul
(t)+‖∇q‖W 1,r

ul
(t)

)}
≤ C‖v0‖D(Ãr) (5.6)

with C = C(T,Ω, r). Here W 1,r
ul is a uniformly local W 1,r space defined by

W 1,r
ul (Ω) =

{
f ∈ Lr

ul(Ω)
∣∣ ∇f ∈ Lr

ul(Ω)
}
, ‖f‖W 1,r

ul
= ‖f‖Lr

ul
+ ‖∇f‖Lr

ul

and

Lr
ul(Ω) =

{
f ∈ Lr

loc(Ω)
∣∣∣ ‖f‖Lr

ul
= sup

x∈Ω

(∫
Ωx,R

∣∣f(y)
∣∣rdy)1/r

}
,

where Ωx,R = intBR(x) ∩ Ω and R is a fixed positive number. The norm depends
on R but the topology defined by the norm is independent of the choice of R. The
norm of the domain D(Ãr) is defined by

‖u‖D(Ãr) = ‖u‖L̃r(Ω) + ‖Ãru‖L̃r(Ω), ‖u‖L̃r(Ω) = max
(
‖u‖Lr(Ω), ‖u‖L2(Ω)

)
when r ≥ 2. As proved in [14], [16], this norm is equivelent to the norm

‖u‖W̃ 2,r(Ω) =
∑
|l|≤2

‖∂l
xu‖L̃r(Ω).

Note that once we have proved (5.6), the inequality and v(·, t) ∈ C2(Ω̄) follows from
the Sobolev embedding. (One can even claim that ∇2v( , t) is Hölder continuous
with exponent γ = 1− n/r.)

We shall prove (5.6). We first observe that by analyticity of the semigroup S(t) =

e−tÃr

sup
0<t<T

t‖vt‖D(Ãr)(t) ≤ C1‖v0‖D(Ãr)

since Ãrvt = Ãre
−tÃrÃrv0. It is easy to see that

sup
0<t<T

‖v‖D(Ãr)(t) ≤ C2‖v0‖D(Ãr) (5.7)

with Cj depending only on T , Ω and r. Thus we have proved that

sup
0<t<T

(
‖v‖W̃ 1,r(Ω)(t) + ‖∇v‖W̃ 1,r(Ω)(t) + t‖vt‖W̃ 2,r(Ω)(t)

)
≤ C3‖v0‖D(Ãr) (5.8)

since D(Ãr)-norm and W̃ 2,r-norm is equivalent.
To show (5.6) it remains to prove that

sup
0<t<T

t
(
‖∇2v‖W 1,r

ul
(t) + ‖∇q‖W 1,r

ul
(t)

)
≤ C4‖v0‖D(Ãr). (5.9)
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We take R sufficiently small such that Ωx,3R ⊂ Uα,β,h(x0) for any x0 ∈ ∂Ω. We
normalize q by taking

q̂(x) = q(x)− 1

|Ω′′|

∫
Ω′′
q(x)dx, Ω′′ = Ωx0,3R.

It follows from the Poincaré inequality [13, 5.8.1] that

‖q̂‖Lr(Ω′′) ≤ c‖∇q‖Lr(Ω′′) (5.10)

with c independent of x0. Since Ω is C3 and (v, q) solves

−∆v +∇q = −vt, div v = 0 in Ω′′

with
v = 0 on ∂Ω′′ ∩ ∂Ω,

the local higher regularity theory for elliptic systems (see [20, V]) shows that

‖∇3v‖Lr(Ω′) + ‖∇2q‖Lr(Ω′) ≤ C
(
‖vt‖W 1,r(Ω′′) + ‖v‖W 1,r(Ω′′) + ‖q̂‖Lr(Ω′′)

)
with Ω′ = Ωx0,2R. Here the dependence with respect to t is suppressed. The last
term is estimated by (5.10) so we observe that

‖∇3v‖Lr(Ω′) + ‖∇2q‖Lr(Ω′) ≤ C
(
‖vt‖W 1,r(Ω) + ‖v‖W 1,r(Ω) + ‖∇q‖Lr(Ω)

)
(5.11)

with C depending only on Ω, R and r but independent of x0 ∈ ∂Ω. If x0 ∈ Ω is
taken so that B2R(x0) ⊂ Ω, then interior higher regularity theory yields (5.11) with
Ω′ = BR(x0) (by taking Ω′′ = B2R(x0)). Since Ω is covered by Ωx0,2R, x0 ∈ ∂Ω and
BR(x0) with x0 ∈ Ω such that B2R(x0) ⊂ Ω, the estimate (5.11) implies that

‖∇3v‖Lr
ul(Ω) + ‖∇2q‖Lr

ul(Ω) ≤ C
(
‖vt‖W 1,r(Ω) + ‖v‖W 1,r(Ω) + ‖∇q‖Lr(Ω)

)
. (5.12)

Since ∇q = Q[∆v] implies

‖∇q‖L̃r(Ω) ≤ C ′‖∆v‖L̃r(Ω),

with C ′ = C ′(Ω, r), the estimate (5.12) together with (5.8) now yields (5.9).

Proof of Theorem 1.2. Combining Propositions 5.1 and 5.2 yields Theorem 1.2 since
C∞

c,σ(Ω) is included in D(Ãr).
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5.3 Analyticity of the Stokes semigroup in C0,σ

We shall prove Theorem 1.3. To show C0-property of the semigroup we prepare

Proposition 5.3. Let Ω be a uniformly C2-domain in Rn. Let (v, q) be an L̃r-
solution of (1.1)-(1.4) with r > n and v0 ∈ D(Ãr). Then

lim
t↓0

∥∥v(·, t)− v0

∥∥
∞ = 0. (5.13)

In other words
lim
t↓0

‖e−tÃrv0 − v0‖∞ = 0.

Proof. By the Gagliardo-Nirenberg inequality we have∥∥v(t)− v0

∥∥
L∞(Ω)

≤ C
∥∥v(t)− v0

∥∥1−θ

Lr(Ω)

∥∥v(t)− v0

∥∥θ

W 1,r(Ω)
(5.14)

with θ = 1− n/r, where v(t) = v(·, t). Since

‖f‖W 1,r(Ω) ≤ ‖f‖W 2,r(Ω) ≤ ‖f‖W̃ 2,r(Ω) ≤ C ′‖f‖D(Ãr),

we have by (5.7) that∥∥v(t)− v0

∥∥
W 1,r(Ω)

≤ C ′
(∥∥v(t)∥∥

D(Ãr)
+ ‖v0‖D(Ãr)

)
≤ C ′′‖v0‖D(Ãr) (5.15)

Since e−tÃr
is strongly continuous in L̃r, (5.14) with (5.15) yields (5.13).

Proof of Theorem 1.3. By a priori estimate (1.15) the operator S(t) is uniquely ex-
tended to a bounded operator S̃(t) in C0,σ at least for a small t, say t ∈ [0, T0). Since
S(t) is a semigroup in L̃r, we have

S̃(t1)S̃(t2) = S̃(t1 + t2) as far as t1 + t2 < T0. (5.16)

We extend S̃(t) to t ≥ T0 by S̃(t) = S̃(t1) · · · S̃(tm) so that ti ∈ (0, T0) and t1 + · · ·+
tm = t. This is well-defined in the sense that S̃(t) is independent of the division of t
by the semigroup property (5.16). Thus we are able to define the Stokes semigroup
S̃(t) for all t ≥ 0 which we simply write by S(t) (since it agrees with S(t) on C0,σ∩L̃r.)
Our estimate (1.15) is inherited to S(t). Moreover, by the semigroup property, the
estimate (1.15) yields ‖S(t)v0‖∞ ≤ CT‖v0‖∞ with CT independent of v0 ∈ C0,σ(Ω)
and t ∈ (0, T ) for arbitrary T > 0. Since dS(t)/dt = S(t− s)dS(s)/ds for s ∈ (0, t),
the estimate (1.15) together with an L∞ bound for S(t) yields

sup
0<t<T

t
∥∥∥ d

dt
S(t)v0

∥∥∥
∞
≤ C ′

T‖v0‖∞

36



with a constant C ′
T independent of v0 ∈ C0,σ(Ω). This implies that S(t) is an analytic

semigroup in C0,σ(Ω).
It remains to prove that S(t) is a C0-semigroup in C0,σ(Ω). Since C∞

c,σ(Ω) is dense
in C0,σ(Ω), for each v0 ∈ C0,σ(Ω) there is v0m ∈ C∞

c,σ(Ω) such that v0m → v0 in
L∞(Ω). Since ‖S(t)v0‖∞ ≤ CT‖v0‖∞ for 0 < t < T we have∥∥S(t)v0 − v0

∥∥
∞ ≤

∥∥S(t)v0 − S(t)v0m

∥∥
∞ +

∥∥S(t)v0m − v0m

∥∥
∞ + ‖v0m − v0‖∞

≤ (CT + 1)‖v0m − v0‖∞ +
∥∥S(t)v0m − v0m

∥∥
∞.

By Proposition 5.3 sending t ↓ 0 yields

lim
t↓0

∥∥S(t)v0 − v0

∥∥
∞ ≤ (CT + 1)‖v0m − v0‖∞.

Letting m to infinity we conclude that S(t) is a C0-semigroup in C0,σ(Ω).

Since a bounded domain is admissible, Theorem 1.3 yields Theorem 1.1.

Remark 5.4. (i) In general, we do not know whether or not S(t) is a bounded analytic
semigroup in the sense that ∥∥∥ d

dt
S(t)v0

∥∥∥
∞
≤ C

t
‖v0‖∞ (5.17)

for some C independent of t > 0. When Ω is bounded, one can claim such bounded-
ness. In fact, multiplying v with (1.1) and integrating by parts we obtain an energy
equality

1

2

d

dt
‖v‖2

L2(t) + ‖∇v‖2
L2(t) = 0.

Since Ω is bounded, the Poincaré inequality implies

‖∇v‖2
L2 ≥ ν‖v‖2

L2

with some ν > 0. Thus ∥∥S(t)v0

∥∥2

L2 ≤ e−2νt‖v0‖2
L2 .

If Ω is sufficiently smooth, by the Sobolev inequality and the property of the Stokes
semigroup in L2 (see [51, III.2.1]) we have∥∥S(t)v0

∥∥
L∞

≤ C1

∥∥S(t)v0

∥∥
W 2k,2 ≤ C2

∥∥Ak
2S(t)v0

∥∥
L2

for an integer k > n/4 with Cj (j = 1, 2, . . .) independent of t and v0 ∈ L2
σ(Ω). Since

S(t) is analytic semigroup in L2
σ, this yields∥∥S(t)v0

∥∥
L∞

≤ C3

∥∥S(t− 1)v0

∥∥
L2 for t ≥ 1.
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We have thus proved that∥∥S(t)v0

∥∥
L∞

≤ C4e
−νt‖v0‖L2 ≤ C5e

−νt‖v0‖L∞ , t ≥ 1. (5.18)

Similarly,∥∥∥ d

dt
S(t)v0

∥∥∥
L∞

≤ C1

∥∥∥ d

dt
S(t)v0

∥∥∥
W 2k,2

≤ C2

∥∥Ak+1
2 S(t)v0

∥∥
L2

≤ C6e
−νt‖v0‖L∞ for t ≥ 1.

Since ∥∥∥ d

dt
S(t)v0

∥∥∥
∞
≤ C7

t
‖v0‖∞ for t ≤ 1,

this yields (5.17). Thus S(t) is a bounded analytic semigroup in C0,σ(Ω) and L∞σ (Ω)
(see in next the section) when Ω is a smoothly bounded domain. If one uses Lr-
theory (r > n) instead of L2-theory, the result is still valid for a bounded domain
with C3 boundary.
(ii) Since we have (5.18) for t ≥ T0 > 0, our a priori estimate (1.15) in particular
implies that ∥∥S(t)v0

∥∥
∞ ≤ C‖v0‖∞ for all t > 0, v0 ∈ C0,σ(Ω)

with C depending only on Ω when Ω is bounded. This type of results is often called
a maximum modulus result which is available in the literature.

The maximum modulus theorem is first stated in [63] when Ω is a bounded,
convex domain with smooth boundary for v0 ∈ C∞

c,σ(Ω). Later a full proof is given
in [54]. It is extended by [55] for a general bounded domain with C2 boundary. It is
extended by [41] for v0 ∈ C0,σ(Ω) but ∂Ω is assumed to be C2+γ with γ ∈ (0, 1).

By our extension to L∞σ space in the next section we conclude that∥∥S(t)v0

∥∥
∞ ≤ C‖v0‖∞, v0 ∈ L∞σ (Ω)

for all t > 0 with C depending only on Ω when Ω is bounded and of C3 boundary.

(iii) We are curious that whether our semigroup S(t) is π/2-type analytic semigroup
(i.e. it is extendable as a holomorphic semigroup in Re t > 0). Our results say that
S(t) is an ε-type analytic semigroup for some ε > 0. If we are able to prove (1.15)
for Re t ∈ (0, T0) with |arg t| < α for α ∈ (0, π/2) where analyticity is valid, then we
conclude that S(t) is π/2-analytic semigroup. This idea would work provided that
the Schauder type estimate for complex t with |arg t| < ε would be available. It is
of course likely but there seems to be no explicit reference.
(iv) A closer examination of the proof of Proposition 5.1 shows that it suffices to
apply an estimate

sup
x∈Ω

dΩ(x)
∣∣Q[∇ · f ](x)

∣∣ ≤ C‖f‖L∞(Ω)

which is weaker than (1.13) in the sense that the norm in the right hand side is over
Ω not only over ∂Ω.
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6 Results for L∞σ

In this section we shall prove that the Stokes semigroup is a (non C0-)analytic semi-
group in L∞σ (Ω) when Ω is bounded as stated in Theorem 1.4.

6.1 Approximation

We begin with an approximation result when Ω is star-shaped (with respect to some
point a ∈ Rn, i.e. λ(Ω− a) ⊂ Ω− a for all λ ∈ (0, 1)).

Lemma 6.1 (Approximation). Let Ω be a bounded, star-shaped domain in Rn. There
exists a constant C = CΩ such that for any v ∈ L∞σ (Ω) there exists a sequence
{vm}∞m=1 ⊂ C∞

c,σ(Ω) such that

‖vm‖∞ ≤ C‖v‖∞ (6.1)

and
vm → v a.e. in Ω (6.2)

as m → ∞. If in addition v ∈ C(Ω̄), the convergence is locally uniform in Ω. If in
addition v = 0 on ∂Ω, the convergence is uniform in Ω̄.

Proof. Since Ω is star-shaped, we may assume that

λΩ̄ ⊂ Ω for all λ ∈ [0, 1)

by a translation. We extend that v ∈ L∞σ (Ω) by zero outside Ω and observe that the
extension (still denoted by v) is in L∞σ (Rn) with spt v ⊂ Ω̄. We set vλ(x) = v(x/λ)
and observe that spt vλ ⊂ λΩ̄ ⊂ Ω. Since vλ → v a.e. as λ ↑ 1, it is easy to find the
desired sequence by mollifying vλ i.e. vλ ∗ ηε. Here C in (6.1) can be taken 1.

To establish the above approximation result for a general bounded domain we
need a localization lemma.

Lemma 6.2 (Localization). Let Ω be a bounded domain with Lipschitz boundary in
Rn. Let {Gk}N

k=1 be an open covering of Ω̄ in Rn and Ωk = Gk ∩ Ω. Then there
exists a family of bounded linear operators {πk}N

k=1 from L∞σ (Ω) into itself satisfying
u =

∑N
k=1 πku and for each k = 1, . . . , N

(i) πku|Ωk
∈ L∞σ (Ωk), πku|Ω\Ωk

= 0 for u ∈ L∞σ (Ω),

(ii) πku ∈ C(Ω̄k) and πku|∂Ωk\∂Ω = 0 for u ∈ C(Ω̄) ∩ L∞σ (Ω),

(iii) πku|∂Ωk
= 0 if u|∂Ωk

= 0 for u ∈ C(Ω̄) ∩ L∞σ (Ω).
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Proof. We shall prove by induction with respect to N . If N = 1, the result is trivial
by taking π1 as the identity.

Assume that the result is valid for N . We shall prove the assertion when the
number of cover is N + 1. We set

D =
N+1⋃
k=2

Ωk, U =
N+1⋃
k=2

Gk

and observe that Ω = Ω1 ∪D and {G1, U} is a covering of Ω̄.
Let {ξ1, ξ2} be a partition of unity of Ω associated with {G,U}, i.e. ξj ∈ C∞

c (Rn)
with 0 ≤ ξj ≤ 1, spt ξ1 ⊂ G1, spt ξ2 ⊂ U , ξ1 + ξ2 = 1 in Ω̄. For E = Ω1 ∩D let BE

denotes the Bogovskǐı operator. We set

π1u =


u ξ1 −BE(u · ∇ξ1) in E,

u ξ1 in Ω1\D,
0 in Ω\Ω1.

Since u ∈ L∞σ (Ω) and ξ1 = 0 in Ω\Ω1, ∇ξ1 = 0 in Ω1\D, we see∫
E

u · ∇ξ1dx =

∫
Ω

u · ∇ξ1dx = 0. (6.3)

By the Sobolev inequality and (3.13) we observe that∥∥BE(u · ∇ξ1)
∥∥

L∞(E)
≤ C

∥∥BE(u · ∇ξ1)
∥∥

W 1,p(E)
(p > n)

≤ CCB‖u · ∇ξ1‖Lp(E) ≤ CCB‖∇ξ1‖Lp(E)‖u‖L∞(Ω)

with a constant C independent of u and ξ1. We thus observe that

‖π1u‖L∞(Ω1) ≤ C1‖u‖L∞(Ω) for all u ∈ L∞σ (Ω)

with C1 independent of u.
By (6.3) we see divBE(u · ∇ξ1) = u · ∇ξ1 in E. Moreover, BE(u · ∇ξ1) = 0 on

∂(Ω1 ∩D). Thus for each ϕ ∈ L1
loc(Ω̄1) with ∇ϕ ∈ L1(Ω1) we have∫

Ω1

π1u · ∇ϕdx =

∫
Ω1

u ξ1 · ∇ϕdx−
∫

E

BE(u · ∇ξ1) · ∇ϕdx

=

∫
Ω1

u ξ1 · ∇ϕdx+

∫
E

(u · ∇ξ1)ϕdx

=

∫
Ω

u · ∇(ξ1ϕ)dx = 0.
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By the Poincaré inequality if ϕ ∈ Ŵ 1,1(Ω1) then ϕ ∈ L1
loc(Ω̄1) (not only ϕ ∈ L1

loc(Ω1)).
Thus the above identity implies that π1u|Ω1 ∈ L∞σ (Ω1). By definition π1u = 0 in
Ω\Ω1. If u ∈ C(Ω̄), it is easy to see that the term BE(u · ∇ξ1) is always Hölder
continuous by the Sobolev embeddings.

For u ∈ L∞σ (Ω) we set

πDu =


u ξ2 −BE(u · ∇ξ2) in E,

u ξ2 in D\Ω1,

0 in Ω\D.

By definition
u = π1u+ πDu

and as for π1 this πD satisfies all properties of πk in (i), (ii), (iii) with Ωk replaced by
D. Since D̄ is covered by {Gk}N+1

k=2 , by our induction assumption there is a bounded

linear operator {π̂k}N+2
k=2 in L∞σ (D) satisfying v =

∑N+1
k=2 π̂kv and (i), (ii), (iii) with u

replaced by v and with πk replaced by π̂k for k = 2, . . . , N + 1. If we set

π1 = π1, πk = π̂k · πD (k = 2, . . . , N + 1),

then it is rather clear that this πk satisfies all desired properties.

Lemma 6.3 (Approximation). The assertion of Lemma 6.1 is still valid when Ω is
a bounded domain with Lipschitz boundary in Rn.

Proof. If Ω is a bounded domain with Lipschitz boundary, then it is known that there
is an open covering {Gk}N

k=1 of Ω̄ such that Ωk = Gk ∩ Ω is bounded, star-shaped
with respect to an open ball Bk(B̄k ⊂ Ω) (i.e. star-shaped with respect to any point
of Bk) and Gk has a Lipschitz boundary; see [20, III.3, Lemma 4.3]. In the sequel we
only need the property that Gk is bounded and star-shaped with respect to a point.

We apply Lemma 6.2 and set uk = πku to observe that uk|Ωk
∈ L∞σ (Ωk) and

uk|Ω\Ωk
= 0. Since Ωk is star-shaped, by Lemma 6.1 there is {uk,j}∞j=1 ⊂ C∞

c,σ(Ωk)
such that

‖uk,j‖L∞(Ωk) ≤ ‖uk‖L∞(Ωk), uk,j → uk a.e. in Ω.

(The constant C in (6.1) can be taken 1.) We still denote the zero extension of uk,j

on Ω\Ωk by uk,j.

If we set um =
∑N

k=1 uk,m, by construction uj ∈ C∞
c,σ(Ω) and

um →
N∑

k=1

uk = u a.e. in Ω and

‖um‖L∞(Ω) ≤
N∑

k=1

‖uk,m‖L∞(Ω) ≤
N∑

k=1

‖uk‖L∞(Ω) ≤
( N∑

k=1

‖πk‖
)
‖u‖L∞(Ω),
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where ‖πk‖ denotes the operator norm of πk in L∞σ (Ω). We thus conclude that there
is a desired approximate sequence {um}∞m=1 for u ∈ L∞σ (Ω).

If u ∈ C(Ω̄)
(
∩L∞σ (Ω)

)
, then uk ∈ C(Ω̄k) and uk|∂Ωk\∂Ω = 0. Thus for any

compact set Kk ⊂ Ωk such that dΩ(Kk) = infx∈Kk
dΩ(x) > 0 we see that uk,m

converges to uk uniformly in Kk by Lemma 6.1 as m→∞. Let K be a compact set
in Ω. Then d(Kk) ≥ d(K) > 0 for Kk = Ω̄k ∩K. Thus

‖u− um‖L∞(K) ≤
N∑

k=1

‖uk − uk,m‖L∞(K)

=
N∑

k=1

‖uk − uk,m‖L∞(Kk) → 0 (as m→∞).

Thus we have proved that um converges to u locally uniformly in Ω. If u|∂Ω = 0 so
that uk|∂Ωk

= 0, then uk,m converges to uk uniformly in Ω̄k by Lemma 6.1. Arguing
in the same way by replacing K by Ω̄, we conclude that um converges to u uniformly
in Ω̄.

Remark 6.4. This lemma in particular implies that

C0,σ(Ω) =
{
v ∈ C(Ω̄) ∩ L∞(Ω̄)

∣∣ div v = 0 in Ω, v = 0 on ∂Ω
}

when Ω is bounded. This give an alternate and direct proof of a result of [41], where
the maximum modulus result for the stationary problem is invoked.

Proof of Theorem 1.4. Since Ω is bounded so that L∞σ ⊂ Lr
σ for any r > 1, S(t) is

well-defined from L∞σ to Lr
σ. It suffices to transfer the estimate for v = S(t)v0 in

(1.15) to the case v0 ∈ L∞σ (Ω). By Lemma 6.1 there is a sequence v0m ∈ C∞
c,σ(Ω)

approximating v0. Our estimate (1.15) implies that

sup
0<t<T0

{
‖vm‖∞(t) + t

(
‖vmt‖∞ + ‖∇2vm‖∞

)
(t)

}
≤ C‖v0m‖∞

is valid for such v0m by Theorem 1.2. Here T0 and C is independent of m. Since
v0m → v0 in Lr by (6.2) and the Lebesgue dominated convergence theorem, we see
that vm → v in Lr uniformly in t ∈ [0, T ]; note that S(t) is a semigroup in Lr

σ. Thus
we obtain

sup
0<t<T0

{
‖v‖∞(t) + t

(
‖vt‖∞ + ‖∇2v‖∞

)
(t)

}
≤ C lim

m→∞
‖v0m‖∞.

By (6.2) one is able to replace the right hand side by a constant multiple of ‖v0‖∞,
so we obtain the desired estimate for claiming the analyticity of S(t) in L∞σ (Ω).

This semigroup S(t) is a non C0-semigroup. Indeed, suppose the contrary to get

S(t)v0 → v0 in L∞ (as t ↓ 0)
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for all v0 ∈ L∞σ (Ω). Our estimate for ∇2v implies that S(t)v0 (t > 0) is at least
continuous in Ω̄. However, if S(t)v0 converges uniformly, then v0 must be continuous
which is a contradiction.
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applications, Birkhäuser, Boston - Basel - Berlin, 2002.

[38] Krylov, N., Lectures on elliptic and parabolic equations in Hölder spaces, Amer-
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