
GRADIENT ESTIMATES AND EXISTENCE OF MEAN CURVATURE
FLOW WITH TRANSPORT TERM

KEISUKE TAKASAO

Abstract. In this paper we consider a hypersurface of the graph of the mean curvature
flow with transport term. The existence of the mean curvature flow with transport term
was proved by Liu, Sato and Tonegawa by using geometric measure theory techniques. We
give a proof of the gradient estimates and the short time existence for the mean curvature
flow with transport term by applying the backward heat kernel.

1. Introduction

A family of hypersurfaces {Γ(t)}0≤t<∞ in Rn moves by mean curvature if the velocity of
{Γ(t)}0≤t<∞ is

VΓ = Hν on Γ(t), t ≥ 0.

Here ν is the unit normal vector, H is the mean curvature of Γ(t).
Brakke proved the existence of the generalized evolution {Γ(t)}0<t<∞ by using varifold

methods from geometric measure theory [1]. Ecker and Huisken studied the interior esti-
mates for the mean curvature flow [4, 5, 6]. In [2] and [8], they proved the existence of
the viscosity solutions of mean curvature flow by using the level set method. Colding and
Minicozzi proved the sharp estimates of the interior gradient and the area for the graph of
the mean curvature flow [3].

In this paper we consider the family of hypersurfaces {Γ(t)}0≤t<∞ in Rn whose velocity is

(1.1) VΓ = (F · ν)ν +Hν on Γ(t), t ≥ 0.

Here F is the transport term. In this paper we assume that ν · en > 0 on Γ(t) for t ≥ 0.
From the assumption there exists u = u(x, t) such that Γ(t) = {(x, u(x, t)) |x ∈ Rn−1} for
t ≥ 0.

Let Ω = (R/Z)n−1. The first main result of the present paper is that there exists C, T > 0
depending only on n, ∥F∥L∞ , ∥DF∥L∞ and ∥Du(·, 0)∥L∞ such that |Du(t)| ≤ C, for any
(x, t) ∈ Ω× (0, T ) and the second main result is that there exist the family of hypersurfaces
{Γ(t)}0≤t≤T (see Theorem 2.1 and Theorem 2.2 for the precise statement).

The main results are related to the pioneering work by Liu, Sato and Tonegawa [14].
They proved the existence of the generalized evolution {Γ(t)}0<t<∞ in dimension n = 2, 3
by using geometric measure theory techniques by Brakke [1].

The purpose of this paper is to give a new, simple proof of the gradient estimate of u
to prove the short time existence of the graph Γ(t) for any dimension. We remark that by
using the level set method we may prove the existence of (1.1) but we can not prove the
regularity of the surface on the condition of this paper.
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The mean curvature flow is related to the prescribed mean curvature equation:

(1.2) div

(
Du√

1 + |Du|2

)
= H,

here H is given. Trudinger [16, 17] and Korevaar [12] proved the interior gradient estimate
for (1.2). They used the height of the graph to estimate the interior gradient.

In [10] to estimate the gradient of u they used the following:

w(y) ≤ 1

ωn−1Rn−1

∫
SR

w dHn−1 +
1

4ωn−1

∫
SR

wH2r2(r−n+1 −R−n+1) dHn−1

− 1

(n− 1)ωn−1

∫
SR

ψ(r)∆w dHn−1,

here R > 0, w = log
√
1 + |Du|2, r = r(x) = |x|, ψ(r) =

∫ R

r
τ(τ−n+1 − R−n+1)dτ ≥ 0,

ωn−1 is the volume of unit ball in Rn−1, ∆ is Laplace-Beltrami operator of the surface
S = {(x, u(x))} and SR is the intersection of S and the ball of radius R centered at
(y, u(y)). In this paper we adapt the inequality for (1.1).

The organization of the paper is as follows. In Section 2 of this paper we set out the basic
definitions and explain the main theorems. In Section 3 we prove the main theorems. The
proof of the first main result is based on the techniques of the backward heat kernel [11]
and by a standard argument we obtain the short time existence of Γ(t).

2. Preliminaries and Main results

Let n ≥ 2, Ω = (R/Z)n−1 ≃ [0, 1)n−1 and F : Ω×R× [0,∞) → Rn be a C1 vector valued
function. We consider the mean curvature flow with transport term:

(2.1)


∂tu

v
= H + F (x, u, t) · ν, (x, t) ∈ Ω× (0,∞),

u(x, 0) = u0(x), x ∈ Ω,

hereH = div

(
du

v

)
, du = (∂x1u, ∂x2u, . . . , ∂xn−1u), v = (1+|du|2) 1

2 and ν = (ν1, ν2, . . . , νn) =

(−du, 1)
v

. We remark that we may obtain this PDE from (1.1). LetG = sup
(x,y)∈Ω×R,t∈[0,1]

(|F |2+

|DF |) and v0 = max
x∈Ω

v(x, 0), here DF = (dF, ∂xnF ). We denote QT = Ω × (0, T ) and

Qε
T = Ω× (ε, T ). The first main result is the following:

Theorem 2.1. We assume that u ∈ C([0, 1];C2(Ω))∩C1((0, 1);C(Ω)) is a solution of (2.1),
F ∈ C1(Ω× R× [0, 1];Rn) and G <∞. Then there exists T > 0 such that

(2.2) v(x, t) ≤ 2v20, (x, t) ∈ QT ,

here T = min

{
C

Gv60
, 1

}
and C > 0 is a constant depending only on n.

By Theorem 2.1 we obtain the second main result:

Theorem 2.2. Fix α ∈ (0, 1). We assume that

K := max{∥DF∥L∞(QT ), ∥∂tF∥L∞(QT ), sup
c∈R

∥F (·, c, ·)∥
Cα,α2 (QT )

} < +∞
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and u0 is a Lipschitz function, namely there exists L > 0 such that |u0(x)−u0(y)| < L|x−y|
for any x, y ∈ Ω. Then there exists a unique solution u ∈ C2+α,1+α

2 (QT ) ∩ C(QT ) of (2.1).
Furthermore there exists C > 0 depending only on n, α, L,K and ε > 0 such that

(2.3) ∥u∥
C2+α,1+α

2 (Qε
T )
< C.

Throughout this paper, δ and ∆Γ(t) are the induced covariant derivative and laplacian of
Γ(t). Namely, for g = g(x1, x2, . . . , xn),

δg = (δ1g, δ2g, . . . , δng) = Dg − (ν ·Dg)ν, ∆Γ(t)g =
n∑

i=1

δiδig,

here Dg = (dg, ∂xng). Next we define the backward heat kernel.

Definition 2.3. For s, t > 0 (s > t) and X, Y ∈ Rn we define ρ = ρ(Y,s)(X, t) by

ρ(Y,s)(X, t) =
1

(4π(s− t))
n−1
2

e−
|X−Y |2
4(s−t) .

We remark that for continuous function g and x, y ∈ Rn−1 we have

(2.4) lim
t↗s

∫
Γ(t)

g(·, u(·, t), t)ρ(y,u(y,s),s)(·, u(·, t), t) dHn−1 = g(y, u(y, s), s).

We provide the lemmas for the proof of Theorem 2.1 and Theorem 2.2. The next lemma
is a derivation of Huisken’s monotonicity formula [11].

Lemma 2.4. Assume that u satisfies (2.1) and Γ(t) is the surface of (2.1) extended peri-
odically to all of x ∈ Rn−1. Let g = g(x, t), (x, t) ∈ Rn−1 × [0,∞) be a non-negative C2,1

function. Then we have

d

dt

∫
Γ(t)

gρ dHn−1 ≤
∫
Γ(t)

ρ∂tg − ρ∆Γ(t)g + ρ(dg · ν)∂tu
v

+
1

4
gρf 2(u) dHn−1,

(2.5)

here ν =
−du
v

and f(u) = F (x, u(x, t), t) · ν.

Proof. First we will show the following:

d

dt

∫
Γ(t)

gρ dHn−1 =

∫
Γ(t)

∂tgρ+ g∂tρ+ ρ(dg · ν)∂tu
v

+ g(Dρ · ν)(H + f(u))− gρH(H + f(u)) dHn−1.

(2.6)

We compute that

d

dt

∫
Γ(t)

gρ dHn−1 =
d

dt

∫
Rn−1

g(x, t)ρ(x, u(x, t), t)v(x, t) dx

=

∫
Rn−1

∂tgρv + g∂tρv + g∂xnρ

(
∂tu

v

)
v2 + gρ

du · d∂tu
v

dx,

(2.7)
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here ∂tv =
du · d∂tu

v
is used. From integration by parts we obtain∫

Rn−1

gρ
du · d∂tu

v
dx = −

∫
Rn−1

div

(
gρ
du

v

)
∂tu dx

=−
∫
Rn−1

{(
dg · du

v

)
ρ+ g(dρ+ ∂xnρdu) ·

du

v
+ gρdiv

(
du

v

)}
∂tu dx

=

∫
Rn−1

{
ρ(dg · ν)∂tu

v
+ g

∂tu

v
(dρ+ ∂xnρdu) · ν − gρH

∂tu

v

}
v dx,

(2.8)

here H = div

(
du

v

)
and ν =

−du
v

. We also compute that

g∂xnρ

(
∂tu

v

)
v + g

∂tu

v
(dρ+ ∂xnρdu) · ν

=g
∂tu

v
{dρ · ν + ∂xnρ(v + du · ν)} = g

∂tu

v
(dρ · ν + ∂xnρν

n)

=g
∂tu

v
(Dρ · ν) = g(Dρ · ν)(H + f(u)),

(2.9)

here νn = v−1 and
∂tu

v
= H + f(u) are used. From (2.7), (2.8), (2.9) we obtain (2.6). Next

we prove (2.5). We compute that

g(Dρ · ν)H − gρH2 = −g
(
Dρ · ν
ρ

1
2

− ρ
1
2H

)2

+ g
(Dρ · ν)2

ρ
− g(Dρ · ν)H.

Hence by Young’s inequality we have

g(Dρ · ν)(H + f(u))− gρH(H + f(u))

=− g

(
Dρ · ν
ρ

1
2

− ρ
1
2H

)2

+ g
(Dρ · ν)2

ρ
− g(Dρ · ν)H + gf(u)(Dρ · ν − ρH)

≤1

4
gρf 2(u) + g

(Dρ · ν)2

ρ
− g(Dρ · ν)H.

(2.10)

We denote S = (δij − νiνj) and div Γ(t)h = tr(SDh) for h ∈ C1(Rn;Rn). By the divergence
theorem [7] we have∫

Γ(t)

−gH(Dρ · ν) dHn−1 =

∫
Γ(t)

div Γ(t)(gDρ) dHn−1

=

∫
Γ(t)

tr(SD2ρ+ S(∂xi
g∂xj

ρ)) dHn−1

=

∫
Γ(t)

g{∆ρ− ν(D2ρ)νT}+ δg · δρ dHn−1

=

∫
Γ(t)

g{∆ρ− ν(D2ρ)νT} −∆Γ(t)gρ dHn−1,

(2.11)

here ∆ρ =
n∑

i=1

∂xi
∂xi
ρ and D2ρ = (∂ijρ).
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By using (2.6), (2.10), (2.11) and

∂tρ+
(Dρ · ν)2

ρ
+∆ρ− ν(D2ρ)νT = 0,

we obtain (2.5) (See [11]). �

We use (2.5) with g = v in this paper. To estimate the right side of (2.5) we use the
following:

Lemma 2.5. Assume that u ∈ C3,1(QT ) satisfies (2.1). Then we have

(2.12) ∂tv −∆Γ(t)v + (ν · dv)∂tu
v

= −|A|2v − 2v−1|δv|2 + du · d(f(u)),

here A is the second fundamental form of Γ(t).

Proof. We remark that by the assumption we have v ∈ C2,1(QT ). From [5] we obtain

(2.13) −∆Γ(t)v + |A|2v + 2v−1|δv|2 + v2(δH · en) = 0.

By H =
∂tu

v
− f(u) we have

v2(δH · en) = v2δnH = v2(∂xnH − (DH · ν)νn)

= v2(0− (dH · ν)v−1) = du · d
(
∂tu

v
− f(u)

)
=
du · d∂tu

v
− ∂tu(du · dv)

v2
− du · d(f(u))

= ∂tv + (ν · dv)∂tu
v

− du · d(f(u)).

(2.14)

From (2.13) and (2.14) we obtain (2.12). �

To use Schauder estimates we provide the following:

Lemma 2.6. We assume that u ∈ C2,1(QT ) ∩ C(QT ) is a solution of (2.1). Then

(2.15) ∥u∥L∞(QT ) ≤ sup
c∈R

∥F (·, c, ·)∥L∞(QT )T + ∥u0∥L∞(Ω).

Proof. We denote w(x, t) = supc∈R ∥F (·, c, ·)∥L∞(QT )t+ ∥u0∥L∞(Ω). We remark that

∂tw ≥
√

1 + |dw|2div

(
dw√

1 + |dw|2

)
+ F (x,w, t) · (−dw, 1).

By the maximum principle [9] we obtain that

w ≥ u, (x, t) ∈ QT .

Similarly to the above argument, we have

u ≥ −w, (x, t) ∈ QT .

Hence we obtain (2.15). �
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3. Proof of main results

1. We assume that u ∈ C3,1(QT ) ∩ C(QT ) for the time being. First we estimate
d

dt

∫
Γ(t)

vρ dHn−1. By the Lemma 2.4 and Lemma 2.5 we obtain that

(3.1)
d

dt

∫
Γ(t)

vρ dHn−1 ≤
∫
Γ(t)

1

4
vρf 2(u)− |A|2vρ− 2v−1|δv|2ρ+ du · d(f(u))ρ dHn−1.

We denote v∞ = sup
x∈Ω,0≤t≤T

v(x, t) and T > 0 is a arbitrary number to be selected later. We

remark that there exists C = C(n) > 0 such that

(3.2) H2 ≤ C|A|2.
The direct computations show that

(3.3) du · d(f(u)) = du · d(F (u) · ν) = du · d(F (u)) · ν + du · dν · F (u).
By using (1 + |du|) ≤ 2v, we have

(3.4) |du · d(F (u)) · ν| ≤ |du| |dF (u) + (∂xnF )(u)du| ≤ Cv2∞|DF |,
here DF = (dF, ∂xnF ) and C = C(n) > 0. We compute that

δnν
i =∂xnν

i − (Dνi · ν)νn = 0− (dνi · ν)v−1 = −dνi · (−du)v−2

=v−2du · dνi, i = 1, 2, . . . , n.

Therefore

du · dν · F (u) = v2δnν · F (u).
Hence

|du · dν · F (u)| ≤
n∑

i=1

v2|δnνi| |F (u)| ≤
1

2
|A|2v + Cv3∞|F (u)|2,(3.5)

here (3.2) and |A|2 =
n∑

i,j=1

(δiν
j)2 are used. Therefore by (3.3), (3.4) and (3.5) we obtain

(3.6) |du · d(f(u))ρ| ≤ Cv2∞|DF |ρ+ |A|2vρ+ Cv3∞|F (u)|2ρ.

We choose (y, s) ∈ Ω× [0, T ] such that v∞ = v(y, s). From (3.1) and (3.6) we obtain

(3.7)
d

dt

∫
Γ(t)

vρ∞ dHn−1 ≤ C

∫
Γ(t)

v3∞|F |2ρ∞ + v2∞|DF |ρ∞ dHn−1,

here ρ∞ = ρ(y,u(y,s),s). We remark that we may obtain (3.7) for u ∈ C2,1(QT ) ∩ C(QT ).
2. Next we prove Theorem 2.1. We denote X = (x, u(x, t)) and Y = (y, u(y, s)). We

have that ∫
Γ(t)

ρ∞ dHn−1 =
1

(4π(s− t))
n−1
2

∫
Rn−1

e−
|X−Y |2
4(s−t) v dx

≤ v∞

(4π(s− t))
n−1
2

∫
Rn−1

e−
|x−y|2
4(s−t) dx = v∞.

(3.8)

Therefore from (3.7) and (3.8) we obtain

d

dt

∫
Γ(t)

vρ∞ dHn−1 ≤ CGv4∞,
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here C = C(n) > 0. We have

(3.9)

∫
Γ(t)

vρ∞ dHn−1

∣∣∣∣
t=0

≤
∫
Rn−1

ρ∞(x, 0)v20 dx ≤ v20,

here v0 = max
x∈Ω

v(x, 0) and dHn−1 = v dx. Hence by (2.4) and (3.9) we obtain

v∞ − v20 ≤
∫ s

0

d

dt

(∫
Γ(t)

vρ∞ dHn−1

)
dt.

Therefore

(3.10) C0Gsv
4
∞ − v∞ + v20 ≥ 0,

here C0 = C0(n) > 0. We consider the function f(r) = C0Gsr
4 − r + v20. We remark that

v0 ≥ 1, f(0) = v20 and f(v0) > 0. Furthermore f ′(r) < −1

2
for any r ∈

(
0,

1

2(C0Gs)
1
3

)
.

Hence if 2v20 <
1

2(C0Gs)
1
3

then

f ′(r) < −1

2
,

for any r ∈ (0, 2v20). Therefore there exists α ∈ (v0, 2v
2
0) such that

(3.11) f(α) < 0.

Let T :=
1

26C0Gv60
. We have s ≤ T . We assume

v∞ > 2v20.

Then there exist s′ ∈ (0, s) and y′ ∈ Ω such that

v1 := max
x∈Ω, t∈[0,s′]

v(x, t) = v(y′, s′) = α.

By (3.11) we have

C0Gs
′v41 − v1 + v20 < 0.

But by (3.10) we have

C0Gs
′v41 − v1 + v20 ≥ 0.

This is a contradiction. Hence
v∞ ≤ 2v20.

Thus Theorem 2.1 is proved.

Remark 3.1. If u is a global solution of (2.1) and F ≡ 0 then we obtain T = ∞.

3. Finally we prove Theorem 2.2. We assume that u0 ∈ C2+α(Ω) for the time being. We
denote

X = {u ∈ Cα,α
2 (QT )| ∥u∥X = ∥u∥

Cα,α2 (QT )
+ ∥du∥

Cα,α2 (QT )
<∞}.

We consider the following linear parabolic type equation:

(3.12)


∂tu =

n−1∑
i,j=1

aij(w)∂xi
∂xj

u+ F (x,w, t) · (du, 1), in QT ,

u = u0, on Ω,
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here w ∈ X and aij(w) =

(
δij −

∂xi
w∂xj

w

1 + |dw|2

)
.

Remark 3.2.

(i) If u = w then (2.1) and (3.12) are the same PDE.
(ii) The least eigenvalue of (aij(w)) is w−2. Hence if ∥w∥L∞(QT ) < ∞ then (aij(w)) is

uniformly elliptic in QT .

We have

(3.13) ∥aij(w)∥Cα,α2 (QT )
≤ C, w ∈ X,

here C = C(n, ∥w∥X) > 0. By the assumption, there exists C = C(K, ∥w∥X) > 0 (K as in
Theorem 2.2) such that

(3.14) ∥F (·, w, ·)∥
Cα,α2 (QT )

≤ C,

for any w ∈ X. Hence, there exists unique solution uw ∈ C2+α,1+α
2 (QT ) ⊂ X of (3.12) such

that

(3.15) ∥uw∥C2+α,1+α
2 (QT )

≤ C,

here C = C(n, α,K, ∥w∥X , ∥u0∥C2+α(QT )) > 0 (See Theorem 4.5.1 of [13]). We define A :
X → X by Aw = uw. We remark that A is compact.

We will show that

S = {u | u = σAu, for some σ ∈ [0, 1]}
is bounded in X. If u ∈ S then

(3.16)


∂tu =

n−1∑
i,j=1

aij(u)∂xi
∂xj

u+ F (x, u, t) · (du, σ), in QT ,

u = σu0, on Ω.

By the Theorem 2.1 we have

(3.17) ∥Du∥L∞(QT ) ≤ C1,

here C1 = C1(∥Du0∥L∞(Ω)) > 0. Then we obtain that

(3.18) ∥Du∥
Cα,α2 (QT )

≤ C2,

here C2 = C2(M,C1, ∥u0∥C2(Ω)) > 0 and

M = max
i,j,k=1,2,...,n−1

max
QT

|aij, F, ∂xk
aij, ∂tF, ∂uaij, ∂taij, ∂xk

aij, ∂(∂xku)aij, ∂uF, ∂xk
F |,

(See Theorem 6.2.3 of [13]). We remark that M depends only on C1 and K. Hence C2 =
C2(K, ∥u0∥C2(Ω)) > 0. By the similar argument we obtain

(3.19) ∥u∥X ≤ C3,

here C3 = C3(K, ∥u0∥C2(Ω)) > 0. Thus S is bounded in X. By Schaefer’s Fixed point

theorem there exists the solution u ∈ C2+α,1+α
2 (QT ) ∩ C(QT ) of (2.1) (See [15]).

We recur to the assumption that u0 is a Lipschitz function. We choose smooth functions
uk0 converging uniformly to u0 on Ω. Then there exists C = C(K,L, ε, ∥u∥L∞(QT )) > 0 such
that

sup
k

∥duk∥
Cα,α2 (Qε

T )
< C,
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here uk is the solution of (2.1) with uk(x, 0) = uk0(x) in Ω (See Theorem 3.11.1 [13]). We
remark that by (2.15), ∥u∥L∞(QT ) is estimated from above by K,T and ∥u0∥L∞(Ω). Therefore
Schauder estimates imply that

sup
k

∥uk∥
C2+α,1+α

2 (Qε
T )
<∞,

for any ε > 0. Hence there exists a solution u ∈ C2+α,1+α
2 (QT )∩C(QT ) and we obtain (2.3).

The maximum principle implies the uniqueness of u [9]. Thus Theorem 2.2 is proved.
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