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Representing sequences on parabolic Bergman spaces

Y 6suke Hishikawa (Gifu National College of Technology)

Let H be the upper half-space of the (n + 1)-dimensional Euclidean space R"*!(n
> 1), thatis, H = {(z,t) € R**; 2z € R",¢t > 0}. For 0 < a < 1, the parabolic operator
L(® is defined by

L(a) = 8t + (_Am)aa

where 0, = 0/0t and A, is the Laplacian with respect to z. Let C(H) be the set of all
real-valued continuous functions on H. A function u € C(H) is said to be L(®-harmonic
if L(*)u = 0 in the sense of distributions. For 1 < p < co and A > —1, LP()) is the set
of all Lebesgue measurable functions f on H which satisfy

T ( / If(a:,t)l”t*dV(w,t)) F < oo,

where dV is the Lebesgue volume measure on H. The parabolic Bergman space b ()\)
is the set of all L(*)-harmonic functions « on H which belong to LP()). We remark that
bz () is a Banach space with the norm || - || L»(»), and b () coincides with the harmonic
Bergman space of Ramey and Yi [7]. Also, we note that bf (A) = {0} when A < —1 (see
Proposition 4.3 of [3]).

Our aim is the study of representing sequences on parabolic Bergman spaces. In [2],
we established the reproducing formula on parabolic Bergman spaces by using fractional
derivatives of the fundamental solution of the parabolic operator L(*), The reproducing
formula of [2] is given by the integral of parabolic Bergman functions (see Theorem A
below). In this talk, we present a discrete version of the reproducing formula, which is
given by representing sequences.

We give some notations. For a real number «, let Df = (—3d;)" be the fractional
differential operator, and W(* the fundamental solution of the parabolic operator L(.
In [2], the following reproducing formula on &% () is given.

THEOREM A (Theorem 4.7 of [2]). Let0 < a < 1,1 < p < oo, and A > —1. And let
K > % be a real number. Then the reproducing formula

u(z,t) = C,.;/ u(z, )DEW @ (z — y,t + s)t*"1dV (y, s) (1.1)
H

holds for all v € bE()\) and (z,t) € H, where C, = 2%/T'(k) and T'(-) is the gamma
Junction. Moreover, the reproducing formula (1.1) also holds whenp = 1 and k = \ + 1.

To state our main results, we give some definitions. Let 0 < a < 1,1 < p < oo,
A > —1, and  be a real number. Furthermore, let X = {(z;,¢,)} be a sequence in H.
For a sequence of real numbers {7, }, we define a representing operator U’y by

pa({m D (1) = 3 it

J

= 1
O @ (o — 2yt 4 8;), (2,6) € H (1.2)



By using the representing operator Uy, we define a representing sequence on b?, ().

DEFINITION 1. Let0 < a < 1,1 < p < 00, A > —1, and x be a real number.
A sequence X = {(z;,t;)} in H is called the b (\)-representing sequence of order & if
Upx : ¢ — bh(}) is bounded and onto. Explicitly, a sequence X is called the b?(\)-

p
representing sequence of order « if the following conditions are satisfied.

(1) For {n;} € £, the function U}x({n;}) belongs to b%,()), and there exists a constant
€ > 0 such that | U ({n; D llzsyy £ Cl1ns} o for all {15} € 22

(2) For u € b, ()), there exists {1;} € " such that u = U’y ({n;}) on H.

For0 < § < 1and (z,t) € H, an a-parabolic cylinder S‘ga) is defined by

1/20 1— 1
Sga)(x,t)={(y,s)EH;Iy—m|<( 2 t) 6t<s<i6t}.

1— 62 1446 1—6

A sequence {(z;,t;)} in H is said to be §-separated in the a-parabolic sense if Sga) (zj,t;)N
S8 (z;,;) = 0 for j # 4. Furthermore, a sequence {(z;,t;)} in H is said to be a J-lattice
in the a-parabolic sense if {(z;,t;)} satisfies the following;

() U; S5 (2, ;) = H.

(i) For some 0 < € < 4, {(=;,t;)} is e-separated in the a-parabolic sense.
The following theorems are the main results.

THEOREM 1. Let0 < a < 1,1 <p < o0, A > —1, and k > %beareal
number. Furthermore, let X = {(z;,t;)} be a sequence in H. Then, Uy satisfies the
condition (1) of Definition 1 if and only if for any 0 < § < 1, there exists K € N such
that X = Xy U - -- U Xg and each sequence X, is §-separated in the a-parabolic sense.
The “if ” part also holds when p = 1.

THEOREM 2. Let0 < o < 1, 1 < p < 00, A > —1, and k > 2L be a real number.
Then, there exists 0 < &y < 1 such that if a sequence X in H is a d-lattice in the a-
parabolic sense with 0 < § < &, then X is a b, (\)-representing sequence of order k.

By Theorem 2 and the open mapping theorem, we obtain the following corollary.

COROLLARY 1. Let0<a<1,1<p<oo, A>—1,andk > 5%“1 be a real number.
Then, there exists a sequence X = {(x;,t;)} in H such that the following properties hold ;

(1) For {n;} € £, the function u = UJx({n,}) belongs to b:,()), and there exists a
constant C' > 0 such that

lullzoy < Clli{n;}ler



Sorall {n,} € .

(2) For u € b,()), there exists {n;} € ¢ such that u = Uyx({n;}) on H. Moreover,
there exists a constant C' > 0 independent of u such that

{n}Hler < Cllullzrey).-

We present the definition of bf,(\)—sampling sequences, which are closely related to
b? (M\)-representing sequences. We give the definition of b, (\)-sampling sequences. Let
0<a<l,1<p<oo,A>-1,veR, andX = {(z;,t;)} be a sequence in H. We say
that X is a b% (\)—-sampling sequence of order v if there exists a constant C' > 0 such that

— = +A+1+vp
CHulpy <> 12 1Dy u(z;, t)P < Cllulf,
J

for all u € bE(N).

THEOREM 3. Let0 < a <1, 1<p<oo A>—-1,and k > i\;—l. Furthermore, let
X be a sequence in H, and q the exponent conjugate to p. Then, the following conditions
are equivalent,

(1) X is a b% (\)-representing sequence of order k.
(2) X is a bl (\)-sampling sequence of order k — (A + 1).
We present some lemmas, which are used in the proof of main theorems. Let 0 < o <

1,1 < p < oo,and A > —1. Furthermore, let v € Nj, v € R, and X = {(z;,t;)} bea
sequence in H. For a function u on H, the operator T)) is defined by

a1y by
T;;gu = {t;za )p 2 Va;ZD;’u(x,-,tj)} .

The following lemma is necessary and sufficient conditions for the operator 7)x to be a

bounded operator from bE (1)) to £7.

LEMMA 1. Let0 < a < 1,1 < p < oo, and A > —1. Furthermore, let v € Ny,
v > —%, and X = {(z;,t;)} be a sequence in H. Then, the following statements are
equivalent ;

(D) T)x : b5(\) — €2 is bounded.
(2) For any 0 < € < 1, there exists K € N such that X = X; U --- U Xy and each

sequence X is e-separated in the a-parabolic sense.

The following lemma is used in the proof of Theorem 3.



LEMMA 2. Let0<a<1l,1<p<oo A>—1andk > %. Furthermore, let X
be a sequence in H, and q the exponent conjugate to p. If Ujx : 7 — bl () is bounded,

then .
K Yk, __ K—(A+1)
( ox) U= a\_HTq,x u

Sor all u € bl ().
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Backward shifts on function algebras

HIRONAO KOsHIMIZU (Shinshu University)

Abstract

J. R. Holub [1] introduced the concept of backward shift on Banach spaces. In
this note, define a backward quasi-shift as a weak type of backward shift. The main
result is the following: An infinite-dimensional function algebra does not admit a
backward shift. Also, a function algebra A does not admit a backward quasi-shift,
under the assumption that the Choquet boundary of A has at most finitely many
isolated points. Finally, we give the examples of the space that does not admit a
backward shift, the space that admits a backward quasi-shift but not a backward
shift, and the space that admits a backward shift.

This is a joint work with H. Ariizumi and H. Takagi.

1 Introduction

Let H be an infinite-dimensional separable Hilbert space, and 7" a bounded linear operator
on H. We call T a backward shift on H, if there is an orthonormal basis {e;}2, for H
such that Te; = 0 and Te; = ¢;_; for ¢ = 2,3,.... In [1], J. R. Holub characterized a
backward shift on H without using a basis, and he defined a backward shift on a Banach
space, as follows:

Definition. Let B be an infinite-dimensional Banach space and T a bounded linear
operator on B. We write ker 7" to denote the kernel {f € B : Tf = 0}. Wecall T a
backward shift on B if T satisfies the following three conditions:

(i) kerT is one-dimensional.

(i) |Tf]l = nf{[|f + gl : g € ker T} (f € B)
(iii) (Uo7, ker T™ is dense in B.

Here we assume that B is infinite-dimensional, because the finite-dimensional case is
easily considered. It is known that every backward shift on an infinite-dimensional space
is onto (see |2, Proposition 1.2]).

We also consider a weak type of backward shift. We say that T is a backward quasi-
shift on B, if T' satisfies two conditions (i) and (ii) only, and if 7" is onto.

Holub asked whether there exists a backward shift on various function spaces ([1]).
M. Rajagopalan and K. Sundaresan gave the answer about the Banach space C(X) of all
continuous functions on X, equipped with the supremum norm, where X is a compact
Hausdorff space.



Theorem A (Rajagopalan and Sundaresan (2, 3]). If C(X) is infinite-dimensional, then
C(X) does not admit a backward shift.

In this paper, we consider C(X) as the Banach algebra of all continuous complez-
valued functions on X, and extend C'(X) to a function algebra. Recall that a function
algebra A on X is a uniformly closed subalgebra of C(X) which contains the constants
and separates the points of X, that is, for each pair x1,x9 € X with z; # z,, there exists
f € A such that f(z1) # f(z2).

2 Theorems

Here, we state the main results.

Theorem 1 ([4]). An infinite-dimensional function algebra does not admit a backward

shift.

Clearly, this is a generalization of Theorem A. Here the adjective “infinite-dimensional”
is crucially necessary, because a finite-dimensional space always admits a backward shift.

This Theorem was shown by Ariizumi and Takagi in 1998, but have not published.
I refine their proof a little, and add to some related results containing the following
Theorem in the paper [4].

Theorem 2 ([4]). Let A be a function algebra, and suppose that the Choquet boundary
of A has at most finitely many isolated points. Then A does not admit a backward quasi-
shift.

3 Examples

We examine the existence of backward shift and backward quasi-shift in some concrete
spaces. The first example is a function algebra which admits no backward quasi-shift.

Example 1. Let A(D) be the disc algebra, that is, the function algebra of all continuous
functions on the closed unit disc which are analytic in the open unit disc. The isometric
shifts on A(D) are characterized by T. Takayama and J. Wada [5]. A typical example of
it is the multiplication operator S:

(Sf)(z) = zf(z) forall zand f € A(D).

This example suggests to us that the following operator 7" may be a backward shift on
A(D):
| =70 if 5 £,
Tr)z2) =4 ., :
1(0) if z=0,
It is easy to see that 7" is onto and satisfies the conditions (i) and (iii) in the definition of
backward shift. But T is not a backward shift. Indeed, T does not satisfy (ii), because

for all f € A(D).



ker T' is the subspace of constant functions, and the function f(z) = 22 + z satisfies that

. \ 1 27
wt{f +9l:9 her} < |7 - 5| = 5 <2 =17,
Moreover, Theorem 2 implies that A(D) does not admit a backward quasi-shift, because

the Choquet boundary of A(ID) is the unit circle T and it has no isolated points.
The next example deals with the L>-spaces.

Example 2. Let L*(f2, 1) be the Banach algebra of all equivalence classes of u-essentially
bounded measurable functions on a o-finite measure space ({2, 1), with the essential
supremum norm. Since L>(€2, i) is a commutative C*-algebra with identity, the Gelfand-
Naimark theorem implies that L>°(€2, u) is isometrically *-isomorphic to C(X), where X
is the maximal ideal space of L>*(€), ). By Theorem A, L*(€), u) does not admit a
backward shift.

If the measure p has at most finitely many atoms, then X has at most finitely many
isolated points, and so Theorem 2 shows that L*°(Q2, u) does not admit a backward
quasi-shift.

Next, we consider the space ¢*° as the case that y has infinitely many atoms. At the
same time, we take up some sequence spaces.

Example 3. By /*° ¢ and ¢y, we denote the Banach space of all sequences that are
bounded, converge and converge to zero, respectively. They are equipped with the supre-
mum norm. Suppose that 1 < p < co. By #°, we denote the Banach space of all sequences
z = {z,} such that ) > |z,|P < oo, equipped with the norm ||z|| = (3_7, lmnlp)%.

We consider the operator 7" on those spaces defined by (z1, zs, ...) — (z2,23,...). On
> and c, T is seen to be a backward quasi-shift but not a backward shift. Indeed, T
does not satisfy (iii).

Moreover, the Gelfand-Naimark theorem showed that ¢*° and c are isometrically *-
isomorphic to C(X) for some compact Hausdorff space X. By Theorem A, ¢ and ¢ do
not admit a backward shift.

In case of the other spaces ¢y and /7, the situation is different. It is easily seen that
T is a backward shift on ¢y and #7. Hence ¢y and /7 admit a backward shift.

We obtained an example of the spaces that admit a backward quasi-shift but not a
backward shift, and the spaces that admit a backward shift.

In the last example, we ask the question whether there exists a backward shift on a
Banach algebra which is not a function algebra.

Example 4. Let W be the Wiener algebra, that is, the Banach algebra of all continuous
functions on the unit circle T whose Fourier series is absolutely convergent, equipped with
the norm || f|| = >_2___ |f(n)|, where f(n) is the n-th Fourier coefficient of f. Then W
becomes a semisimple commutative Banach algebra with identity. It is easily seen that
W is linearly isometric to #*, and #! admits a backward shift, as mentioned in Example 3.
Hence W admits a backward shift.



Finally, we summarize these observations in the following table.

Is there a backward (quasi-)shift on the space ?

Backward Backward
Space shift quasi-shift
Function algebra No Yes or No
Disc algebra No No
C([o,1]) No No
L>=[0,1] No No
> No Yes
c No Yes
Co Yes Yes
P (1<p<oo) Yes Yes
Wiener algebra Yes Yes
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Radon-Nikodym Theorem
with Generalized Density

Hiroki Saito

Tokyo University of Science

1 Introduction

In this study, we obtain the new formulation of the Radon-Nikodym Theorem without
o-finiteness by Daniell integral. In Daniell integral, Radon-Nikodym density function
couldn’t be constructed as a function, but ”density part” forms special system of measur-
able functions. We shall call this system folder. Moreover, investigating some non-o-finite
example, we see that Daniell integral differs from Lebesgue integral.

2 Summary of Daniell Integral

In this section, we summarize the Daniell scheme in the following discussion. It should be
noted that there are various schemes called Daniell integral, and they are not equivalent
each other. For the details, please see [1] and [2].

Definition 2.1 Let ‘H be a vector lattice of real valued functions defined on a non-void
set 0, and [ a positive linear functional on 'H, satisfying: hy, \, 0 = J hn — 0. We shall
say ‘H is elementary function space, [ is elementary integral. A triplet (Q,H, [) is called
Daniell system.

A function f is said to belong to H* if there exists a sequence of functions h,, € H
such that h, / f, where it is permitted that f(z) assumes the value +0o. We define the
integral by the formula [ f = limy_,o [ hn. This integral may be +oco so we denote by
'H;Lt the set of f € H* which integral is finite.

Definition 2.2 Let Z C ) be called a null set if there exists a f € ’H;’;Lt such that
ooI(Z) £ f.

Here, I(Z) is indicator function of the set Z, and colI(Z) is regarded as the function
taking +o0o at the point of Z.

Definition 2.3 A function ¢ : Q@ — R U {£oo} which is defined almost everywhere, is
said to be measurable function if there exists a sequence of functions h,, € H such that
hn — ¢ (a.e.). Denote by M the totality of measurable functions.

An E C Q is said to be a measurable set if I(E) € M. We should remark that Q is
necessarily not measurable set (see section 4).

Definition 2.4 A measurable function ¢ is said to belong to L if it can be represented
as the difference p = f —g (a.e.) between two functions f € HT and g € H;,. We define

the integral of ¢ by the formula [ ¢ = [ f — [ g. If the above f belongs to ’H;';Lt, we call
@ is integrable and denote by L the all of integrable functions.



This is the summary of Daniell scheme. Moreover, We recall important terms: we
say that H satisfies Stone consition if h A 1 € H for any h € H. Under Stone condition,
it is verified that measurable functions M is closed under multiplication, and a carrier
set {¢ # 0} is measurable set.

3 Folder and Integration with Folder

In this section, we describe the main concept in this discussion which is called folder. It
is inspired by quasifunction in Rao[4] and cross-section in Zaanen[3]. A cross-section is
regarded as the special case of quasifunction. More details can be seen in [4]. In Daniell
integral, it is shown that the Radon-Nikodym density forms folder. Please refer to [5] for
the elementary properties and these proofs.

Definition 3.1 We say an E C Q) is elementary measurable set if there exists ¢ € H™
such that E = {¢ > 0}, and we denote by £ the all of elementary measurable sets.

The folder (h) is defined to be the map: & — M; E — hg, which satisfies that for
any E,F € €, hpI(E) = hgnr (a.e.) holds.

Example 1. A mapping
ESE~I(E)

forms folder. We denote this folder by (I).
Example 2. Given a measurable function hg defined on 2,

£ 35 E — hol(E)

forms folder.

Let ¢ be a measurable function. We define the product with folder ¢(h) to be a
map: £ 3 E +— phg. Then the folder , in Ex 2, can be expressed by(h) = ho(I). Since
it is shown that for any measurable ¢ there exists Ey € £ such that {¢ # 0} C Ey, then
we have p(h) = phg,(I).

A folder (h) is said to be locally integrable or density if for any elementary function

f, the product fhg, is integrable, where Ey € £ contains {f # 0}. Now we can define
the integral:

[1:= [ shm, rem)

for density folder (h).

4 Radon-Nikodym Theorem

The following is our main theorem.

Theorem 4.1 (Radon-Nikodym Theorem) Let (Q,H, [) be a Daniell system satis-
fying the Stone condition, and Q be any integral on H such that Q < [. Then there
exists a non-negative density folder (h), such that for any f € H,

Q) = / fih). 1)

This (h) is determined (a.e.)-uniquely.



Remark 1. Q < [ means Q absolutely continuous with respect to /, that is to say
for any [-null set is Q-null set.

Remark 2. We say that H is o-finite if 1 € H*. It is equivalent Q € £. It should be
remarked that o-finiteness is not assume in this theorem.

Idea of the proof.

Let & denote the sets of elementary integrable set E which satisfy E = {p > 1} for
some ¢ € ‘H. Then E € & is integrable with respect to any integral on H.

Fix FE € &, let

/E fo= / FI(E), Qu(f) == QUI(E)), (Vf € H)

so these integrals play role of finite measure. Now, we can obtain the density function
hg (a.e.)-uniquely as usual way and we have

QUI(E)) = / fhs,  (Vf €H).

These hg (E € &) satisfies folder’s condition, and it is verifed that above equation
holds for E € £. Then we have Q(f) = [ f(h), because we can choose E € & such that
{f#0} CEs0 Q(fI(E))=Q(f). m

More details can be seen in [5].

5 Reseach of Counter-Example

We consider the counter-example of Radon-Nikodym theorem without o-finiteness. At
first, we recall classical example in measure theory. Let © be a closed interval [0, 1], and
denote by B the Borel sets in [0, 1], and p be a counting-measure on B. Then the only
p-null set is empty set, and every measure on B is absolutely continuous with respect to
p. Now, Lebesgue measure v, for instance, is absolutely continuous with respect to u,
but it is well known example that Radon-Nikodym theorem doesn’t hold, that is to say,
the density function h doesn’t exist satisfying v(E) = [ph du for E € B

Next, we consider this example with Daniell integral. Let Q = [0,1], H the set of
real valued functions on [0, 1], each of which vanishes outside some finite set, i.e.,

f= Z arI({k}) A:finite set, aj € R.
keA

'H consists of an elementary function space and satisfies the Stone condition. We define
the elementary integral as follows:

/f = I;ak.

According to this definition, if the set A is finite subset in [0,1] then I(A) € H, and
J I(A) is nothing else but counting-measure p, i.e., [ I(A) is the number of elements of
A. Furthermore,

e The only null set is empty set with respect to this integral,

e measurable set is countable set,



e measurable set is elementary measurable set,
o Q¢ & (because (2 is uncountable set) so H is not o-finite.

Then arbitrary integral @ on H is absolutely continuous with respect to [. By definition
of an integral @ of f € H, we have

Q(f) = axQUI(k)),

keA

and Q(I(k)) takes non-negative real value. Here, let Q(I(k)) = cx (0 £ cx € R) then,

AN = wer [ 16)= [ S ath) 3 eml(m)

keA k€A med

Define h := } cqcmI(m), then h is a function on Q and we obtain Q(f) = [ fh.
But h is not measurable. Let (h) = h(I) then each hy = hI(E) is measurable and
Q(f) = [ f(h) holds. This example tells us there doesn’t exist the counting integral and
Lebesgue integral couldn’t coexist on the same elementary function space.

6 Applications

Theorem 6.1 (Hahn Decomposition) There exist (I.) and (I_) satisfying:
(I) = (I+) + (I-) (|®|-a.e.) and,

. (f) = [2(f{I+))
o_(f) =12I(FI-) (f €LF(2).

Here, ® is signed Daniell integral, |®|,®,, and ®_ are total, positive, and negative
variation, respectively. For the details and definition, please see in [1] and [3].

Remark 3. In general, ) is necessarily not measurable so it is impossible to decom-
pose into 2 piece of measurable sets as usual. But these folders (I, ), (I_) play the role
of the decomposition.

This application tells us the essential difference between Daniell integral and Lebesgue
integral. We would like to consider the following measure ®:

o -{ 1, £20 @

i.e., this measure has a point mass and take +1 or —1 with respect to positive or negative
point of R, respectively.

At first, we consider this example with Daniell scheme. Let Q = R, H the set of real
valued functions on finite subset of Q. ® : H — R is defined by

h= Z akI({k}) — @(h) = Zak - Zak

keA k>0 k<0
Then (Q,H, ®) is Daniell system, and it is easily seen
e measurable set is countable set,

e measurable set is elementary measurable set,



e VE € &, 3E1, Es s.t. I(E) = I(El) + I(E2) and

O, (I(E2)) = @_(I(E1)) = 0.

It means that E is decomposed into positive part F; and negative part E;. But, this
example doesn’t work in measure theory.

Let B be Borel sets in R. For E € B, we define E; := EN[0,00), E_ := EN(—0c0,0).
We would like to define ® as

(E) := #(E4) — #(E-),

but it is not well-defined, because E, and E_ contains uncountable points in general and
it occurs oo — oo. If we demand more proper definition of ®, then we have to assume
much rigid condition.

Moreover, it can be identified the dual space of £ by essentially bounded folder, i.e.,

Theorem 6.2 (Dual space of L.) let (Q,H, [) be a Daniell system. For any T € L*
(dual space of L), there exists an essentially bounded folder (h) such that for any f € L,

TS = / £ihy. 3)

When this holds, we have ||T|| = ||(h)|lco and the mapping 7 : T — (h) is an isometric
isomorphism between L* and the space of essentially bounded folders, so that they may
be identified.

Here £ is a Banach space with respect to the norm defined by ||f|| = [|f|. And we
define ||{h)||co := sUPgce |hEll0o, Where || - || is essential supremum as usual. We shall
say (h) is essentially bounded folder if ||(h)||oo < co. In this theorem, it is not assumed
that H is o-finite. Besides, if 1 < p,q < oo and (1/p+ 1/¢ = 1), then (£P)* = £? holds
in the sense of function space. This result was descried in [6].
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A perturbation theory for defect operators

on Hilbert function spaces

Michio Seto (Shimane University)

Abstract

We deal with families of operators encoding structure of submod-
ules in Hilbert function spaces. We give a partial announcement of

results obtained in [5].

1 H?(D?) case

Let M be a submodule (= an invariant subspace) of the Hardy space H?(D?)
over the bidisk, and let Z(M) denote the zero set of M. Then it is known
that the following family of quotient spaces defines a vector bundle over

D? \ Z(M) under some appropriate condition:
M/[(Zl - )\1)M + (22 - )\2)./\/(] (()\1, )\2) € DZ)

In this talk, we discuss problems of a family of self-adjoint operators having
the above quotient spaces as their eigenspaces.

Let Ry denote the compression of a Toeplitz operator T} into M, that is,
we set Ry = PpT¢|p. We define an operator valued function as follows:

Ay =1Ipm— Rb)\l(ZI)Rz)\l(zl) - bez(zz)RZAz(zQ) + Rb/\l(zl)Rb/\z(z?)RzAl(zl)R;/\g(ZZ)’

where
z1 — )\1 z9 — )\2
1- /\_121 ’ 1- )\_222

(a0, (a2 = ) (A= O, \o) € D).



We should mention that A has already been studied by Guo-Yang [3] and
called the core operator or the defect operator of M. The following theorem
is the reason why we have been interested in Ay.

Theorem 1 (Guo-Yang [3] (where A = 0))
ker(IM - A)\) - M/[(Zl - )\1)M + (22 - /\Q)M]

Definition 1 (Yang [6, 7]) M is called a Hilbert-Schmidt submodule if
A is Hilbert-Schmidt.

Theorem 2 (S [5]) Let M be a submodule of H?(D?).
(i) If A, is Hilbert-Schmidt for some p, then A, is so for any .
(ii) If M is Hilbert-Schmidt then ||Ay — A,lls = 0 (A — p).
Theorem 3 (S [5]) Let M be a Hilbert-Schmidt submodule. If
dimker(Ip — Ay) =n>1
for some p in D?, then, for any neighborhood U; of 1 such that
o(8) N T = {1},
there exists a neighborhood U, of i such that
a(A\)NU; ={1,01(A),...,0n-1(A)}

for any A in U, counting multiplicity.

2 L?(D) case

In this section, we deal with the defect operator of a submodule in Bergman
space over . The Bergman space over D is defined as follows:

[A(D) = {f € Hol(D) : %/le(z)ﬁ dady < oo (z = :c—H'y)}.



The reproducing kernel is

k)‘(Z) =

m (the Bergman kernel),
- Az

and the operator S, : f — zf acting on L?(D) is called the Bergman shift.
The definition of submodules in L?(D) is the same as that of H?(D?). We
summarize well known facts on submodules of LZ(D).

Theorem 4 Let M be a submodule of L2(D).
(i) dimM/(z — A)M is independent of choice of A in D (Richter [4]).

(ii) For every m in {1,2,...,00}, there exists a submodule M such that
dim M/2M = n (Apostol-Bercovici-Foiag-Pearcy [1]).

(ili) M/2M is a generating set of M (Aleman-Richter-Sundberg [2]).
The defect operator of a submodule of L2(D) is as follows:
A = Iy —2R.R: + R’R??,

which was introduced by Yang-Zhu [8] (they called this the root operator of
M). The definition of Ay is similar to that given in Section 1,

Ax = Iy — 2Ry, R; + R} R; 2,

where we set by = (z — \)/(1 — Az). The following theorem was shown in
Yang-Zhu [8] in the case where A = 0, and their proof can be applied to the
general case.

Theorem 5 (Yang-Zhu [8])
ker(Ipg — Ay) = M/(z — M.

The Hilbert-Schmidt class of submodules in L?(D) is defined as same as
that given in Section 1.



Theorem 6 (S) Let M be a Hilbert-Schmidt submodule of L2(ID). Then
(i) Ay is Hilbert-Schmidt for any X in D,
(i) [Ax = Aullz =0 (A — p).

Remark 1 In [8], Yang-Zhu proved that A is compact if and only if A is in
the trace class.
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OPPENHEIM’S INEQUALITY AND RKHS

AKIRA YAMADA

ABSTRACT. Applying the norm incquality for RKHSs corresponding to the
product of reproducing kernels and using the minimal norm of the Nevan-
linna interpolation, we prove Oppenheim’s inequality for positive semidefinite
matrices, and show cquality conditions for it.

1. INTRODUCTION

Oppenheim’s inequality [4]: for any positive semidefinite matrices A and B, we
have

(1) |Ao B| > |Albiy - - - bun,

where A = (ai;);j=1, B = (bij)j=1, and Ao B = (a;jb;;) is the Hadamard product
of A and B. Our aim is to prove Oppenheim’s inequality by using the theory of
kernel functions, and to derive equality conditions for Oppenheim’s inequality.

A function k: Ex E — C is called a positive definite kernel on E if, for any finite
sequence {z;}* ; C E and for any complex numbers &; (i = 1,...,n), k satisfies
the inequality

n

Zk(wz‘,wj)&fj >0.

=1
One verifies easily that the reproducing kernel of a reproducing kernel Hilbert space
(RKHS) on FE is a positive definite kernel on E. The converse to this fact is
important. Indeed, it is well-known that, for each positive definite kernel k£ on E,
there exists a unique RKHS Hj, on E whose reproducing kernel is k. By Schur’s
theorem the sum and the product of two positive definite kernels on E are also
positive definite kernels on E. Thus, if Hy, and Hy, are RKHSs on E, then RKHSs
Hy, 1k, and Hy,y, are well-defined. For applications the following norm inequalities
are very useful: for every f € Hy, and g € Hy,,

IF + glIF, +x, < NFIR, + 9lZ,
£ gllksra < N fllks llgllia-

Here the norm of Hj, is denoted by || - ||x. For general theory of reproducing kernels,
the reader is referred to [1, 5].

2. POSITIVE SEMIDEFINITE MATRIX AND ITS RKHS

Setting a;; = a(, j), we may regard any positive semidefinite matrix A = (a;;) €
M, as a positive definite kernel on the set {1,...,n}, where M, is the set of n x n
complex matrices. Moreover, we regard a column vector (z;)?, as a function
z(2) = z; on {1,...,n}. With this identification it is interesting to know a concrete



description of the RKHS H 4. We summarize well-known facts about H4 as follows
(cf. [5, pp. 13-14]):

Proposition 1. Let A = (a;;) be a n X n positive semidefinite matriz. By iden-
tifying the matriz A as a positive definite kernel on {1,...,n}, the RKHS H4 on
{1,...,n} is given by the vector space ran A equipped with the inner product given
by

n
(Az, Ay) = Z ZiY;%5i,
i,j=1
with tz = (21,...,2,) and by = (y1,...,Yn). The i-th column vector of A is the
reproducing kernel of Ha at .

The reproducing kernel of Hy at 4 is denoted by k. Thus, A = (k{* k4 ... k).

3. BERGMAN’S FORMULA
First we derive an analog of Bergman’s formula for minimal integral [2, p. 26].

Theorem 1. Let {x;}7_; be a linearly independent set of elements of the complex
Hilbert space H. Then, for any complex numbers {b; };-‘zl, there ezists a unique
element f € H which satisfies

(2) (frzj)=0b5, j=1,...,n,
and minimizes the norm among oll f € H satisfying (2). Moreover, if we denote
by f. the extremal element above, then f, and its norm are given by

0 Ty Tn
1 b (.’IJI,.’EI) (.’I)n,.’L'l)
e T |
bn (z1,Zn) ... (Tp,Tn)
and
0 by by
1l 1 |1 (z1,z1) ... (Tp,z1)
Y Gald : !
bn (IL‘l, J/n) cee (mﬂ, .’I)n>

where G = det((z;,2:))7 ;= is the Gramian of {x;}}_,.

Remark 1. When H is a RKHS with reproducing kernel k, by setting z; = ko,
our problem (2) is rewritten as f(a;) = b;. This is just a Nevanlinna interpolation
problem. In this sense we call (2) the interpolation problem.

Specializing the constants {b;} in our interpolation problem (2), we obtain a
relation between the minimal norm and the Gramians, which is the main tool for
our paper.

Corollary 1. Let {x; };-‘zl be a set of linearly independent elements in H. Set

bi=---=bp_1 =0, b, =1 and consider the interpolation problem (2). Then the
following hold:

(i) ”fn”2 = Gn—l/Gn-
(ii) frn=®n/Gn.



Here, G denotes the Gramian of {xj};?'zl, (k=1,...,n, Go=1), and

(x1,21) ... (Tn,x1)
o,=| o
(1,Zn-1) ... (Tn,Tn-1)
xr . Tn

Remark 2. The sequence {f,} obtained above from a linearly independent set
{z;} coincides, up to multiplicative constants, with the orthonormal sequence con-
structed from {x;} by the Gram-Schmidt orthonormalization.

Using the minimal solution to the Nevanlinna interpolation on a RKHS, we
shall give a simple proof of the Oppenheim’s inequality [4] and show necessary and
sufficient conditions for equality (cf. [7]).

To this end we first recall the norm inequality concerning the tensor product
RKHS Hj: ® Hy2 and the RKHS Hyip2. Let Hyi (f =1,2) be RKHSs on E. Then
the tensor product Hilbert space Hj: ® Hy2 is a RKHS on E x E whose reproducing
kernel at (z,y) in E x E is k; ® k2, where kJ (j = 1,2) denotes the reproducing
kernel of Hy; at x € E. Now we have the following inequality (see e.g. [5]): for any
f € Hyr @ Hyz,

®3) If o tllkrrz < | fllxrenz,

where the map ¢: £ — E X E is the natural inclusion of E to the diagonal of E x E,
that is, «(z) = (z,z) for all z € E.

Definition 1. If equality holds in the above inequality (3), the element f € Hu: ®
Hya is called extremal ([6]).

Lemma 1. A function f € Hp ® Hy2 on E X E is extremal if and only if f belongs
to the closed span of the set {k} ® k2}.cE.

We use the following notation. For x,y in a complex vector space, we write x ~ y
if there exists a nonzero constant a € C with £ = ay. For positive semidefinite
matrix X € M, if the set of solutions to the interpolation problem

(4) f)=-=flm-1)=0, f(m)=1
is nonempty for a RKHS Hyx, let AX (m = 1,...,n) be the minimal norm of such
solutions.

Lemma 2. Assume that A € M, is positive definite and that B € M, is positive
semidefinite with byym > 0 (m = 1,...,n). Then, for m = 1,...,n, (4) has a
solution in Haop and the following inequality holds:

(5) MAoB < AA /\/brmm.-
Equality holds for (5) if and only if the solution f,, € Ha which satisfies (4) and
minimizes the norm is a linear combination of {k*: k2 ~ kB,1 <i <m}.

For an element o in the symmetric group S,, of degree n, and for A = (a;;) € M,
we define the matrix A7 by A7 = (a,(;)s(j))- When o is the transposition (i j)
(1 £ 4,j < n), the matrix A is obtained from the matrix A by swapping i-th
and j-th rows and, simultaneously, i-th and j-th columns. We call such operations
of a matrix by simultaneous exchanges of rows and columns. In terms of this
terminology, A? is obtained from the matrix A by a finite number of simultaneous
exchanges. One verifies easily the following:



(1) A is positive semidefinite if and only if A is positive semidefinite.
(i) |A] = [A].
(i) The set of the diagonal entries of A coincides with that of A”.
We remark that if

(a) the matrix A is diagonal, or

(b) the matrix B is of rank one,

then equality holds in Oppenheim’s inequality (1). Indeed, if (a) holds, this is
trivial. So assume that the condition (b) holds. Since B is of rank one and positive
semidefinite, B is of the form B = (w;w;) for some (w;) € C". Then,

IAO Bl = det(aijwiiﬁj) = IAle .. -wnlz = IAlbu <<+ bpn,
as desired.
Our next Theorem asserts that the condition for equality of Oppenheim’s in-

equality is in general a blend of two conditions (a) and (b) stated in the above
remark.

Theorem 2. If A, B € M,, are positive semidefinite, then Oppenheim’s inequal-
ity holds. Equality holds in Oppenheim’s inequality if and only if the following
conditions hold:

(i) Ao B is singular, or

(ii) there ezxists o € Sy, such that A? is block diagonal, i.e.

A1 0
e Az
0 App
with Aj; € My, (i=1,...,p), n1+ - -+ np, =n, and that B satisfies
o o Bo o Ba -4
kB N...Nkfl k2 N...Nkfl+n2, e, kn1+"~+np_1+1N"'Nk£ .

Theorem 3. The following are equivalent:
1) Equality holds in Oppenheim’s inequality.
2) The condition (i) or (ii) of Theorem 2 holds.
3) Ao B is singular, or there exists B' € M,, such that
(a) B' is positive semidefinite and of rank one,
(b)) AoB= Ao B, and
(c) the diagonal entries of B' coincide as a set with that of B.
4) Ao B is singular, or there exists a diagonal matriz T = diag(ws,...,w,) such
that
(a) Ao B =TAT*, and
(b) |1.U1;|2 =by; (’L =1,... ,n).

Remark 3. The equality condition 4) is given in [7, Theorem 1.5]. However, it seems
that their argument and results in [7] need slight modifications.

Remark 4. For positive semidefinite matrices A = (a;;) and B = (b;;) € M, the
following inequality holds (Schur’s inequality):

|Ao B| + |Al|B| 2 |Alb11 - - bun + | Blai1 - - - ana.

Oppenheim [4] gave an equality condition for Schur’s inequality when both A and
B are positive definite. Observe that, when either A or B is singular, Schur’s



inequality reduces to Oppenheim’s inequality. Thus equality condition for Schur’s
inequality can be reduced to that of Oppenheimer’s inequality (cf. [7]).
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Nonlinear Analytic Methods for

Linear Contractive Mappings in Banach Spaces
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1 Introduction

Let E be a real Banach space and let C' be a nonempty closed convex subset of E. For a
mapping T : C' — C, we denoted by F(T') the set of fixed points of . A mapping T : C — C
is called nonezpansive if ||Tz — Ty|| < ||z — y|| for all z,y € C. In particular, a nonexpansive
mapping T : E — FE is called contractive if it is linear. That is, a linear contactive mapping
T : E — E is a linear operator satisfying ||| < 1. From [17] we know a weak convergence
theorem by Mann’s iteration for nonexpansive mappings in a Hilbert space: Let H be a Hilbert
space, let C' be a nonempty closed convex subset of H and let T': C — C be a nonexpansive
mapping with F(T) # 0. Define a sequence {z,} in C by z; = z € C and

Tyl = @pZy + (1 — an)Tz,, VR eN,

where {ay,} is a real sequence in [0, 1] such that > > | a,(1—a,) = co. Then, {z,} converges
weakly to an element z of F(T'), where z = lim,_,, Pz, and P is the metric projection of
H onto F(T). By Reich [15], such a theorem was extended to a uniformly convex Banach
space with a Fréchet differentiable norm. However, we have not known whether the limit
point z is characterized under any projections in a Banach space. Recently, using nonlinear
analytic methods obtained by [9], [10] and [5], Takahashi and Yao [18] solved such a problem
for positively homogeneous nonexpansive mappings in a Banach space. In 1938, Yosida [21]
also proved the following mean ergodic theorem for linear bounded operators: Let E be a real
Banach space and let T" be a linear operator of E into itself such that there exists a constant
C with ||T™|| < C for n € N, and T is weakly completely continuous, i.e., T maps the closed
unit ball of E into a weakly compact subset of E. Then, for each z € F, the Cesaro means
Snx converge strongly as n — oo to a fixed point of T'; see also Kido and Takahashi [12].

In this paper, motivated by these theorems, we study nonlinear analytic methods for linear
contractive mappings in Banach spaces. Using these results, we obtain new strong conver-
gence theorems for linear operators in Banach spaces. In the theorems, the limit points are
characterized by sunny generalized nonexpansive retractions. Furthermore, we deal with some
results which are related to conditional expectations in the probability theory.



2 Preliminaries

Throughout this paper, we assume that a Banach space F with the dual space E* is real.
We also denote by (z,z*) the dual pair of z € E and z* € E*. A Banach space E is said to
be strictly convex if ||z + y|| < 2 for z,y € E with ||z|| <1, ||yl <1 and =z # y. A Banach
space E is said to be smooth provided

o Nzl = o]
t—0 t

exists for each z,y € E with ||z|| = ||y|]| = 1. Let E be a Banach space. With each z € E,
we associate the set J(z) = {z* € E* : (z,z*) = ||z||? = ||z*||*}. The multi-valued operator
J : E — E* is called the normalized duality mapping of F. From the Hahn-Banach theorem,
Jx # () for each z € E. We know that F is smooth if and only if J is single-valued; see [16].
Let E be a smooth Banach space and let J be the normalized duality mapping of E. We
define the function ¢ : E x EF — R by

bz, y) = |lz||? — 2(z, Jy) + |ly|I?

- for all z,y € E. Tt is easy to see that (||z]| — ||y||)? < ¢(z,y) < (||z|| + ||y|))? for all z,y € E.
Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach
space E. For an arbitrary point z of E, the set {z € C : ¢(z,z) = minyec ¢(y,z)} is always
a singleton. Let us define the mapping Il¢ of E onto C by z = Ilgz for every = € E, i.e.,
¢(Ilcz, z) = minyec ¢(y, z) for every z € E. Such Il is called the generalized projection of
E onto C; see Alber [1]. Let D be a nonempty closed subset of a smooth Banach space E, let
T be a mapping from D into itself and let F(T') be the set of fixed points of T. Then, T is
said to be generalized nonexpansive if F(T') is nonempty and ¢(Tz,u) < ¢(z,u) for all z € D
and u € F(T). Let C be a nonempty subset of E and let R be a mapping from E onto C.
Then R is said to be a retraction, or a projection if Rz = z for all z € C. It is known that if
a mapping P of E into E satisfies P2 = P, then P is a projection of E onto {Pz : z € E}.
A mapping T : E — E with F(T) # 0 is a retraction if and only if F(T) = R(T), where
R(T) is the range of T'. The mapping R is also said to be sunny if R(Rz + t(z — Rz)) = Rz
whenever z € F and t > 0. A nonempty subset C of a smooth Banach space F is said to
be a generalized nonexpansive retract (resp. sunny generalized nonexpansive retract) of E
if there exists a generalized nonexpansive retraction (resp. sunny generalized nonexpansive
retraction) R from E onto C. The following lemmas are in [13].

Lemma 2.1. Let E be a smooth, strictly conver and reflerive Banach space, let C* be a
nonempty closed convex subset of E* and let Ilg~ be the generalized projection of E* onto C*.

Then the mapping R defined by R = J g« J is a sunny generalized nonezpansive retraction
of E onto J~1C*.

Lemma 2.2. Let E be a smooth, strictly conver and reflexive Banach space and let D be a
nonempty closed subset of E. Then, the following are equivalent.

(1) D is a sunny generalized nonezpansive retract of E;
(2) D is a generalized nonezpansive retract of E;
(3) JD is closed and convez.

Let C be a closed convex subset of a strictly convex and reflexive Banach space E. For an
arbitrary point = of E, the set {z € C : ||z — z|| = minyec ||y — z||} is always a singleton.



Let us define the mapping Pc of E onto C by z = Pcz for every z € E, i.e., ||Pcz — z| =
mingec ||y — z|| for every z € E. Such Pg is called the metric projection of E onto C. Let E
be a Banach space and let K be a closed convex cone of E. Then, a mapping T : K — K is
called positively homogeneous if T'(az) = oTz for all @ > 0 and z € K. Let M be a linear
closed subspace of E. Then, T : M — M is called homogeneous if T'(8z) = BTz for all 3 € R
and x € M. In LP spaces, 1 < p < oo, we know examples of nonexpansive and positively
homogeneous mappings; see, for instance, Wittmann [20]. From Takahashi and Yao [18] we
know the following result; see also Honda, Takahashi and Yao [5].

Lemma 2.3. Let E be a smooth Banach space and let K be a closed convex cone in E. If
T : K — K is a positively homogeneous nonexpansive mapping, then T is generalized nonez-
pansiwe. In particular, if T : E — FE is a linear contractive mapping, then T is generalized
nonerpansive.

3 Strong Convergence Theorems

Let Y be a nonempty subset of a Banach space F and let Y* be a nonempty subset of the
dual space E*. Then, we can define the annihilator Y of Y* and the annihilator Y of Y as
follows:

Yi={z€E:f(z)=0,YfeY*} and Y* ={f € E*: f(z) =0, Vz € Y}.

Let T : E — E be a bounded linear operator. Then, the adjoint mapping T* : E* — E* is
defined as follows: (z,T*z*) = (T'z,z*) for any z € E and z* € E*. We know that T* is also
a bounded linear operator and ||T'|| = ||T*||. The following results were proved in Takahashi,
Yao and Honda [19].

Theorem 3.1. Let E be a strictly convex, smooth and reflexive Banach space, let T be a linear
contractive operator of E into itself, i.e., T : E — E is a linear operator such that |T| < 1
and let F(T) be the set of fized points of T. Then JF(T) is a closed linear subspace in E* and
JF(T) = F(T*) ={z—Tz:z € E}', where J : E — E* is the normalized duality mapping
and T* is the adjoint operator of T'.

Theorem 3.2. Let E be a strictly convez, smooth and reflexive Banach space, let T be a linear
contractive operator on E and let {S,, : n € N} be a sequence of linear contractive operators
on E such that F(T) C F(S,) for alln € N. Suppose To S, = S, oT for alln € N. Then,
the following are equivalent:

1. {Spz} converges to an element of F(T) for each z € E;
2. {Snzx} converges to 0 for each z € (JF(T))L;
3. {Spz —T o S,x} converges to 0 for each x € E.

Furthermore, if (1) holds, then {Spx} converges to Rpryx € F(T), where Rpr) =
J M pryJ and I p(7) is the generalized projection of E* onto JF(T).

Using Theorem 3.2, we obtain some strong convergence theorems for linear contractive
mappings in a Banach space. In 2003, Bauschk, Deutsch, Hundal and Park [2] showed the
following theorem.

Theorem 3.3. Let T be a linear contractive operator on a Hilbert space H; i.e., ||T| < 1,
and let M be a linear closed subspace of H. Consider the following statements;



1. limy, o ||T™z — Ppz|| = O for each x € H;
2. M = F(T) and {T™z} converges to 0 for each x € M*;
3. M =F(T) and T"x — T"'z — 0 for each z € E.

Then, all statements are equivalent.
Using Theorem 3.2, we can extend Theorem 3.3 to that of a Banach space.

Theorem 3.4. Let E be a smooth, strictly conver and reflexive Banach space, let M be a
linear closed subspace of E such that there exists a sunny generalized nonexpansive retraction
R of E onto M and let T be a linear contractive operator on E. Then the following are
equivalent:

1. {T™z} converges to the element Rz of M for each z € E;
2. M = F(T) and {T"z} converges to 0 for each z € (JM),;
3. M =F(T) and T"x — T" 'z — 0 for each z € E.

Furthermore, if (1) holds, then R = Rp(y = J _IHJF(T)J, where I yp(1) is the generalized
projection of E* onto JF(T).

Remark 3.5. If M is a linear closed subspace of a Hilbert space H, then there exists the
metric projection P of H onto M. In a Hilbert space, the metric projection P of H onto M
is cotncident with the sunny generalized nonezrpansive retraction Ry of H onto M.

Applying Theorem 3.2, we obtain a strong convergence theorem of Mann type [14] for linear
contractive mappings in a Banach space.

Theorem 3.6. Let E be a smooth and uniformly conver Banach space and let T be a linear
contractive operator on E. Let {ay,} be a sequence of real numbers such that 0 < a, < 1
and >0 an(l — a,) = co. Then a sequence {T,} generated by t; = x € E and zpqq =
anZn + (1 — ap)Tz, for alln = 1,2,3,... converges strongly to the element Rx of F(T),
where R = Rp(ry = J7'1 JrTyJ and Iy is the generalized projection of E* onto JF(T).

From Theorem 3.2, we can show a mean strong convergence theorem for linear contractive
operators in a Banach space; see Yosida [21].

Theorem 3.7. Let E be a smooth, strictly convex and reflexive Banach space and let T be a
linear contractive operator on E. Then, for each x € E, the Cesdro means S,z = % > he1 Tk
converge strongly to the element Rx of F(T), where R = Rp(ry = J -1 Jrm)J and I yp(r)
is the generalized projection of E* onto JF(T).

Remark 3.8. In Theorem 3.7, note that the point z = limy, o Spz is characterlized by the
sunny generalized nonezpansive retraction R = Rpiry = J ' pr)J of E onto F(T). Such
a result is still new even if the operator T is linear.

4  Generalized Conditional Expectations

Motivated by Lemmas 2.1 and 2.2, we can define the following nonlinear operator: Let E
be a smooth, strictly convex and reflexive Banach space and let J be the normalized duality
mapping from E onto E*. Let Y* be a linear closed subspace of the dual space E* of E.
Then, the generalized conditional expectation Ey« with respect to Y* is defined as follows:

By« := J My J,



where Iy~ is the generalized projection from E* onto Y™*; see [4]. Let E be a normed linear
space and let z,y € E. We say that z is orthogonal to y in the sense of Birkhoff-James,
denoted by = L y, if ||z]| < ||z + Ay|| for all A € R. We know that for z,y € E, z L y if
and only if there exists f € J(z) with (y, f) = 0; see [16]. In general, z 1 y does not imply
y L z. An operator T of E into itself is called left-orthogonal (resp. right-orthogonal) if for
each z € E, Tz L (z — Tx) (resp. (zx —Tz) L Tz). The following theorems are in Honda and
Takahashi [4].

Theorem 4.1. Let E be a smooth, strictly convex and reflexive Banach space and let Y* be a
linear closed subspace of the dual space E*. Then, Ey~ with respect to Y* is left-orthogonal,
i.e., foranyx € E,

FEy«z L (x — Ey-x).

Theorem 4.2. Let E be a smooth, strictly convex and reflexive Banach space and let I be
the identity operator of E into itself. Let Y* be a linear closed subspace of the dual space E*
and let Ey~« be the generalized conditional expectation with respect to Y*. Then, the mapping
I — Ey~ is the metric projection of E onto Y. LetY be a linear closed subspace of E and
let Py be the metric projection of E onto Y. Then, I — Py is the generalized conditional
ezpectation By i.e., | — Py = Ey ..

Let F be a normed space and let Y7,Y, C E be linear closed subspaces. If Y3 NY; = {0}
and for any x € E there exists a unique pair y; € Y1,y2 € Y5 such that z = y; + ¥, and any
element of Y; is BJ-orthogonal to any element of Y, i.e., y; L y2 for any y; € Yq,y2 € Yo,
then we represent the space FE as

E=Y1€9Y2andY1_LY2.

The kernel of T : E — E is denoted by ker(T), i.e., ker(T) = {z € E : Tz = 0}. Using
Theorem 4.2, we have the following theorem [4].

Theorem 4.3. Let E be a smooth, strictly convex and reflexive Banach space and let Y*
be a linear closed subspace of the dual space E* of E such that for any v,y € JY*,
y1+y2 € J7YY*. Then, J-1Y™* is a linear closed subspace of E and the generalized conditional
ezpectation Ey« is a norm one linear projection from E to J~YY*. Further, the following hold:

(i) E = J7Y* @ ker(Ey+) and J~'Y* L ker(Ey-);
(it) I — Ey- is the metric projection of E onto ker(Ey+).

In general, a nonzero linear bounded projection on a Banach space has a norm which is
more than or equal to 1. So, a norm one linear projection plays an important role in Func-
tional Analysis. Using Nonlinear Functional Analytic Methods, we derive the following two
representation theorems for norm one linear projections; see Honda and Takahashi [3].

Theorem 4.4. Let E be a smooth, strictly convex and reflexive Banach space and let P :
E — E be a norm one projection with Y = {Pz : x € E}. Then, JY is a linear closed

subspace of E* and P is the generalized conditional expectation Ejy with respect to JY, i.e.,
P=J"1 gy d.

Theorem 4.5. Let E be a smooth, strictly convexr and reflexive Banach space and let Y* be
a linear closed subspace of E*. Let P be a projection of E onto J~Y* such that | Pz —m| <
lz — m|| for allz € E and m € J~'Y*. Then, J7Y* is a linear closed subspace of E and P
is the generalized conditional ezpectation Ey~«. Further, P is a norm one linear projection.
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ALUTHGE ITERATIONS OF WEIGHTED
TRANSLATION SEMIGROUPS

Mi Ryeong Lee

ABSTRACT. The problem whether Aluthge iteration of bounded opcerators on a
Hilbert space H is convergent was introduced in {10]. And the problem whether
the hyponormal opcrators on H with dim H = oo has a convergent Aluthge
itcration under the strong operator toplogy remains an open problem ([11]). In
this note we consider symbols with a fractional monotone property which gen-
cralizes hyponormality and 2-cxpansivity on weighted translation scmigroups,
and prove that if {S¢} is a weighted translation semigroup whose symbol has
the fractional monotone property, then its Aluthge itcration converges to a
quasinormal opecrator under the strong opcrator topology.

1. Introduction

This was presented at the international conference: The Seminar on Function
Spaces, which was held at Hokkaido University in Japan on December 23-25, 2010.
This note is the joint work with C. Burnap, I. B. Jung and J. W. Park, which was
published in J. Math. Anal. Appl. Vol. 352 in 2009.

Let H be a separable infinite dimensional complex Hilbert space and let B(H)
be the algebra of all bounded linear operators on H. An operator T' € B(H)
has a unique polar decomposition T = U|T|, where |T| = (T*T)% and U is a
partial isometry. For T' = U|T| in B(H), the Aluthge transform of T is defined
by T = |T|2U|T|% (cf. [1],[10]). Several operators related to such transforms are
well-developed and introduced in detail ([8]). For every T in B(H), the sequence
of Aluthge iterates of T is defined by T = T and T("+1) = (T(”))~ for n € N. In
[11] the authors continued to study this sequence {T(")} of iterates, and discussed
the convergence of Aluthge iterations in some special cases. In particular, it was
shown in [4] that the sequence {T™}2 ; of iterated Aluthge transforms of T need
not converge in the strong operator topology in general. However, it was proved
that the sequence {T™} (of nxn complex matrices) converges to a normal operator
(cf. [3], [2]). In this note we discuss Aluthge iteration of a weighted translation
semigroup {S;} with symbol ¢ which will be defined below.

Let Ry := (R4, p) be the Lebesgue measure space on the set of nonnegative real
numbers and let L? := L?(R) be the Hilbert space of square integrable Lebesgue

1991 Mathematics Subject Classification. 47D06, 47B20.
Key words and phrases. weighted translation semigroup, Aluthge transform, Aluthge itcra-
tion, hyponormal opcrator.
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measurable complex valued functions on Ry. Let B(L?) be the algebra of all
bounded linear operators on L2. A family {S; : t € R, } in B(L?) is a semigroup if
So =TI and S;Ss = Siys for all t and s in Ry. In particular, a weighted translation
semigroup {S;} on L? is defined by

= .
(Sef)(x) = { Fpfley) i<
0 if 0<z<t,
where ¢ is a measurable, almost everywhere non-zero function from R, into C that
is called the symbol of {S;}. A semigroup {S;} is strongly continuous if, for each
f in L?, the mapping ¢t — S;f is continuous from R, into L. It follows from [5,
p.619] that {S;} is strongly continuous on R, if and only if there exist M,w > 0

such that
oz + 1)

¢(z)
For brevity we will assume that ¢ is continuous on R throughout this article. Since
the weighted translation semigroups with symbols ¢ and |¢| are unitarily equivalent,
we will assume throughout this paper that all symbols of weighted translation semi-
groups are positive, and also assume that {S;} is a strongly continuous semigroup
with symbol ¢. (See [9] for more informations about semigroups.)

< Me*t, teR,. (1.1)

€esSSUP,cp,

2. Fractional monotone properties
Let ¢ be a symbol satisfying (1.1) and let

) $E+(EADY)  ipy < g
k 1 s,
¥ (z) = {

Szt (k-1)1) (2.1)
0 if 0<z<t,

for k € Ng :=NU{0} and ¢ € R,. Then {@ﬁk)(L)},;“;o is a sequence of measurable
functions on R,..

Let ¢ be a symbol satisfying (1.1). The symbol ¢ is called to have the frac-
tional monotone property (we write f.m.p.) if the sequence {<1>§"“) (z)}r>0 asin (2.1)
is monotone pointwise on [t,00), for each ¢ € Ry. And, when {@ﬁ"" () }e>o is
monotone increasing (decreasing, resp.) pointwise on [t,00) and for each ¢ € R,
we say that the symbol ¢ has the fractional monotone increasing (decreasing, resp.)
property (we write fm.ip. (f.m.d.p, resp.)).

Let ¢ be a symbol with the f.m.p. Then, since

o(z+ (k+ 1)t) < ” o(x + 2t)
) T #(x)

< Me*, x>t
dlz+ (k—1)t sMe, F=h

oo

{<I>§k)(:l:)}§°=0 is bounded sequence pointwise on Ry for ¢ € Ry. Therefore a mea-
surable bounded function limy_, ‘I>§k)(zz:) exists and we denote it by

<I>§°°)(:t) = klilgo @gk)(m). (2:2)

In particular, if ¢ has the fm.i.p. (or, fm.d.p.), then <I>§°°)(x) = SUp;>g q>§"‘)(:z;)
(or, infr>o <I>§k) (2)).
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Recall from [6, Lemma 3.3] that a weighted translation semigroup {S;} with
symbol ¢ is hyponormal if and only if

d(x —t)p(x + 1) > $*(x), = > t. (2.3)

PROPOSITION 2.1. Let {S:} be a weighted translation semigroup with symbol
¢. Then the following assertions are equivalent:

(i) {St} is hyponormal;
(ii) ¢ has the f.m.i.p.;
(iii) log ¢ is convez.

Recall from [7] that T in B(H) is k-ezpansive if

> (=P (ﬁ) |IT?h|* <0, heH.

0<p<k

A simple computation shows that the k-expansivity of {S;} is equivalent to the
inequality

Z (=1)? (f)) *(x+pt) <0, 2R, teER,. (2.4)

0<p<k

PROPOSITION 2.2. Let {S:} be a weighted translation semigroup with symbol
¢. Then {S:} is 2-expansive if and only if $*(x) is concave, and thus 2-expansivity
implies that log ¢ is concave.

COROLLARY 2.3. Iflog ¢ is concave, then ¢ has f.m.d.p. Thus the symbol ¢ of
any 2-expansive weighted translation semigroup {S;} has the f.m.d.p.

REMARK 2.4. There are several classes of operators with weak hyponormality,
for example, p-paranormal operators, absolutely p-paranormal operators, A(p)-class
operators, etc. (These definitions will be defined below.) The symbols of these
weighted translation semigroups have f.m.p., too. Recall that T is p-hyponormal
if (T*T)P > (T'T*)?; p-paranormal if |||T|P U|TPz| > |||T|Pz|? for all unit vectors
x € M; absolute p-paranormal if |||T|PTz| > ||Tz|"™ for all unit vectors = € H;
and A(p)-class if (T*|T|?*T)Y®+1) > |T|?, (0 < p < 00) (cf., [8],[12]). It is known
that “p-hyponormal = A(p) class = absolute p-paranormal”; “p-hyponormal =
p-paranormal”. In fact, some direct computations show that if {S;} is a weighted
translation semigroup, then {S;} is one of the above weak hyponormal semigroups
if and only if log ¢ is convex, which is equivalent to that {S;} is hyponormal.

EXAMPLE 2.5. Let us consider a symbol ¢(z) = 2—22 for 0 < z < 1 and ¢(z) =
1 for > 1 satisfying (1.1). Since log¢ is not convex, a translation semigroup
{St} with symbol ¢ is not hyponormal. But, ||Si|| = ||¢(z)/é(x — )|, = 1 and
IS¢l = ll¢(x)/p(x — nt)||, = 1. Thus {S;} is normaloid.

lloo
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3. Convergence of Aluthge iterations

Let {U;} be the isometric semigroup in B(L?) defined by (Uzf)(z) = f(x —t)
for > t and 0 otherwise. Then the polar decomposition of a weighted translation
semigroup S; is represented by U |S:|. Note that Sf f(z) = 2ath) ¢ (z +t) and

ot $(@)
1S f (@) = 25 f ().

The following is the main theorem of this note.

THEOREM 3.1. Let {S:} be a weighted translation semigroup whose symbol ¢

has the f.m.p. Then the sequence {g,fn) In>1 of Aluthge iteration converges to a
quasinormal operator A in B(L?) under the strong operator topology (SOT), where

(e0) 11/ ) g P
Atf(:v):{ 2 (2)'/2Usf () Z}ctf;;-a. (3.1)

We need several lemmas to prove this theorem.

LEMMA 3.2. Let {S;} be a weighted translation semigroup with symbol ¢. Sup-
pose that n € N. Then

n—1 mh/en
() ppon oz + (k+1)8)\ (= )/ .
501 = 11 <¢(T+EE——1>?>) fa—t), =2t (32)

and 0 otherwise.

The next Lemma and Proposition use the function ® introduced in (2.1) and
(2.2).

LEMMA 3.3. Suppose that {ax}32, is a sequence of real numbers that converges
to a. Then
(i) 4t holds that
i 1 < (n o
w2 () o =
k=0
(i) o {@ﬁn) () }n>0 is a sequence of positive real numbers that converges to
<1>§°°)(:1:) pointwise on R, , then I];;;(Qg"') (x)) kh converges to
(8% (2))1/2 pointwise on R, as n — oo.

Proof of Theorem 3.1. Suppose that ¢ has the fm.p. Let ¢ € R, and let
Ei:={zeR;: ’<I>§°°) (:1;)’ < |94/l }- Then obviously the complement of E; has

measure zero. To show the SOT-convergence of {gt(") }n>1, for f € L?, we consider
115 f(z) — A¢f(2) L2, where A, is as in (3.1). Note that <I>§°°) (z) =3 (z - 1)
since <I>§°°)(:L') is periodic w.r.t. ¢ € R;. And we have that

oo
n—1
_ /R +

"1:11 (q?gk)(w))(";l)/gﬂ ~ q)goo)(:l: — /2

k=0

2
IS5 f(z) — Aef(2)]22 1 (& = ) du

Il

2

I1 (28 @) G _ e @] (g an

k=0




ALUTHGE ITERATIONS OF WEIGHTED TRANSLATION SEMIGROUPS

Applying Lemma 3.3, and by using the Lebesgue dominated convergence theorem,
we see that ||S™ f(z) — A¢f(z)]2, — 0 as n — oo.

On the other hand, since A} f(z) = ®° (2)1/2f(z+1t), by some computations,
we have that

(c0) (., Fly — i €
(NA)AS() = M(di B (@) = { BT Ksn

Hence A; is quasinormal. Hence the proof is complete. [

EXAMPLE 3.4. We can construct recursively the symbol ¢ of a weighted transla-
tion semigroup {.S;} whose Aluthge iteration {§§n) }n>1 converges to a quasinormal
operator in B(L?) under SOT. This means that examples applied by Theorem 3.1
are abound. For example, let fo(r) =z +1 and let f,(z) = nLH(»L —n)+ fn-1(n),
n<xr<n+l, for n € N. Define ¢(z) = efr(@) forn <z <n+1andn e N,.
Then obviously ¢(z) satisfies (1.1) and log ¢(x) is concave. Thus, by Theorem 3.1,
Aluthge iteration converges to a quasinormal operator A; in B(L?) under SOT.
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FIXED POINT THEOREMS IN A VECTOR LATTICE

TOSHIHARU KAWASAKI

ABSTRACT. In this talk we introduce a topology in a vector lattice and we
show Takahashi’s, Fan-Browder’s, Shauder-Tychonoff’s and Kirk’s fixed point
theorems in a vector lattice.

1. TOPOLOGY IN A VECTOR LATTICE

First we introduce a topology in a vector lattice introduced by [4]; see also [6,7].

Let X be a vector lattice. e € X is said to be an unit if e Az > 0 for any x € X
with £ > 0. Let Kx be the class of units of X. In the case where X is the set of
real numbers R, Kg is the set of positive real numbers. Let X be a vector lattice
with unit and let Y be a subset of X. Y is said to be open if for any z € Y and
for any e € Cx there exists € € Kr such that [z — e,z + ce] C Y. Let Ox be the
class of open subsets of X.

Let X be a vector lattice with unit and Y a vector lattice. Let Uy (Kx,>) be
the class of {ve | e € Kx} satisfying the following conditions:
(U1) v €Y with ve > 0;
(U2)F ve, > e, if €1 > e;
(U3)® For any e € Kx there exists 6(e) € Kr such that vg)e < %ve.
Let zoe ZC X and f: Z — Y. f is said to be continuous at zg if there exists
{ve} € U5 (Kx,>) such that for any e € Kx there exists § € Kgr such that for any
z € Z if |z — zo| < de, then |f(z) — f(zo)| < ve.

Let X and Y be vector lattices with unit, Z C X and f : Z — Y. Suppose
that there exists P C Y satisfying the following conditions:
(P1) P is open and convex;
(P2) Ifx € Pandz<y,thenye€ P;
(P3) 0¢P;
(P4) {z|z>0}CP.
Let Py be the class of the above P’s. f is said to be upper semi-continuous with
respect to Pe Py if {z | y— f(z) e P} € Ox NZ for any y € Y. f is said to be
lower semi-continuous with respect to P € Py if {z | f(z) —y € P} € Ox N Z for
any y € Y. f is said to be semi-continuous with respect to P € Py if it is upper
and lower semi-continuous with respect to P € Py.

A vector lattice is said to be Archimedean if it holds that £ = 0 whenever there
exists y € X with y > 0 such that 0 < rz < y for any r € Kg.

Let X be an Archimedean vector lattice. Then there exists a positive homomor-
phism f from X into R, that is, f satisfies the following conditions:

(H1) f(oz+ By) = af(z) + Bf(y) for any z,y € X and for any a, 3 € R;

2000 Mathematics Subject Classification. 4TH10.
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(H2) f(x) >0 for any z € X with z > 0;

see |7, Example 3.1]. Suppose that there exists a homomorphism f from X into R
satisfying the following condition instead of (H2):

(H2)* f(x) > 0 for any z € X with z > 0.

For a vector lattice endowed with the topology above we can show the following
lemmas; see [6,7].

Lemma 1.1. Let X be an Archimedean vector lattice with unit and {z1,...,2,} a
subset of X. Then co{z1,...,Zn} is homeomorphic to a compact and convez subset
of R™.

Lemma 1.2. Let X be an Archimedean vector lattice with unit, Y a vector lattice
with unit, Z C X and f a mapping from Z into Y. Suppose that there exists a
homomorphism from X into R satisfying condition (H2)* and that Py # 0.

Then f is semi-continuous with respect to any P € Py if it is continuous at any
T € Z.

Lemma 1.3. Let X be an Archimedean vector lattice with unit, Y a vector lattice
with unit, zo € Z C X and f a mapping from Z into Y. Suppose that there exists
a homomorphism from X into R satisfying condition (H2)*.

Then f is continuous at zg in the sense of topology if it is continuous at xg.

2. TAKAHASHI'S AND FAN-BROWDER’S FIXED POINT THEOREMS

By using the lemmas above, we can show the following theorem, which is a vector
lattice version of Takahashi’s fixed point theorem.

Theorem 2.1. Let X be a Hausdorff Archimedean vector lattice with unit, Y a
compact subset of X and Z a convez subset of Y. Suppose that a mapping f from
Z into 2Y satisfies

(0) f~(y) is convex for anyy €Y,
and there exists a mapping g from Z into 2Y satisfying the following conditions:

(1) g(2) is a subset of f(z) for any z € Z;
(2) g (y) is non-empty for any y € Y;
(3) g(2) is an open subset of X for any z € Z.

Then there exists zg € Z such that zg € f(2p).

In the above theorem, putting Z = Y and g = f, the following theorem is
obtained. It is Fan-Browder’s fixed point theorem in a vector lattice.

Theorem 2.2. Let X be a Hausdorff Archimedean vector lattice with unit and Y
a compact convez subset of X. Suppose that a mapping f from'Y into 2Y satisfies
the following conditions:

(1) f~Y(y) is non-empty and convez for any y € Y;
(2) f(y) is an open subset of X for anyy €Y.

Then there exists yp € Y such that yo € f(yo)-



3. SCHAUDER-TYCHONOFF’S FIXED POINT THEOREM

By using the lemmas above and Theorem 2.2, we obtain the following.

Theorem 3.1. Let X be a Hausdorff Archimedean vector lattice with unit and Y

a compact convexr subset of X. Suppose that f : Y — X 1is continuous. Then it
holds that (1) or (2).

(1) There exists yo € Y such that f(yo) = yo-
(2) There exists zo € Y such that f(zo) # xo and |zo — f(zo)| — |y — f(x0)| & P
for any P € Px and for anyy €Y.

By using the theorem above we can show the following Schauder-Tychonoff’s
fixed point theorem in a vector lattice.

Theorem 3.2. Let X be a Hausdorff Archimedean vector lattice with unit and Y
a compact conver subset of X. Suppose that f : Y — Y is continuous. Then there
exists yo € Y such that f(yo) = yo-

4. FIXED POINT THEOREM FOR A NONEXPANSIVE MAPPING

Let X be a vector lattice and Y -a subset of X. A mapping f from Y into Y is
said to be nonexpansive if |f(z) — f(y)| < |z — y| for any z,y € Y. In this section
we consider a fixed point theorem for a nonexpansive mapping.

Let X be a Hausdorff Archimedean vector lattice with unit and Y a subset of
X. We say that Y has the normal structure if for any compact convex subset K,
which contains two points at least, of Y there exists x € K such that

Vie-v< V le-yl

yeK z,yeK

Theorem 4.1. Let X be a Hausdorff Archimedean vector lattice with unit and K a
non-empty compact convexr subset of X. Suppose that K has the normal structure.
Then every nonezpansive mapping from K into K has a fized point.

5. FIXED POINT THEOREM FOR THE COMMUTATIVE FAMILY
OF NONEXPANSIVE MAPPINGS

For any nonexpansive mapping f from K into K let Fx(f) be the set of fixed
points of f.

Theorem 5.1. Let X be a Hausdorff Archimedean vector lattice with unit, K a
compact convez subset of X and {f; | i =1,...,n} the finite commutative family of
nonezpansive mappings from K into K. Suppose that there exists a homomorphism
from X into R satisfying condition (H2)® and K has the normal structure. Then
Niz1 Fx (f:) is non-empty.

Theorem 5.2. Let X be a Hausdorff Archimedean vector lattice with unit, K a
compact convex subset of X and {f; | i € I} the commutative family of nonezpansive
mappings from K into K. Suppose that there exists a homomorphism from X into
R satisfying condition (H2)* and K has the normal structure. Then ();c; Fx(f:)
18 non-empty.
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ON THE FOURIER TRANSFORM ON L%*(R)

YOSHIHIRO SAWANO, EHEE (KYOTO UNIVERSITY HAAZ)

ABSTRACT. We shall indicate how to usc the new deccomposition formula of the phasc space
to prove a deep, fundamental and well-known theorem for Fourier analysis.
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An Argument of a Function in H'/?
Takanori Yamamoto (Hokkai-Gakuen University)

This is a joint work with Takahiko Nakazi.

Abstract. Let H'/? be the Hardy space on the open unit disc. Let k be a 1/2-strongly outer
function in H2. Let ¢ be a unimodular function on the unit circle T such that ¢ = z"|h|/h,
n > 0. We study a nonzero function f in the Hardy space H'/? such that ¢f is nonnegative
a.e. on T. Then we generalize a theorem of Neuwirth-Newman-Helson-Sarason with a simple
proof.

1 Hardy Space

Definition. If 0 < p < oo we denote by H” the class of analytic functions f(z) on the open
unit disc D = {|z| < 1} for which the integrals

1/p

My(r, f) = {/0% lf(rew)}”dﬁ/%r}

are bounded as r — 1. H* is the class of all bounded analytic functions f(z) on D.
(f € H® & My(r, f) = maxo<g<or | f(re?)| are bounded as r — 1.)

The following theorem is well known. We can consider H? functions on the unit circle T =
{l]z| = 1}. H? on T is exactly the class of L? functions on T whose Fourier coefficients vanish
for all n < 0.

Theorem.  For each f(z) in HP, the nontangential limit f(e®) exists almost everywhere,
f(e%) € LP(T) and log | f(e®)| is integrable unless f(z) = 0.

Definition. If Q € H™ satisfies |Q(e?)| = 1 a.e. 0, then Q is said to be an inner function.
If g € HP satisfies

2m eit +z i
o) = o { [ G g ot 2x

et — 2

then g is said to be an outer function. The following theorem is well known.

Inner-outer factorization theorem.
Every nonzero function f(z) in H? has a unique factorization of the form f(z) = Q(z2)g(2),
where Q(z) is an inner function, and ¢(z) is an outer function for H”.

Hence, every nonzero function f(z) in H'/? has a unique factorization of the form f(z) =
Q(2)g(z), where Q(z) is an inner function, and g(z) is an outer function for H'/2. By the
definition of the outer function, every nonzero function f(z) in H/? has a unique factorization
of the form f(z) = Q(2)k(z)?, where Q(z) is an inner function, and k(z) is an outer function
for H.



Definition. Let 0 < p < oco. If a nonzero function h in H? satisfies the following condition
(*), then h is said to be a p-strongly outer function.

(*) If f is a nonzero function in H” such that f/h > a.e. on T, then f = vh for some positive
constant .

A 1-strongly outer function is also called as a rigid function and if it has a unit norm then it is
an exposed point of the unit ball of H*.

If an h in H' satisfies h=! is in H' or Reh > 0, then h is a l-strongly outer function.
Theorem.([3]) If 0 < p < 1/2, then there is no p-strongly outer function.

Remark. h is a p-strongly outer function = h is an outer function in H?.

Proof. Suppose h € HP is not an outer function. Then there exists a nonconstant inner function
@ and an outer function g € H? such that h = Qg. If f = (1+Q)?g, then f/h = |1+ Q> > 0,
because |@| =1 a.e. on T. This is a contradiction. O

Neuwirth-Newman-Helson-Sarason (1967)
If fisin H/? and f > 0 a.e. on T, then f is a constant.

This theorem implies that a constant 1 is a 1/2-strongly outer function, and

If 0 < p < 1/2, then a constant 1 is not a p-strongly outer function, because
f(z)=2/(z+1)* = f € Npc1jeHP, f >0 a.e. on T.

In the following theorem, if n = 0 then we consider that H?=1(z —a;)(1—a;2) = 1.

Helson-Sarason (1967)

Let f be a nonzero function in H*? and n > 0. If 2*f > 0 a.e. on T, then there are complex
numbers a; such that [a;| <1 (1 < j <n)and f = yI[}-;(2—a;)(1 —a;z) where v is a positive
constant.

Simple proof of Helson-Sarason’s theorem.

Suppose f # 0. By the inner outer factorization theorem, there is an inner function @ and an
outer function k € H! such that f = Qk?. Since |Q| =1 a.e. on T,

'f>0 = QP =|k|*> = 7"Qk=k = 2"Qk = k.

Since z"H* N H' = span{l, z, ..., 2"}, k is a polynomial such that degk = ny < n. Hence there
are complex numbers a; (1 < j < ng) and c such that

ng

k=c]](z - a;).

j=1

Therefore

ng

f = QR = K = |ef'z" ™ [ (= 0))(1 ~ 552).

J=1

— 45—



Let a; =0 (ng +1 < j <n). Then

F=1eP [ - ap)(1 - 2).

j=1

If |aj| > 1 then

_ 1 1
(z = a;)(1 = Tj2) = |a;|*(z — a:,-)(l - a—jz)-
Hence we can take |a;| <1 for all j. O

2 Problem and Main theorem

Problem.  Suppose ¢ = z"|h|/h,n > 0 and h is a 1/2-strongly outer function. Find f in
H'/? such that ¢f > 0 a.e. on T.

Remark. If .
f=7h]1](z - a;)1 —a52)

j=1
then

of =~ [] |z —a;]* > 0.

j=1
By the following theorem, we show that the converse is also true.

Theorem 1. ([5]) Suppose ¢ = z"|h|/h, n > 0, and h is a 1/2-strongly outer function.
Let f be a nonzero function in HY/2. If of > 0 a.e. on T, then there are complex numbers
aj such that |a;| < 1(1 < j <n)and f = yh ]I}, (2—a;)(1—a;z) where 7 is a positive constant.

3 Proof of Theorem 1

We use Lemma 1 to prove Theorem 1.

Lemma 1. ([5]) Let h = h{ be a 1/2-strongly outer function and n > 0.
Suppose zZ"hg/ho = Qk/k where @ is an inner function and k is an outer function in H®.
= (Q is a finite Blaschke product with deg@ < n.

Proof of Lemma 1. Suppose Q) = ¢ - - - ¢p4+1 and g¢; is a nonconstant inner function for
1 < j <n+ 1. Then there is an inner function g;1 such that

_1-400)g; 1-4;(0)g _ T 1-4i(0)g
7 g —¢;(0)  1—¢;(0)g, 1—q;(0)g;

Hence .
__ =n+1 Tﬁ TL+ (1 - qJ(O)—@)
o [ p—

K IL +11(1 —¢;(0)g;)

N
II
?T‘l??‘l
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Let hy = k H”"'l(l — q;(0)g;). Then h; is an outer function, and there is an inner function Q;
such that

ho @—hl (4 2)(1+ Q)

ho " h T T+ 2+ Qo)hy
Since hg is 1/2-strongly outer, h2 = v(1 + 2)%(1 + Q;)?h?, for some v > 0.
Hence z(1 4 Q1)?h%/h% > 0. Since h? is 1/2-strongly outer, h2 = v12(1 + Q;)%h2, for some
7 > 0. This contradicts that hg is outer. Therefore @ is a finite Blaschke product with
deg@Q <n. O

Proof of Theorem 1. Since h isal /2-strongly outer function, h = h2 for an outer function
ho in H*. Since ¢ = z"|h|/h = z"hg/ o,

2"hg = cpho:>z"h0€HlﬂgoH1=>{zjh0} OCHlﬂ(le

Since f is a nonzero function in H'/2, there is an inner function ¢ and an outer function k in
H* such that f = gk?. Since of >0 a.e. on T,

_ il
f

Since gk = ¢k, gk € H' N pH". Hence H' N pH? contains {2/ ho}j—o and gk. Since ho(0) # 0,
there exists an analytic polynomial p,, with degp, = ng < n and s € H' such that gk — p,hy =
z"*1s. Suppose s # 0. If g is the outer part of s then 0 # 2"*'g € H' N pH!. Therefore there
exists a function ¢ € H* such that 2"*! = ). Since |¢| = 1, ¥ = Qg for some inner function
Q. Thus z"ho/ho = v = 2"'Qg/g. Let Q; = 2"*'Q. Then z"ho/ho = Q1g/g. By Lemma 1,
Q1 is a finite Blaschke product with deg @1 < n. This contradiction implies that s = 0, and so
gk = pnho. Hence there are complex numbers a; (1 < j < ng) such that gk = cho [T} ..1(z — ;)
where c is a complex constant, |a;| <1 (1 <j<mnj)and oy >1(n+1<5< no) and so
q =112 (2 — ;) /(1 — @z). Hence k = cho [T;1, (1 — @;2) [1;2,,41(2 — a;). Therefore

_
__qk_

ni no
f=ad* = [[(z—a)(1—a52) ] (2#—ay)*
j=1 j=n1+1

Since pf > 0 and 2™ 7L, (2 — a;)(1 — @;z) > 0, we have

o

CZZ"_m H (Z _ aj)2 Z 0.

J=ni+l
Hence n no
C22n—-n1 H (z _ Otj)Z — |C|2 H lz _ aj|2,
Jj=ni1+1 j=ni1+1
and so

no no

c [[ G—og)=c"™ [ (1-a52).

j=ni1+1 j=ni+1

Therefore n = ng and |oj| =1 (n1 +1<j<mng). O



4 Corollary.

Lemma 2. Ifhisin H*2 and ! is in H* then h is a 1/2-strongly outer function.

Corollary 1. ([5]) Suppose F is a nonnegative function such that ¢F belongs to H'/? for

some inner function ¢. If ¢ =1 then F' is a nonnegative constant. If ¢ = [[;_, (2 — b;)(1 — b;z)
and |b;| < 1 (1 < j < n) then there are complex numbers a; such that |a;] < 1 (1 < j < n) and

& (2=a)(1—7a;2)
F=rllo)a=a

where v is some positive constant.

Proof of Corollary 1. If g = 1 then F' is a nonnegative constant because 1 is a 1/2-strongly
outer function. If f = ¢F, then f belongs to HY2. Since g = 2" o1 11— b;z]%/(1 — b;z)? and
f/a >0, we have f/(z"[Tj_;(1 — b;2)72) > 0. By Lemma 2, [T}, (1 — b;2)~% is a 1/2-strongly
outer function. By Theorem 1, there are complex numbers a; such that |a;| <1 (1 < j < n)
and

f=111G- a1~z -5,

where 7 is some positive constant, and so

F o] =T

a;)( %%) o
i=1 (2= b;)(1 = b;2)
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BANACH SPACES OF HARMONIC FUNCTIONS
ON RIEMANN SURFACES !

MITSURU NAKALI 2

There are two categories of Banach spaces of harmonic functions on Riemann
surfaces: one consists of Hardy spaces of exponents between 1 and oo and their
subspaces; the other consists of the Dirichlet space and its subspaces. We will
solve the problem whether these spaces are reflexive or not and also the same one
for separability. We will give applications of the result obtained to the inverse
inclusion problem in the classification theory of Riemann surfaces, which was one
of the motivation of our present study beyond our mere curiosity.

1. Inclusion relations of Banach spaces. We denote by H(R) the linear space
of real valued harmonic functions on a Riemann surface R. For each 1 < p < oo
we let HM,(R) be the set of u € H(R) for which the subharmonic function |u|?
admits the least harmonic majorant 4 € H(R)* on R. It forms a Banach space
equipped with the norm |Ju||, := @(a)}/? with a € R an arbitrarily chosen but then
fixed reference point in R. For p = oo we set HMy(R) for the linear space of
bounded harmonic functions v on R. It forms a Banach space equipped with the
supremum norm ||u/|o. The Banach spaces HM,(R) are referred to as the Hardy
space of exponent p € [1,00]. Observe that

(1.1) HMy(R) D HM,(R) (1=p

A
A

q £ ).

The space HM;(R) is also denoted by HP(R). It forms a complete vector lattice
and because of the identity HP(R) = H(R)* © H(R)* each member of HP(R)
is said to be essentially positive on R. Similarly H My (R) is denoted by HB(R),
which is together with HP(R) the traditional notation in the classification theory
of Riemann surfaces (cf. e.g. [1], [2], [9]). Since HB(R) C HP(R) and HP(R) is a
complete vector lattice, we can consider the monotone envelope HB'(R) of HB(R)
so that u € HP(R) belongs to HB'(R) if and only if u = limns,—y00(u An) V (—n)
locally uniformly on R, where V and A are lattice operations in HP(R). Functions

1The expanded version of the lecture delivered at the 19th Seminar on Function Spaces ,2010,
held on December 23-25, 2010 in Room 205 of Faculty of Sci Bldg 3, Hokkaido University.
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in HB'(R) are referred to as being quasibounded. It is viewed to be a Banach space
as a Banach subspace of HP(R).

As a Banach space in another category we denote by HD(R) the linear space of
Dirichle finite harmonic functions u on R. Here the Dirichlet finiteness of u means
that the Dirichlet integral D(u) := [, du A *du of u taken over R is finite. If
both of v and v are in HD(R), then we can define their mutual Dirichlet integral
D(u,v) := [, duA*dv as a finite number. Then HD(R) is not only a Banach space
but also a Hilbert space under the inner product (u,v)gp = u(a)v(a) + D(u,v).
The Hilbert space HD(R) is said to be the Dirichlet space. We also consider the
linear space HBD(R) := HB(R) N HD(R). It forms a Banach space under the
norm ||ullgpp = |||l + v/D(u). Then we have the following table of inclusion
relations.

HB(R) C HM,(R)
¢
HBD(R) ¢ HB'(R) C HP(R)
S ¢
HD(R)

Here the exponent p in the above table is restricted to 1 < p < oo. Every space
HX(R) in the above table is a subspace of HP(R) as vector lattices. Let HX(R)
and HY (R) be any tow spaces in the above table. The inclusion HX (R) C HY (R)
merely means the set theoretical inclusion but automatically HX (R) is a subspace
of HY (R) as vector lattices. The Banach space structure of HX(R) has nothing
to do with that of HY (R) in general. But if HX (R) happens to be identical with
some different HY (R) as sets, then the Banach open mapping principle assures
that Banach spaces HX(R) and HY (R) are homeomorphically isomorphic.

At this point we add a word on the base Riemann surface R for the six Banach
spaces HX(R) (X =P, B', M, (1<p <o), B, D, BD). It is a traditional use
of terminology to call R open or closed accordind as R is noncompact or compact,
respectively. The total space of harmonic functions H(R) = R if and only if R is
closed; ”if part” is nothing but the rephrasing of the maximum principle but ”only
if part” is not at all trivial. Anyway it is quite reasonable to assume that R is open
in our present study. Open Riemann surfaces are classified into two categories:
hyperbolic and parabolic. An open Riemann surface R is said to be hyperbolic (or
noparabolic) if R carries the Green function with arbitrarily given pole { in R,
which is the minimal positive solution of the Poisson equation —Au = Dirac; on
R, where Dirac, is the Dirac measure supported by the poin (. Usually the class
of parabolic (i.e. nonhyperbolic) Riemann surfaces is designated by the notation
Og. There are many characterizations of the class Og, among which we state the



following. We say that the minimum principle is valid for R if for any subregion
S C R and any u € H(S)* N C(S) we have infsu = infssu. Then R € Og if and
only if the minimum principle is valid for R. Using this characterization we can
off hand see that if R € Og, then HP(R) = R and a fortiori the six HX(R) = R.
For this reason, avoiding the trivial situation, R should be restricted to hyperbolic
Riemann surfaces when we are concerned with the 6 Banach spaces HX(R). Of
course HX(R) = R can happen even for hyperbolic R € Og. The hyperbolicity
of R assures that the universal covering surface of R is the unit disc D, i.e. there
is a locally homeomorphic analytic mapping 7 (the projection) of D onto R with

the associated Fuchsian group G of Mobius transformations of D such that

(1.2) H(R)or=H(D)/G:={u€ HD) :uog=u for any g € G}.

2. Reflexivity and separability. Our concern in this study is about the inter-
play between the Banach space structures of 6 spaces HX(R) in the table in §1
and the conformal structures of base Riemann surfaces R. Especially we observe
the reflexivity and the separability of H X (R) and we ask how these properties of
HX(R) reflect on and are reflected by the conformal structures of R. Some of
these properties are free from the choice of R but some of them heavily depend
upon R. To get a certain view of the situation we first make an experimental con-
sideration by taking R as a special Riemann surface the unit disc D. The result is
indicated in the following table, in which we let 1 < p < oo:

Space HP(D) | HB'(D) | HM,(D) | HB(D) | HD(D) | HBD(D)
Reflexivity no no yes no yes no
Separability no yes yes no yes no

We denote by M (0D) the Banach space of Radon measures on the circle oD
equipped with the norm ||u|| given by the total mass |u|(0D) of the total variation
measure |u| of each p € M(0D). Then we have the isometrically isomorphic rep-
resentation of HP(R) = HM;(R) as M (0D). The space HB'(4) is represented as
L'(0D) as identical Banach spaces, where the measure associated to the Lebesgue
spaces on 0D is dw := df/2r for the point e?. Similarly HM,(D) = LP(dD)
(1 < p £ 00). Using these isometrically isomorphic representations of relevant
spaces we can deduce the required properties in the above table. The Hilbert
space HD(R) is the easiest to handle. Fourier expansion method is also very help-
ful. The space HBD(D) seems to be the hardest to treat. Let A(0D) be the set



of every Borel function u on 0D such that

2 1/2
1) = essswpeembu(@) + (25 [ ([ = aui0)) autg))
ap \Jop ¢ —¢]

is finite. Then HBD(D) is represented by the Banach space (A(D), || - ||5). Thus
the problem can be transformed into the real analytic problem to prove that A(dD)
is neither reflexive nor separable. However we have not yet been successful in this
direct procedure but fortunately successful in entirely different indirect method
(cf. §3 below).

3. Conclusions. We now give our result for the case of general Riemann surfaces
R also in the following table form. As in the above case of special D the exponents p
in the Hardy spaces H M,,(R) are restricted to 1 < p < oo since HM;(R) = HP(R)
and HM., = HB(R) are independently treated.

Space HP(R) | HB'(R) | HM,(R) | HB(R) | HD(R) | HBD(R)
Reflexivity no* no* yes no* yes no***
Separability | no** yes yes no* yes no***

In the above table no* means no if and only if the space is of infinite dimension;
no** means no if and only if the harmonic dimension of R, i.e. the cardinal num-
ber of the set of extremal rays of the positive cone H(R)™, is strictly greater than
the cardinal number X, of countably infinite sets; no*** means no if and only if
the Royden harmonic boundary of R contains at least one point of capacity zero
(cf. below). We repeat once more the above explanations on the meanings of no*,

*kk

no** and no*** in the statements of four theorem forms.

THEOREM 3.1. The Banach space HX(R) is reflexive if and only if the space
HX(R) is of finite linear dimension for X = P, B', and B (cf [7] for X = B).

THEOREM 3.2. The following four conditions are equivalent by pairs: firstly, the
Banach space HBD(R) is reflezive; secondly, the Banach space HBD(R) is sepa-
rable; thirdly, HBD(R) = HD(R); fourthly and lastly, every point of the Royden
harmonic boundary ér of R is of positive capacity.

THEOREM 3.3. The Banach space HB(R) is separable if and only if the space
HB(R) is of finite linear dimension (cf. [8]).

THEOREM 3.4. The Banach space HP(R) is separable if and only if the harmonic
dimension of the base Riemann surface R is at most countably infinite.



Generalizing the disc case, we observe that HP(R) = M(4,), where §; is the
Martin minimal boundary of R;

(3.5) HB'(R) = L'(6w) = L*(0D)/G (automorphic representation),

where dyy is the Wiener harmonic boundary of R (cf. e.g. [2], [9]), which is a
Stonean space, and the Lebesgue spaces over dy, are considered with respect to the
harmonic measure dw on dyy, and R = /G is the universal covering representation
of R with the associated Fuchsian group G;

(3.6) HM,(R) = L?(6y) = LP(0D)/G (automorphic representation)

for each exponent 1 < p < +oo; HB(R) = C(6y). In particular, to derive
representation identities (3.5) and (3.6), the following simple relation, the so called
Fuchsian invariance of Poisson forms, plays a decisive role. Let P(z,() be the
Poisson kernel so that P(z,() := R(((+2)/((—2)) = (1 — |2]*)/|¢ — 2|* and
h € G so that h(z) := Mz — ¢)/(1 — €z) with |\| = 1 and |¢|] < 1 is a Md&bius
transfomation in G. Then we have

(3.7). P(h(z), h(¢))darg h(¢) = P(z,{)darg (.
The identity assures that, for harmonic functions
1
uz) = 5 | P(Of(QdargC

on D with f € L'(dD), v € HB'(D)/G if and only if f € L'(6D)/G. Using
these isometrically isomorphic representations, the proof of the above table can
be completed except for two spaces HD(R) and HBD(R). For these two spaces
no convenient easily manageable representations cannot be expected. Because
of HD(R) being a Hilbert space and the existence of triangulation of R we can
somehow handle HD(R). The Royden harmonic boundary dz of R (cf. e.g. [2],
[9]) and the theory of capacities on it (cf. [6]) play the decisive role in the proof
concerning HBD(R). Anyway the proof of the conclusion for HBD(R) is not so
straightforward as those for other spaces.

4. Applications. The problem of clarifying the conformal structure of R when
two classes HX (R) and HY'(R) in the table of §1 coincide with each other is said to
be an inverse inclusion problem in the classification theory of Riemann surfaces. H.
Masaoka and S. Segawa [4] obtained the following result: the coincidense relation
HB(R) = HP(R) is equivalent to dim HB(R) = dim HP(R) < oo. Suppose
HB(R) = HP(R), then the table in §1 shows that HB(R) = HB'(R). We give an
easy proof for the essential part of the Masaoka-Segawa theorem. From the table



in §3, it follows that HB(R) is separable along with the separability of HB'(R)
so that HB(R) is of finite dimension. Very simple, isn’t it.

Recently, again H. Masaoka [3] proved that (cf. also [5]) the coincidense relation
HB(R) = HD(R) is equivalent to dim HB(R) = dim HD(R) < +o0o. Once more
we look at the table in §3 to give a short proof to the essential part of the Masaoka
theorem. Since HD(R) is separable (reflexive, resp) so is HB(R), which occurs
only when dim HB(R) < oco. Again extremely simple proof is provided (cf. [7]

[8])-

Y
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RANKS OF INVARIANT SUBSPACES OF THE HARDY
SPACE OVER THE BIDISK

KOU HEI IZUCHI

Let T : H — H be a bounded linear operator on a Hilbert space
H. For a subset E of H, we denote by [E]gy the smallest invariant
subspace of H for T containing E. We denote by rank H the smallest
number of elements in E satisfying [E]gy = H, that is, rank H is the
smallest number of generators of H as an invariant subspace for T.
An element € H is called cyclic if [z]y = H. Sometimes the space
H o TH is called a wandering subspace of H. It is easy to see that
rank H > dim (HoTH). If [HoTH]g = H, then we have rank H =
dim(H © TH). In the case that H = H?(D), the Hardy space over
the open unit disk D and 7" = T, the unilateral shift, by the Beurling
theorem [3] we have rank M = 1 for every invariant subspace M of
H?*(D) for T,. In the case that H = D, the Dirichlet space over D and
T = T, the multiplication operator by the coordinate function z, by
the Richter theorem [12] we have rank M = dim (M © T,M) = 1 for
every invariant subspace M of D. In the case that H = L2(D), the
Bergman space over D and T' = B, the Bergman shift, by the Aleman-
Richter-Sundberg theorem [1] we have rank M = dim (M & BM) for
every invariant subspace M of L2(D), see also [16], and it is known
that dim (M © BM) ranges from 1 to oo, see [2, 7, 8, 9]. For a given
H and T, one of the basic problems is to determine the rank of M for
every invariant subspace M of H for T. In many cases, this problem
is quite difficult.

Let H? = H%(D?) be the Hardy space over the bidisk D?. We iden-
tify a function in H? with its boundary function on the distinguished
boundary I'? of D?, so we think of H? as a closed subspace of the
Lebesgue space L*(I'?). We denote by || f|| the norm of f € H2, and by
(-,-) the inner product in H2. Let z,w be variables in D?. We denote
by H?(z) the z-variable Hardy space, and we think of H?(2) as a closed
subspace of H?. A function ¢p(2) in H?(z2) is called inner if |p(2)| = 1
a.e. on I'. An example of inner functions is a Blaschke product;

H —Q, 2 —
lan| 1 — @2’




where {a,, },>1 is a sequence in D satisfying > -, (1 — |a,|) < oo and

we consider —@,,/|ay,| = 1 if a;,, = 0. Another example is a singular
inner function;

S0 =ew (- [ S due),

op €9 — 2

where p is a positive bounded singular measure on 0D, see [6, 10] for
the study of H?(z).

Let T, T, be multiplication operators on H? by z and w. A closed
subspace M of H? is called invariant if T, M C M and T,M C M.
The structure of invariant subspaces of H? over the bidisk is extremely
complicated. For a closed subspace E of H?, we denote by Pz the
orthogonal projection from H? onto E. See books [5, 13] for the study
of the Hardy space H? over D?.

Let M be an invariant subspace of H2. By the Wold decomposition
theorem, we have

M=> &MowMuw"
n=0
So many properties of invariant subspaces M are considered to be en-
coded in ones of M © wM. So to study the structure of invariant
subspaces of H%, M © wM is one of the most important spaces. To
study M © wM, Yang [17] defined the fringe operator F, on M & wM
by

]:Zf=PM6wM(TZf)7 fEM@’U)M,

and studied the properties of F,, see [17, 18, 19]. As mentioned in the
first paragraph, rank (M © wM) is the smallest number of generators
of M ©wM as an invariant subspace for F,. Similarly we can define
rank M by the smallest number of generators of M as an invariant
subspace of H2 It is not difficult to see that rank (M © wM) <
rank M, so if rank (M © wM) = oo, then rank M = oo. It seems
fairly difficult to determine rank (M © wM) and rank M generally.
Let {¢n(2) }n>0 be a sequence of inner functions such that ¢,,(2)/pn+1(2)

is a nonconstant inner function for every n > 0. It is not an essential
condition that ¢, (z)/¢n+1(2) is nonconstant for everyn > 0. Moreover
we assume that {¢,(2)},>0 does not have nonconstant common inner
factors. This assumption is also not essential in this paper. But for
the sake of simplicity we assume these conditions. We set

_ _pa(2)
,Cn(z) - §0n+1(z)7 n Z 0.



Then {(,(2)}n>0 is a sequence of nonconstant inner functions and

on(z H G(z n > 0.

—n

We define

(#) M= Z@w"cpn )H?(z Zw on(2

n=0 n=0

Then M is an invariant subspace of H2. This type of invariant sub-
spaces of H? was studied in [13, 14, 15]. In [13], Rudin essentially
showed an example of M satisfying rank M = oo. A motivation of
this study comes from Rudin’s work. The form of M is so simple,
nevertheless the number of rank M is unclear until now. At the first
glance, it seems rank M = oco. But it is not correct. We consider
rank M when ¢g(2) is a Blaschke product.
We have

MowM = 3 ow"(pu(2) H(2) © pu-1(2) H(2))

n=0

= Z @w“(p"(z) (Hz(z) © Cn—l(z)H2(z)) :

n=0

Assume that (p(2) is a Blaschke product. Then (,(2) is also a Blaschke
product for every n > 0. For each o € D, let

No = {n eEN: Cn—l(a) = 0}:

where N is the set of positive integers. We denote by #N, the number
of elements in N,. In [14], Seto proved the following;

Lemma 1. Fora e D
dim (M o wM) 6 (F, — al)(M 6 wM)) = #N, + 1.

Lemma 2. Let T' be a bounded linear operator on a Hilbert space H
and a € C. Then the rank of H for T is larger than or equal to
dim (H © (T — al)H).

By these two lemmas, we have the following;
Lemma 3.

sup #Ny + 1 < rank (M & wM) < rank M.

a€cD



Hence if sup,cp #N, = 00, then rank (M & wM) = rank M = cc.
So we assume that
my ;= max #N, < oo.
aeD
The following is the main theorem in this paper.

Theorem 1. If py(z) is a Blaschke product, then
rank M = sup #N, + 1.

a€D
To prove this, we find functions G1, G2, - , G, in M satisfying
[G1,G2, -, Gy, P0(2)) 2 = M.
The key point is how to prove
wp1(2)H? C [G1,G2, -+ 5 Gy, Po(2)] 12

The ideas of the proof are in defining functions Gi1,Gs,- - , Gy, in
M for which Gy, Gy, ,Gpy, po(z) make many one variable outer
functions and Gy, Ga, - - - , Gy, fill the gap of spaces.
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The Lax conjecture and its related topics

Hiroshi Nakazato (Hirosaki University)

Abstract The c-numerical range of an n x n matrix T ( ¢ € R™) can be
realized as the classical numerical range of some (n!) x (n!) matrix S.

1. Hyperbolic differential operators and the re-
lated conjectures

We consider a partial differential operatror D in the Euclidean space with com-
plex constant coefficients

31.1 i+ tim
D= i, 4 ;  —————
§ : 41522500052 ] .
' " 0zt 0x? - Oxmy

i1tiz+...+Him<n

We consider its principal part and the corresponding characteristic polynomial

P(€17€27 v ,g‘m) = Z iy ig,eension I;l ;2 T :;Ln‘

t1+i2+...Fim=n

The operator D is said to be hyperbolic with respect to £ = (1,0,...,0) if
P(1,0,...,0) # 0 and the factorization

P(t’£27 v 7£'m) = CO(t_' A1(£277§m))(t - }‘2(§27 s ,fm)) e (t - An(&%' .. 76171))

holds for some real numbers Ay, ...,\, for any real point (&,...,&,) € R™!
, whete ¢y is a constant.

A typical example of such a polynomial is given by

P&,&,....¢n)= -G+ &+ G+ + &

Suppose that Hy, Hs, ..., H, are (m—1)-ple of n x n Hermitian matrices. Then
the form,

P(t7€27' . 7€’m) = det(tIn +€2H2 + .. +§mH’m)

is hyperbolic with respect to (1,0,...,0). In 1981, Czech mathematician Fiedler
conjectured that the converse is true for m = 3. Let P(t,x,y) be a real ternary



form hyperbolic with respect to (1,0,0) and satisfies F(1,0,0) = 1. He con-
jectured there exist a pair of Hermitian matrices Hy, H3 satisfying F(¢,z,y) =
det(tI, + xH2 + yH3). His conjectured is motivated by the study of numeri-
cal ranges of matrices. Before Fiedler’s one, in 1958, P. D. Lax conjectured a
stronger property:

A real ternary form P(t,z,y) hyperbolic with rspect to (1,0,0) satisfying
P(1,0,0) =1 is writen as

P(t,z,y) = det(tL, + xS1 + yS2)

by some real symmetric matrices S7, Ss.

For m = 4, we can consider analogous problem of these conjectures. An
analogous conjecture of Fiedler’s one for m = 4 is open now. However it is
well-known that the analogy of the Lax conjecture for m = 4 is false. There is
a triple system of 3 x 3 Hermitian matrices for which any real 3 x 3 symmetric
matrices S1, 52,53 do not satisfy

det(tls + xHy + yHz + zH3) = det(tls + xS1 + ySa + 253).
In [4] a concrete example is given as the following.
0 0 142 1-1

0 010
0 0 |,H=(10 2| H=(1-i 0 1-i
0 -1 02 0 1+i 144 0

H, =

OO

The absence of the symmetric matrices S;,.S>,S3 satisfying the condition can
be proved by a combinatorial method.

2. New results on the numerical ranges

In 2005, the Lax conjecture was proved to be true by Lewis, Parrilo and Ramana
[9]. Their proof based on a deep result of an Israelite mathematician Vinnikov
[10] (also [7]). Vinnikov used transcendel theta functions and Riemann surface
theory to treat related theory of real plane curves. In case the curve F(1,z,y) =
0 is a rational curve, Henrion [6] provided an alternating concrete method to
consctrut real symmnetric matrices Sy, So.

The solution of the Lax conjecture is applicable to solve some problems in
the theory of generalized numerical ranges of matrices. Let T be an n x n
complex matrix. The numerical range W (T') of T' was introduced by Toeplitz
as the set

W(T) = {¢*"T¢: £ € C* = 1}.

In 1919, Hausdorff proved that the range W (T') was convex. In 1951, a German
mathematician Kippenhahn proved that the numerical range W (T') is the convex



hull of the real affine part of the dual curve of the algebraic curve
F(t,z,y) = det(tl, + z/2(T +T*) — iy/2(T — T*)) = 0.

As an immediate result of this theorem and the solution of the Lax conjecture,
we have the following,.

Theorem Suppose that A is an n X n complex matrix. Then there exists
an n X n symmetric complex matrix B satisfying W(A) = W(B).

As a generalization of W (T'), a c-numerical range of T was introduced as

We(T) = {Z c;&GTE; : {&1,82,. .., &} isan orthonormal basis of C™ },

Jj=1

for a real vector ¢ = (c1,¢o,...,¢,) € R™. In 1975, Westwick proved that the
range W,(T) is also convex. In this year, Chien and I provided a progress on
Westwick’s result.

Theorem[CN-2011] Suppose that 7" is an n X n complex matrix and ¢ =
(c1,¢2,...,C,) is an arbitrary vector in R™. Then there exists a complex sym-
metric (n!) x (n!) matrix S satisfying

W.(T) = W(S).

In 1983, Au-Yeung and Tsing proved that the range

We(Hi, Ha, Hs) = {(Y cj&; Hi&j, > ;& Hads, Y 65 Hady) -

Jj=1 Jj=1 Jj=1
{&1,&2,. .. ,&, }isan orthonormal basisof C™}

is convex for every triple of n x n Hermtian matrices Hy, H, H3 for n > 3. If
the generalized Fiedler’s conjecture for m = 4 is affirmatively solved, it would
implies that the existence of (n!) x (n!) Hermitian matrices K, K», K3 satisfying
We.(H1,Hz,H3) = W(K1, Ko, K3). The validity of this relation is still open.

To prove the convexity of the range W,(T'), Westwick used Morse theory. In
[?] an analogous result for a Krein space operator was provided by using Morse
theory. We consider a complex vector space C™ with an indefinite inner product

[(§17§27 v 7£n)T7 (7717772, v 77711)T] = (gl.ﬁi‘*ﬂ * '+§P%)_(€P+1m+' : +£'nm)

A vector space C™ with such an indefinite inner product is called a Krein space.
The Krein space numerical ranges of an operator T on (C",[-,]) is defined as
the following:



Wi{(T) = {[Tz,2]/[z,z]) : = € C",[z,2] > 0},
W(T) = {[T=,z]/[z,z] : = € C*,[z,2] < O}

The study of an infinite dimensional vector space with an indefinite inner prod-
uct was actively performed by a Russian mathematician Selim G. Krein. How-
ever we restrict our attension to the finite dimensional space. Some fundamental
properties of the Krein space numerical ranges were found by Rodman et al in
1980’s or 1990’s. The convexity of the ranges W (T'), W7 (T') was proved. These
ranges are usually unbounded. Sometimes their union

wI(T) = W (T)uWw(T)

is discussed. This range is usually disconnected and non-convex. A linear
operator 7" on a Krein space satisfying [Tz, y] = [z, Ty] for all z,y € C™ issaid to
be J-Hermitian. Unfortunately J-Hermtian operators are not necessarily semi-
simple. Those may have imaginary eigenvalues. A linear operator U on C” is
J-unitary if [Uz,Uy] = [z, y] for all z,y € C™. The eigenvalues of a J-Hermitian
operator T are real if T is diagonalizable by a J-unitary operator U: UTU ! =
diag(M,...,An). In this case, there exists a basis {z1,...,Zp,Tpt1,...,Zn} of
C™ satisfying
[xlywll == [.’Ep,.'tp] = 11 [mp-l—l:z.p-i-l] == [a"nymn] = _17
[zj, 2] =0 forj#k

and
Tzj = Ao(j)%;

for some permutation o. For a J-unitarily diagonalizable J-Hermitian operator
T, we set

o+(T)={) € R: Tz = Az,forsomezx € C",[z,z] > 0}

={M(T) 2 0(T) 2 - 2 2,(T)},
o_(T)={) € R: Tz = \z,forsomez € C*,[z,z] < 0},
= {Ap+1(T) 2 Aps2(T) 2 -+ 2 Aa(T)}.

We call that Hermitian operators T',.S on a finite-dimensional Hilbert space
C™ with eigenvalues

M(T) 2 Xa(T) 2 -+ 2 Aa(T), M1(S) 2 X2(S) = - -+ = Aa(S)

satisfies the following trace inequality

> M@ Anp1-5(S) < tr(TS) < 3 M (T)A;(S).

j=1 j=1



This inequality was proved by Richter in 1958. Analogous inequlity holds for
Krein space operators under some conditions.

Theorem [Bebiano, N. Providéncia, Lemos, Soares; 2005] Let the spectra of
J-unitarily diagonalizable non-scalar J-Hermitian operators T, S on (C",[-,])
generate the intervals

Do (T), Mi(T)] = Conv(0:{(T), Aa(T), Ap41(T)] = Conv(a(T)
26 (8); 21(8)] = Conv(af (S)), Aa(S), Ap+1(8)] = Conv(a? (S))
(I) Suppose that the spectra satisfy (i) Ap+1(T) < Ap(T), Ap+1(S) < Ap(S) or
(i) Ap1(T) < Ap(T), M (S) < AnS).
In case (i), the equation

WI(T) = {tr(SUTU™?) : Uis J — unitary}

= DN @Api1-5(S) + D M (T Anipi1—5(S), +00),

holds. In case (ii), the equation

W3 (T) = {tr(SUTU ™) : Uis J — unitary} = (—oo0, Xn:)\j(T)Aj(S)]

holds. (II) Suppose that at least one of J-unitarily diagonalizable non-scalar
J-Hermitian operators T, .S, for instance, T satisfies

Pe(T), M ()] N An(T), Apta] O [a,b]
for some a < b. Then WZ(T') = (—o0,0).

Example. In the case (I): If A1(S) =1, Aa(S) = -+ = An(S) =0, then
W3 (T) = W{(T) = [Xp(T), +o0).
T Aps1(8) = 1L, Aps2(8) = -+ = Ma(S) = Ai(8) = -+ = Ap(S) = 0, then

W3 (T) = WX(T) = (—00, Ap+1(T))-

Theorem [Bebiano, N, Providéncia ; [1], [2]] Suppose that S is a J-unitarily
diagonalizable J-Hermitian operator on (C", |-, ]) satisfying

P(8): A1(S)] N [An(S), Ap11(S)] = 0,

and T is an operator expressed as the sum T; + ¢T» by J-Hermitian operators
T1,T> with some angle 6 for which Ty = cos 8T} + sin T; satisfies

P‘P(TO)’ Al(TO)] N [)\n(TO)7 )‘p+1 (TO)] =0.



Then the range
WJ(T) = {tr(SUTU ') : Uis J — unitary}

is a closed convex set.
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WE CONSIDER ¢-MEANS (o-F4%£3%3%)

Yasuo Nakasuji (The Open University of Japan)
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Keisaku Kumahara (The Open University of Japan)
RRIFEME (BOAREE)

Sin-Ei Takahasi (Yamagata University)

EREER (LIBRF)

Twenty-two years ago, I discussed the following question with my respected col-
league Osamu Hatori:

Which come first, the equality or the inequality?

Though I forget the details of our discussion at that time, I remember that my
answer was “equality” and that Hatori’s opinion was difficult for me. He may have
said that “inequality” was primary or he may not.

Later I encountered such a chicken-and-egg question in the plenary talk by Prof.
Mikio Sato in the meeting of Mathematical Society of Japan. He talked about the
question:

Which come first, the function or the equation?

He said that he could not give an exact answer to it, as well as to the question
“Which come first, the real number or the complex number?”

Recently I met Professor Hatori at the conference held in Shinshu University,
and the equality-and-inequality question came up among us again. This time, I was
aware of the nonsense of the discussion about such a question. Thus, it took twenty-
two years for me to conclude this discussion, as if Junji Kinoshita said that four
hundred years passed till people know Shakespeare’s true motive of “The merchant
of Venice”.

The other day, when I talked about inequalities in the seminar at Toho University,
I heard an attendance saying

“There are many, many equalities, but few inequalities that are essential.”

I cannot verify the truth of this statement, but I feel so. For example, we take up
Jensen’s inequality as one of the essential inequalities:

Jensen’s inequality: Let (2, ) be a probability space, and let I be
an interval in the real line. If f is a real-valued function on Q with



range in I and if  is a convex function on 7, then

(1 5(/Qfdu)ﬁ/g(50f)dﬂ-

As is well known, Jensen’s inequality yields Holder’s one. Recently, it is pointed out
that a lot of Hua-type inequalities are the incarnation of Jensen’s inequality.

In case that p is discrete, the inequality (1) tells us nothing but the convexity of
0. Now, let us split this convexity into two parts; a numerator and a denominator.
Indeed, we write § = %. Then Jensen’s inequality will assert that

Ve <Vy = My(f) < My(f),

where V,, is the quasi-arithmetic mean induced by ¢ and M,(f) denotes the ¢—
mean of f. This says that Jensen’s inequality shows the order-preserving of some of
mean functions. This result also explains the geometric aspect of the refinement of
a p—mean.

We have studied this subject as follows: When we were considering the refine-
ment of a p—mean, Mr. Nakasuji introduced the condition (M). We carried over the
condition (M) to the field of means and found the above order-preserving. I think
that our idea is based on “the fundamental principle of differential and integral
calculus so-called Bisekibun no Genri”. Moreover, our idea reminds me the Furuta
inequality. Prof. Takayuki Furuta split the power exponent of positive operator into
two fractional powers to discover his famous inequality. It was epoch-making and
developed the fruitful theory of operator means. Here we must say that our result
is not worthy of Huruta’s inequality.

We wrote about the above topic in the paper [6]. This talk is the survey of it.

REAIER -

2 2HEFIRRPBHEAL TFXDeh, RERXMNED) EE5eZi@mlic
HEHHVEI, TOR, BRERIRIZ->TDTTH, HamBHk Z B RRcbh
DERA BIEAFRRDOK 3755 THRVK S EZTDORHIFEDFEENR LI 70D
FH¥ATL,

TE., EREBRRTEDND 5 L EZROBEFHET TBIRDED. HEXDEN]
Zim C o, DT, BEEDED, BEECEL...... ] EHRBEX DS
Bhholek 91,

ﬁi&ﬁ]‘l‘l@iﬁ%fﬁhﬁxfﬂ BEAlcaoTce &, IFADED. REXDTEN

I imm SRR TH B LWV S BRI ENE LIc, Hlehd R ZADHEE
?5)\@35%75‘4 0 OFDRZRETHS ENie) EARTIEZAE-T& 91,

FEHEFIRTOERIF—DHr, H5ANCERNFRLD S0, AERIAREID
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We are interested in means of real-valued measurable functions induced by strictly
monotone functions. These means are somewhat different from continuously differ-
entiable means, i. e. , C'-means introducing by J. I. Fujii, etc. [1], but they include
many known numerical means. Here we first give a new interpretation of Jensen’s
inequality by such a mean and we next consider some geometric properties of such
means, as an application of it.

Here we denote by (€2, i), I and f a probability space, an interval of R and a real-
valued measurable function on  with f(w) € I for almost all w € 2, respectively.
Let C(I) be the real linear space of all continuous real-valued functions defined on
I. Let C.,(I) (resp. Cj,(I)) be the set of all ¢ € C(I) which is strictly monotone
increasing (resp. decreasing) on I. Then C7 (I) (resp. C,(I)) is a positive (resp.
negative) cone of C(I). Put C,(I) = C{ (I)UC;,(I). Then C,(I) denotes the
set of all strictly monotone continuous functions on 7

Let Com,r(I) be the set of all p € Cop(I) with @ o f € L'(Q, p). Let ¢ be an
arbitrary function of Ci,, s(I). Since ¢(I) is an interval of R and p is a probability



measure on 2, it follows that

/ (o f)dp € p(I).

Then there exists a unique real numberM,,(f) € I such that [(pof)du = o(M,(f)).
Since ¢ is one-to-one, it follows that

My(f) =9~ (/(90 o f)du) :

We call M,(f) a p—quasi-arithmetic mean of f with respect to p (or simply, p-mean
of f). A g—mean of f has the following invariant property :

My (f) = Mag+s(f)
for each a,b € R with a # 0.

1. MAIN RESULTS

In this section, we first give a new interpretation of Jensen’s inequality by ¢—
mean. Next, as an application, we consider some geometric properties of ¢—means
of a real-valued measurable function f on Q.

The first result asserts that a p—mean function : V,, — M,(f) is well-defined and
order-preserving, and this assertion simultaneously gives a new interpretation of
Jensen’s inequality. However, this assertion also teaches us that a simple inequality
yields a complicated inequality.

Theorem 1. Suppose that f is non-constant and ¢, € Cem f(I). Then

(i) If V, <V, holds, then M,(f) < My(f).
(i) If V., < V. holds, then M,(f) < My(f).

The next result asserts that there is a strictly monotone increasing ¢—mean (con-
tinuous) path between two comparable ¢-means.

Theorem 2. Suppose that f is non-constant and ¢, € Csp (1) with V, < V.

(i) If p,9 € CF,(I) (or C5, (1)), then a function : s — M_s)ptsp(f) is strictly
monotone increasing on [0, 1].

(i) If 16— p € C (1) (resp. Cip(I)) and (z) — p(x) > 0 (resp. < 0) for all
z € I, then a function : s — Ma_gs)p4sy(f) is strictly monotone increasing
and continuous on [0, 1].

The next result asserts that the g—mean function is strictly concave (or convex)
on a suitable convex subset of Cep, 7(1).

Theorem 3. Suppose that f is non-constant and ¢, € Cyp (1) with V, < V.
Then



(i) If p, 90 —p € CF.(I) (resp. C,(I)) and ) is convez (resp. concave) on I,
then
(1- t)Mw(f) + thl)(f) < M(l—t)<p+t1/)(f)
holds for all t € (0,1).
(ii) If ¢, = € C,,(I) (resp. CF (I)) and ¢ is convex (resp. concave) on I,
then
(1 =)Mo (f) + tMy(f) > Ma-yp+eu(f)
holds for all t € (0,1).

Remark. 1t seems that Theorem 3 is slightly related to [4, 5] which discuss a com-
parison between a convex linear combination of the arithmetic and geometric means
and the generalized logarithmic mean.

The following result describes a certain boundedness of ¢p—means.

Theorem 4. Suppose that f is non-constant and ¢, € Cem s(I) with V, < V.

(i) If o, — o € CF.(I) (or Cy,(I)), then a function : s — Ma_g)ptsy(f) is
strictly monotone increasing on [0,00) and

sll»rgo M(l—s)(p+51/)(f) = M"/’—lp(f)'

(ii) If o, —p € CE (I) (resp. C5,.(I)) and p(z) — p(z) > 0 (resp. < 0) for all
z € I, then a function : s — M_s)p+sy(f) is strictly monotone increasing
and continuous on [0, c0).

2. C?—CONDITIONS

In this section, we see that main conditions which appear in the preceding section
can be realized by conditions of C?-functions.
For each real-valued measurable function f on Q, let C2 . .(I) be the set of all

ok, f

C?—functions ¢ in C,, s(I) with no stationary points, that is, ¢'(t) # 0 for all ¢ € I.

Corollary 1. Suppose that f is non-constant and @, € C2, (I). If ‘:I,'((:’)) < 11/;/)',/((;))

and ¢'(z)y'(z) > 0 for all x € I°, then a function : s — Mu_s)p+sy(f) is strictly
increasing on [0, 1].

Corollary 2. Suppose that f is non-constant and that @, € C%__ .(I) is such that

smx, f
‘;T(:)) < %((f)l for for all z € I°. Then

(i) Either if 0 < ¢’ < ' and " >0 on I° orif ' < ¢’ <0 and " <0 on I°,
then
(1 =t)My(f) +tMy(f) < Ma—typren(f)
holds for all t € (0,1).



(ii) Pither if o' <4’ <0 and " >0 on I° or if 0 <o’ < ¢’ and ¥" <0 on I°,
then
(1 =) M, (f) +tMy(f) > M-ty (f)

holds for all t € (0,1).

3. REMARKS

(i) Let I = R*. Put ¢(z) = 1 and ¢(z) = z for each z € I. Of course, these
functions belong to Cs,,(I). The harmonic-arithmetic mean inequality asserts that
V, < V1. Take a non-constant positive measurable function f on a probability
space (€, ) such that o f and 9o f are in L'(Q, ). Then we have from Theorem
1-(ii) that M,(f) < My(f). Observe that this inequality means

(/) )

This is a special case of Jensen’s inequality (or Schwarz’s inequality). We note that
if0 <m < f <M, then ([ —1f—d,u)(f fdp) < % The right side of this inequality
is called a Kantorovich constant (cf. [3, 7, 8).

(ii) A similar consideration for the geometric-arithmetic mean inequality yields

that
/logfd,u < log/fd,u.

This is also a special case of Jensen’s inequality. We note that if 0 <m < f < M,
-1

then log [ fdu — [log fdu < = (e log hﬁ) , where h = X The right side of

this inequality is called Specht’s ratio (cf. [2]).
(iii) A similar consideration for the harmonic-geometric mean inequality yields

that
—log/ —dp < /logfdu

We note that this inequality is just one of (ii) replacing f by and multiplying
—1 the both sides of resulting inequality in (ii).

Acknowledgement. F#HEE T18, BREHERIANL., HIEEORSITEE
V THBHE®, 3HiD (i) T Kantorovich EEZ 97 5. (ii) TiE Specht’s ratio
ZHIRETHSLDOTHEWMZHBOE Uiz, TORZHMED UTHILBEL LT ET,
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Abstract

First of all, we will be concentrated in some particular but very important
inequalities. Namely, for a real-valued absolutely continuous function on [0, 1],
satisfying f(0) = 0 and fol f(z)?dz < 1, we have, by using the theory of
reproducing kernels

1 f(z) ” CVds f()l f/Z(m) dz
L (1_f(~'”)> (1~ a)d < l—folf’z(m)d:v'

A. Yamada gave a direct proof for this inequality with a generalization and, as
an application, he unified the famous Opial inequality and its generalizations.
Meanwhile, we gave some explicit representations of the solutions of non-
linear simultaneous equations and of the explicit functions in the implicit
function theory by using singular integrals. In addition, we derived estimate
inequalities for the consequent regularizations of singular integrals.

Our main purpose in this paper is to introduce our method of constructing
approximate and numerical solutions of bounded linear operator equations on
reproducing kernel Hilbert spaces by using the Tikhonov regularization. In
view of this, for the error estimates of the solutions, we will need the inequali-
ties for the approximate solutions. As a typical example, we shall present our
new numerical and real inversion formulas of the Laplace transform whose
problems are famous as typical ill-posed and difficult ones. In fact, for this
matter, a software realizing the corresponding formulas in computers is now
included in a present request for international patent. Here, we will be able to
see a great computer power of H. Fujiwara with infinite precision algorithms
in connection with the error estimates.

1 Yamada’s results

Let Hy denote a Hilbert space admitting a reproducing kernel K on a set E. For all f € Hg and
for a very general transform ¢ of f, there exists a naturally determined function ® satisfying

I8 Er ey < UF Iz )- (1L.1)



Here, H(®(K)) is the reproducing kernel Hilbert space which is determined by the positive definite
quadratic function ®(K) (cf. [16, 17, 18, 19]).

We are considering a very general nonlinear transform ¢(f). As an application of (1.1), we
derived the identification method for the nonlinear system ¢(f) in [23].

As a typical example of (1.1), in the framework of [17, 18, 19] we have that for a real-valued

absolutely continuous function on [0, 1], satisfying f(0) =0 and f(; f'(z)%dz < 1, it holds

LG I ¥ G L
/0 (1_f(i)) (1=2)d Sl"folfm(w)dm’

for the nonlinear transform f + f2 + f3 +.... We would like to call the reader’s attention to
[15, Appendix] and [18], where some essays on this inequality and mathematics in general can be
found.

Meanwhile, we know the Opial inequality ([14]): For f € AC[0, a] (i.e., an absolutely continuous
function on [0,a]), with f(0) = 0, we have

/0“ |f(z)f (z)|dz < %/Oa |f(x)|? de.

Since this starting result proved in 1960 by Opial, a wide variety of generalizations and exten-
sions was introduced in the last half-century. We are particularly interested in the generalization
provided by A. Yamada<(see [22]), which he managed to derived by a direct proof.

Furthermore, by some specialization, he was able to give a full generalization (cf. [1, 2, 3, 9,
10, 13]) of the Opial inequality with the equality statement.

2 The implicit function theorem

Let us now turn to the Implicit Function Theorem. For a simplification of the statement, we shall
assume some global properties: On a smooth bounded domain U C R™** surrounded by a finite
number of C! class and simple closed surfaces, for k functions

fi(mla"'awnymn+17"'7wn+k)’ i:1727"'7k7

we assume that for some point on U it holds

fi(.'lil, veo s Ly Lp4lye-- ,ZEn+k) =0
and on U we have
a(fl,fZi' .. 7.fk)
3(-'L'n+1,mn+2, e ,$n+k)
Then, we assume globally that there exist k functions of C! class, gj(z1,22,...,2,) for j =
1,2,...,k, on UNR", satisfying the properties:

det

(z)>0.

filx1,22,...,%0,01,92,--.,9x) =0, 1=1,2,...,k,
and
.’l:n+j:gj(.'171,.'152,...,$n), ]21,2,,’6

We were able to represent the functions g; explicitly, in terms of the implicit functions { f;}, by
using singular integrals in the sense of Cauchy’s principal value in [4], and by using some explicit
representations of the solutions of nonlinear simultaneous equations (cf. [24]). We shall state here
the results for the simplest cases.

Theorem 2.1 For a C? class function f(x1,22) on a domain U in R?, we assume that for a point
20

20 = (%) it holds
T2

fal,23) =0



Then, there exist a neighbourhood Uy x Uy (C U) around the point 2° and an explicit function
g : Ur — U, determined by the implicit function f = 0 as f(x1,9(x1)) = 0 and, furthermore, it is
represented as follows:

1 -
9(z1) = o~ (/ 2odf — dxa A d0>, 0 = Arctan f(Ll—’"Li),
2 (U1 xUz) Uy xUs Ty — 2]

for any z7 € Us.

Corollary 2.2 (Representations of the inverse functions). On an interval [a,b], for a C? class
function f satisfying f'(x) > 0, its inverse function f~(y*) on [f(a), f(b)] is represented as
follows:

1
) = 5 ( / van, — | dz A d01>,
T \J8([a,b] x[f(a),f (b)) [a,6]X[£ (a), £ (b)]
y— f(x)

0, = — Arctan ———~

?

for any y* € [f(a), f(b)].

3 Singular integral estimates

We gave various error estimates for the regularizations for the singular integrals appearing in the
above representations. For example, for the singularity

1
(lz —yh>’
we consider the regularization
1
(lz —yl+ )=

for a small 6 and then analyse their error estimates. For the regularized integrals, their numerical
calculations are done easily by using computers.

4 Best approximations

Let L be any bounded linear operator from a reproducing kernel Hilbert space Hx into a Hilbert
space H. Then, the following problem is a classical and fundamental problem known as the best
approximate mean square norm problem: For any member d of H, we would like to find

i —d||x.
Jinf LS —dl

It is clear that we are considering operator equations, generalized solutions and corresponding
generalized inverses within the framework of f € Hx and d € H, having in mind

Lf=d. (4.1)

However, this problem has a complicated structure, specially in the infinite dimension Hilbert
spaces case, leading in fact to the consideration of generalized inverses (in the Moore-Penrose
sense). Following our theory (cf. [19]), we can realize its complicated structure. Anyway, the
problem turns to be well-posed within the reproducing kernels theory framework.

However, the result is involved and so the Moore-Penrose generalized inverse f4 is not
good, when the data contain error or noises in some practical cases. So, we shall introduce the
idea of the Tikhonov regularization in the present framework.



5 The Tikhonov regularization

We shall give some practical and more concrete representation in the extremal functions involved
in the Tikhonov reguralization by using the theory of reproducing kernels.

Theorem 5.1 Let L: Hx — H be a bounded linear operator, and define the inner product

(f, fodux, = alfi, f2)m, + (L1, Lf2)n

for f1,fo € Hk. Then (Hg,(,)Hy, ) s a reproducing kernel Hilbert space whose reproducing
kernel is given by

Ka(p,q) = [(a+ L*L) ' K] (p).
Here, Ko(p,q) is the solution Ko(p,q) of the functional equation

1, - 1
Ka(p7 q) + E(LvaLKp)’H = ;I_K(p7 Q)’ (5'1)

that is corresponding to the Fredholm integral equation of the second kind for many concrete cases.
Moreover, we are using

f(qzﬁ'a(-,q)eHK for q€E, K,=K(,p) for peE.

We shall, furthermore, need error estimates, when d contains error or noises. For this funda-
mental problem, we obtain the following conclusion.

Theorem 5.2 Under the same assumption as Theorem 5.1,
fEHKH{aHf : Hi|?+||ILf —d : 'Hllz}eR
attains the minimum and the minimum is attained only at fa. € Hi such that

(fd,a)(p) = (d1 LKa('7p)>H'

Furthermore, (fa,o)(p) satisfies

(oo @) </ K22 a, (52)

6 Real and numerical inversion formula of the
Laplace transform

We shall consider the inversion formula of the Laplace transform

(L)) = f(p) = /0 T e R@d, p>0

for some natural function spaces. For more general functions, we shall apply their transforms

suitably in order to apply the results (cf. [20]). We shall consider, in general, the complex inversion

formulas, because the images of the Laplace transform are analytic functions. However, we are

requested to use only real and discrete data to obtain the inversion formula. This is the real

inversion formula of the Laplace transform, and we must represent the analytic function of the

image in terms of the data on the positive real line. This problem is a very famous difficult one.
In some case, we must solve the Fredholm integral equation of the second kind:

®  H,(p,t) _etet 1 1
oH,(€,t) + A —(p+§+1)2dp— £ 1 (t+ £+1> + €T (6.1)

By solving this integral equation, H. Fujiwara (cf. [6, 7, 8]) derived a very reasonable numerical
inversion formula for the integral transform and he expanded very good algorithms for numerical
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Figure 2: Numerical results for a square wave function

and real inversion formulas of the Laplace transform. Figure 1 is an example for LF(p) = exp(—p)
for which F(t) = 6,(t) in the distribution sense, and Figure 2 is for

e P

LF(p) = p(1+eP)

for which F(t) is a square wave function.

In both figures, (a) is computed with large regularization parameters a > 107'2, and (b) is
computed with small regularization parameters o = 107190, 10749, At this moment, theoretically
we shall use the whole data of the output - in fact, 6000 data. Surprisingly enough, Fujiwara gave
the solutions with a = 10749 and 600 digits precision. The core of the above mentioned and
corresponding patent is 10 GB data for the solutions.
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NON-a-NORMAL FUNCTIONS WITH GOOD
INTEGRABILITY

Rauno Aulaskari, Shamil Makhmutov
and Jouni Rattya

ABSTRACT. Blaschke products are used to construct concrete examples
of analytic functions with good integrability and bad behavior of spheri-
cal derivative. These examples are used to show that none of the classes
M}#,0 < p < oo, is contained in the a-normal class N'* when 0 < a < 2.
This implies that wa is in a sense a much larger class than Qf.

Let M(D) denote the class of all meromorphic functions in the unit disc
D = {z:|2] < 1}. A function f € M(D) is called normal if

£l = sup f#(2)(1 = |2[*) < o0
zeD

where f#(z) = |f'(2)|/(1+|f(2)|?) is the spherical derivative of f at z. The
class of normal functions is denoted by N. For a given sequence {z,}°>;
of points in D for which Y02 (1 — |2,|?) converges (with the convention
zn/|2n| = 1 for z, = 0), the Blaschke product associated with the sequence
{2, }52, is defined as

H |2zn| 2n — 2
Zn 1—%,2 ZnZ
nel
Allen and Belna [1] showed that the analytic function fs(z) = B(z)/(1 —
z)*®, where B(z) is the Blaschke product associated with the sequence {1 —

e~ "}>2 ., is not a normal function if 0 < s < %, but satisfies the integrability
condition

[ 1@)1d4) < o
D

It is well-known that if f is analytic in D and satisfies
[P aAe) < oo
D
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that is, f belongs to the Dirichlet space (analytic functions in D with
bounded area of image counting multiplicities), then f € N. Concerning
the normality, the question arose if

(1) /D F(2)P dA(z) <00, 1<p<2,

implies f € N. Yamashita [5] showed that this is not the case since the
function

(2) f(z) = B(2)log 1

1-2’

where B is a Blaschke product associated with,an exponential sequence
{zn}n2, whose limit is 1, is not normal but satisfies (1) for all 1 < p < 2.
Recall that a sequence {z,}52, is exponential if

3) 1= |zn1| < B(L—|z]), neN,

for some B € (0,1). It is well known that every such sequence {z,}5
satisfies

4) II

k#n

Zn — 2k > 5

- Y

n € N,

1- Zn 2k

for some § = §(5) > 0, and is therefore an interpolating sequence (uniformly
separated sequence).

The basic idea in this note is to find a function f that satisfies (1) (or
another integrability condition) but the behavior of f# is worse than the
behavior of the spherical derivative of a non-normal function necessarily
is. To make this precise, for 0 < a < oo, a function f € M(D) is called
a-normal if

sup f#(2)(1 - |2*)* < 0.
zeD
The class of all a-normal functions is denoted by N¢.

Theorem 1. Let B be the Blaschke product associated with an exponential
sequence {zp}52, whose limit is 1. Let 1 < a < 00, 0 < p <2 and

_ _BG)
) 16) = g

Then fs € N for all s > a — 1, but

[ 1P aa) < oo
D

0<s<oo.

for all s € (0,2/p - 1).

It is easy to see that f,—1 € N'® Moreover, the following result proves
the sharpness of Theorem 1.
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Theorem 2. Let B be the Blaschke product associated with an exponential
sequence {zn}52, such that |z, — %i = %, Sz, > 0 and limy,—00 2, = 1. Let
0<p<1l. Then

__ B(?)
f;—l(z) (1_2)%_1
satisfies

[ 12 1P aa@) = .
D P
The following result is of the same nature as Theorem 1.

Theorem 3. Let B be the Blaschke product associated with an exponential
sequence {zn}52, whose limit is 1. Let 1 < a < co and

_ 1 B(z)
f(z) =log 1—2z(1—2z) 1
Then f € N*, but
(6) /D F(2)2(1 — 2222+ dA(2) < oo

for all e > 0.

Waulan [4] showed that the function f, defined in (2), satisfies
(7 fe U of bt fe [ M,

0<p<oo 0<p<oo
where

@ = {1 e M) sup [ (FH@PP(.0) 14 < o
and
Mt = {1 € ME): 171 =sup (74120 - ea PP 44(2) < oo .

Here ¢u(z) = (a — 2)/(1 — @z) is a Mdbius transformation and g(z,a) =
—log |pa(2)| is a Green’s function of D.

Keeping (7) in mind, we will show that the function f,, defined in (5),
belongs to M# for certain values of s.

Theorem 4. Let B be the Blaschke product associated with an exponential
sequence {zn}°%, whose limit is 1. Then the function fs, defined in (5),
satisfies
foe () MF
0<p<oo
for all0 < s < 1.

Theorems 1 and 4 have the following immediate consequence.
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Corollary 5.
N Mfe |J Ne

0<p<oo <a<2
Using [2, Theorem 3.3.3], with @ = 2 — 2/q, we see that if f € M(D)
satisfies

Sup/(f#(Z))"(l = [2*)*74(1 ~ |pa(2)P)P dA(2) < oo,
acD JD

for some 2 < ¢ < co and 0 < p < oo, then f € N2, In view of this fact and
Corollary 5 it is natural to ask the following questions.

Question 1. For which values of p the class M]Zéé is contained in N%?

Question 2. Is the class

a€D

B* = {f e M(D): sup/ (f#(2))?dA(2) < oo}
D(a,r)

contained in AV/2?

Recall that M = B# for all 1 < p < oo, see (3, 4].
Full paper will be published in the New York Journal of Mathematics.
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ON UNBOUNDED WEIGHTED SHIFTS ON
DIRECTED TREES

IL BONG JUNG

ABSTRACT. A new class of (not necessarily bounded) operators related to
(mainly infinite) directed trees is introduced and investigated. Operators in
question are to be considered as a generalization of classical weighted shifts,
on the one hand, and of weighted adjacency operators, on the other; they are
called weighted shifts on directed trees. The basic properties of such operators
are studied. Hyponormality, cohyponormality, and subnormality are entirely
characterized in terms of their weights.

1. Notation and definitions

This was presented at the international conference: The Seminar on Function
Spaces, which was held at Hokkaido University in Japan on December 22-25, 2010.
And the results of this note are contained in [2] and [5], that is the joint work with
P. Budzyniski, Z. Jabtoniski and J. Stochel. Also, the results in this note will be
appeared partially in our papers which will be published in some other journals.

Let A be an operator in a complex Hilbert space H. Denote by D(A), R(A),
A* and A the domain, the range, the adjoint and the closure of A. Set D>(A) =
Moo D(A™); members of D>®(A) are called C*-vectors of A. A linear subspace £
of D(A) is said to be a core of A if the graph of A is contained in the closure of
the graph of the restriction A|g of A to £. If A is closed, then £ is a core of A if
and only if A = A_lg Given a closed densely defined operator A in H, we denote
by |A| the square root of the positive selfadjoint operator A*A. A densely defined
operator S in H is said to be subnormal if there exists a complex Hilbert space K
and a normal operator N in K such that H C K and Sh = Nh for all h € D(S).
A densely defined operator S in H is said to be hyponormal if D(S) C D(S*) and
IS*fIl < |Sf| for all f € D(S). In what follows, B(H) stands for the C*-algebra
of all bounded operators A in H such that D(A) = H. We write lin F for the linear
span of a subset F of H.

Let J = (V, E) be a directed graph (i.e., V is the set of all vertexes of 7 and
E is the set of all edges of 7). If for a given vertex u € V, there exists a unique
vertex v € V such that (v,u) € E, then we say that u has a parent v and write
par(u) for v. Since the correspondence u +— par(u) is a partial function (read: a

1991 Mathematics Subject Classification. Primary 47B37, 47B20; Secondary 44A60.
Key words and phrases. Directed tree, weighted shift on a directed tree, subnormal operator,
hyponormal operator, normal operator.
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relation) in V, we can compose it with itself k-times (k € N); the result is denoted
by par®. We adhere to the convention that par® is the identity mapping on V. A
vertex v of 7 is called a root of 7, or briefly v € Root(.7), if there is no vertex
u of J such that (u,v) is an edge of . Note that if 7 is connected and each
vertex v € V° := V'\ Root(7) has a parent, then the set Root(.7) has at most one
element. If Root(7) is a one-point set, then its unique element is denoted by root.
We say that a directed graph 7 is a directed tree if 7 is connected, has no circuits
and each vertex v € V° has a parent par(v). In what follows, given a directed tree
T, we tacitly assume that V and E stand for the sets of vertexes and edges of .7,
respectively.

Let J be a directed tree. Set Chi(u) = {v € V: (u,v) € E}, u € V. A
member of Chi(u) is called a child (or successor) of u. We say that  is leafless if
V =V', where V' := {u € V: Chi(u) # @}. It is clear that every leafless directed
tree is infinite. A vertex u € V is called a branching vertez of 7 if card(Chi(u)) > 2.

2. Fundamental properties

Denote by ¢2(V') the Hilbert space of all square summable complex functions
on V with the standard inner product

(f,9) =Y fwgw), f,geV).
ueV
For u € V, we define e, € £2(V) by
{1 ifu=wv,
en(v) =

0 otherwise.

The set {e, }ucv is an orthonormal basis of £2(V); we call it the canonical orthogonal
basis of £2(V). Set & =lin{e,: u € V}.
Given A = {\, }yeve C C, we define the operator Sy in ¢2(V) by
D(SA) ={f € B(V): Az f € (V)},
Sxf=Agf, f€D(SN),

where Az is the mapping defined on functions f: V — C via

(47 )) = {3 S(par) ifve Ve,

The operator Sy is called a weighted shift on the directed tree Z with weights

{’\U } veVe-
We now give some basic properties of weighted shifts on directed trees.

2.1
if v = root. (2.1)

PROPOSITION 2.1. Let Sx be a weighted shift on a directed tree  with weights
A= {A }veve. Then the following assertions hold:

(i) Sa is closed,
(i) ey @s in D(SA) if and only if 2 veChi(u) |As|? < 00; if e, € D(SA), then

Sxeu= D Mew and [Sxeu|*= Y AJ? (2.2)
v€Chi(u) v€Chi(u)

(iii) Sa is densely defined if and only if & C D(Sx),
(iv) if S is densely defined, then & is a core of Si,
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(v) Sx € B(3(V)) if and only if ax = sup,cy > vehiu) Mel? < 0o; more-
over, if Sx € B(£3(V)), then ||Sal|? = aa,
(vi) if Sx is densely defined, then & C D(S%) and

Skew = {)‘“epa““) FueVs ey (2.3)

0 if u = root,

(vii) Sa is injective if and only if T is leafless and EueChi(u) [Au]> > 0 for
everyu €'V,

(viii) if Sx is densely defined and A\, # 0 for all v € V°, then V is at most
countable.

3. Hyponormality

To discuss the hyponormality, we characterize the circumstances under which
the inclusion D(Sy) C D(S%) holds.

THEOREM 3.1. If Sx is a densely defined weighted shift on a directed tree T
with weights A = {A, }vevo, then the following conditions are equivalent:

(i) D(Sx) € D(S3),
(ii) there exists ¢ > 0 such that

E ——____lA”L’[ < C. E . (3 )
5 7 X G (7 [’ l
ve( hl(u) || A ’L‘”

The circumstances under which the inclusion D(S%) C D(Sx) holds are more
elaborate and require much more effort to be accomplished. For this reason, we
attach to a densely defined weighted shift S on a directed tree  the diagonal
operators M, in #2(Chi(u)), u € V', given by M,

D(Mu) = {g € (Chi(w): 3 [ISxeulg(v)]* < oo},
veChi(u) (3.2)
(Mug)(v) = [ISxevllg(v), v € Chi(u), g € D(M,).
If u € V' is such that the function A*: Chi(u) > v — A, € C belongs to D(M,,),
then we define the operator T, in £2(Chi(u)) by T,
1
M:eo—
Y T+ |Sxeul
THEOREM 3.2. If Sy is a densely defined weighted shift on a directed tree T
with weights X = {\, }veve, then the following two conditions are equivalent:
(i) D(S3) € D(S),
(ii) T, € B(¢€2(Chi(w))) for allw € V', and

sup || Tu]| < oo. (3.4)
uev’

T, = M,(\*) ® M,(A), ueV. (3.3)

As pointed out below, hyponormal weighted shifts on a directed tree with
nonzero weights must be injective.

PROPOSITION 3.3. Let  be a directed tree with V° # @. If Sx € B({%(V)) is
a hyponormal weighted shift on F whose all weights are nonzero, then J is leafless.
In particular, Sx is injective and card(V') = Ny.
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We now characterize the hyponormality of weighted shifts on directed trees in
terms of weights. Given a directed tree  and A = {\, }veve C C, we define

Chif (u) = {v € Chi(u): Y Pul>>0}, ueV.
weChi(v)

THEOREM 3.4. Let Sx € B(?(V)) be a weighted shift on o directed tree T
with weights X = { A, }veve. Then the following assertions are equivalent:
(i) Sx is hyponormal,
(ii) for every u € V, it holds that if v € Chi(u) and ||Sxey| =0, then A\, =0,

o |?
and Evechii(u) IEC R R

REMARK 3.5. The notion of hyponormality can be extended to the case of
unbounded operators. It is known that hyponormal operators are closable and their
closures are hyponormal as well (see [10, 6, 7, 8, 11] for elements of the theory
of unbounded hyponormal operators). A close inspection of the proof reveals that
Theorem 3.4 remains true for densely defined weighted shifts on directed trees. Note
also that if Sy is a densely defined weighted shift on a directed tree 7 with weights
A = {M\}veve, then the conditions (3.4) and (3.4) imply (3.1) with ¢ = 1.

Recall that an operator A € B(H) is said to be cohyponormal if its adjoint
A* is hyponormal. The question of cohyponormality of weighted shifts on directed
trees is more delicate than hyponormality.

THEOREM 3.6. Let Sx € B({*(V)) be a nonzero weighted shift on a directed
tree I with weights X = {Ay}yevo. Then Sx is cohyponormal if and only if the
tree T is rootless and one of the following two disjunctive conditions holds:

(i) there exists a sequence {u,}52 _ . CV such that

0 < |Au, ] < My | and un—y = par(uy,) (3.5)

foralln € Z, and A\, =0 for allv e V\ {u,: n € Z},
(ii) there ezist a sequence {u,}S__.o CV such that

0< D0 PP <ol 0 < Py < Py | and s = par(un)  (36)
v€Chi(ug)

for all integers n < 0, and A\, =0 for allv € V' \ ({un: n <0} U Chi(ug)).

REMARK 3.7. A closed densely defined operator A in a complex Hilbert space H

is said to be cohyponormal if A* is hyponormal (cf. Remark 3.5), i.e., D(A*) C D(A)

and ||Af]| < ||A*f]| for all f € D(A*). A thorough inspection of proofs shows that
Theorem 3.6 remains true for densely defined weighted shifts on directed trees.

4. Subnormality

We now show that within this class of operators subnormality is completely
characterized by the existence of a consistent system of probability measures.

THEOREM 4.1. Let Sx be a densely defined weighted shift on a directed tree 7
with weights A = {Ay}veve such that & C 2(Sx). Then the following conditions
are equivalent:

(i) Sx is subnormal,
(i) {|IS%eul|?}, is a Stielties moment sequence for everyu € V,
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(iii) there exist a system {py }oev of Borel probability measures on Ry = [0, 00)
and a system {e,}vev of nonnegative real numbers which satisfy the pos-
itive Borel measure p,, on Ry defined by

plo)= 3 P [ dm) tadle), ceBR), (@)

vE€Chi(u) i

where B(Ry) for the o-algebra of all Borel subsets of Ry, with
*1
— _ 2 - .
Eu = (1 E [As] /0 p d/,tq_,(b)) (4.2)

veChi(u)
is a representing measure of {||S¥e,||?}5, for everyu € V.

We begin by characterizing directed trees admitting densely defined weighted
shifts Sx with nonzero weights such that D(S%) = {0}. It turns out that such
pathological weighted shifts exist. This never happens for classical (unilateral or
bilateral) weighted shifts S because if such an operator is densely defined, then we
always have the inclusion &y C D*(S).

PROPOSITION 4.2. Let J be a directed tree. Then the following assertions are
equivalent:

(i) there exists a family X = {\,}yeve of nonzero complex numbers such that

D(Sx) = £2(V) and D(S3) = {0},
(if) card(Chi(u)) =Nq for everyu € V.

Slightly modifying the above proof Proposition 4.2, we obtain a version of
Proposition 4.2 for weighted shifts with arbitrary weights.

PROPOSITION 4.3. Let J be a directed tree. Then the following assertions are
equivalent:

(i) there ezists a family X = {Ay}veve C C such that D(Sx) = ¢3(V) and
D(S3) = {0},
(ii) the set Chi(u) 4s infinite for every u € V.

5. Normality and quasinormality

In this subsection we show that formally normal weighted shifts on directed
trees are always bounded and normal. Recall that a densely defined operator N
in a complex Hilbert space H is said to be formally normal if D(N) C D(N*) and
|[N*h|| = ||[Nh]|| for all h € D(N) (cf. [3]).

PROPOSITION 5.1. If Sy is a nonzero weighted shift on a directed tree J with
weights X = { Xy }vevo, then the following three conditions are equivalent:

(i) Sx is formally normal,

(ii) there exists a sequence {u,}5 _o, €V such that

—O00

Un—1 = par(u,) and |y, _,| = |Au,| for alln € Z,

and Ay =0 for allv € V\ {u,: n € Z},
(iii) Sx € B(£3(V)) and Sy is normal.
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Following [12] (for the case of bounded operators see [1]) we say that a closed
densely defined operator A in a complex Hilbert space H is quasinormal if A com-
mutes with the spectral measure E of |A|, i.e., E(c)A C AE(0o) for all o€ B(R,).
By [12, Proposition 1], a closed densely defined operator A in H is quasinormal
if and only if U|A| C |A|U, where A = U|A| is the polar decomposition of A. It
turns out that quasinormal operators are always subnormal (see [12, Theorem 2]
for the general case; the bounded case can be deduced from [1, Theorem 1]). The
reverse implication does not hold in general. For more information on quasinormal
operators we refer the reader to [1, 4] (bounded operators) and [12, 9] (unbounded
operators).

The characterization of quasinormal weighted shifts on directed trees now dis-
cussed below.

PROPOSITION 5.2. Let Sy be a densely defined weighted shift on a directed tree
T with weights A = {A\y }ueve. Then the following conditions are equivalent:

(i) S is quasinormal,
(i) |ISxeu|l = [|Sxey]| for allu € V and v € Chi(u) such that A, # 0.

Moreover, if V° # @ and A\, # 0 for allv € V°, then Sy is quasinormal if and only
if |Sall7Sx is an isometry.

References

[1] A. Brown, On a class of operators, Proc. Amer. Math. Soc. 4, (1953), 723-728.

[2] P. Budzynski, Z. J. Jab, 1. Jung, J. Stochel, On subnormality of unbounded weighted shifts
on directed trees, priprint.

[3] E. A. Coddington, Formally normal operators having no normal extension, Canad. J. Math.
17 (1965), 1030-1040.

[4] J. B. Conway, The theory of subnormal operators, Mathematical Surveys and Monographs,
Providence, Rhode Island, 1991.

[5] Z. J. Jablonski, I. B. Jung, J. Stochel, Weighted shifts on directed trees, preprint 2009.

[6] J. Janas, On unbounded hyponormal operators, Ark. Mat. 27 (1989), 273-281.

[7] J. Janas, On unbounded hyponormal operators. I, Integr. Equat. Oper. Th. 15 (1992), 470-
478.

[8] J. Janas, On unbounded hyponormal operators. III, Studia Math. 112 (1994), 75-82.

[9] W. Majdak, A lifting theorem for unbounded quasinormal operators, J. Math. Anal. Appl.
332 (2007), 934-946.

[10] s. Ota, K. Schmiidgen, On some classes of unbounded operators, Integr. Equat. Oper. Th.
12 (1989), 211-226.

[11] J. Stochel, An asymmetric Putnam-Fuglede theorem for unbounded operators, Proc. Amer.
Math. Soc. 129 (2001), 2261-2271.

[12] J. Stochel and F. H. Szafraniec, On normal extensions of unbounded operators, II, Acta Sci.
Math. (Szeged) 53 (1989), 153-177.

DEPARTMENT OF MATHEMATICS, KYUNGPOOK NATIONAL UNIVERSITY, DAEGU 702-701 KOREA
E-mail address: ibjung@knu.ac.kr



ON HAHN BANACH THEOREM IN A PARTIALLY
ORDERED VECTOR SPACE AND ITS APPLICATIONS

TOSHIKAZU WATANABE

ABSTRACT. In this paper, using the Bourbaki-Kneser fixed point the-
orem, we give a new proof of the Hahn-Banach theorem in case where
the range space is a partially ordered vector space.

1. INTRODUCTION

The Hahn-Banach theorem is one of the most fundamental theorems in
the functional analysis theory. This theorem is known well in the case where
the range space is the real number system as follows:

Let p be a sublinear mapping from a vector space X to the real number
system R, Y a vector subspace of X and q a linear mapping from'Y to R
such that g < p on'Y. Then q can be extended to a linear mapping g defined
on the whole space X to R such that g < p.

It is known that this theorem establishes in case where the range space is a
Dedekind complete Riesz space. The Hahn-Banach theorem is proved often
using the Zorn lemma. On the other hand, Hirano, Komiya, and Takahashi
[4] showed the Hahn-Banach theorem by using the Markov-Kakutani fixed
point theorem [5] in the case where the range space is the real number
system.

In this paper, using the Bourbaki-Kneser fixed point theorem, we give a
new proof of the Hahn-Banach theorem and the Mazur-Orlicz theorem in the
case where the range space is a Dedekind complete partially ordered vector
space (Theorem 4, Theorem 5). We also give a new proof of the separation
theorem in a Cartesian product of the vector space and Dedekind complete
partially ordered vector space (Theorem 6) [2, 3, §].

2. PRELIMINARIES

Let R be the set of real numbers, N the set of natural numbers, I an
indexed set, (E, <) a partially ordered set and F a subset of E. The set
F is called a chain if any two elements are comparable, that is, z < y or
y <z for any xz, y € F. An element z € FE is called a lower bound of F if
z <y forany y € F. An element z € E is called the minimum of F if z is a
lower bound of F and z € F. If there exists a lower bound of F, then F is
said to be bounded from below. An element z € E is called an upper bound
of Fify <z forany y € F. An element z € F is called the mazimum
of F if x is an upper bound and z € F. If there exists an upper bound of

Key words and phrases. fixed point theorem, Hahn-Banach theorem, partially ordered
vector space.



F', then F is said to be bounded from above. If the set of all lower bounds
of F' has the maximum, then the maximum is called an infimum of F and
denoted by inf F'. If the set of all upper bounds of F' has the minimum, then
the minimum is called a supremum of F and denoted by sup F. A partially
ordered set E is said to be complete if every nonempty chain of E has an
infimum; E is said to be Dedekind complete if every nonempty subset of E
which is bounded from below has an infimum. A mapping f from E to E is
called decreasing if f(z) < z for every z € E.

In a complete partially ordered set, the following theorem is obtained
1, 6, 7).

Theorem 1 (Bourbaki-Kneser). Let E be a complete partially ordered set.
Let f be a decreasing mapping from E to E. Then f has a fized point.

A partially ordered set E is called a partially ordered vector space if E is
a vector space and z + z < y + z and ax < ay hold whenever z,y,z € E,
z <y, and « is a nonnegative real number. If a partially ordered vector
space E is a lattice, that is, any two elements have a supremum and an
infimum, then E is called a Riesz space.

Let X be a vector space and E a partially ordered vector space. A map-
ping f from X to E is said to be concave if

fltz + (1 =t)y) 2 tf(z) + (1 - ) f(y)

for any z,y € X and ¢ € [0,1]. A mapping f from X to E is called sublinear
if the following conditions are satisfied.

(S1) For any z,y € X, p(z +y) < p(z) +p(y)-
(S2) For any z € X and a > 0 in R, p(ax) = ap(z).

3. THE HAHN-BANACH THEOREM

Lemma 2. Let p be a sublinear mapping from a vector space X to a Dedekind
complete partially ordered vector space E, K a nonempty convez subset of
X and q a concave mapping from K to E such that ¢ < p on K. For any
z e X, let

f(z) = inf{p(z + ty) — tq(y) | t € [0,00) and y € K}.

Then f is sublinear such that f < p. Moreover if g is a linear mapping from
X to E, then g < f is equivalent to g <p on X and ¢ < g on K.

Proof. For any z € X,
{p(z +ty) —tq(y) | t € [0, c0) and y € K}
is bounded from below. Indeed, since
p(z +ty) — tq(y) = p(ty) — p(—=) — ta(y) = —p(-=),

it is established. Since FE is Dedekind complete, f is well-defined and we have
f(z) > —p(—x). By definition of f, we have f(z) < p(z) and f(wx) = af(z)
for any v > 0. Thus (S2) is established. Let 1,22 € X. For any y1,y2 € K



and s,t > 0, we have

p(z1 + sy1) — sq(y1) + p(x2 + ty2) —ta(y2)

2 p(z1 + 22 + (s + t)w) — (s + t)g(w)

> f(z1 + x2),
where w = S—_lH(syl +ty2) € K. For p(z1 + sy1) — sq(y1), take infimum with
respect to s > 0 and y; € K, we have

f(@1) + p(z2 + ty2) — tq(y2) > f(z1 + 22)
and for p(z2 + ty2) — tq(y2), also take infimum with respect to t > 0 and
yo € K, we have
f(z1) + flz2) = f(21 + 22).

Thus (S1) is established. Suppose that g is a linear mapping from X to E.
If g < f, then we have g < p. Moreover for any y € K, since

—9(y) = 9(—y) < f(=y) <p(-y +y) —aly) = —a(y),
we have g > g on K. To prove the converse, suppose that g < p on X and
g<gon K. For any z € X, y € K and t > 0, we have
9(z) = g(z + ty) — tg(y) < p(z + ty) —tq(y).
This implies that g < f. O
The above lemma is proved in case where the range space is a Dedekind

complete Riesz space, see [9, Lemma 1.5.1].
By Theorem 1 and Lemma 2, we can give a following lemma.

Lemma 3. Let f be a sublinear mapping from a vector space X to a
Dedekind complete partially ordered vector space E. Then there ezists a
linear mapping g from X to E such that g < f.

Proof. Let EX be the set of mappings of X into E. Define f < g for
fr9 € EX by f(z) < g(z) for all z € X. Then (EX,<) is a partially
ordered vector space. Put f*(z) = —f(—z) for any z € X. Let

Y = {h € EX | h is sublinear, f* <h < f}.

Then Y is an ordered set. Since E is Dedekind complete, EX is also so.
Consider an arbitrary chain Z C Y. Since EX is Dedekind complete and Z
is bounded from below, there exists a ¢ = inf Z in EX. Then g is sublinear.
Since Y is bounded from below, it holds that g € Y. Thus Y is complete.
Let K = {y}. Then h is also a concave mapping from K to E. We define a
decreasing operator S by

Sh(z) = inf{h(z + ty) — th(y) | t € [0, o), y € K}

for any h € Y. By Lemma 2, Sh is sublinear and S is a mapping from Y to
Y. Thus by Theorem 1, we have a fixed point g € Y. Then for any z € X,
we have g(z) < g(z + y) — g(y) and

9(z) + 9(y) < g(z +y) < g(z) + 9(y)-
Since

0= g(0) = g(—ax + o) = g(—ax) + ay(z)



for any a > 0 and z € X, we have g(—ax) = —ag(z). Thus g(ax) = ag(z)
for any o € R and z € X. Therefore, g is linear. O

By Lemma 3, we have the following Hahn-Banach Theorem in a partially
ordered vector space.

Theorem 4. Let p be a sublinear mapping from a vector space X to a
Dedekind complete ordered vector space E, Y a vector subspace of X and q
a linear mapping from'Y to E such that q < p on'Y. Then q can be extended
to a linear mapping g defined on the whole space X such that g < p.

Proof. By Lemma 2, there exists a sublinear mapping f such that f < p.
By Lemma 3, there exists a linear mapping g such that g < f. Then putting
K =Y in Lemma 2, we have g <pon X and ¢ < gon Y. Since q is linear,
for any y € Y, we have

9(=y) < f(—=y) <p(—=y +v) — a(y) = —a(y) = q(—y).

Then we have ¢ < gon Y. Thus ¢ = g on Y. Therefore, the assertion
holds. O

Moreover we obtain the Mazur-Orlicz theorem in a Dedekind complete
partially ordered vector space.

Theorem 5. Let p be a sublinear mapping from a vector space X to a
Dedekind complete partially ordered vector space E. Let {z; | j € I} be a
family of elements of X and {y; | j € I} a family of elements of E. Then
the following (1) and (2) are equivalent.

(1) There ezists a linear mapping f from X to E such that f(z) < p(z)
for any x € X and y; < f(z;) for any j € I.
(2) For anyn € N, a1, qq,...,0, > 0 and ji,j2,...,7n € I, we have

n n
> aiy; <p (Z az':vj,.) :
=1 =1

Proof. The assertion from (1) to (2) is clear. For any z € X, by (2), we
have

n n
Cpea) <p <z . Zaﬂji) 3 o
=1

=1

Put

n n
po(x) = inf {p (:v + Z aw;,) - Zaiyji
i=1

i=1

nEN,aiEOandjieI}.

Since E is Dedekind complete, pg is well-defined and pg is sublinear. Thus
by Lemma 3, there exists a linear mapping f from X to E such that f(z) <
po(x) for any z € X. Since po(—z;) < —y;, we have

Y < —po(—z5) < f(=)).
Since po(z) < p(z), we have f(z) < p(z). Thus the assertion holds. O



4. THE SEPARATION THEOREM

Let A be a nonempty subset of X and L(A) denotes the affine manifold
spanned by A. We define

Int(A) = {3: € X

For any « € L(A) there exists € > 0 such that
T4+ Mz’ — ) € A for any X € [0, €) '

If L(A) = X, then we write I(A) insted of Int(A). Let f be a linear mapping
from X to E, g a linear mapping from E to E and ug a point in E. Then
H={(z,y) € X x E| f(z) + g(y) = uo} is empty or an affine manifold in
X x E. Let A, B be nonempty subsets of X x E. A subset A C X x E is
cone if A > 0 implies AA C A. It is said that an affine manifold H separates
Aand Bif H. = {(z,y) € X xE | f(z) + g(y) < up} D A and H, =
{(z,y) e X xE| f(z) + g(y) > uo} D B hold. The operator Py defined by
Px(z, y) = z for any (z, y) € X x E is called the projection of X x E onto
X. We define Px(A) = {z € X | there exists y € E such that (z, y) € A}.
The subset C(A) ={A\z2 € X x E| A >0, z € A} is called the cone spanned
by A.

By Lemma 3, we obtain the separation theorem in a Cartesian product of
the vector space and the Dedekind complete partially ordered vector space.

Theorem 6. Let A and B be subsets of X x E such that C(A— B) is conver
cone, Px(A — B) satisfies the following (i) and (ii) :

(i) 0 € I(Px(A - B)),

(ii) if (z, y1) € A and (z, y2) € B, then y1 > yo holds.

Then there ezists a linear mapping f from X to E and a yo € E such that
the affine manifold H = {(z, y) € X X E | f(z) —y = yo} separates A and
B.

Proof. By assumption (i) and the definition of I(Px (A — B)), forany z € X
there exists ¢ > 0 and for any A € [0, €), there exists y € E such that
(Az, y) € A — B. Then there exist z1, 2 € X and y1, y2 € E such that
(Az, y) = (z1 — 22, Y1 — ¥2) = (=1, 1) — (22, ¥2) € A— B.
Define
E;={ye E|(z,y) € C(A— B)}, for any z € X.

Since A=1(y1 —y2) € E; for any \ € (0, €), we have E, # 0. Let y € Ey and
y # 0, then there exists A > 0, (z1, y1) € A and (z2, y2) € B such that

(0, y) = M (21, 1) — (22, ¥2)}
and 1 = xp. By assumption (ii), we have y = A(y1 — y2) > 0. We define
Ey={ye€ E|y >0} Then we have y € E.. Since C(A — B) is convex
cone, we have E; + E » C E__ / for any «, z' € X. We prove that for every
z € X the subset E, possesses a lower bound in E. Since E, is nonempty,
for any z € X, there exists y' € E with —y' € E_,. Then we have

y_yIEEz+E_mCE0CE+

for any y € E,. This implies y < y for any y € E,. Since E is Dedekind
complete, operator p(z) = inf{y | y € E;} is well defined. Then p(z) is
sublinear. By Lemma 3, there exists a linear mapping f from X to F such



that f(z) < p(z) for all z € X. Then for any (z1, y1) € A4, (z2, ¥2) € B,
take £ = x1 — z9, we have

f(z1 —22) <p(z1 — 22) <Y1 — w2
Therefore,

f(z1) =1 < fz2) — 2.
Since E is Dedekind complete, there exists a yg € E such that

F(z1) —y1 <o < fz2) —v2

for any (z1, y1) € A, (22, y2) € B. Thus the affine manifold H separates A
and B. O
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WANDERING SUBSPACES AND THE BEURLING
TYPE THEOREM

KEI JI IZUCHI, KOU HEI IZUCHI, AND YUKO IZUCHI

ABSTRACT. An elementary proof of the Aleman, Richter and Sund-
berg theorem concerning with invariant subspaces of the Bergman
space is given.

1. INTRODUCTION

Let D be the open unit disk in the complex plane, and let dA denote
the normalized Lebesgue measure on D. The Bergman space L? is
a Hilbert space consisting of square integrable analytic functions on
D. We denote by B the multiplication operator by the coordinate
function z on L2, Bf = zf, which is called the Bergman shift. On
the Hardy space H? on D, we denote by T, the multiplication operator
by z, the unilateral shift. For an operator T' on a Hilbert space H
and an invariant subspace M of T, the subspace M © T M is called
a wandering subspace of M. We say that the Beurling type theorem
holds for T if [M & TM] = M for all invariant subspaces M of T,
where [M ©T M] is the smallest invariant subspace of T containing M &
TM. The well known Beurling theorem [3] says that for all invariant
subspaces M of the unilateral shift T,, their wandering subspaces have
dimension 1, and the Beurling type theorem holds for 7,. On the
other hand, the situation of the Bergman shift is a little bit different.
There are studies of the dimension of wandering subspaces of invariant
subspaces of B, and it is known that the dimension ranges from 1 to
00, see [2, 5, 7]. In 1996, Aleman, Richter, and Sundberg [1] gave a
big progress in the study of invariant subspaces of B. They proved
the Beurling type theorem for the Bergman shift. This result reveals
the inside of the structure of invariant subspaces of the Bergman space
and becomes a fundamental theorem in the function theory on L2 [4, 6].
Later, different proofs of the the Beurling type theorem are given in
[8, 9, 10, 11]. In [10], Shimorin proved the following theorem.

Shimorin’s Theorem. Let T be a bounded linear operator on a Hilbert
space H. If T satisfies the following conditions
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() Tz +yl* < 2(||«l” + I Tyl*), =,y € H,
(b) ({T"H : n > 0} = {0},
then H = [H © TH].

If T satisfies conditions (a) and (b), then T'|p; : M — M also satisfies
conditions (a) and (b). Hence by Shimorin’s theorem, the Beurling type
theorem holds for 7. As an application of this theorem, Shimorin gave
a simpler proof of the Aleman, Richter, and Sundberg theorem. In [11],
Sun and Zheng gave another proof of this theorem. Their idea was to
lift up the Bergman shift as the compression of a commuting pair of
isometries on the subspace of the Hardy space over the bidisk. Sun and
Zheng’s idea has two aspects. One is to show some identities in the
Bergman space. Another one is a technique how to prove the Beurling
type theorem.

Here we give an elementary proof of the Aleman, Richter, and Sund-
berg theorem using some basic function theory in L2 and elementary
techniques in functional analysis. Our idea of the proof comes from the
one given by Sun and Zheng [11] essentially. Our proof is just rewrit-
ing their proof in the most elementary way. In Section 2, we prove the
following theorem.

Theorem 1.1. Let T be a bounded linear operator on a Hilbert space
H. If T satisfies the following conditions

(i) ||Tz|]® + |T**Tz|? < 2|T*Tz|?>, =z €H,

(ii) T is bounded below, that is, there is ¢ > 0 satisfying ||Tz|| >

c||z|| for every xz € H,

(iii) |7 <1,
- (iv) ||T**z|| — 0 as k — oo for every z € H,
then H = [H © TH).

We also give some identities in the Bergman space L?, and as ap-
plication of Theorem 1.1 we prove the Aleman, Richter, and Sundberg
theorem. In Section 3, we shall discuss on a relationship between the
conditions in Shimorin’s theorem and ones in Theorem 1.1. We show
that condition (iii) follows from conditions (i) and (ii), and that condi-
tions (i), (ii), and (iv) are equivalent to Shimorin’s conditions (a) and

2. THE BEURLING TYPE THEOREM

Proof of Theorem 1.1. Let N = H© [H © TH). It is sufficient to show
that N = {0}. To do this, let £ € N. Since z L T*(H © TH),
T*z | H© TH for every k > 0. By condition (ii), TH is closed.
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Hence T**z € TH and there is y, € H such that Ty, = T**z. By
condition (iii), we have ||T*®*+Vz| < ||T**z||. Let

rp = [[T%a]|? — | T+ g

Then we have

= rpp = [T 4 T2 — 2| ¢+ D2
= N Tyell® + 1T Tyxl* — 2/ T Tyil?
< 0 by (i)

Thus we get 0 < 7 < rg41. By condition (iv), we have
ri = || T**z||? = |T***Yz||? = 0 as k = oo.
Hence r, = 0 for every k > 0. Thus we get ||z||? = ||T**z||? for every

k > 0. By condition (iv) again, we get z = 0, so N = {0}. This
completes the proof. O

As an application of Theorem 1.1 we give a simple and elementary
proof of Aleman, Richter, and Sundberg theorem in the Bergman space
L%, To do this, we need some identities in the Bergman space. It is
known that ||2"|| = 1/v/n+1 and {v/n+12"},50 is an orthonormal
basis of L2. So for each f(z) in L%, we may write

o0 o0 |G, |2
n T
= (A < -
f(2) nz:%az nzz(,”'*'l 00
We have B*1 =0 and
n

B*" = 271 > 1.
n+1

By this fact, we have the following.

Lemma 2.1. (1) Bf = Zanz"“,
n=0

. n+1 n
(2) B Bf = Zm&nz .
n=0

*2 — - n n—1
(3) B Bf—nz=:1H+2anz :

*2 _ & n n
(4) BB Bf_;——nHW :

Since
Zoo 2 Zoo +1a,)? _ 1
B 2 — |a’nl — n n >z 2,
” f” n:0n+2 n=0n+2n+1”2“f”
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IB|l < 1 and B is bounded below. By Lemma 2.1, one easily checks
the following identities in the Bergman space.

Lemma 2.2. (1) BB*®Bf =2B*Bf — f.
(2) IBSI* + |1B2Bf|* = 2||B*Bf||*.

Let M C L2 be an invariant subspace of B. Let ML be the or-
thogonal complement of M in L2. We denote by Py and Py. the
orthogonal projections from L2 onto M and M*, respectively. For
f € L%, we have f = Py f @ Pyaf and || f]1> = ||Pacf|1? + || Pase £
Let B|a be the restriction operator on M. For f,h € M, we have
((Blam)*f,h) = (f,Bh) = (PyB* f, h), so (B|a)* = PyB*. We use this
fact frequently. The following follows from Lemma 2.2 (1).

Lemma 2.3. Let M be an invariant subspace of B. Then for each
feM,

1
IBFIF + IBZBFII* = 2l|(Bla) B II* + 5| Pars BB Bf|I”

The following theorem is just a rewriting of an identity given in the
proof of Theorem 3.1 in [11]. Using Lemma 2.3, we can give a simpler
proof.

Theorem 2.4. Let M be an invariant subspace of B. Then for each
feM,

1B + |(Bla)2BF|1* — 21| (Blw)*Bf||®
1 E3
= §”PMJ-BPM-‘-B*2Bf”2 — | Pprs BB ||

Since || Py B|| < 1, we have the following corollary.

Corollary 2.5. Let M be an invariant subspace of B. Then for each
feM,

IBSI + (Bla) 2B + 5 | Pars BZBA I < 2(Blae) B |

Corollary 2.6. The Beurling type theorem holds for B.

Proof. Let M be an invariant subspace of B. Write T' = B|;; and
H = M. 1t is easy to check that T satisfies conditions (ii), (iii), and
(iv) in Theorem 1.1. Condition (i) follows from Corollary 2.5. By
Theorem 1.1, [M © TM] = M. Thus we get the assertion. 0O

The authors think that this is one of the most simple and elementary
proof of Aleman, Richter, and Sundberg theorem.
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3. CONDITIONS IN THEOREM 1.1

We study conditions (i)—(iv) in Theorem 1.1 and conditions (a), (b)
in Shimorin’s theorem. In [10], Shimorin pointed out the following.

Proposition 3.1. Let T be a bounded linear operator on a Hilbert
space H. Then condition (a) in Shimorin’s theorem is equivalent to
the conditions that condition (ii), so T*T is invertible, and TT* +
(T*T)~' < 2I.

Rewriting the above conditions, we have the following.

Proposition 3.2. Let T be a bounded linear operator on a Hilbert
space H. Then conditions (ii) and TT* + (T*T)~! < 2I are equivalent
to conditions (i) and (i)

Corollary 3.3. Let T be a bounded linear operator on a Hilbert space
H. If T satisfies conditions (i) and (ii), then for every invariant sub-
space M of T, we have

ITz|* + [[(Tlar)*Tl* < 20(T|ae) Tlf?, = € M.

Proof. Let M be an invariant subspace of T. By Propositions 3.1 and
3.2, T satisfies condition (a) in Shimorin’s theorem. Hence 7’| satisfies
condition (a). By Propositions 3.1 and 3.2 again, we get the assertion.

O

By Lemma 2.2 (2), ||Bf||*+||B**Bf||> = 2||B*Bf||? for every f € L2.
By Corollary 3.3, we have

IBFI1? + [|(Bla)**Bf |I* < 2||(Bla)*Bf ||

for every invariant subspace M of B and f € M. An estimate in
Corollary 2.5 is more precise than this one.
In the private communication, S. Richter pointed out the following.

Proposition 3.4. Let T be a bounded linear operator on a Hilbert space
H. If T satisfies conditions (i) and (i), then ||T|| < 1.

By Proposition 3.4, condition (iii) is superfluous in Theorem 1.1.

Corollary 3.5. Let T be a bounded linear operator on a Hilbert space
H. If T satisfies conditions (i), (ii), and (iv), then the Beurling type
theorem holds for T'.

Theorem 3.6. Let T be a bounded linear operator on a Hilbert space

H. Then conditions (i), (ii), and (i) are equivalent to conditions (a)
and (b).
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The Spectra Of Toeplitz Operators On The Bidisc

Takahiko Nakazi (Hokusei Gakuen University)

Abstract. Let H? be the Hardy space on the bidisc. For some special function
¢ in L*°, we study the spectrum of the Toeplitz operator Ty on H2. In particular, we
describe it for a real valued symbol ¢.

Let m be the normalized Lebesgue measure on the torus I'?. For 1 < p < oo,
LP = LP(I'?,m) denotes the Lebesgue space and H? = H?(I2,m) = {f € L? : f({,n) =0
if £ < 0 or n < 0}, that is, H? denotes the usual Hardy space on I'’2. Suppose m, and
m,, denote the normalized Lebesgue measures on the circle I' = I', and I' = I'y,. Then
2=r,xryand m=m, xm,. L»(T,) = LP(',,m,) and L?(T,) = LP(I"y, m,) denote
one variable Lebesgue spaces, and H?(I',) = H?(I',,m,) and H?(I',) = HP([y, my)
denote one variable usual Hardy spaces.

Let P be the orthogonal projection from L? onto H2. For a function ¢ in L,
the Toeplitz operator determined by ¢ is

Tof = P(¢f) (f € H?).

The Toeplitz operator Ty on H(T',) or H?(T,,) is defined similarly.

Let H?, be the closed linear space of | J;., 2" H? and H the closed linear space of
Uro, @"H?. Let P* be the orthogonal projection from L? onto HZ and P the orthogonal
projection from L? onto HZ. For ¢ in L*°, Ty and T} are Toeplitz operators on HZ and
H2, respectively. That is, Ty f = P¥(¢f) (f € HZ) and T3 f = P*(¢f) (f € H2).

In this paper, we study the spectrum of o(Ty) using o(Ty) and o(T3). It is
known [2] in that

a(Ty) 2 o(Ty) Ua(T3).

We consider a very special symbol, that is, ¢ is real valued or ¢ = ¢; o where ¢ = ¢1(2)
and ¢y = Po(w).

In this lecture, SpecB denotes the maximal ideal space of a Banach algebra B and
f denotes the Gelfand transform of f in B. My and M, denote multiplication operators
on L2(T") and L%(I'?), respectively.

E C [0,27) measurable set, I C[0,2rr) interval

o one variable (Asz)-condition :

1 1 -1
— [ Wdmy <[ —— / w14 ) Ay
mta)/I e 7(mtu) o
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o two variable (As)-condition for t =w or t =z :

1 1 1 -1
_ Wdm < —/ dm (—/W—ldm ) VE, "I
m(E x I) Jex1 ’ymz(E) B \mu(I) Js v

1 1 1 -1
S — Wdm < ———/ dm (—/W‘ldm) VE, V1
m(I X E) J1xp Tru(®) Jp " \maD) i i

ONE VARIABLE

f Hartman-Wintner Theorem |

¢ € L=(I). real valued
=
o(Ty) = [ess inf@, ess supd)

Proof

By Brown-Halmos, (T}) C [ess inf¢g, ess sup¢).

It is enough to prove T is not invertible when ess inf¢) < 0 and ess sup¢ > 0.
Suppose Ty is invertible.

¢f =149, 3f € H(I'),3g € zH?(T)

¢f=1+g

G = (1+9)f € HY(D)

@|f|> = constant # 0

contradiction

| Coburn Theorem |

(1) g€ L*(T), 6 #0 = (KerTy) N (KerTy) = {0}
(2) ¢ continuous
Ty  Fredholm <= |¢p| >0on T

| Krein-Widom-Devinatz Theorem |
continuous

¢

.

o(Ty) =0(Mg) U{A € C: wind (¢ — A) # 0}
Proof

o Ty invertible <= T} Fredholm, indTy = 0
o Ty Fredholm <= M, invertible, indTy = —wind¢
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TWO VARIABLES

§1. Known result

Lemma 1. (Nakazi, 2001) .
If Ty is invertible then for t = z and w ¢ = kt%i
t

where k; is invertible in H® and h; is a t-outer function in H?
such that |h|? satisfies two variable (Aj)-condition for ¢.

Theorem 1. (Nakazi, 2001)
If ¢ € L®(I?) then o(Ty) 2 o(TY) U o(T3)
Proof
By Lemma 1, if Ty is invertible then Tf;s is invertible for ¢t = z and w.

§2. Real valued symbol

Lemma 2.
0(Mg) C 0(Tg) C [ess infg, ess supg]

Proof
It is well known.

Theorem 2.
If ¢(z,w) is a real valued function then o(Ty) = [ess infg, ess supg].

Proof
By Lemma 2, it is enough to prove Ty is not invertible when
ess inf¢ < 0 and ess supg > 0.

Suppose Ty is invertible.
By Lemma 1,

_ Fw
=2

ks
hZ

¢ X |hol® = 5 x |ha]?,

u(w) = ky/h2 € H, real value,
v(2) = k,/h% € H} real value.

Bew) o o)
u(w) >0 and v(2)

Put F = {w : u(w) > 0} and F¢ = {w : u(w) < 0} then
d(z,w) >0 ((z,w) €T, x F) and ¢(z,w) <0 ((z,w) € T'; x F°).

> 0.
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Put E ={z:v(z) > 0} and E¢ = {2z : v(z) < 0} then
d(z,w) >0 ((z,w) € E xT'y) and ¢(z,w) < 0 ((2,w) € E€ x T'y).
E€xFCI,xF

e m,(E°) > 0 and my(F) >0
= ¢(z,w) <0 and ¢(z,w) >0o0n E¢ X F
= contradiction

e m,(E®) =0o0r my(F)=0
mz(E¢) =0 = v(z) >0o0nT;, ¢(z,w) > 0 onI?
= contradiction

my(F) =0 = u(w) > 0 on [y, ¢(z,w) >0 on I'?
— contradiction

Ty is not invertible.

83. One variable symbol

¢=4¢(2) : ¢p€L>(%)

Lemma 3.
one-variable (Az)-condition = two variable (Aj)-condition

Proof
It is clear by the definitions.

Theorem 3.
¢ = ¢(2) = 0(Ty) = 0(T}) = o(Ty)

Proof

a(Ty) S o(TF) S o(Ty)

"." Theorem 1

a(Ty) 2 (Ty)

" T, invertible => TyH? = H?
Ty invertible = Ty one-to-one

¢(2) = k(2)h(2)/h(2)

k,k™! € H®(T,)

|n|2 --- one variable (A2)—condition, h € H*(T';) outer
(Muckenhoupt-Devinatz-Widom)
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We may assume ¢ = h/h.

0<?y< oo

/|F|2dm < 7/ |pF + G|*dm (F € H?,G € K?).
(Lemma 3)

84. Separating symbol

¢(z>w) = ¢1(z)q§2(w) : ¢l € Loo(Fz)a ¢2 € Loo(Fw)

Theorem 4.
(1) ¢1 € H®(I';) = 0(Ty) 2 0(Ty,) x 0(Ms,)
(2) ¢ € H®(T',), ¢ € H*(T,)) =
U(Td*) 2 {0(T¢1) X U(M¢2)} U {U(M¢1) X U(T¢2)}

Proof

(1) Since ¢ € HZ°, by Theorem 3
o(T%) = $1(SpecH™(T..)) X $a(SpecL®(T)) = o(Ts,) X o(My,)
Apply Theorem 1.

(2) follows from (1) and Theorem 1

¢ = ¢(z,w) € C(I'?) invertible
wind,,¢ --- winding number of ¢(z,w) for fixed w
wind,¢ --- winding number of ¢(z,w) for fixed z

Lemma 4 (Osher)
9(z,w) = a(2)b(w) + c(w) € C(I'*) invertible : a,b,c € C(I)
Ty, invertible <= wind, g = 0, wind,g =0

Theorem 5
P(2,w) = ¢1(2)p2(w) : ¢1,42 € C(T)
—

0(Ty) = o(My) U {X € C: wind, (¢ — A) # 0 or wind,(¢ — \) # 0}
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Abstract

The distinction between k-hyponormality and weak k-hyponormality
via a weighted shift W, with a weighted sequence o is closely related to
the flatness of the weight sequence . In general this flatness does not hold
in the case of quadratical hyponormality. And so the following question
rises: describe all quadratically hyponormal weighted shift with first two
equal weights ([1]). The recursively generated positively quadratically
hyponormal weighted shifts with weight sequence 1, 1,/z, (v/u, Vv, Vw)"
will be discussed.

1. Introduction. This was presented at the international conference: The
Seminar on Function Spaces, which was held at Hokkaido University in Japan
on December 22-25, 2010, and is the joint work with G. Exner, I.B. Jung, and
M.R. Lee. The results in this note will be appeared in some other journal.

Let H be a separable, infinite dimensional, complex Hilbert space and let
L(H) denote the algebra of all bounded linear operators on H. For A, B € L(H),
we denote [A, B] := AB — BA. An n-tuple T = (T3, --- ,Ty) of operators in
L(H) is called hyponormal if the operator matrix ([T, T;])};=; is positive on
the direct sum of n copies of H. For k € N and T € L(H), T is said to be
k-hyponormal if (I, T,--- ,T*) is hyponormal. An n-tuple T = (T1,--- ,Ty) is
weakly hyponormal if \;Ty + --- + A\, T, is hyponormal for every \; € C, i =
1,---,n, where C is the set of complex numbers. An operator T' is weakly
k-hyponormal if (T, T?,--- ,T™) is weakly hyponormal. In particular, weak 2-
hyponormality, often referred to as quadratic hyponormality.

For (unilateral) weighted shifts W, with weight sequence o = {;}§2,, the
distinction between k-hyponormality and weak k-hyponormality is closely re-
lated to the flatness of their weight sequence . It was shown in [2] that if
W, is a 2-hyponormal weighted shift with o, = an41 for some n € N, then

*2000 Mathematics Subject Classification. 47B37, 47B20.
tKey words and phrases: Quadratically hyponormal weighted shift, flatness, weakly k-
hyponormal weighted shift.
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a1 = ag = --- . But in general this flatness does not hold in the case of quadrat-
ical hyponormality; for example, if o : \/g , \/g , %}% (n > 2), then W, is
quadratically hyponormal. And so the following question rises: describe all
quadratically hyponormal weighted shift with first two equal weights (cf. [1]). In
[3, Prop. 4.6], [4] and [6], the recursively generated positively quadratically hy-
ponormal weighted shifts with weight sequence 1, (1,+/x, /)" were described.
And also, in [5], the recursively generated positively quadratically hyponormal
weighted shifts with weight sequence 1, 1, (y/u, v/v,/w)" were described. As a
continued study, the following problem which was suggested in [4] remains an
open problem.

Problem 1.1 ([4, Prob. 5.3]). Let o : 1,1,/z, (y/u,/v,y/w)" with
1 <z <u<v < w Describe W := {2|W, is quadratically hyponormal for
some u,v,and w}.

In this note we discuss the above problem.

2. Preliminaries and Notation. We recall some notation which will
be used frequently throughout the paper (cf. [2], [4], [6], [5]). An operator
T € L(H) is quadratically hyponormal if T + sT? is hyponormal for every s €
C. Let {ex}>, be the standard orthonormal basis for ¢2, let P, denote the

orthogonal projection onto the subspace generated by eq, ..., e,, and let W, be
a hyponormal weighted shift with a weight sequence o = {a;}32,. We denote

D(8) == [(Wy + sW2)* W, +sW2], scC.
For n > 0, let

Dn(s) = Pu[(Wa+ sW2)*, W, + sW2|B,

do To 0 cee 0 0
O @ T1 - 0 0
0 1T Q2 0 0
= . - . . )
0 0 O v Gn-1 Tn-1
0 0 0 - 7Tho1 @n
where g = u + |s]Pvk; Tr = S\/Wk; Uk = QF — AB_; v = a%azﬂ —

of_104 g wy = ag(od,, —of_1)% (k>0),and a_y = a_p := 0. Clearly, W,
is quadratically hyponormal if and only if D,(s) > 0 for every s € C and every
n > 0. To detect this positivity, we consider d,(-) := det(D,(-)). By direct
computation, we have

do = qo; dv=qoq1 — |rol?,
doto = Guiadni1 — |Tns1l’dn (n > 0);
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dy, is a polynomial in ¢ := |s|? of degree n + 1, with Mclaurin expansion

n+1 )
dn(t) == Zc(n,i)tz. (2.1)
i=0
This gives at once
¢(0,0) = g, ¢(0,1) = vy, ¢(1,0) = uyug,
c(1,1) = wuyvg + ugvy — wo, ¢(1,2) = vyvo,
c(n+2,i) = Upgac(n+ 1,7) + vpt2c(n+ 1,0 — 1) — wpi1c(n,i —1).

Observe that ¢(n,0) > 0 and ¢(n,n + 1) > 0 for all n > 0, and that do(t) =
ad(1+ta?) > 0 and

di(t) = af[(ef - of) + (0] — af)t + aja3t?)].

We also recall [2] that a weighted shift W, is said to be recursively generated if
there exist ¢ > 1 and ¥ = (¥y,--- ,¥;_;) € C* such that

Tn = ‘I/i—I’Yn—l +-+ lIlO'Yn—i (’I’L > 7’)7 (22)

where 7, (n > 0) is the moment of W,, i.e., vo := 1,Yn+1 := 2yn(n > 0).
Furthermore, (2.2) is equivalent to

v, T .
24— (n2i). (2.3)

2 _
Oén = \1/1;_1 +
QAn_1° Qi1

2
An1

Given an initial segment o : \/ag, v/a1, /a2 with 0 < ag < oy < axs, let

Y0 T Y2
Vo = Vi = Vo = .
’ ['h]’ ! [72]’ ? [%}

The vectors v and v; are linearly independent in R?, so there exists a unique
¥ = (¥4, ¥;) € R? such that vo = ¥gvg + ¥v;. In fact,

QoG — &
\IIO:—01(2 1)

24
a1 — Qg a1 — &g ( )

Let ¥ := v, (0 <n < 1) and let 7, := ¥19,-1 + VoYn—2 (n > 2). Since
Y¥n > 0(n > 0) (cf. [2, Proof of Th. 3.5]), we define

1

~ 2

8 1= (72“) (n > 0) (2.5)
Tn

(so that @, = a, for 0 < n < 2). Hence we obtain the coefficients of a
recursively generated weighted shift W5 with a weight sequence & := {@,, }52,
and @2 = ¥y + 3% (n > 1).

n—1
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3. Results. Let a := {a;}ien, and let W, be the unilateral weighted
shift with a weight sequence a. Suppose a, = ayy; for k,j € N. Then W, is
quadratically hyponormal if and only if oy = ap = - -- . Hence we assume that
ar < apyq for all k € N to avoid the trivial case throughout this paper.

Let o : 1,1, v/, (\/u,/v,/w)" with 1 < z < u < v < w. For our conve-
nience, we recall that

v
al =¥ +—>— (n>86),
an—l

where
_v(w—u)

¥, = uv(w — v).

and VYg=—
v—u v—u
Lemma 3.1. Let o : 1,1,/x, (/u,/v,y/w)" with 1 < 2z < u < v < w.

Then for n > 5, we have

Up, - - - 4¢(3,4), i=n+1,
Unc(n —1,n) + vy, - - - v572, i=n,
c(n,i) =< upe(n—1,n—1)+v,---vsns, i=n-—1,

Un"'Ui+2C(i+177:)7 3S7'Sn_2,
Uy - -usc(4d,i), 0<4i<2,

where 72 = v4¢(3,3) — wsc(2,3) and 73 = v4¢(3,2) — wsc(2, 2).

Lemma 3.2. Under the same notation in the previous section, we have that

K :=limp 0 3 ezists, and K = A+—\/§1(’—7(ﬂl)2,where
A = v(w—u)v(w—-u)=v}w—u)?
B = v*(w—u)?—4uww(w—v)(v—u)),

C = 2u(v—u)(w—nu).

Lemma 3.3. Let o : 1,1,v/x, (v/u, Vo,y/w)) with 1 <z < u < v < w.
Then Wy, is positively quadratically hyponormal if and only if
(@ar<2-1

( >
(C) f2(1:) 2 OJ
(d) ¢(5,5) > 0, c(5,4) > 0, c(6,5) > 0,
(€) Ap = UnUn—1Mm + UnVp—1M2 + VaVp—1m3 > 0 (n >7), and
(f) If n2 <0, then K < I_Z;_I’ where n1(x,u,v,w) = v4¢(3,4), ne(z,u,v,w) =
v4¢(3,3) — wzc(2,3), and n3(z,u,v, w) = v4e(3,2) — wsc(2,2).

Proposition 3.4. (a) If 73(z,u,v,w) > 0, then A, >0 (n > 7) if and only
if the following statements hold:

(a-l) K <ug on v <z and

(a-ii) © >00n 1 <z < 7.

(b) If Ais(x,u,v,w) <0, then A, >0 (n>7) <= K < u.
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Furthermore, we have that K < ug <= one of the following four cases
holds:

(b-i) ©2 > 0,03 > 0,04 > 0,05 > 0,

(b-ii) ©2 > 0,03 > 0,04 < 0,

(b-iii) ©®2 < 0,03 < 0,04 > 0,05 < 0, or

(b-iv) ©3 < 0,03 > 0.

By direct computations we have the following Lemma.

Lemma 3.5. (a) ¢(4,3) > 0 <= 65 >0,
(b) 0(474) 20+ 67 2 07

(c) c(5,4) 2 0 <= 63 >0,

(d) ¢(5,5) > 0 <= ©9 >0, and

(e) ¢(6,5) >0 <= 019 >0,

where
O = —u?+uv—udv—vw+ 2uvw + ur — 2uvz + 2ulvr — UVWEL,
07 = u?v—uvw — v w+ (—u+u? + v — 2uv + 3uvw + u*v?w)x

+(u — 2u? — uv + 2uv — udv — 2uvw)x? + ula®
?

Oz = c¢(5,4)z/(v—u)

= wv?—u?d utd 4. + (udv — u?v? — udw + uow)z3,
©9 = ¢(5,5)z/(v—u)
= w3 —udviw - 3utPw + .- + (WP — utv — -+ uPow?)2d,
©19 = z(—1v?(v—2)} (-1 +z) — u(v — 2)}(—1 4 uzx)

+u(l + uv — 2z)(uv — 2)(=1 + z)z(vw — uz)*(—1 + uzx)
+(14+u(-24+2))(-1+ z)(—vw + uzx)).
Lemma 3.6. If 172 < 0, then K < IZ—I <= 031 > 0 and ©15 > 0, where

2|

O11 := 7C? — (A2 + Bv*(w — u)*)n3; ©12 := 0%, — (2Av(w — u)?n2v/B)>.
Combining the above statements, we have the following theorem.

Theorem 3.7. Let o : 1,1,v/z,(Vu,/u,y/w) with 1 <z <u < v < w.
Then W, is positively quadratically hyponormal if and only if the following
holds:

(a)z<2-1

(b)©, >0, k=6,7,8,9,10,

() If 72 <0, then ©1; >0 and ©15 > 0, and

(d) Proposition 8.4 holds.

We close this note with the following example.

Example 3.8. Let a: 1,1, +/z, (1/u, /v, /w)". Take u = 1.1,v = 1.2, and
w = 1.5. We denote D(u,v,w) := u — 2u? + 2u?v — u?v? — vw + wvw. Then
D(1.1,1.2,1.5) = 0.0216 > 0 and

uv? + vw — 2uvw
u — 2u? + 2u2v — uvw

v = 1.05455.
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So we apply Proposition 3.4 (a) and obtain the followings:

() z<2-1es1<2<1.00091,

(ii) ©1 >O<:)100463< z <7,

(iii) @2 > 0 <= v < x < 1.46870,

(iv) ©3 > 0 <= v < 2z < 1.06173,

(v) ©4 2 0 <= v <z < 1.07967,

(vi) ©5 > 0 <= v < z < 1.05606,

(vii) © > 0 <=1 < z < 1.09221,

(viii) ©7 > 0 <= 1.00462 < z < 1.18030,

(ix) ©g > 0 <= 1.00306 < z < 1.09629,

(x) ©9 > 0 <= 1.00349 < x < 1.17610,

(xi) ©19 > 0 <= 1.00222 < z < 1.09312, and

(xii) n(x,1.1,1.2,1.5) > 0 <= 1.02095 < z < 1.15695.

So W, is posmvely quadratically hyponormal <= 1.00463 < z < « or
v <z < 1.05606, which is equivalente to 1.00463 < x < 1.05606.
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