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Abstract. We consider random perturbations of non-singular measur-
able transformations S on [0, 1]. By using the spectral decomposition
theorem of Komornik and Lasota, we prove that the existence of the
invariant densities for random perturbations of S. Moreover the densi-
ties for random perturbations with small noise strongly converges to the
deinsity for Perron-Frobenius operator corresponding to S with respect
to L1([0, 1])-norm.
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1. Introduction

It is known that every Markov process on a state space can be represented
as a random dynamical system ([2]). There are many important Markov
models in applications which are analysed as random dynamical systems. We
focus on the following random dynamical system with additive noise : Let
S : X → X be a non-singular measurable transformation on a measurable
space (X,B, λ) and let (Ω,F , µ) be a probability space. For a given random
variable X0 and an i.i.d. sequence {ξn}n≥0 on Ω with values in X, we define
the following Markov process {Xn}n≥0 by

(1) Xn+1(ω) := S(Xn(ω)) + ξn(ω).

When X = R, we call the above Markov process {Xn(ω)}n≥0 first-order
nonlinear autoregressive model (NLAR(1)). On the other hand, if we let
Q(x,A) be a family of transition probabilities (from a point x ∈ X to a
Borel set A ∈ B), then the Markov process on X defined by the transition
probabilities Q(Sx,A) is called a random perturbation of the dynamical
system (X,S). In this paper, we consider NLAR(1) on [0, 1], i.e. let X =
[0, 1] for (1) and we identify Xn with Xn− [Xn] for all n ≥ 0, where [x] is the
largest integer less than or equal to x. Note that considering NLAR(1) on
[0, 1] is coincident with considering a random perturbation of the dynamical
system S on [0, 1] in our case.

A stability property of NLAR(1) can be derived from contraction as-
sumptions by Lasota and Mackey ([15]) by using the spectral decomposition
theorem of Komorńık and Lasota (Theorem 2.5). This theorem is our main
method in this paper. Vu Kuok Fong [5] and independently Sine [18] have
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showed that the generalization of this spectral decomposition theorem of Ko-
morńık-Lasota is a simple corollary of the Jacobs-de Leeuw-Glicksberg the-
orem. We prove that for any non-singular transformation S : [0, 1] → [0, 1],
there exists an invariant density of {Xn}n≥0 for NLAR(1) on [0, 1] by using
the spectral decomposition theorem of Komorńık-Lasota.

In this paper, we also study the limiting distribution of NLAR(1) on [0, 1]
with small additive noise (or small perturbations of ([0, 1], S)) given by

(2) Xε
n+1(ω) := S(Xε

n(ω)) + εξn(ω) ( mod 1 ),

as ε ↓ 0, where Xε
0 = X0. Many authors observe the relation between de-

terministic dynamical systems and small perturbed random dynamical sys-
tems( [4],[6],[9],[11],[16]). For example, in [9], Katok and Kifer considered
small random perturbations, where S is an endomorphism of the interval
[0, 1] satisfying the conditions of Misiurewiczan and small transition proba-
bilities P ε(x,A) = Qε(Sx,A) for sufficiently small ε > 0. They proved that
the densities of Xε

n-invariant measures µε converge weakly to a density of
the invariant measure µS corresponding to S as ε → 0 in L1 topology ([9]).

In [14], Lasota and Mackey showed that the density functions of {Xε
n}n≥0

for NLAR(1) (on R) with small additive noise are given by

Pn
ε f(x) :=

∫
R
g(y)PSf(x− εy)dy,

where PS is the Perron-Frobenius operator corresponding to S, g is the
density of {ξn}n≥0 and f is the density of X0. They prove that

(3) lim
ε→0

‖Pεf − PSf‖L1(R) = 0

for all f ∈ L1(R) (see [14]). We obtain the same result for NLAR(1) on
[0, 1]. Moreover since the existence of the densities of Xε

n-invariant measures
are guaranteed by the spectral decomposition theorem of Komorńık-Lasota,
under certain conditions, we prove that if there exists the limit f∗ of the
densities of Xε

n-invariant measures in L1 as ε ↓ 0 then the limit function f∗
is an invariant density corresponding to S. This implies that we gave the
sufficient condition of the existence of an invariant density corresponding
to S. On the other hand, in the sense of weak convergence of invariant
probability measures for small random perturbations of a dynamical system
S, the bounded variation case is first proved by Keller (see the condition S1
in [10]). Afterwards, Young and Baladi considered random perturbations
of piecewise C2 expanding map S : [0, 1] → [0, 1] for which there exists the
unique invariant density f∗. Indeed, in [1], Young and Baladi proved that for
any piecewise C2 expanding map which has no periodic turning points, there
exists invariant densities of small random perturbations and they converges
to the invariant density f∗ corresponding to S with respect to L1-norm as
ε → 0 (see also [3]). In section 3, we can see that the spectral decomposition
theorem of Komorńık-Lasota and (3) hold for NLAR(1) on [0, 1] defined by
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(1) with respect to intermittent maps S which have an infinite invariant
density function.

2. Main theorems

2.1. Random perturbations of Dynamical systems. Let (Ω,F , µ) be
a probability space, where F denotes a Borel σ-field and µ a probability
measure. Let x0, ξ0, ξ1, · · · be random variables on Ω with values in [0, 1]
and S : [0, 1] → [0, 1] be a non-singular measurable transformation (i.e.
λ(S−1(A)) = 0 for any Borel set A ⊂ [0, 1] with λ(A) = 0, where λ is the
normalized Lebesgue measure on [0, 1]).

Consider the following stochastic process defined by

(4) xn+1(ω) = S(xn(ω)) + ξn(ω) (mod 1)

for each n ≥ 0.

Definition 2.1. We say that a random dynamical system {xn}n≥0 gener-
ated by (4) with respect to (Ω, [0, 1], S, x0, {ξn}n≥0) is first-order nonlinear
autoregressive model on [0, 1] (NLAR(1) on [0, 1]) if the following conditions
C1-C3 hold :

C1: x0, ξ0, ξ1, ξ2, · · · are independent random variables;
C2: x0 has the density function f0 ∈ D (i.e. µ({ω : x0(ω) ∈ B} =∫

B f0(x)dx for any Borel set B ⊂ [0, 1]. ), where D := {f ∈
L1([0, 1]) : f ≥ 0 and

∫
[0,1] f(x)dx = 1};

C3: each ξn has the same density function g ∈ L1(R) such that g ≥ 0,

supp(g) := {x ∈ [0, 1] : g(x) 6= 0} ⊆ [0, 1] and

∫
R
g(x)dx = 1.

Under conditions C1-C3, there exists a Markov operator P : L1([0, 1]) →
L1([0, 1]) such that

µn(A) := µ({ω : xn(ω) ∈ A}) =

∫
A
Pnf0(x)dx(5)

for all Borel set A on [0, 1] and n ≥ 0.

Proposition 2.2. Let {xn}n≥0 be a NLAR(1) on [0, 1] generated by (4) with
respect to (Ω, [0, 1], S, x0, {ξn}n≥0) . Then there exists a Markov operator
P : L1([0, 1]) → L1([0, 1]) defined by

(6) Pf(x) =

∫
[0,1]

f(y)

(
1∑

i=0

g(x− S(y) + i)

)
dy,

which satisfies (5).

In our paper, the spectral decomposition theorem of Komorńık and La-
sota [13] plays a central role. We introduce the sufficient condition for this
theorem :
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Definition 2.3. Let (X,F , ν) be a finite measure space. A linear operator
P : L1(X, ν) → L1(X, ν) is constrictive if there exists δ > 0 and κ < 1 such
that for every f ∈ D there is an integer n0(f) for which

(7)

∫
E
Pnf(x)ν(dx) ≤ κ for all n ≥ n0(f) and E with ν(E) ≤ δ.

Remark 2.4. If the space (X,F , µ) is σ-finite, we can substitute the above
condition by the following :

there exists δ > 0, κ < 1 and a measurable set B with ν(B) < ∞ such
that for every f ∈ D there is an integer n0(f) for which
(8)∫

(X\B)∪E
Pnf(x)ν(dx) ≤ κ for all n ≥ n0(f) and E with ν(E) ≤ δ.

It is easy to see that this condition reduces to that of Definition 2.3 when X
is finite and let X = B.

Theorem 2.5. (spectral decomposition theorem [13]) Let P : L1(X,F , ν) →
L1(X,F , ν)be a constrictive Markov operator. Then there is an integer r,
non negative functions gi ∈ D0 := {f ∈ L1(X,F , ν) : ‖f‖L1 = 1, f ≥ 0}
and ki ∈ L∞(X,F , ν), i = 1, 2, · · · , r and a operator Q : L1(X,F , ν) →
L1(X,F , ν) such that for every f ∈ L1(X,F , ν), Pf is represented by the
form

(9) Pf(x) =
r∑

i=1

λi(f)gi(x) +Qf,

where

λi(f) =

∫
X
f(x)ki(x)ν(dx).

Moreover the functions gi and the operator Q have the following properties:

• gi(x)gj(x) = 0 for all i 6= j.
• For each integer i, there exists an unique integer σ(i) such that Pgi =
gσ(i). Further σ(i) 6= σ(j) for i 6= j.

• limn→∞ ‖PnQf‖ = 0 for every f ∈ L1(X,F , ν).

Remark 2.6. The spectral decomposition theorem of Komorńık and Lasota
holds when the space (X,F , ν) is σ-finite space and Markov operator is con-
strictive.

Remark 2.7. If Theorem 2.5 holds for a Markov operator P , then there is
an invariant density f∗ defined by

f∗ =
1

r

r∑
i=1

gi.
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Indeed,

Pf∗ =
1

r

r∑
i=1

Pgi =
1

r

r∑
i=1

gi = f∗.

Therefore Pf∗ = f∗.

The following theorem is our main result.

Theorem 2.8. The Markov operator P : L1([0, 1]) → L1([0, 1]) defined by
(6) corresponding to a NLAR(1) on [0, 1] generated by (4) with respect to
(Ω, [0, 1], S, x0, {ξn}n≥0) is constrictive, that is, theorem 2.5 holds for P .

Moreover when the density of noise g(x) is not zero for all x, we have the
following result.

Proposition 2.9. Let P : L1([0, 1]) → L1([0, 1]) be the Markov operator
defined by (6) corresponding to a NLAR(1) on [0, 1] generated by (4) with
respect to (Ω, [0, 1], S, x0, {ξn}n≥0). If g(x) > 0 for all x ∈ [0, 1], then there
exists a unique f∗ ∈ D such that Pf∗ = f∗ and

lim
n→∞

‖Pnf − f∗‖ = 0 for every f ∈ D.

Remark 2.10. A sequence {Pn}n≥1 satisfying (9) is called asymptotically
periodic. Proposition 2.9 implies that r = 1 for (9). In this case, the se-
quence {Pn}n≥1is called asymptotically stable.

2.2. Small random perturbations of dynamical systems. In this sec-
tion, we observe limiting behaviour of density functions of a NLAR(1) on
[0, 1] generated by (4) with respect to (Ω, [0, 1], S, x0, {ξn}n≥0) parametrized
by ε > 0 as ε → 0.

We consider the following first-order nonlinear autoregressive model {xεn}n≥0

on [0, 1] with respect to (Ω, [0, 1], S, x0, {ξn}n≥0) parametrized by ε > 0 :

(10) xεn+1(ω) = S(xεn(ω)) + εξn(ω) for 0 < ε < 1,

where xε0 = x0.
Since random variables εξn have the same density 1

εg(
1
ε ), we have the

Markov operator Pε : L
1([0, 1]) → L1([0, 1]) defined by

(11) Pεf(x) =
1

ε

∫
[0,1]

f(y)

(
1∑

i=0

g

(
x− S(y) + i

ε

))
dy

which satisfies that fε
n+1 = Pεf

ε
n, where {f ε

n}n≥0 is the sequence of the
density function of xεn. Since S is non-singular, there exists the Perron-
Frobenius operator PS : L1([0, 1]) → L1([0, 1]) with respect to S : [0, 1] →
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[0, 1]. Hence, if we let gx,i,ε(y) := g(x+i−y
ε ), then we have that

Pεf(x) =
1

ε

∫
[0,1]

f(y)

(
1∑

i=0

gx,i,ε(S(y))

)
dy

=
1

ε

∫
[0,1]

PSf(y)

(
1∑

i=0

gx,i,ε(y)

)
dy

=
1

ε

∫
[0,1]

PSf(y)

(
1∑

i=0

g

(
x+ i− y

ε

))
dy

=
1∑

i=0

∫
[x+i−1

ε
,x+i

ε
]∩[0,1]

PSf(x+ i− εy)g(y)dy

by condition C3.
We should expect that in some sense limε→0 Pεf(x) = PSf(x).
Let ‖f‖∞ := inf{M : |f(x)| ≤ M for λ-a.e. x ∈ [0, 1]}, where λ is

the normalized Lebesgue measure on [0, 1].

Theorem 2.11. Let S : [0, 1] → [0, 1] be a non-singular measurable trans-
formation and Pε be the Markov operator defined by (11) corresponding to a
NLAR(1) on [0, 1] generated by (10) with respect to (Ω, [0, 1], S, x0, {ξn}n≥0).
Suppose that ‖PSf‖∞ < ∞ for any continuous function f on [0, 1]. Then
we have that

(12) lim
ε→0

‖Pεf − PSf‖L1([0,1]) = 0

for all f ∈ L1([0, 1]).

Remark 2.12. There is a big class of dynamical systems S : [0, 1] → [0, 1]
satisfying ‖PSf‖∞ < ∞ for any continuous function f on [0, 1]. For exam-
ple, piecewise monotonic maps ( including unimodal maps ) and piecewise
convex maps satisfy the assumption of Theorem 2.11.

It is obviously that {Pn
ε }n≥1 defined by (11) is asymptotically periodic

for each ε > 0. Hence the function fε defined by

(13) fε(x) =
1

r(ε)

r(ε)∑
i=1

gi,ε(x),

where r(ε) is a positive integer and gi,ε(x) are density functions depending
only on ε, satisfies that fε ∈ D and Pεfε = fε. This implies that for each
ε > 0, Markov operator Pε has at least one invariant density.

Corollary 2.13. Let S : [0, 1] → [0, 1] be a non-singular measurable trans-
formation, Pε be the Markov operator defined by (11) corresponding to a
NLAR(1) on [0, 1] generated by (10) with respect to (Ω, [0, 1], S, x0, {ξn}n≥0)
and fε be an invariant density for Pε defined by (13). Suppose that ‖PSf‖∞ <
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∞ for any continuous function f on [0, 1]. If there exists an integrable func-
tion f∗ on [0, 1] such that

lim
ε→0

‖fε − f∗‖L1([0,1]) = 0,

then f∗ is an invariant density for PS, that is PSf∗ = f∗.

Remark 2.14. Corollary 2.13 holds for any continuous piecewise C2, piece-
wise expanding map S : [0, 1] → [0, 1] which has no periodic turning points.
Indeed, by Theorem 1.1 in [3] (and see Theorem 3 in [1]), there exists an
unique absolutely continuous invariant probability measure µ0 = f∗dx which
satisfies that

lim
ε→0

‖fε − f∗‖L1([0,1]) = 0.

3. Examples

It is obviously that Theorem 2.8 holds for all non-singular transforma-
tions. We give some examples of non-singular transformations which also
satisfy the assumptions of Theorem 2.11.

(1): m-adic transformation [14].
Consider the transformation S : [0, 1] → [0, 1] given by

Sx = mx ( mod 1),

where m ≥ 1 is an integer. Thus the Perron-Frobenius operator
PS : L1([0, 1]) → L1([0, 1]) corresponding to S is given by

PSf(x) =
1

m

m−1∑
i=0

f

(
i+ x

m

)
.

Since PS1 = 1, the Borel measure on [0, 1] is invariant with respect
to the m-adic transformation S. Moreover it is obviously that for
any continuous function f on [0, 1], Pf(x) is equal to a continuous
function, hence ‖PSf‖∞ < ∞.

(2): Maps with indifferent fixed points with infinite invariant
measure [19]
Let α ∈ (0,∞) be a real parameter and consider the one-parameter
family of maps Sα of the interval [0, 1] onto itself defined by

(14) Sα(x) := 2
eαx − 1

eα − 1
( mod 1).

For every α > 0, Sα is piecewise onto and C∞-class. When the
parameter α varies, the dynamics of the maps changes. Some prop-
erties of this family established in [17] are listed below :
(1) For α > 0 with |S′

α(0)| > 1, Sα is a piecewise expanding map
(see Figure 1). Then there exists the unique absolutely continu-
ous invariant probability measure with respect to the Lebesgue
measure on [0, 1] by the Lasota-Yorke theorem.
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(2) For α > 0 with |S′
α(0)| = 1, Sα admits an indifferent fixed point

0 (see Figure 2). For these maps, there is NO finite absolutely
continuous invariant measure. However there exists a σ-finite
infinite absolutely continuous invariant measure.

(3) For α > 0 with |S′
α(0)| < 1, Sα admits a stable fixed point 0

(see Figure 3). For these maps, almost all points converge to 0
by using the symbolic dynamics with 4-symbols(see [17] more
details.). Therefore there is no absolutely continuous invariant
measure with respect to the Lebesgue measure.

 0

 1

 0  1

Figure 1. |S′
α(0)| =

1.5,
α ;
0.5502.

 0

 1

 0  1

Figure 2. |S′
α(0)| =

1,
α ;
1.2564.

 0

 1

 0  1

Figure 3. |S′
α(0)| =

0.5,
α ;
2.3366.

Next, we shall apply our results (Theorem 2.11) to this family.
Because Tα(0) = 0, Tα(1) = 2, where Tα(x) := 2 eαx−1

eα−1 is monotonic
continuous function for every α > 0, there exists the unique point
xα ∈ (0, 1) such that Tα(xα) = 1. Let I0 = [0, xα) and I1 = [xα, 1].
Since C∞-extensions of the maps Sα|I0 : I0 → [0, 1] and Sα|I1 :
I1 → [0, 1] are one-to-one and onto, there exist the local inverses
uα,j = (Sα|Ij )−1 for j = 0, 1, we get

(15) uα,j(x) =
1

α
log(1 +

eα − 1

2
(x+ j)).

Thus the Perron-Frobenius operator corresponding to Sα is given by

(16) PSαf = f ◦ uα,0 · u′α,0 + f ◦ uα,1 · u′α,1.

Therefore we have ‖PSαf(x)‖∞ < ∞ for any continuous function f
on [0, 1].

4. Proof

Proof. Proof of Proposition 2.2
We let the density of xn be denoted by fn ∈ D (n ≥ 1) and desire a

relation connecting fn+1 and fn.
We assume that fn exists for some n ≥ 0.
Let Ā = A \ {1} for any Borel set A ⊂ [0, 1]. Note that since xn+1(Ω) ⊂

[0, 1) and S(xn) and ξn are independent for all n ≥ 0, we have that
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(i): µ ({ω ∈ Ω : xn+1 ∈ A}) = µ
(
{ω ∈ Ω : xn+1 ∈ Ā}

)
,

(ii):
∩

i=0,1{ω : S(xn(ω)) + ξn(ω) ∈ Ā+ i} ∩ {ω : S(xn(ω)) + ξn(ω) =

2} = φ,
(iii):

µ (S(xn(ω)) + ξn(ω) = 2) = µ (S(xn(ω)) = 1 and ξn(ω) = 1)

=

∫
S−1({1})

fn(x)dx

∫
{1}

g(y)dy = 0.

From (i)-(iii), we have that for any Borel set A ⊂ [0, 1] and n ≥ 0,

µ ({ω ∈ Ω : xn+1 ∈ A}) = µ
(
{ω ∈ Ω : xn+1 ∈ Ā}

)
= µ

(
{ω ∈ Ω : S(xn(ω)) + ξn(ω)(mod 1) ∈ Ā}

)
= µ

(
{ω ∈ Ω : S(xn(ω)) + ξn(ω) ∈ Ā}

)
+ µ

(
{ω ∈ Ω : S(xn(ω)) + ξn(ω) ∈ Ā+ 1}

)(
+µ ({ω ∈ Ω : S(xn(ω)) + ξn(ω) = 2}) if 0 ∈ A

)
=

∫ ∫
S(x)+y∈Ā

fn(x)g(y)dxdy +

∫ ∫
S(x)+y−1∈Ā

fn(x)g(y)dxdy.

By a change of variables (see Lemma 5.2 in Appendix.), this can be written
as

µ ({ω ∈ Ω : xn+1 ∈ A}) =

∫
a∈Ā

{∫
B0(a)

fn(b)g(a− S(b))db

}
da

+

∫
a∈Ā

{∫
B1(a)

fn(b)g(a− S(b) + 1)db

}
da,

where

B0(a) := {b ∈ [0, 1] : 0 ≤ a− S(b) ≤ 1} = {b ∈ [0, 1] : 0 ≤ S(b) ≤ a}
and

B1(a) := {b ∈ [0, 1] : 0 ≤ a− S(b) + 1 ≤ 1} = {b ∈ [0, 1] : a ≤ S(b) ≤ 1}
for each a ∈ [0, 1]. By condition C3, we have that

g(x− S(y)) = 0 for all y ∈ {b ∈ [0, 1] : x < S(b)} = [0, 1] \B0(x)

g(x− S(y) + 1) = 0 for all y ∈ {b ∈ [0, 1] : x > S(b)} = [0, 1] \B1(x)

for each x ∈ [0, 1]. Hence we get that∫
[0,1]\B0(x)

fn(y)g(x− S(y))dy = 0 =

∫
[0,1]\B1(x)

fn(y)g(x− S(y) + 1)dy

for each x ∈ [0, 1]. This implies that∫
[0,1]

fn(y)g(x− S(y))dy =

∫
B0(x)

fn(y)g(x− S(y))dy∫
[0,1]

fn(y)g(x− S(y) + 1)dy =

∫
B1(x)

fn(y)g(x− S(y) + 1)dy.
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Therefore we have that

µ ({ω ∈ Ω : xn+1 ∈ A}) =

∫
a∈Ā

∫
[0,1]

fn(b)g(a− S(b))dbda

+

∫
a∈Ā

∫
[0,1]

fn(b)g(a− S(b) + 1)dbda.

Since {1} is a 1-point set and h(a) :=
∫
b∈[0,1] fn(b)g(a − S(b) + i)db ∈

L1([0, 1]), we have that for i = 0, 1,∫
{1}

{∫
[0,1]

fn(b)g(a− S(b) + i)db

}
da =

∫
{1}

h(a)da = 0.

Then we have that

µ ({ω ∈ Ω : xn+1 ∈ A}) =
1∑

i=0

∫
a∈Ā

∫
b∈[0,1]

fn(b)g(a− S(b) + i)dbda

=

1∑
i=0

∫
a∈A

∫
b∈[0,1]

fn(b)g(a− S(b) + i)dbda.

Therefore using the fact that A was an arbitrary Borel set on [0, 1], we get
the density fn+1 of xn+1 defined by

fn+1(x) =

1∑
i=0

∫
[0,1]

fn(y)g(x− S(y) + i)dy a.e. x ∈ [0, 1].

On the other hand, we get that∫
x∈[0,1]

1∑
i=0

g(x− S(y) + i)dx =

∫
[0,1]

g(x)dx = 1 for ∀y ∈ [0, 1]

by condition C3. Then by Fubini’s theorem, we have that∫
[0,1]

fn+1(x)dx =

1∑
i=0

∫
y∈[0,1]

{∫
x∈[0,1]

fn(y)g(x− S(y) + i)dx

}
dy

=

∫
y∈[0,1]

fn(y)dy = 1.

Moreover fn+1 ≥ 0 because of the positivity of g and fn. Therefore if xn
has the density fn ∈ D, then fn+1 also have to exist in D.

From this fact, we can define a linear operator P : L1([0, 1]) → L1([0, 1])
by

Pf(x) =

∫
y∈[0,1]

f(y)

(
1∑

i=0

g(x− S(y) + i)

)
dy

which satisfies that

fn+1 = Pfn a.e.
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for all n ≥ 0. Next we shall show that P : L1([0, 1]) → L1([0, 1]) is a Markov
operator, that is, P is a linear operator which satisfies that Pf ≥ 0 and
‖Pf‖L1([0,1]) = ‖f‖L1([0,1]) for any f ∈ L1([0, 1]) with f ≥ 0. It is easy to

see that P is a positive linear operator on L1([0, 1]) because g is positive.
Moreover we have that for f ∈ L1([0, 1]) with f ≥ 0 by the Fubini’s theorem,

‖Pf‖L1([0,1]) :=

∫
[0,1]

Pf(x)dx

=

∫
x∈[0,1]

∫
y∈[0,1]

fn(y)

(
1∑

i=0

g(x− S(y) + i)

)
dydx

=

∫
x∈[0,1]

1∑
i=0

g(x− S(y) + i)

{∫
[0,1]

f(y)dy

}
dx

=

∫
[0,1]

f(y)dy = ‖f‖L1([0,1]).

Therefore P is a Markov operator.
�

Proof. Proof of Theorem 2.8
From the spectral decomposition theorem by Komorńık and Lasota [14], it
is enough to show that P is constrictive : there exists a δ > 0 and κ < 1
such that for every f ∈ D there is an integer n0(f) for which∫

B
Pnf(x)dx ≤ κ for all n ≥ n0(f) and B ⊂ [0, 1] with λ(B) ≤ δ,

where λ is the normalized Lebesgue measure on [0, 1].
Since g is the integrable function on R supported in [0, 1], for any ε > 0,

there exists 0 < δ(ε) ≤ 1 such that whenever λ(A) ≤ δ(ε),∫
A
g(x)dx ≤ ε.

Take arbitrary 0 < ε < 1, hence there exists δ(ε) > 0 which satisfies∫
A g(x)dx ≤ ε

2 for any Borel set A ⊂ [0, 1] with λ(A) ≤ δ(ε). Thus we
have that for each f ∈ D and n ≥ 1,∫

A
Pnf(x)dx =

∫
A

∫
[0,1]

Pn−1f(y)

(
1∑

i=0

g(x− S(y) + i)

)
dydx

=

∫
[0,1]

{
1∑

i=0

∫
A−S(y)+i

g(x)dx

}
Pn−1f(y)dy.

Let λ̄ be the Lebesgue measure on R. Since λ̄(A − S(y) + i) = λ̄(A) =
λ(A) ≤ δ(ε) for each y ∈ [0, 1] and i = 0, 1, we obtain that

(17)

∫
A
Pnf(x)dx ≤ ε

∫
[0,1]

Pn−1f(y)dy = ε for all n ≥ 1,
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which implies that P is constrictive.
�

Proof. Proof of Proposition 2.9
From the theorem 5.6.1 in [14], it is enough to show that there exists a set
A ⊂ [0, 1] of nonzero measure λ(A) > 0 with the property that for every
f ∈ D, there is an integer n0(f) such that

(18) Pnf(x) > 0 for a.e.x ∈ A and for all n ≥ n0(f).

Let f ∈ D be arbitrary. From the assumption about g, there exists a
positive number 0 < ε < 1 which satisfies that there exists δ(ε) > 0 such
that for all λ(A) ≤ δ(ε),

∫
A g(x)dx ≤ ε

2 . Take an arbitrarily 0 < δ < 1 with
1 − δ < δ(ε). Since λ ((δ − S(y) + i, 1− S(y) + i]) = 1 − δ ≤ δ(ε) for each
y ∈ [0, 1] and i = 0, 1, we have that∫

δ<x≤1
Pnf(x)dx

=

∫
[0,1]

{
1∑

i=0

∫
(δ−S(y)+i,1−S(y)+i]

g(x)dx

}
Pn−1f(y)dy ≤ ε

for all n ≥ 1. From this inequality, we have that∫
0≤y≤δ

Pnf(y)dy =

∫
[0,1]

Pnf(y)dy −
∫
δ<y≤1

Pnf(y)dy

≥ 1− ε > 0(19)

for all n ≥ 1.
On the other hand, we have that

Pn+1f(x) =

∫
[0,1]

Pnf(y)

(
1∑

i=0

g(x− S(y) + i)

)
dy

≥
∫
0≤y≤δ

Pnf(y)

(
1∑

i=0

g(x− S(y) + i)

)
dy.(20)

From the assumption about g, we have that

g(x− S(y)) + g(x− S(y) + 1) > 0 for all x ∈ [0, 1] and 0 ≤ y ≤ δ.(21)

From (19) and (21), we have that for a.e. x ∈ [0, 1],

Pnf(y)

(
1∑

i=0

g(x− S(y) + i)

)
for n ≥ 1

as a function of y, does not vanish in {0 ≤ y ≤ δ}. As a consequence,
inequality (20) implies (18) with respect to the set [0, 1], thus completing
the proof of the proposition.

�
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Proof. Proof of Theorem 2.11
Since the set of continuous functions on [0, 1] is dense in L1([0, 1]) and Pε,
PS are Markov operators, it is enough to prove the theorem for continuous
functions on [0, 1]. Indeed, for any f ∈ L1([0, 1]) and η > 0, there exists a
continuous function fη on [0, 1] such that ‖f − fη‖L1([0,1]) ≤ η. Thus if we
have that limε→0 ‖Pεfη − PSfη‖L1([0,1]) = 0, then we have that

lim
ε→0

‖Pεf − PSf‖L1([0,1]) = lim
ε→0

‖Pε(f − fη)− PS(f − fη) + Pεfη − PSfη‖L1([0,1])

≤ 2‖f − fη‖L1([0,1]) + lim
ε→0

‖Pεfη − PSfη‖L1([0,1])

≤ 2η.

From the fact that η was an arbitrary positive number, we have that limε→0 ‖Pεf−
PSf‖L1([0,1]) = 0.

Fix an arbitrarily continuous function f on [0, 1]. We split the integral
into two parts,

‖Pεf − PSf‖L1([0,1]) =

∫
[0,ε]

|Pεf − PSf |dx+

∫
(ε,1]

|Pεf − PSf |dx

= C1(ε) + C2(ε) for 0 < ε < 1.

Firstly, we consider C1(ε). LetHi(x, y) := PSf(x+i−εy)g(y)1[x+i−1
ε

,x+i
ε

](y)

for i = 0, 1. Note that the essential supremum of |PSf | is finite (i.e.
‖PSf‖∞ < ∞) from the assumption about PSf . Fix an arbitrarily point
x0 ∈ [0, 1]. Since

0 ≤ x0 + i− εy ≤ 1 for all y ∈
[
x0 + i− 1

ε
,
x0 + i

ε

]
,

we have that for each i = 0, 1,

|PSf(x0 + i− εy)| ≤ ‖PSf‖∞ for λ-a.e. y ∈
[
x0 + i− 1

ε
,
x0 + i

ε

]
.

Moreover we have that

[0, 1] ⊂
∪

i={0,1}

[
x0 + i− 1

ε
,
x0 + i

ε

]
=

[
x0 − 1

ε
,
x0
ε

]
∪
[
x0
ε
,
x0 + 1

ε

]
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for all 0 < ε < 1. Then we have that,∣∣∣∣∣∣
∑

i={0,1}

∫
[0,1]

Hi(x0, y)dy

∣∣∣∣∣∣ ≤
∑

i={0,1}

∫
[0,1]

|PSf(x0 + i− εy)| g(y)1
[
x0+i−1

ε
,
x0+i

ε
]
(y)dy

≤
∑

i={0,1}

‖PSf‖∞
∫
[0,1]

g(y)1
[
x0+i−1

ε
,
x0+i

ε
]
(y)dy

= ‖PSf‖∞

{∫
∪1

i=0[
x0+i−1

ε
,
x0+i

ε
]∩[0,1]

g(y)dy

}

= ‖PSf‖∞

{∫
[0,1]

g(y)dy

}
= ‖PSf‖∞(22)

by condition C3. Since x0 was an arbitrary point in [0, 1], we have that

‖Pεf‖L2([0,1]) =

∫
[0,1]

∣∣∣∣∣
1∑

i=0

∫
[0,1]

Hi(x, y)dy

∣∣∣∣∣
2

dx

1/2

≤ ‖PSf‖∞ < ∞.

This implies that the family {Pεf, 0 < ε < 1} is uniformly integrable. Then
we have that

(23) limε→0 sup
0<η<1

∫
[0,ε]

|Pηf |dx = 0

by Lemma 4.10 in [8]. Since∫
[0,ε]

|Pεf |dx ≤ sup
0<η<1

∫
[0,ε]

|Pηf |dx for 0 < ε < 1,

we have that

0 ≤ limε→0

∫
[0,ε]

|Pεf |dx ≤ lim
ε→0

∫
[0,ε]

|Pεf |dx ≤ lim
ε→0

sup
0<η<1

∫
[0,ε]

|Pηf |dx = 0

by (23). Therefore we have that limε→0

∫
[0,ε] |Pεf |dx = 0. Moreover since

the family {PSf} consisting of only one function PSf is obviously uniformly
integrable, we also have that

lim
ε→0

∫
[0,ε]

|PSf |dx = 0.

Therefore we have that

(24) lim
ε→0

C1(ε) ≤ lim
ε→0

∫
[0,ε]

|Pεf |dx+ lim
ε→0

∫
[0,ε]

|PSf |dx = 0.
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Note that [0, 1] ⊂ [x−1
ε , xε ] and [xε ,

x+1
ε ] ⊂ (1,∞) for each x ∈ (ε, 1]. Hence

we have that

Pεf(x) =

1∑
i=0

∫
[x+i−1

ε
,x+i

ε
]
PSf(x+ i− εy)g(y)dy

=

∫
[0,1]

PSf(x− εy)g(y)dy.

Thus we have that with respect to C2(ε),

C2(ε) =

∫
(ε,1]

∣∣∣∣∣
∫
[0,1]

PSf(x− εy)g(y)dy − PSf(x)

∣∣∣∣∣ dx
=

∫
(ε,1]

∣∣∣∣∣
∫
[0,1]

[PSf(x− εy)− PSf(x)]g(y)dy

∣∣∣∣∣ dx.
Without loss of generality, we can assume that PSf(x) = 0 for all x 6∈ [0, 1]

(for example set S(x) = x, f(x) = 0 for all x 6∈ [0, 1].). Since PSf is an
integrable function and the set {PSf} is compact in L1(R), we have that for
an arbitrarily small δ > 0, there exists ε0 such that for all ε ≤ ε0,∫

[0,1]
|PSf(x− εy)− PSf(x)| dx ≤ δ

for each y ∈ [0, 1]. Thus we have that

C2(ε) ≤
∫
[0,1]

∫
[0,1]

|PSf(x− εy)− PSf(x)| g(y)dydx

≤ δ

∫
[0,1]

g(y)dy = δ.

Therefore limε→0C2(ε) = 0. Then theorem is proved.
�

Proof. Proof of Corollary 2.13
Since Pε is the Markov operator, we have that

‖Pε(f∗ − fε)‖L1([0,1]) ≤ ‖f∗ − fε‖L1([0,1]).

Hence we have that

‖Pεf∗ − f∗‖L1([0,1]) = ‖fε + Pε(f∗ − fε)− f∗‖L1([0,1])

≤ ‖fε − f∗‖L1([0,1]) + ‖Pε(f∗ − fε)‖L1([0,1])

≤ 2‖fε − f∗‖L1([0,1]) → 0 as ε → 0.

Thus Pεf∗ converges to f∗ in L1([0, 1])-norm. On the other hand, from
Theorem 2.11, Pεf∗ converges to PSf∗ in L1([0, 1])-norm. Therefore PSf∗ =
f∗.

�



16 YUKIKO IWATA1, TOMOHIRO OGIHARA2

5. Appendix

In this section, we give a supplementary explanation of the change of
variables theorem for the Lebesgue integral on R which is applied in the
proof of Proposition 2.2.

Lemma 5.1. ([7]) If h(t) ≥ 0 is an integrable function on [α, β] such that

there exists a increasing function H(t) satisfying H(t) =
∫ t
c h(t)dt, where c

is a constant. Let a = H(α), b = H(β). Then we have that∫ b

a
f(x)dx =

∫ β

α
f(H(t))h(t)dt

for all integrable function f defined on [a, b].

By using Lemm 5.1, we prove the following lemma.

Lemma 5.2. Let X and Y are independent random variables on a proba-
bility space (Ω,F , µ) with values in [0, 1] which satisfy the followings:

(1) X has the density function f : [0, 1] → R with f ≥ 0 such that∫
[0,1]

f(x)dx = 1,

(2) Y has the density function g : R → R with g ≥ 0 such that

supp(g) := {x ∈ R : g(x) 6= 0} ⊂ [0, 1] and

∫
[0,1]

g(x)dx = 1.

Then we have that for any Borel set A ⊂ [0, 1],

µ ({ω ∈ Ω : X(ω) + Y (ω) ∈ A}) =
∫
x∈A

∫
y∈B(x)

f(y)g(x− y)dydx,

where B(x) = {y ∈ [0, 1] : 0 ≤ x− y ≤ 1} for each x ∈ [0, 1].

Proof. Since X and Y are independent,

µ ({ω ∈ Ω : X(ω) + Y (ω) ∈ A}) =

∫ ∫
{(x,y)∈[0,1]×[0,1]: x+y∈A}

f(x)g(y)dxdy.

Since f and g are positive integrable functions on [0, 1], we have∫ ∫
{(x,y)∈[0,1]×[0,1]: x+y∈A}

f(x)g(y)dxdy < ∞,

so, we can apply the Fubini’s theorem to this integral. Indeed, we have that∫ ∫
{(x,y)∈[0,1]×[0,1]: x+y∈A}

f(x)g(y)dxdy =

∫
x∈[0,1]

∫
{y∈[0,1]: x+y∈A}

f(x)g(y)dydx.
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Let a := x + y and Z(a) := a − x for fixed x ∈ [0, 1]. Since Z(a) is
absolutely continuous (i.e. Z(a) =

∫ a
x 1(t)dt), we have that by Lemma 5.1

and Fubini’s theorem, we have that∫
x∈[0,1]

∫
{y∈[0,1]: x+y∈A}

f(x)g(y)dydx

=

∫
x∈[0,1]

∫
{a∈A: 0≤a−x≤1}

f(x)g(a− x)dadx (change of variables)

=

∫
x∈[0,1]

∫
{a∈[0,1]: 0≤a−x≤1}

f(x)g(a− x)1A(a)dadx

=

∫
a∈[0,1]

∫
{x∈[0,1]: 0≤a−x≤1}

f(x)g(a− x)1A(a)dxda (Fubini’s theorem)

=

∫
a∈A

∫
x∈B(a)

f(x)g(a− x)dxda.

Therefore we have that

µ ({ω ∈ Ω : X(ω) + Y (ω) ∈ A}) =
∫
a∈A

∫
x∈B(a)

f(x)g(a− x)dxda.

�
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[13] Komorńık J and Lasota A 1987 Asymptotic decomposition of Markov operators, Bull.
Polish Acad. Sci. Math. 35 no. 5-6, 321–327

[14] Lasota A and Mackey M 1994 Chaos, fractals, and noise(New York: Springer-Verlag)
p 472

[15] Lasota A and Mackey M 1987 Noise and statical periodicity, Physica D. 28 143-154
[16] Lin K 2005 Convergence of invariant densities in the small-noise limit, Nonlinearity.

18 no.2, 659–683
[17] Ogihara T Statistical properties of a one-parameter family of interval maps exhibiting

non-hyperbolic phenomena, In preparation
[18] Sine R 1991 Constricted systems, Rocky Mountain J. Math. 21 1373–1383
[19] Thaler M 2000 The asymptotics of the Perron-Frobenius operator of a class of interval

maps preserving infinite measures, Studia Math. 143 no.2, 103–119

Authors’ addresses:

1Iwata: Laboratory of Nonlinear Studies and Computation Research Insti-
tute for Electronic Science, Hokkaido University, Kita 12, Nishi 6, Sapporo,
060-0812, JP

e-mail: iwata@math.sci.hokudai.ac.jp

2Ogihara: Department of Mathematics, Hokkaido University Kita 10, Nishi
8, Kita-Ku, Sapporo, Hokkaido, 060-0810, JP

e-mail: ogi@math.sci.hokudai.ac.jp


