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Abstract

We investigate spectral properties of an effective Hamiltonian which is obtained
as a scaling limit of the Pauli-Fierz model in nonrelativistic quantum electrody-
namics. The Lamb shift of a hydrogen-like atom is derived as the lowest order
approximation (in the fine structure constant) of an energy level shift of the effec-
tive Hamiltonian.
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1 Introduction

We consider the quantum system of a nonrelativistic spinless charged particle with mass
m > 0 and charge q ∈ R \ {0} in the d-dimensional Euclidean vector space Rd (d ≥ 2)
under the influence of a scalar potential V : Rd → R, Borel measurable and almost
everywhere finite with respect to the Lebesgue measure on Rd. As is well known, a
standard Hamiltonian of such a quantum system is given by the Schrödinger operator

H := − ~2

2m
∆ + V (1.1)

on L2(Rd), where ~ := h/2π (h is the Planck constant) and ∆ is the generalized Laplacian
on L2(Rd). From a quantum field theoretical point of view, however, the operator H is an
approximate Hamiltonian, because the charged particle interacts with the quantum radia-
tion field too. To incorporate this interaction, one has to extend the theoretical framework
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to nonrelativistic quantum electrodynamics (QED), a quantum theory describing nonrel-
ativistic charged particles interacting with the quantum radiation field (for reviews on
recent developments of mathematical theory of nonrelativistic QED, see, e.g., [5, 13]).

Instead of doing a full analysis in the framework of nonrelativistic QED, one may take
an intermediate way to make corrections due to the interaction of the charged particle
with the quantum radiation field. This kind of approach (heuristic) was first given by
Welton [14], based on the following physical picture: The position of the charged particle
should have fluctuations caused by the interaction with the quantum radiation field. Then
the fluctuations would change the potential V and this change may give rise to observable
effects due to the existence of the quantum radiation field. Indeed, e.g., the Lamb shift
of the hydrogen atom—the energy level shift between 2S1/2-state and 2P1/2-state due to
the interaction with the quantum radiation field (for a pedagogical physical explanation,
see, e.g., [3, pp.57–60])—can be heuristically explained in this way [14] (cf. also [2] for a
formal perturbation theoretical treatment).

A mathematically rigorous structure behind the heuristic arguments of Welton [14] was
formulated in the paper [1] where the author considers a scaling limit of a Hamiltonian
in nonrelativistic QED and derives an effective potential which is a deformation of the
original potential V and may “reflect” or “include” effects due to the interaction of the
charged particle with the quantum radiation field (for further developments of scaling
limits in nonrelativistic QED, see [4]). The model used in [1], which is a simplified version
of the full Pauli-Fierz model [8] with a mass renormalization, contains a Borel measurable
function ω : Rd → [0,∞); Rd 3 k 7→ ω(k) (a one-photon dispersion relation) and a real
tempered distribution ρ 6= 0 on Rd satisfying∫

Rd

|ρ̂(k)|2

ω(k)3
dk < ∞,

∫
Rd

|ρ̂(k)|2

ω(k)
dk < ∞, (1.2)

where ρ̂ denotes the Fourier transform of ρ:

ρ̂(k) :=
1

(2π)d/2

∫
Rd

e−ikxρ(x)dx,

physically playing a role of a photon momentum cutoff function.
Let

λq :=
(d − 1)

4d

(
~

mc

)2
q2

~c

∫
Rd

|ρ̂(k)|2

ω(k)3
dk (1.3)

with c being the speed of light, and, for each λ > 0,

Vλ(x) :=
1

(4πλ)d/2

∫
Rd

e−|x−y|2/4λV (y)dy, x = (x1, · · · , xd) ∈ Rd, (1.4)

where we assume that∫
Rd

e−t|x−y|2 |V (y)|dy < ∞, ∀x ∈ Rd,∀t > 0. (1.5)

Then the effective potential, denoted Veff : Rd → R, has the following form [1]:

Veff = Vλq . (1.6)
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Thus, to justify the interpretation mentioned above, one has to investigate spectral prop-
erties of the effective Hamiltonian

Heff := − ~2

2m
∆ + Veff (1.7)

and compare them with experimental results. This is one of the motivations for the
present work.

The charge q in λq is originally a perturbation parameter in the Pauli-Fierz model,
representing the coupling constant of the charged particle with the quantum radiation
field [1]. But we note that {λq|q ∈ R \ {0}} = (0,∞) and that taking the limit λq → 0 is
equivalent to q → 0. Hence we are led to analyze the operator

Hλ := − ~2

2m
∆ + Vλ, λ > 0, (1.8)

instead of Heff . Then one obviously has

Heff = Hλq . (1.9)

Moreover, we have, in the distribution sense,

lim
λ→0

1

(4πλ)d/2
e−|x−y|2/4λ = δ(x − y), (1.10)

the Dirac delta distribution on Rd × Rd. This suggests that Vλ is a perturbation of V
with perturbation parameter λ. Indeed, e.g., if V is bounded and continuous on Rd, then
limλ→0 Vλ(x) = V (x), ∀x ∈ Rd (see also Lemma 2.1). But, in general, Hλ is not necessarily
a regular perturbation of H. This makes the mathematical analysis of Hλ nontrivial. We
also note that Vλ is a Gauss transform of V . This kind of perturbation of V may be
mathematically interesting in its own right too.

By abuse of terminology, we also call Vλ (resp. Hλ) an effective potential (resp.
Hamiltonian) for V (resp. H).

The present paper is organized as follows. In Section 2 we first investigate properties
of the effective potential Vλ. Then we consider the effective Hamiltonian Hλ with the
space dimension d general. For some classes of potentials V , we prove a stability theorem
for a discrete eigenvalue of H (Theorems 2.5–2.7). We also establish a stability theorem
for the essential spectrum of H for a class of potentials V (Theorem 2.10). In Section 3
we specialize the space dimension d to d = 3 and consider the stability of properties of V
under the change V 7→ Vλ. Section 4 is concerned with the infiniteness or the finiteness of
discrete eigenvalues of a self-adjoint extension H̃λ of Hλ. Section 5 is devoted to analysis
of Hλ with V spherically symmetric in R3. In this case Vλ also is spherically symmetric.
We prove a stability theorem for a discrete eigenvalue of H (Theorem 5.4, Corollary 5.5).
Moreover, the reduction of Hλ to the closed subspaces naturally appeared in the polar
coordinate representation in R3 is discussed (Corollary 5.6). In the last section we apply
the results established in Section 5 to the effective Hamiltonian of a hydrogen-like atom—
an atom consisting of an electron and a nucleus with charge Ze (Z ∈ N and e > 0 is
the fundamental charge)—and show that the Lamb shift can be derived as the lowest
order term in the asymptotic expansion of an energy level shift of Hλ−e as e → 0. The
present paper has an appendix in which some general aspects of a (not necessarily regular)
perturbation theory for self-adjoint operators are presented.
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2 The Effective Hamiltonian in General Cases

In this section, we consider the effective Hamiltonian Hλ with d general. The physical
case d = 3 is discussed later in detail (Sections 3–6). To analyze properties of Hλ, we first
need to know properties of the effective potential Vλ.

2.1 Properties of the effective potential

Let

Gλ(x) :=
1

(4πλ)d/2
e−x2/4λ, x ∈ Rd, λ > 0, (2.1)

a Gaussian function. By (1.4), one can write

Vλ = Gλ ∗ V, (2.2)

where

(f ∗ g)(x) :=

∫
Rd

f(x − y)g(y)dy (2.3)

the convolution of functions f and g on Rd, provided that the integral on the right hand
side exists. Hence Vλ is the Gauss transform of V with the Gaussian function Gλ.

Note that, if V is in L2(Rd), then

Vλ = eλ∆V, ∀λ ≥ 0. (2.4)

For p ∈ [1,∞) or p = ∞ and f ∈ Lp(Rd), we denote by ‖f‖p the Lp-norm of f :

‖f‖p :=

(∫
Rd

|f(x)|pdx
)1/p

(1 ≤ p < ∞), ‖f‖∞ := ess.supx∈Rd |f(x)|,

where ess.sup means essential supremum.

Lemma 2.1 If V ∈ Lp(Rd) (1 ≤ p ≤ ∞), then (1.5) holds and Vλ ∈ Lp(Rd) for all λ > 0
with

‖Vλ‖p ≤ ‖V ‖p. (2.5)

Moreover, the following (i) and (ii) holds:

(i) If 1 ≤ p < ∞, then
lim
λ→0

‖Vλ − V ‖p = 0. (2.6)

(ii) If V ∈ L∞(Rd) and V is uniformly continuous on Rd, then

lim
λ→0

‖Vλ − V ‖∞ = 0. (2.7)
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Proof. These are well known facts ( see, e.g., [6, Theorem 5.7]).

It may be convenient from perturbation theoretical point of view to set

V0 := V. (2.8)

Then Lemma 2.1 shows that the mapping: [0,∞) 3 λ 7→ Vλ is strongly continuous at
λ = 0 respectively in Lp(Rd) (1 ≤ p < ∞) and in the space of uniformly continuous,
bounded functions on Rd.

We denote by C1(Rd) the set of continuously differentiable functions on Rd. For
f ∈ C1(Rd), we denote its gradient by ∇f :

∇f := (∂1f, · · · , ∂df)

with ∂jf := ∂f/∂xj, j = 1, · · · , d. Let

C1
b(Rd) := {f ∈ C1(Rd)|∂jf ∈ L∞(Rd), j = 1, · · · , d}, (2.9)

the set of continuously differentiable functions with all the partial derivatives bounded on
Rd, and

‖∇f‖∞ := sup
x∈Rd

|∇f(x)|. (2.10)

Lemma 2.2 Let V ∈ C1
b(Rd). Then, (1.5) holds and

‖Vλ − V ‖∞ ≤ Γd

√
λ‖∇V ‖∞, (2.11)

where

Γd := 2π−d/2

∫
Rd

e−|z|2 |z|dz < ∞, (2.12)

Proof. We have for all a,x ∈ Rd and α ≥ 0

V (a + αx) − V (a) =

∫ α

0

x(∇V )(a + tx)dt (2.13)

Hence
|V (a + x) − V (a)| ≤ |x|‖∇V ‖∞. (2.14)

In particular, taking a = 0, we have

|V (x)| ≤ |V (0)| + |x|‖∇V ‖∞.

This implies that (1.5) holds.
By the change of variable: y 7→ z = (y − x)/2

√
λ, we have

Vλ(x) = π−d/2

∫
Rd

e−|z|2V (x + 2
√

λz)dz.

By this formula and the fact that

π−d/2

∫
Rd

e−|z|2dz = 1,
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we obtain

Vλ(x) − V (x) = π−d/2

∫
Rd

e−|z|2 [V (x + 2
√

λz) − V (x)]dz. (2.15)

By (2.14), we have

|V (x + 2
√

λz) − V (x)| ≤ 2
√

λ|z|‖∇V ‖∞.

Thus (2.11) follows.

From a regular perturbation theoretical point of view, it would be natural to ask if
there is a class of potentials V such that the mapping : λ 7→ Vλ can be extended to an
analytic vector-valued function in a suitable topology. A class of such potentials V is
given in the following lemma:

Lemma 2.3 Suppose that V̂ ∈ C∞
0 (Rd) (the set of infinitely differentiable functions on

Rd with compact support). Then, Vλ ∈ S(Rd) (the Schwartz space of rapidly decreasing
functions on Rd) for all λ ≥ 0 and

Vλ(x) =
∞∑

n=0

(∆nV )(x)

n!
λn, x ∈ Rd, λ ≥ 0 (2.16)

uniformly in x on Rd, where the series on the right hand side is absolutely convergent.

Proof. By the present assumption, there exists a constant K > 0 such that V̂ (k) =
0, |k| ≥ K. By Fourier analysis, we have

Vλ(x) =
1

(2π)d/2

∫
|k|≤K

eikxe−λk2

V̂ (k)dk.

The function : k 7→ e−λk2
V̂ (k) is in C∞

0 (Rd) and hence in S(Rd). Therefore Vλ is in S(Rd).
We have

|∆nV (x)| ≤ 1

(2π)d/2
K2n‖V̂ ‖1.

Hence
∑∞

n=0(∆
nV )(x)λn/n! converges absolutely with

∞∑
n=0

|(∆nV )(x)λn|
n!

≤ 1

(2π)d/2
eK2λ‖V̂ ‖1.

Let SN(x) :=
∑N

n=0(∆
nV )(x)λn/n!, N ∈ N. Then we have

|Vλ(x) − SN(x)| ≤ 1

(2π)d/2

∫
|k|≤K

∣∣∣∣∣e−λk2 −
N∑

n=0

(−k2)nλn

n!

∣∣∣∣∣ |V̂ (k)|dk

≤ 1

(2π)d/2

∞∑
n=N+1

(λK2)n

n!
‖V̂ ‖1.

Hence limN→∞ supx∈Rd |Vλ(x) − SN(x)| = 0.
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2.2 Existence of discrete eigenvalues of the effective Hamilto-
nian

We want to find classes of potentials V such that Hλ (λ > 0) has an eigenvalue if the
unperturbed operator H has an eigenvalue. In this subsection, we consider only simple
classes of such V .

In what follows, for a Hilbert space H, we denote its inner product and norm by 〈 · , · 〉
(antilinear in the first variable and linear in the second one) and ‖ · ‖ respectively. The
domain (resp. range) of a linear operator A on H is denoted D(A) (resp. Ran(A)). We
denote the spectrum and the resolvent set of A by σ(A) and ρ(A) respectively. If A is
bounded, we denote its operator norm by ‖A‖.

For a self-adjoint operator A, we denote its spectral measure by EA.
The next lemma is a key fact in our theory below:

Lemma 2.4 Let {Aλ}λ>0 and A be self-adjoint operators on a Hilbert space. Suppose
that Aλ converges to A in the norm resolvent sense as λ → 0:

lim
λ→0

‖(Aλ − z)−1 − (A − z)−1‖ = 0, z ∈ C \ R.

Let a, b ∈ ρ(A) ∩ R, a < b. Then, there exists a constant r > 0 such that

dim Ran(EAλ
((a, b))) = dim Ran(EA((a, b))), λ ∈ (0, r). (2.17)

Proof. By the present assumption and [9, Theorem VIII.23-(b)], we have

lim
λ→0

‖EAλ
((a, b)) − EA((a, b))‖ = 0.

Hence there exists a constant r > 0 such that

‖EAλ
((a, b)) − EA((a, b))‖ < 1, λ ∈ (0, r). (2.18)

This inequality and a general fact [11, p.14, Lemma] imply (2.17).

Going back to the effective Hamiltonian Hλ, we first consider the case where V is in
L∞(Rd). In this case, H is self-adjoint with D(H) = D(∆). By Lemma 2.1, Vλ is in
L∞(Rd). Hence Hλ also is self-adjoint with D(Hλ) = D(∆). The next theorem shows the
stability of an eigenvalue of H under the change of V to Vλ:

Theorem 2.5 Let V be in L∞(Rd) and uniformly continuous on Rd. Let a, b ∈ R with
a < b. Suppose that H has an isolated eigenvalue E0 in the open interval (a, b) with
multiplicity m(E0) and that σ(H) ∩ (a, b) = {E0}. Then, there exists a constant r > 0
such that, for all λ ∈ (0, r), Hλ has exactly m(E0) discrete eigenvalues in (a, b), count-
ing multiplicities, and σ(Hλ) ∩ (a, b) consists of only these eigenvalues. In particular, if
m(E0) = 1, then Hλ with λ ∈ (0, r) has a unique isolated simple eigenvalue Eλ in (a, b)
and

lim
λ→0

Eλ = E0. (2.19)
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Proof. Let z ∈ C \ R. Then

(Hλ − z)−1 − (H − z)−1 = (Hλ − z)−1(V − Vλ)(H − z)−1.

Hence

‖(Hλ − z)−1 − (H − z)−1‖ ≤ 1

|Im z|
‖V − Vλ‖∞‖(H − z)−1‖,

where Im z denotes the imaginary part of z. By Lemma 2.1-(ii), for every ε > 0, there
exists a constant rε > 0 such that, for all λ ∈ (0, rε), ‖V − Vλ‖∞ < ε. Hence

‖(Hλ − z)−1 − (H − z)−1‖ < ε
‖(H − z)−1‖

|Im z|
, λ ∈ (0, rε).

Thus Hλ converges to H in the norm resolvent sense as λ → 0. Hence, by Lemma
2.4, there exists a constant r > 0 such that, for all λ ∈ (0, r), dim Ran(EHλ

((a, b))) =
dim Ran(EH((a, b))) = m(E0). Thus Hλ has exactly m(E0) discrete eigenvalues in (a, b),
counting multiplicities, and σ(Hλ) ∩ (a, b) consist of only these eigenvalues.

Suppose that m(E0) = 1 and Ω0 is a normalized eigenvector of H with eigenvalue E0:
HΩ0 = E0Ω0, ‖Ω0‖ = 1. Then, by the preceding result, Hλ with λ ∈ (0, r) has exactly
one eigenvalue Eλ in (a, b) with σ(Hλ) ∩ (a, b) = {Eλ}. We set Pλ := EHλ

((a, b)) and
P := EH((a, b)). Then PΩ0 = Ω0 and HλPλΩ0 = EλPλΩ0. Taking the inner product of
this equation with Ω0, we have

Eλ 〈Ω0, PλΩ0〉 = E0 〈Ω0, PλΩ0〉 + 〈Ω0, (Vλ − V )Ω0〉 + 〈(Vλ − V )Ω0, (Pλ − P )Ω0〉 .

By (2.18) with Aλ = Hλ and A = H, we have ‖Pλ − P‖ < 1, λ ∈ (0, r). Hence it follows
that ‖PλΩ0‖ > 0, which implies that 〈Ω0, PλΩ0〉 > 0. Therefore we obtain

Eλ = E0 +
〈Ω0, (Vλ − V )Ω0〉

〈Ω0, PλΩ0〉
+

〈(Vλ − V )Ω0, (Pλ − P )Ω0〉
〈Ω0, PλΩ0〉

. (2.20)

Note that
〈Ω0, PλΩ0〉 = 1 + 〈Ω0, (Pλ − P )Ω0〉 = 1 + o(1) (λ → 0).

Thus (2.19) holds.

We next consider the case where V is in C1
b(Rd) and bounded below. Then, by a

general theorem [10, Theorem X.28], H is essentially self-adjoint on C∞
0 (Rd). We denote

the closure of H by H̄. By Lemma 2.2, Vλ −V is bounded on Rd. Hence Hλ is essentially
self-adjoint on C∞

0 (Rd). For t ≥ 0, we define V
(1)
t : Rd → R by

V
(1)
t (x) :=

1

πd/2

∫
Rd

e−|y|2y(∇V )(x + ty)dy. (2.21)

Theorem 2.6 Let V be in C1
b(Rd) and bounded below. Let a, b ∈ ρ(H̄) ∩ R (a < b).

Suppose that H̄ has an isolated eigenvalue E0 in the open interval (a, b) with multiplicity
m(E0) and σ(H̄) ∩ (a, b) = {E0}. Then, there exists a constant r > 0 such that, for all
λ ∈ (0, r), H̄λ has exactly m(E0) discrete eigenvalues in (a, b), counting multiplicities, and
σ(H̄λ)∩(a, b) consists of only these eigenvalues. In particular, if m(E0) = 1, then H̄λ with
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λ ∈ (0, r) has a unique isolated simple eigenvalue Eλ in (a, b) with σ(H̄λ) ∩ (a, b) = {Eλ}
and

Eλ = E0 +

∫ 2
√

λ

0

〈
Ω0, V

(1)
t Ω0

〉
dt + o(

√
λ) (λ → 0), (2.22)

where Ω0 is a normalized eigenvector of H̄ with eigenvalue E0: H̄Ω0 = E0Ω0, ‖Ω0‖ = 1.

Proof. Since we have Lemma 2.2, existence proof of eigenvalues of H̄λ can be done in
the same way as in the proof of Theorem 2.5. Thus we need only to prove (2.22). By
(2.13) and (2.15), we have

Vλ(x) − V (x) =

∫ 2
√

λ

0

V
(1)
t (x)dt.

Hence

〈Ω0, (Vλ − V )Ω0〉 =

∫
Rd

(∫ 2
√

λ

0

V
(1)
t (x)dt

)
|Ω0(x)|2dx.

Since we have

|V (1)
t (x)| ≤ Γd

2
‖∇V ‖∞

with Γd given by (2.12), we can apply Fubini’s theorem to the double integral on the right
hand side to obtain

〈Ω0, (Vλ − V )Ω0〉 =

∫ 2
√

λ

0

〈
Ω0, V

(1)
t Ω0

〉
dt.

By this formula and Lemma 2.2 together with (2.20), we can obtain (2.22).

In concluding this section, we consider the case where V is a potential such that
V̂ ∈ C∞

0 (Rd). In this case we have Lemma 2.3. In particular, H and Hλ are self-adjoint
with D(H) = D(Hλ) = D(∆), λ > 0.

Theorem 2.7 Let V̂ ∈ C∞
0 (Rd). Suppose that H has an isolated eigenvalue E0 with

multiplicity m(E0). Then, there exists a constant r > 0 such that, for all λ ∈ (0, r),
Hλ has exactly m(E0) discrete eigenvalues E(j)(λ) (j = 1, · · · ,m(E0)) near E0 and the
spectrum of Hλ in this region consists of only these eigenvalues. Moreover, each E(j)(λ)
as a function of λ has an analytic continuation to the disk {λ ∈ C||λ| < r}. In particular,
if m(E0) = 1 and HΩ0 = E0Ω0, ‖Ω0‖ = 1 (Ω0 ∈ D(H)), then Hλ with λ ∈ (0, r) has a
unique isolated simple eigenvalue Eλ near E0 and

Eλ = E0 +

∑∞
n=0 an(λ)∑∞
n=0 bn(λ)

. (2.23)

with

an(λ) :=
(−1)n+1

2πi

∞∑
`=1

∞∑
`1,···,`n=1

λ`+`1+···+`n

`!`1! · · · `n!
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×
∫
|E−E0|=ε

〈Ω0, (∆
`V )(H − E)−1(∆`1V )(H − E)−1(∆`2V )(H − E)−1

× · · · (∆`nV )(H − E)−1Ω0〉dE,

bn(λ) :=
(−1)n+1

2πi

∞∑
`1,···,`n=1

λ`1+···+`n

`1! · · · `n!

×
∫
|E−E0|=ε

〈Ω0, (H − E)−1(∆`1V )(H − E)−1(∆`2V )(H − E)−1

× · · · (∆`nV )(H − E)−1Ω0〉dE,

where
∫
|E−E0|=ε

dE means the contour integral on the circle |E−E0| = ε with anti-clockwise

orientation, ε > 0 being sufficiently small.

Proof. By Lemma 2.3, we can define for all β ∈ C a linear operator H(β) by

H(β) := − ~2

2m
∆ + V (β),

where V (β) :=
∑∞

n=0(∆
nV )βn/n!. By Lemma 2.3, V (β) is bounded and analytic in β

in the uniform topology. For λ > 0, we have H(λ) = Hλ. It is obvious that, for all
β ∈ C, H(β) is a closed operator with D(H(β)) = D(∆) and, for all f ∈ D(∆), H(β)f
is a vector-valued analytic function of β. Since limβ→0 ‖V (β) − V ‖∞ = 0, there exists
a constant β0 > 0 such that, for all |β| < β0, ρ(H(β)) 6= ∅. Hence {H(β)}|β|<β0 is an
analytic family of type (A) [11, p.16, Definition]. Thus we can apply a general theorem
of regular perturbation theory [11, Theorem XII.13] to obtain the desired results.

2.3 Essential spectrum of the effective Hamiltonian

It is interesting to compare the essential spectrum of H, denoted σess(H), with that of
Hλ. For this purpose, we recall a class of potentials V .

Let p ≥ 1 and ε > 0. We say that V is in the set Lp(Rd) + L∞
ε (Rd) if, for every ε > 0,

there exist functions V1ε ∈ Lp(Rd) and V2ε ∈ L∞(Rd) such that

V = V1ε + V2ε, ‖V2ε‖∞ < ε. (2.24)

Lemma 2.8 If V is in Lp(Rd) + L∞
ε (Rd), then so is Vλ for all λ > 0.

Proof. This follows from Lemma 2.1.

For a Borel measurable function U : Rd → R, we define

HU := − ~2

2m
∆ + U (2.25)

Lemma 2.9 Let p = 2 for d = 1, 2, 3 ; p > d/2 for d ≥ 4 and

U ∈ Lp(Rd) + L∞
ε (Rd). (2.26)

Then, HU is self-adjoint with D(HU) = D(∆) and bounded below. Moreover

σess(HU) = [0,∞). (2.27)

10



Proof. Every U ∈ Lp(Rd) + L∞
ε (Rd) with p as above is infinitesimally small with

respect to ∆ (apply the proof of [10, Theorem X.15] in the case d = 1, 2, 3 and [10,
Theorem X.20] in the case d ≥ 4). Hence, by the Kato-Rellich theorem [10, Theorem
X.12], HU is self-adjoint and bounded below. Relation (2.27) follows from the fact that
σess(HU) = σess(−∆) = [0,∞) ([11, p.369, Problem 41]).

For convenience, we set
H0 := H, (2.28)

so that we have a family {Hλ}λ≥0 of symmetric operators indexed by the closed semi-
infinite interval [0,∞).

The following theorem immediately follows from Lemmas 2.8 and 2.9:

Theorem 2.10 Let p be as in Lemma 2.9 and V ∈ Lp(Rd) + L∞
ε (Rd). Then, for all

λ ≥ 0, Hλ is self-adjoint with D(Hλ) = D(∆) and bounded below. Moreover

σess(Hλ) = [0,∞), ∀λ ≥ 0. (2.29)

This theorem shows that, for the class of potentials V specified there, the essential
spectrum of H0 = H is stable under the perturbation Vλ − V .

3 Effective Potentials in Three Space Dimensions

It is also interesting to consider the stability of the discrete spectrum of H, denoted
σdisc(H), under the change V 7→ Vλ. This section is a preliminary for this purpose.

From now on, we consider the physical case d = 3. In this case, a typical class of
potentials V : R3 → R is given by the Rollnik class R:

V ∈ R
def⇐⇒

∫
R3×R3

|V (x)||V (y)|
|x − y|2

dxdy < ∞. (3.1)

An element V in R is called a Rollnik potential. The following fact is well known (e.g.,
[12, Theorem I.15]):

Lemma 3.1 Let V ≥ 0 and V ∈ L1(R3). Then, V ∈ R if and only if∫
R3

|V̂ (k)|2

|k|
dk < ∞. (3.2)

We introduce a subset of R:

Rcs := {V ∈ R|V ≥ 0 or V ≤ 0}, (3.3)

the set of Rollnik potentials with constant signature.

Lemma 3.2 Let V ∈ Rcs ∩ L1(R3). Then, for all λ > 0, Vλ ∈ Rcs ∩ L1(R3).
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Proof. By Lemma 2.1, we need only to show that Vλ ∈ Rcs. Let V ∈ Rcs and V ≥ 0.
Then it is obvious that Vλ ≥ 0. We have

V̂λ(k) = e−λk2

V̂ (k).

Hence ∫
R3

|V̂λ(k)|2

|k|
dk ≤

∫
R3

|V̂ (k)|2

|k|
dk < ∞ (by Lemma 3.1).

Hence, by Lemma 3.1, Vλ ∈ R. Thus Vλ ∈ Rcs. Similarly one can prove this in the case
V ≤ 0.

Lemma 3.3 Let V ∈ R ∩ L1(R3). Then, for all λ > 0, Vλ ∈ R ∩ L1(R3).

Proof. We have the decomposition V = V+ − V− with V+(x) := max{V (x), 0} ≥ 0
and V−(x) := −min{V (x), 0} ≥ 0. It is easy to see that, if V ∈ R ∩ L1(R3), then
V± ∈ Rcs ∩ L1(R3). By this fact and Lemma 3.2, we obtain the desired result.

Lemma 3.4 Let V ∈ R ∩ L1(R3) + L∞(R3). Then, for all λ > 0, Vλ ∈ R ∩ L1(R3) +
L∞(R3).

Proof. This follows from Lemmas 2.1 and 3.3.

Let R′ = R or Rcs. We say that V is in R′ ∩ L1(R3) + L∞(R3)ε if, for every ε > 0,
there exist V1ε ∈ R′ ∩ L1(R3) and V2ε ∈ L∞(R3) such that

V = V1ε + V2ε, ‖V2ε‖∞ < ε. (3.4)

Lemma 3.5 Let V ∈ Rcs ∩ L1(R3) + L∞(R3)ε. Then, Vλ ∈ Rcs ∩ L1(R3) + L∞(R3)ε for
all λ > 0.

Proof. This follows from Lemmas 3.2 and 2.1.

Lemma 3.6 Let V ∈ R ∩ L1(R3) + L∞(R3)ε. Then, Vλ ∈ R ∩ L1(R3) + L∞(R3)ε for all
λ > 0.

Proof. This follows from Lemma 3.4.

The following two lemmas show that some behaviors of V near |x| = ∞ are taken over
by Vλ.

Lemma 3.7 Assume (1.5). Suppose that there exist constants a > 0, ε > 0 and R0 > 0
such that

V (x) ≤ − a

|x|2−ε
, ∀|x| ≥ R0. (3.5)

Then, for each λ > 0, there exist constants a′ > 0 and R′
0 > 0 such that

Vλ(x) ≤ − a′

|x|2−ε
, ∀|x| ≥ R′

0. (3.6)
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Proof. We write

Vλ =
1

(4πλ)3/2
(I1 + I2), (3.7)

where

I1(x) :=

∫
|y|≥R0

e−|x−y|2/4λV (y)dy, I2(x) :=

∫
|y|<R0

e−|x−y|2/4λV (y)dy. (3.8)

Using (3.5) and change of variables to polar coordinates, one can show that

I1(x) ≤ −4πaλ

|x|
J1(x) +

4πaλ

|x|
J2(x), x 6= 0,

where

J1(x) :=

∫ ∞

R0

e−(r−|x|)2/4λ

r1−ε
dr, J2(x) :=

∫ ∞

R0

e−(r+|x|)2/4λ

r1−ε
dr.

We have

J1(x) =
1

|x|1−ε

∫ ∞

R0−|x|

e−s2/4λ(
1 + s

|x|

)1−ε ds.

Let 0 < ε < 1 and |x| ≥ r0 > 0. Then

J1(x) ≥ 1

|x|1−ε
C1

with

C1 :=

∫ ∞

R0−r0

e−s2/4λ(
1 + s

r0

)1−ε ds.

On the other hand, if 1 ≤ ε and |x| ≥ r0, then

J1(x) ≥ 1

|x|1−ε

∫ ∞

R0−r0

(
1 +

s

|x|

)ε−1

e−s2/4λds ≥ 1

|x|1−ε
C2

with

C2 :=

∫ ∞

R0−r0

e−s2/4λds.

Hence

J1(x) ≥ 1

|x|1−ε
min{C1, C2}, |x| ≥ r0.

As for J2(x), we have

J2(x) =
1

|x|1−ε

∫ ∞

1+R0/|x|

e−(r|x|)2/4λ(r|x|)
r(r − 1)1−ε

dr.

Hence, for all r1 > 0, we have

J2(x) ≤ 1

|x|1−ε
Mr1C3, ∀|x| ≥ r1
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with

Mr1 := sup
s≥R0+r1

(se−s2/8λ), C3 :=

∫ ∞

1

e−r2r2
1/8λ

r(r − 1)1−ε
dr.

Thus, taking r1 ≥ r0, we obtain

I1(x) ≤ − a1

|x|2−ε
, ∀|x| ≥ r1

with
a1 := 4πλa(min{C1, C2} − Mr1C3).

Since limr1→∞ Mr1 = 0, we can take r1 such that a1 > 0.
It is easy to see that, for all α ∈ R

|I2(x)| ≤ Nr2(α)

|x|α
, |x| ≥ r2 > 0 (3.9)

with

Nr2(α) := sup
|x|≥r2

(|x|αe−|x|2/4λe|x|R0/2λ)

(∫
|y|≤R0

e−y2/4λ|V (y)|dy
)

< ∞.

Note that limr2→∞ Nr2(α) = 0. Hence we can take r2 such that a′ := a1 − Nr2(α) > 0
with α = 2 − ε. Then, taking R′

0 := max{r1, r2}, we have (3.6).

Lemma 3.8 Assume (1.5). Suppose that there exist constants b > 0 and R0 > 0 such
that

V (x) ≥ − b

|x|2
, ∀|x| ≥ R0. (3.10)

Then, for each λ > 0, there exist constants b′ > 0 and R′
0 > 0 such that

Vλ(x) ≥ − b′

|x|2
, ∀|x| ≥ R′

0. (3.11)

Proof. We decompose Vλ as in (3.7) with (3.8). In the same way as in the proof of
Lemma 3.7, we can show that, for all x 6= 0,

I1(x) ≥ −4πbλ

|x|

∫ ∞

R0

e−(|x|2+r2)/4λ+|x|r/2λ

r
dr

= −4πbλ

|x|2

∫ ∞

R0−|x|

e−s2/4λ(
1 + s

|x|

)ds

≥ −4πbλ

|x|2

∫ ∞

−∞
e−s2/4λds = −(4πλ)3/2b

|x|2
.

By (3.9), we have

I2(x) ≥ −Nr2(2)

|x|2
, |x| ≥ r2 > 0.

Thus (3.11) follows.
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4 Discrete Spectrum of the Effective Hamiltonian

As is well known, every U ∈ R + L∞(R3) as a multiplication operator on L2(R3) is
infinitesimally form-bounded with respect to ∆ on L2(R3) [10, Theorem X.19]. Hence,
by the KLMN theorem [10, Theorem X.17], there exists a unique self-adjoint operator SU

such that D(|SU |1/2) = D((−∆)1/2) and∫
R

µ d 〈f, ESU
(µ)g〉

= − ~2

2m

〈
(−∆)1/2f, (−∆)1/2g

〉
+

∫
R3

f(x)∗U(x)g(x)dx, f, g ∈ D((−∆)1/2).

We write SU as

SU := − ~2

2m
∆+̇U. (4.1)

By Lemma 3.4, for V ∈ R ∩ L1(R3) + L∞(R3), we can define a self-adjoint operator

H̃λ (λ ≥ 0) by

H̃λ := − ~2

2m
∆+̇Vλ. (4.2)

Remark 4.1 The operator H̃λ is a self-adjoint extension of Hλ. If V ∈ L2(R3)∩L1(R3)+

L∞(R3), then H̃λ = Hλ, since Hλ is self-adjoint with D(Hλ) = D(∆) in this case.

Theorem 4.2 Let V ∈ R ∩ L1(R3) + L∞
ε (R3). Then, for all λ ≥ 0, σess(H̃λ) = [0,∞)

and σdisc(H̃λ) ⊂ (−∞, 0). Moreover, the following (i) and (ii) hold:

(i) Suppose that (3.5) holds. Then, for all λ ≥ 0, σdisc(H̃λ) is infinite.

(ii) Suppose that (3.10) holds. Then, for all λ ≥ 0, σdisc(H̃λ) is finite.

Proof. The following fact is well known [11, p.118, Example 7]: If U ∈ R + L∞
ε (R3),

then σess(SU) = [0,∞), where SU is defined by (4.1), and hence σdisc(SU) ⊂ (−∞, 0). By
Lemma 3.6, we can apply this theorem to U = Vλ. Thus the first half of the present
theorem follows.

(i) In this case, we have (3.6). Hence, by a general theorem [10, Theorem XIII.6-(a)],

σdisc(H̃λ) is infinite for all λ ≥ 0.
(ii) In this case , we have (3.11). Hence a general theorem [10, Theorem XIII.6-(b)]

implies that σdisc(H̃λ) is finite for all λ ≥ 0.

Theorem 4.2 shows that, for every V ∈ R∩L1(R3)+L∞
ε (R3) with condition (3.5) (resp.

(3.10)), the infiniteness (resp. finiteness) of the discrete spectrum of H̃0 = −~2∆/2m+̇V
is maintained under the change of V to Vλ.
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5 Spherically Symmetric Potentials

In this section we consider the case where V is in a class of spherically symmetric potentials
on R3. Let V be given by the following form:

V (x) =
u(|x|)
|x|

, x ∈ R3 \ {0} (5.1)

with u : [0,∞) → R being bounded and continuously differentiable on [0,∞). Note that
V has singularity at x = 0 if u(0) 6= 0. Hence this class of V includes classes of potentials
different from those discussed in Subsection 2.1.

5.1 General aspects

Theorem 5.1 Let V be given by (5.1). Then, for all λ ≥ 0, Hλ is self-adjoint with
D(Hλ) = D(∆) and bounded below. Moreover

σess(Hλ) = [0,∞), σdisc(Hλ) ⊂ (−∞, 0). (5.2)

Proof. For every ε > 0, let R > ‖u‖∞/ε and define

V1(x) :=
u(x)χ(0,R)(|x|)

|x|
, V2(x) :=

u(x)χ[R,∞)(|x|)
|x|

,

where, for a set S ⊂ R, χS denotes the characteristic function of S. Then it is easy to see
that V1 ∈ L2(R3), ‖V2‖∞ < ε and V = V1 + V2 on R3 \ {0}. Hence V ∈ L2(R3) + L∞

ε (R3).
Therefore, by Theorem 2.10, we obtain the desired results.

We next estimate ‖(Vλ − V )(H − z)−1‖. We have by direct computations

Vλ = V + Wλ1 + Wλ2 + Wλ3, (5.3)

with

Wλ1(x) :=
1√
π|x|

∫ ∞

−|x|/2
√

λ

e−s2

(u(|x| + 2
√

λs) − u(|x|)ds, (5.4)

Wλ2(x) := −u(|x|)√
π|x|

Erfc(|x|/2
√

λ), (5.5)

Wλ3(x) := − 1√
π|x|

∫ ∞

0

e−(s+|x|/2
√

λ)2u(2
√

λs)ds, (5.6)

where

Erfc(x) :=

∫ ∞

x

e−y2

dy, x ∈ R, (5.7)

the Gauss error function. Hence Vλ also is spherically symmetric.
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Example 5.2 In the case where V is a Coulomb type potential

V (γ)(x) = − γ

|x|
, x ∈ Rd \ {0} (5.8)

with γ ∈ R \ {0} being a constant, we have

Vλ(x) = V
(γ)
λ (x) := − γ

|x|
+ W

(γ)
λ (x) (5.9)

where

W
(γ)
λ (x) :=

2γ√
π|x|

Erfc(|x|/2
√

λ), r > 0. (5.10)

It is easy to see that V is in L2(R3) + L∞(R3). Hence it is infinitesimally small with
respect to −∆ (see, e.g., proof of [10, Theorem X.15]): for every ε > 0, there exists a
constant bε > 0 such that

‖V f‖ ≤ ε

∥∥∥∥− ~2

2m
∆f

∥∥∥∥ + bε‖f‖, f ∈ D(−∆). (5.11)

Hence, by the Kato-Rellich theorem [10, Theorem X.12], H is self-adjoint with D(H) =
D(−∆) and boundd below. By Lemma 2.1, Vλ also is in L2(R3) + L∞(R3) for all λ > 0.
Hence Hλ is self-adjoint with D(Hλ) = D(−∆) and bounded below.

We note that (5.11) implies that∥∥∥∥− ~2

2m
∆f

∥∥∥∥ ≤ 1

1 − ε
‖Hf‖ +

bε

1 − ε
‖f‖, 0 < ε < 1. (5.12)

A key fact is given by the next lemma:

Lemma 5.3 For all z ∈ ρ(H) and p ∈ (0, 1/4), there exists a constant C(p, z) > 0
independent of λ > 0 such that

‖(Vλ − V )(H − z)−1‖ ≤ C(p, z))(
√

λ + λp + λ1/4) (5.13)

and, for all compact sets S ⊂ ρ(H), supz∈S C(p, z) < ∞. In particular,

lim
λ→0

‖(Vλ − V )(H − z)−1‖ = 0 (5.14)

uniformly in z on each compact set S ⊂ ρ(H) and, for all f ∈ D(∆) and p ∈ (0, 1/4),

‖(Vλ − V )f‖ = o(λp) (λ → 0). (5.15)

Proof. Throughout the proof, Cj (j = 1, 2, · · ·) denotes a positive constant independent
of λ and z ∈ ρ(H). To prove (5.13), we need only to prove

‖Wλj(H − z)−1‖ ≤ Cj(p, z)(
√

λ + λp + λ1/4), j = 1, 2, 3, (5.16)

where Cj(p, z) is a positive constant independent of λ > 0 and supz∈S Cj(p, z) < ∞ for
all compact sets S ⊂ ρ(H).

17



We have

u(|x| + 2
√

λs) − u(|x|) =

∫ |x|+2
√

λs

|x|
u′(r)dr.

Hence
|u(|x| + 2

√
λs) − u(|x|)| ≤ 2

√
λ|s|‖u′‖∞.

By this estimate and (5.4), we obtain

|Wλ1(x)| ≤ C1

|x|
√

λ

with a constant C1. Since 1/|x| is in L2(R3) + L∞(R3), an estimate like (5.11) holds.
Namely, for every ε1 > 0, there exists a constant cε1 > 0 such that

‖ |x|−1f‖ ≤ ε1

∥∥∥∥− ~2

2m
∆f

∥∥∥∥ + cε1‖f‖, f ∈ D(−∆).

By (5.12), we have

‖ |x|−1f‖ ≤ ε1

1 − ε
‖Hf‖ + dε,ε1‖f‖ (0 < ε < 1) (5.17)

with a constant dε,ε1 > 0. Hence we obtain for all z ∈ ρ(H)

‖Wλ1(H − z)−1‖ ≤
√

λC2(‖H(H − z)−1‖ + ‖(H − z)−1‖)

with a constant C2 > 0. Therefore, taking

C1(p, z) = C2(‖H(H − z)−1‖ + ‖(H − z)−1‖)

we have (5.16) with j = 1. Let S ⊂ ρ(H) be a compact set. Then it is easy to see that

sup
z∈S

(‖H(H − z)−1‖ + ‖(H − z)−1‖) < ∞.

Hence supz∈S C1(z.p) < ∞.
Let f ∈ D(∆) and 0 < p < 1/4. Then we have

‖Wλ2f‖2 = I1(f) + I2(f)

with

I1(f) :=

∫
|x|≤λ2p

|Wλ2(x)|2|f(x)|2dx, I2(f) :=

∫
|x|>λ2p

|Wλ2(x)|2|f(x)|2dx.

Since Erfc(0) =
√

π/2, we have

I1(f) ≤
(√

π

2

)2
1

π
‖u‖2

∞‖f‖2
∞

∫
|x|≤λ2p

1

|x|2
dx

= C4λ
2p‖f‖2

∞
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with a constant C4 independent of λ. Recall that, for every a > 0, there exists a constant
b such that

‖f‖∞ ≤ a‖∆f‖ + b‖f‖

(see, e.g., [10, (X.23)]). By this estimate and (5.12), we obtain

I1(f) ≤ C5λ
2p(‖Hf‖2 + ‖f‖2)

with a constant C5.
As for I2(f), we have

I2(f) ≤ C6Erfc(λ(4p−1)/2/2)2‖ |x|−1f‖2 ≤ C7Erfc(λ(4p−1)/2/2)2(‖Hf‖2 + ‖f‖2)

with constants C6 and C7, where we have used (5.17). Thus we obtain

‖Wλ2(H − z)−1‖ ≤ C8

√
λ2p + Erfc(λ(4p−1)/2/2)2(‖H(H − z)−1‖ + ‖(H − z)−1‖)

with a constant C8. We have for all η ∈ (0, 1) and θ > 0

Erfc(λ(4p−1)/2/2) =

∫ ∞

1/2λ(1−4p)/2

e−s2

ds ≤ e−η/4λ1−4p

∫ ∞

0

e−(1−η)s2

ds

≤ C9(η, θ)λθ(1−4p)

with a constant C9(η, θ) > 0. Hence

‖Wλ2(H − z)−1‖ ≤ C10(p, θ)(λ
p + λθ(1−4p))(‖H(H − z)−1‖ + ‖(H − z)−1‖)

with a constant C10(p, θ). Taking θ = p/(1 − 4p)], we obtain (5.16) with j = 2.
We have

|Wλ3(x)| ≤ C11
e−|x|2/4λ

|x|
with a constant C11. Hence we have for all f ∈ D(∆)

‖Wλ3f‖2 ≤ C2
11(K1 + K2)

with

K1 :=

∫
|x|≤R

e−|x|2/2λ

|x|2
|f(x)|2dx, K2 :=

∫
|x|>R

e−|x|2/2λ

|x|2
|f(x)|2dx,

where R > 0 is a constant. It is easy to see that

K1 ≤ C12

√
λ‖f‖2

∞, K2 ≤
e−R2/2λ

R2
‖f‖2

with a constant C12. Hence, as in the preceding cases, we have

‖Wλ3(H − z)−1‖ ≤ C13(λ
1/4 + e−R2/4λ)(‖H(H − z)−1‖ + ‖(H − z)−1‖)

with a constant C13. Thus (5.16) with j = 3 holds.
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Estimate (5.13) obviously implies the uniform convergence (5.14) on each compact set
S ⊂ ρ(H).

Let f ∈ D(∆) and p ∈ (0, 1/4). Then there exists a constant ε > 0 such that
0 < p + ε < 1/4. For all λ ∈ (0, 1), we have

√
λ, λ1/4 < λp+ε. Hence, we have for all

λ ∈ (0, 1)

‖(Vλ − V )f‖ ≤ ‖(Vλ − V )(H − i)−1‖‖(H − i)f‖ ≤ 3C(p + ε, i)‖(H − i)f‖λp+ε,

which implies (5.15).

By Lemma 5.3, we can apply a general perturbation theory given in Appendix in the
present paper to investigate the discrete spectrum of Hλ.

Suppose that H has an isolated eigenvalue E0 ∈ R with finite multiplicity m(E0)
(1 ≤ m(E0) < ∞). Let r be a constant satisfying

0 < r < min
E∈σ(H)\{E0}

|E − E0|.

and
Cr(E0) := {z ∈ C||z − E0| = r},

which is a subset of ρ(H). Let

nr := r sup
z∈Cr(E0)

‖(H − z)−1‖, rλ := sup
z∈Cr(E0)

‖(Vλ − V )(H − z)−1‖. (5.18)

The next theorem follows from a simple application of Theorem A.3 with A = H and
Bλ = Vλ − V :

Theorem 5.4 Let λ > 0 and rλ < 1/(1 + nr). Then, Hλ has exactly m(E0) eigenvalues
in the interval (E0−r, E0+r), counting multiplicities, and σ(Hλ)∩(E0−r, E0+r) consists
of only these eigenvalues.

In the case where E0 is a simple eigenvalue of H, one can obtain more detailed results:

Corollary 5.5 Let λ > 0 and rλ < 1/(1 + nr). Suppose that m(E0) = 1 and Ω0 is
a normalized eigenvector of H with eigenvalue E0. Then, Hλ has exactly one simple
eigenvalue Eλ in the interval (E0 − r, E0 + r) with formula

Eλ = E0 +
〈Ω0, (Vλ − V )Ω0〉 + Sn(λ)

1 +
∑∞

n=1 Tn(λ)
, (5.19)

where

Sn(λ) :=
(−1)n+1

2πi

∫
Cr(E0)

dz
〈
Ω0,

[
(Vλ − V )(H − z)−1

]n+1
Ω0

〉
,

Tn(λ) :=
(−1)n+1

2πi

∫
Cr(E0)

dz

〈
Ω0, [(Vλ − V )(H − z)−1]

n
Ω0

〉
E0 − z

,
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and σ(Hλ) ∩ (E0 − r, E0 + r) = {Eλ}. Moreover, a normalized eigenvector of Hλ with
eigenvalue Eλ is given by

Ωλ =
Ω0 +

∑∞
n=1 Ωλ,n√

1 +
∑∞

n=1 Tn(λ)
, (5.20)

where

Ωλ,n :=
(−1)n+1

2πi

∫
Cr(E0)

dz(H − z)−1
[
(Vλ − V )(H − z)−1

]n
Ω0.

Proof. This is a simple application of Corollary A.4 to the case where A = H and
Bλ = Vλ − V .

5.2 Reductions of Hλ to closed subspaces

As is well known (e.g., [10, p.160, Example 4]), the Hilbert space L2(R3) has the orthogonal
decomposition

L2(R3) = ⊕∞
`=0 ⊕`

s=−` Hs
` (5.21)

with
Hs

` = L2([0,∞), r2dr) ⊗ {αY s
` |α ∈ C}, (5.22)

where Y s
` is the spherical harmonics with index (`, s):

Y s
` (θ, φ) := (−1)s

√
(` − s)!

(` + s)!

√
2` + 1

4π
P s

` (cos θ)eisφ,

θ ∈ [0, π], φ ∈ [0, 2π), s = −`, ` + 1, · · · , 0, · · · , ` − 1, ` (5.23)

with P s
` being the associated Legendre function:

P s
` (x) := (1 − x2)s/2 ds

dxs

(−1)`

2``!

(
d

dx

)`

(1 − x2)`, |x| < 1.

We have ∫ π

0

dθ

∫ 2π

0

dφ sin θY s
` (θ, φ)∗Y s′

`′ (θ, φ) = δ``′δss′ ,

where δab denotes the Kronecker delta.
Since Vλ (λ ≥ 0) under consideration is spherically symmetric, Hλ is reduced by each

Hs
` [10, p.160, Example 4]. We denote the reduced part of Hλ by H`,s

λ . Explicitly it is of
the form

(H`,s
λ f ⊗ Y s

` )(r, φ, θ) =

(
− ~2

2m

d2

dr2
+ Ṽλ(r) −

~2

2m

2

r

d

dr

)
f(r)Y s

` (θ, φ)

+
`(` + 1)

r2
f(r)Y s

` (θ, φ), f ∈ C∞
0 (0,∞),

where Ṽλ(r) := Vλ(x)|r=|x|.
The following result immediately follows:

Corollary 5.6 For each pair (`, s) (` ∈ {0}∪N, s = −`,−`+1, · · · , `), Theorem 5.4 and
Corollary 5.5 with Hλ replaced by H`,s

λ hold.
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6 Energy Level Shifts in a Hydrogen-like Atom

In this section we apply the results established in the preceding section to a hydrogen-like
atom and derive formulas for the energy level shifts due to the interaction of the electron
with the quantum radiation field, including the Lamb shift. Thus we consider the case
where V is a Coulomb type potential V (γ) (γ > 0) defined by (5.8). Hence, in this case,
the unperturbed Hamiltonian is given by

H(γ) := − ~2

2m
∆ + V (γ). (6.1)

We remark that the Hamiltonian of a hydrogen-like atom is given by H(γ) with γ =
Ze2/4π (Z ∈ N, e is the fundamental charge; we use the rationalized CGS Gauss unit
system where the dielectric constant in the vacuum is equal to 1), q = −e and m being
the electron mass.

It is well known that

σdisc(H(γ)) = {En|n ∈ N}, σess(H(γ)) = [0,∞)

with

En = −1

2

mγ2

n2~2
.

The multiplicity of En is n2 in such a way that En is a unique simple eigenvalue of the
reduced part H`,s(γ) of H(γ) (0 ≤ ` ≤ n−1) to the closed subspace Hs

` with a normalized
eigenfunction

ψn,`,s(x) := Cn,`e
−βnr/2(βnr)`L2`+1

n+` (βnr)Y s
` (θ, φ), r = |x|, ` = 0, 1, · · · , n − 1,

where

β :=
2mγ

~2n
,

Lk
n (0 ≤ k ≤ n) is the Laguerre associated polynomial with order n − k, i.e.,

Lk
n(x) =

dk

dxk
Ln(x), x ∈ R

with Ln(x) being the n-th Laguerre polynomial (we follow the notation in [7, §2.17]), and

Cn,` :=
β

3/2
n

√
(n − ` − 1)!√

[(n + `)!]32n
.

Let

Hλ(γ) := − ~2

2m
∆ + V

(γ)
λ , λ > 0, (6.2)

where V
(γ)
λ is defined by (5.9). It follows that

Hλ(γ) = H(γ) + W
(γ)
λ , (6.3)

where W
(γ)
λ is given by (5.10). The following theorem is a nonperturbative result on the

discrete spectrum and the essential spectrum of Hλ(γ):
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Theorem 6.1 For all λ > 0 and γ > 0, Hλ(γ) is self-adjoint with D(Hλ(γ)) = D(∆)
and bounded below. Moreover, σdisc(Hλ(γ)) is infinite and

σdisc(Hλ(γ)) ⊂ (−∞, 0), σess(Hλ(γ)) = [0,∞). (6.4)

Proof. We can apply Theorem 5.1 to the case u(x) = −γ to obtain the stated results
except the infiniteness of σdisc(Hλ(γ)).

One can easily show that V (γ) is in R ∩ L1(R3) + L∞
ε (R3) and that V = V (γ) satisfies

(3.5) with ε = 1, a = γ. Hence, by Theorem 4.2-(i), σdisc(Hλ(γ)) is inifinite.

We next consider Hλ(γ) perturbatively. Noting that

|En+1 − En| < |En − En−1|, n ≥ 2,

we take rn > 0 such that
rn < |En+1 − En|

and set
Crn(En) := {z ∈ C| |z − En| = rn}.

Let

Mn := rn sup
z∈Crn (En)

‖H(γ) − z)−1‖, Rλ,n := sup
z∈Crn (En)

‖W (γ)
λ (H(γ) − z)−1‖. (6.5)

Lemma 6.2 Let Rλ,n < 1. Then, Crn(En) ⊂ ρ(Hλ(γ)) and

(Hλ(γ) − z)−1 =
∞∑

p=0

(−1)p(H(γ) − z)−1[W
(γ)
λ (H(γ) − z)−1]p (6.6)

in operator norm, uniformly in z ∈ Crn(En).

Proof. We have by (6.3)

Hλ(γ) − z = (1 + W
(γ)
λ (H(γ) − z)−1)(H(γ) − z), z ∈ ρ(H(γ)).

Then a simple application of the Neumann’s expansion gives the desired result.

We denote by H`,s
λ (γ) the reduced part of Hλ(γ) to Hs

` .

Theorem 6.3 Let n ∈ N, ` = 0, 1, · · · , n − 1 and s = −`,−` + 1, · · · , `. Suppose that
λ > 0 and Rλ,n < 1/(1 + Mn). Then, H`,s

λ (γ) has a unique simple eigenvalue En,`,s(λ)
near En with

En,`,s(λ) = En +

〈
ψn,`,s,W

(γ)
λ ψn,`,s

〉
+

∑∞
p=1 F

(p)
n,`,s(λ)

1 +
∑∞

p=1 G
(p)
n,`,s(λ)

, (6.7)

where

F
(p)
n,`,s(λ) :=

(−1)p+1

2πi

∫
Crn (En)

〈
ψn,`,s,

[
W

(γ)
λ (H(γ) − z)−1

]p+1

ψn,`,s

〉
dz, (6.8)

G
(p)
n,`,s(λ) :=

(−1)p+1

2πi

∫
Crn (En)

〈
ψn,`,s,

[
W

(γ)
λ (H(γ) − z)−1

]p

ψn,`,s

〉
En − z

dz. (6.9)
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Moreover, a normalized eigenvector ψ
(λ)
n,`,s of H`,s

λ (γ) with eigenvalue En,`,s(λ) is given by

ψ
(λ)
n,`,s =

ψn,`,s +
∑∞

p=1 S
(p)
n,`,s(λ)√

1 +
∑∞

p=1 G
(p)
n,`,s(λ)

, (6.10)

where

S
(p)
n,`,s(λ) :=

(−1)p+1

2πi

∫
Crn (En)

(H(γ) − z)−1
[
W

(γ)
λ (H(γ) − z)−1

]p

ψn,`,sdz. (6.11)

Proof. The operator H`,s(γ) has a unique simple eigenvalue En. Hence Corollary 5.6
yields the desired results.

Let n ∈ N, λ > 0 and Rλ,n < 1/(1 + Mn). Then, by Theorem 6.3, one can define

∆En(`, s; `′, s′) := En,`,s − En,`′,s′ (6.12)

for `, `′ = 0, 1, · · · , n− 1, s, s′ = −`,−`+1, · · · , ` with (`, s) 6= (`′, s′). We call it an energy
level shift of Hλ(γ) with respect to the n-th energy level.

To compute the energy level shifts of Hλ(γ) approximately in the lowest order in λ > 0
sufficiently small, we need an asymptotic expansion of En,`,s(λ) in λ as λ → 0. In this
respect we have the following theorem:

Theorem 6.4 Under the assumption of Theorem 6.3, the following holds:

En,`,s(λ) = En + 4πγ|ψn,`,s(0)|2λ + o(λ) (λ → 0). (6.13)

To prove this theorem, we need a series of lemmas. We denote by C(R3) the set of
continuous functions on R3.

Lemma 6.5 Let f ∈ L2(R3) ∩ L∞(R3) ∩ C(R3). Then,

lim
λ→0

〈
f,W

(γ)
λ f

〉
λ

= 4πγ|f(0)|2. (6.14)

Proof. We have〈
f,W

(γ)
λ f

〉
=

2γ√
π

(2
√

λ)2

∫
R3

|f(2
√

λy)|2

|y|
Erfc(|y|)dy.

We have
|f(2

√
λy)|2

|y|
Erfc(|y|) ≤ ‖f‖2

∞
Erfc(|y|)

|y|
and the function Erfc(|y|)/|y| is integrable on R3 with∫

R3

Erfc(|y|)
|y|

dy =
π
√

π

2
.

Hence, by the Lebesgue dominated convergence theorem, we obtain (6.14).
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Lemma 6.6 Let f ∈ L2(R3) ∩ L∞(R3) ∩ C(R3). Then,

lim
λ→0

‖W (γ)
λ f‖2

√
λ

=
8γ2

π
|f(0)|2

∫
R3

Erfc(|x|)2

|x|2
dx. (6.15)

Proof. Similar to the proof of Lemma 6.5.

Lemma 6.7 Let f, g ∈ L2(R3) ∩ L∞(R3) ∩ C(R3). Then, for all p ∈ N,〈
f, [W

(γ)
λ (H(γ) − z)−1]pW

(γ)
λ g

〉
= O(λ(p+2)/2) (λ → 0) (6.16)

uniformly in z ∈ Crn(En).

Proof. We prove (6.16) only for p = 1. The cases p ≥ 2 can be proved similarly. Let

K0 := − ~2

2m
∆,

so that
H(γ) = K0 + V (γ).

Then, for all z ∈ Crn(En) and N ∈ N, we have

(H(γ) − z)−1 =
N∑

p=0

(−1)p(K0 − z)−1[V (γ)(K0 − z)−1]p

+(−1)N+1[(K0 − z)−1V (γ)]N+1(H(γ) − z)−1.

Hence 〈
f,W

(γ)
λ (H(γ) − z)−1W

(γ)
λ g

〉
=

〈
f,W

(γ)
λ (K0 − z)−1W

(γ)
λ g

〉
+(−1)

〈
f,W

(γ)
λ (K0 − z)−1V (γ)(K0 − z)−1W

(γ)
λ g

〉
+(−1)2

〈
f,W

(γ)
λ (K0 − z)−1[V (γ)(K0 − z)−1]2W

(γ)
λ g

〉
+(−1)3

〈
f,W

(γ)
λ [(K0 − z)−1V (γ)]3(H(γ) − z)−1W

(γ)
λ g

〉
. (6.17)

As is well known, the resolvent (K0 − z)−1 of K0 at z ∈ ρ(K0) = C \ [0,∞) is an integral
operator with integral kernel

L(x, y) :=
m

2π~2

e−
√

2m
√
−z|x−y|/~

|x − y|
, x,y ∈ R3,x 6= y,

where we take
√
−z such that Re

√
−z > 0 (e.g., [10, p.59]). Using this fact, we have〈

f,W
(γ)
λ (K0 − z)−1W

(γ)
λ g

〉
= Cλ3/2I2(λ),
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where

C :=

(
2γ√
π

)2 ( m

2π~2

)
23,

I2(λ) :=

∫
R3×R3

f(2
√

λx)∗g(2
√

λy)
Erfc(|x|)Erfc(|y|)e−2

√
2m

√
−z

√
λ|x−y|/~

|x||x − y||y|
dx dy.

In the same way as in the proof of Lemma 6.5, we can show that

lim
λ→0

I2(λ) = f(0)∗g(0)

∫
R3×R3

Erfc(|x|)Erfc(|y|)
|x||x − y||y|

dx dy,

where the integral on the right hand side is finite. Hence〈
f,W

(γ)
λ (K0 − z)−1W

(γ)
λ g

〉
= O(λ3/2) (λ → 0)

uniformly in z ∈ R \ [0,∞). Similarly we can show that, for all p ≥ 1,

(−1)p
〈
f,W

(γ)
λ (K0 − z)−1[V (γ)(K0 − z)−1]pW

(γ)
λ g

〉
= O(λ(3+p)/2) (λ → 0)

uniformly in z ∈ R \ [0,∞).
As for the forth term on the right hand side of (6.17), we have∣∣∣(−1)3

〈
f,W

(γ)
λ [(K0 − z)−1V (γ)]3(H(γ) − z)−1W

(γ)
λ g

〉∣∣∣
≤ ‖(W (γ)

λ [(K0 − z)−1V (γ)]3)∗f‖‖(H(γ) − z)−1W
(γ)
λ g‖

≤ Mn

rn

‖[V (γ)(K0 − z∗)−1]3W
(γ)
λ f‖‖W (γ)

λ g‖, z ∈ Crn(En).

In the same way as above, we can show that

‖[V (γ)(K0 − z∗)−1]3W
(γ)
λ f‖ = O(λ7/4) (λ → 0).

By this estimate and Lemma 6.6, we obtain

(−1)3
〈
f,W

(γ)
λ [(K0 − z)−1V (γ)]3(H(γ) − z)−1W

(γ)
λ g

〉
= O(λ2) (λ → 0).

Thus (6.16) with p = 1 holds.

Proof of Theorem 6.4

We need only to estimate the right hand side of (6.7) asymptotically as λ → 0. By Lemma
6.5, we have 〈

ψn,`,s,W
(γ)
λ ψn,`,s

〉
= 4πγ|ψn,`,s(0)|2λ + o(λ) (λ → 0). (6.18)
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We have for all N ∈ N
∞∑

p=1

(−1)p+1
[
W

(γ)
λ (H(γ) − z)−1

]p+1

=
N∑

p=1

(−1)p+1
[
W

(γ)
λ (H(γ) − z)−1

]p+1

+(−1)N+2
[
W

(γ)
λ (H(γ) − z)−1

]N+1

W
(γ)
λ

×(Hλ(γ) − z)−1.

Hence, putting

F (λ) :=
∞∑

p=1

F
(p)
n,`,s(λ),

we have

F (λ) =
N∑

p=1

F
(p)
n,`,s(λ) + FN(λ),

where

FN(λ) :=
(−1)N+2

2πi

∫
Crn (En)

〈
W

(γ)
λ

[
(H(γ) − z∗)−1W

(γ)
λ

]N+1

ψn,`,s, (Hλ(γ) − z)−1ψn,`,s

〉
dz.

By Lemma 6.7, we have

F
(p)
n,`,s(λ) = O(λ(p+2)/2) (λ → 0).

By the Schwarz inequality, we have

|FN(λ)| ≤ Mn

1 − Rλ,n

sup
z∈Crn (En)

‖W (γ)
λ

[
(H(γ) − z∗)−1W

(γ)
λ

]N+1

ψn,`,s‖.

In the same way as in the proof of Lemma 6.7, we can show that∥∥∥∥W
(γ)
λ

[
(H(γ) − z∗)−1W

(γ)
λ

]N+1

ψn,`,s

∥∥∥∥ = O(λ(2N+3)/4) (λ → 0)

uniformly in z ∈ Crn(En). Since N ∈ N is arbitrary, we can take N sufficiently large so
that

F (λ) = O(λ3/2) (λ → 0).

It is easy to see that

lim
λ→0

∞∑
p=1

G
(p)
n,`,s(λ) = 0.

Thus (6.13) holds.

In what follows we assume that, for each n ∈ N, λ > 0 is sufficiently small so that the
assumption of Theorem 6.3 holds. Then, by Theorem 6.4, we have

∆En(`, s; `′, s′) = 4πγ(|ψn,`,s(0)|2 − |ψn,`′,s′(0)|2)λ + o(λ) (λ → 0). (6.19)
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This gives the lowest order approximation in λ for the energy level shifts of H(γ) with
respect to the n-th energy level.

Using

L1
n(0) = nn!, Y 0

0 =
1√
4π

,

we obtain

|ψn,`,s(0)|2 =


1

π

(mγ

~2

)3 1

n3
; ` = 0, s = 0

0 ; ` ≥ 1

(6.20)

Hence the following hold:

(i) If `, `′ ≥ 1, then
∆En(`, s; `′, s′) = o(λ) (λ → 0). (6.21)

(ii) If ` ≥ 1, then

∆En(0, 0; `, s) = 4πγλ|ψn,0,0(0)|2 + o(λ) (λ → 0). (6.22)

Formula (6.22) implies that the energy level with ` = 0 is higher than that with ` ≥ 1
for all sufficiently small λ > 0. This explains qualitatively the experimental result on the
orders of the energy level shifts.

To compare the value of ∆En(0, 0; `, s) with the experimental one, we take λ = λq

with q = −e (see (1.3)) and

ω(k) = |k|, ρ̂(k) =
1√

(2π)3
χ

[ωmin/~c,ωmax/~c]
(|k|), k ∈ R3,

with constants ωmin > 0 and ωmax > 0 satisfying ωmin < ωmax. Then we have

λ = λ−e = α

(
~

mc

)2
1

3π
log

ωmax

ωmin

,

where

α :=
e2

4π~c
≈ 1

137

is the fine structure constant. We remark that ωmin (resp. ωmax) physically means an
infrared (resp. ultraviolet) cutoff of the one-photon energy. We also take

γ =
Ze2

4π

Thus we obtain

∆En(0, 0; `, s) ≈ α5 4

3π
mc2Z4

n3
log

ωmax

ωmin

=
8

3π
α3Ry

Z4

n3
log

ωmax

ωmin

(α → 0), (6.23)
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where Ry := α2mc2/2 is 1 rydberg (−Ry is the ground state energy of the hydrogen
atom). If we take ωmax = mc2 (the rest mass energy of the electron) and ωmin = 17.8 Ry,
then the right hand side of (6.23) completely coincides with the Bethe’s calculation of the
Lamb shift (Eq.(11) in [2]). Thus, in the sense described above, the effective Hamiltonian
Hλ(γ) with λ = λ−e and γ = Ze2/4π explains the Lamb shift of the hydrogen-like atom
asymptotically in α.

A A General Perturbation Theory

In this appendix, we present some fundamental facts in a (not necessarily regular) per-
turbation theory for self-adjoint operators.

Let A be a self-adjoint operator on a complex Hilbert space H and {Bλ|0 < λ < a}
(a > 0 is a constant) be a family of symmetric operators on H such that, for all λ ∈ (0, a),
D(A) ⊂ D(Bλ). We assume the following:

Hypothesis (A):

For all λ ∈ (0, a) and some z0 ∈ ρ(A) (the resolvent set of A), Bλ(A − z0)
−1 is

bounded and
lim
λ→0

‖Bλ(A − z0)
−1‖ = 0.

Remark A.1 Hypothesi (A) implies that, for all z ∈ ρ(A),

lim
λ→0

‖Bλ(A − z)−1‖ = 0

uniformly in z on each compact set of ρ(A).

It is obvious that the operator

Aλ := A + Bλ (A.1)

is symmetric for all λ ∈ (0, a) with D(Aλ) = D(A).

Lemma A.2 There exists a constant c0 ∈ (0, a) such that, for all λ ∈ (0, c0), Aλ is
self-adjoint.

Proof. By Hypothesis (A), for every ε ∈ (0, 1), there exists a constant c0 ∈ (0, a) such
that, for all λ ∈ (0, c0), ‖Bλ(A − z0)

−1‖ < ε. Hence, for all ψ ∈ D(A), we have

‖Bλψ‖ ≤ ε(‖Aψ‖ + |z0|‖ψ‖), λ ∈ (0, c0).

Therefore, by the Kato-Rellich theorem [10, Theorem X.12], Aλ is self-adjoint.

We set
λ0 := sup{λ ∈ (0, a)|Aλ is self-adjoint}. (A.2)

Hence, for all λ ∈ (0, λ0), Aλ is self-adjoint
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Suppose that A has an isolated eigenvalue E0 ∈ R. Let r be a constant satisfying

0 < r < min
E∈σ(A)\{E0}

|E − E0|,

where σ(A) is the spectrum of A. Then the circle

Cr(E0) := {z ∈ C||z − E0| = r}

with center E0 and radius r is included in ρ(A).
Let

Rλ := sup
z∈Cr(E0)

‖Bλ(A − z)−1‖ (A.3)

and
Λ := {λ ∈ (0, λ0)|Rλ < 1}. (A.4)

Then it is easy to see that, for all λ ∈ Λ, Cr(E0) ⊂ ρ(Aλ) and the following Neumann
expansion holds:

(Aλ − z)−1 = (A − z)−1 +
∞∑

n=1

(−1)n(A − z)−1[Bλ(A − z)−1]n, z ∈ Cr(E0) (A.5)

in operator norm, uniformly in z ∈ Cr(E0).
For a self-adjoint operator S on a Hilbert space, we denote its spectral measure by

ES(·). By functional calculus, the orthogonal projection onto the eigenspace of A with
eigenvalue E0 is given by

EA({E0}) = − 1

2πi

∫
Cr(E0)

(A − z)−1dz, (A.6)

where the integral on the right hand side is the contour integral along the circle Cr(E0)
with anticlockwise orientation.

Let λ ∈ Λ. Then, by the fact just mentioned above, we have

EAλ
([E0 − r, E0 + r]) = − 1

2πi

∫
Cr(E0)

(Aλ − z)−1dz. (A.7)

We set
P := EA({E0}), Pλ := EAλ

([E0 − r, E0 + r]) (A.8)

and
Nr := r sup

z∈Cr(E0)

‖(A − z)−1‖. (A.9)

Theorem A.3 Let λ ∈ Λ and Rλ < 1/(1 + Nr). Suppose that the multiplicity m(E0)
of E0 is finite. Then, Aλ has exactly m(E0) eigenvalues in the interval (E0 − r, E0 + r),
counting multiplicities, and σ(Aλ) ∩ (E0 − r, E0 + r) consists of only these eigenvalues.
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Proof. By the present assumption for λ and (A.5), we have

Pλ = P +
∞∑

n=1

Qn(λ) (A.10)

where

Qn(λ) :=
(−1)n+1

2πi

∫
Cr(E0)

(A − z)−1[(Bλ(A − z)−1]ndz. (A.11)

It is easy to see that
‖Qn(λ)‖ ≤ NrR

n
λ.

Hence we have ‖Pλ − P‖ ≤ NrRλ/(1 − Rλ) < 1. Therefore, by a general fact [11, p.14,
Lemma], dim Ran(Pλ) = dim Ran(P ) = m(E0). Thus the desired result follows.

Finally we consider the case where E0 is a simple eigenvalue of A, i.e., m(E0) = 1. In
this case we denote by Ω0 a normalized eigenvector of A with eigenvalue E0:

AΩ0 = E0Ω0, ‖Ω0‖ = 1. (A.12)

Corollary A.4 Let λ ∈ Λ, Rλ < 1/(1 + Nr) and m(E0) = 1. Then, Aλ has a unique
simple eigenvalue Eλ in the interval (E0 − r, E0 + r) with formula

Eλ = E0 +
〈Ω0, BλΩ0〉 +

∑∞
n=1 cn(λ)

1 +
∑∞

n=1 dn(λ)
, (A.13)

where

cn(λ) :=
(−1)n+1

2πi

∫
Cr(E0)

dz
〈
Ω0,

[
Bλ(A − z)−1

]n+1
Ω0

〉
,

dn(λ) :=
(−1)n+1

2πi

∫
Cr(E0)

dz

〈
Ω0, [Bλ(A − z)−1]

n
Ω0

〉
E0 − z

,

and σ(Aλ) ∩ (E0 − r, E0 + r) = {Eλ}. Moreover, a normalized eigenvector of Aλ with
eigenvalue Eλ is given by

Ωλ =
Ω0 +

∑∞
n=1 Ωλ,n√

1 +
∑∞

n=1 dn(λ)
, (A.14)

where

Ωλ,n :=
(−1)n+1

2πi

∫
Cr(E0)

dz(A − z)−1
[
Bλ(A − z)−1

]n
Ω0.

Proof. The existence of the simple eigenvalue Eλ of Aλ follows from Theorem A.3
with m(E0) = 1. Hence we need only to prove (A.13) and (A.14). In the present case,
the vector Ω̂λ := PλΩ0 is an eigenvector of Aλ: AλΩ̂λ = EλΩ̂λ. It is easy to see that
the inequality ‖Pλ − P‖ < 1 implies PλΩ0 6= 0. Hence 〈PλΩ0, Ω0〉 6= 0. Taking the inner
product of the eigenvector equation for Ω̂λ with the vector Ω0, we obtain

Eλ = E0 +
〈BλΩ0, PλΩ0〉
〈Ω0, PλΩ0〉

.
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Using (A.10) and PΩ0 = Ω0, we obtain (A.13).
A normalization of Ω̂λ is given by

Ωλ =
PλΩ0√

〈Ω0, PλΩ0〉
,

which, combined with (A.10) and PΩ0 = Ω0, we see that (A.14) holds.
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