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GLOBAL WELLPOSEDNESS OF THE 3-D FULL WATER WAVE

PROBLEM

SIJUE WU

The mathematical problem of n-dimensional water wave concerns the motion of the inter-

face separating an inviscid, incompressible, irrotational fluid, under the influence of gravity,

from a region of zero density (i.e. air) in n-dimensional space. It is assumed that the fluid

region is below the air region. Assume that the density of the fluid is 1, the gravitational

field is −k, where k is the unit vector pointing in the upward vertical direction, and at time

t ≥ 0, the free interface is Σ(t), and the fluid occupies region Ω(t). When surface tension is

zero, the motion of the fluid is described by
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vt + v · ∇v = −k−∇P on Ω(t), t ≥ 0,

divv = 0, curlv = 0, on Ω(t), t ≥ 0,

P = 0, on Σ(t)
(1,v) is tangent to the free surface (t, Σ(t)),

(0.1)

where v is the fluid velocity, P is the fluid pressure. It is well-known that when surface

tension is neglected, the water wave motion can be subject to the Taylor instability [19, 2].

Assume that the free interface Σ(t) is described by ξ = ξ(α, t), where α ∈ Rn−1 is the

Lagrangian coordinate, i.e. ξt(α, t) = v(z(α, t), t) is the fluid velocity on the interface,

ξtt(α, t) = (vt +v ·∇v)(z(α, t), t) is the acceleration. Let n be the unit normal pointing out

of Ω(t). The Taylor sign condition relating to Taylor instability is

−
∂P

∂n
= (ξtt + k) · n ≥ c0 > 0, (0.2)

point-wisely on the interface for some positive constant c0. In previous works [20, 21], we

showed that the Taylor sign condition (0.2) always holds for the n-dimensional infinite depth

water wave problem (0.1), n ≥ 2, as long as the interface is non-self-intersecting; and the

initial value problem of the water wave system (0.1) is uniquely solvable locally in time in

Sobolev spaces for arbitrary given data. Earlier work includes Nalimov [16], and Yosihara

[24] on local existence and uniqueness for small data in 2D. We mention the following recent

work on local wellposedness [1, 3, 4, 11, 14, 15, 17, 18, 25]. However the global in time

behavior of the solutions remained open until 2008.

The main content of this extended abstract is from the introduction of [23].
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2 SIJUE WU

In [22], we showed that for the 2D full water wave problem (0.1) (n = 2), the quantity

Θ = (I − H)y, under an appropriate coordinate change k = k(α, t), satisfy an equation of

the type

∂2
t Θ − i∂αΘ = G (0.3)

with G consisting of nonlinear terms of only cubic and higher orders. Here H is the Hilbert

transform related to the water region Ω(t), y is the height function for the interface Σ(t) :

(x(α, t), y(α, t)). Using this favorable structure, and the L∞ time decay rate for the 2D water

wave 1/t1/2, we showed that the full water wave equation (0.1) in two space dimensions has

a unique smooth solution for a time period [0, ec/ε] for initial data εΦ, where Φ is arbitrary,

c depends only on Φ, and ε is sufficiently small.

Briefly, the structural advantage of (0.3) can be explained as the following. We know the

water wave equation (0.1) is equivalent to an equation on the interface of the form

∂2
t u + |D|u = nonlinear terms (0.4)

where the nonlinear terms contain quadratic nonlinearity. For given smooth data, the free

equation ∂2
t u + |D|u = 0 has a unique solution globally in time, with L∞ norm decays at

the rate 1/t
n−1

2 . However the nonlinear interaction can cause blow-up at finite time. The

weaker the nonlinear interaction, the longer the solution stays smooth. For small data,

quadratic interactions are in general stronger than the cubic and higher order interactions.

In (0.3) there is no quadratic terms, using it we were able to prove a longer time existence

of classical solutions for small initial data in 2D.

Naturally, we would like to know if the 3D water wave equation also posses such special

structures. We find that indeed this is the case. A natural setting for 3D to utilize the ideas

of 2D is the Clifford analysis. However deriving such equations (0.3) in 3D in the Clifford

Algebra framework is not straightforward due to the non-availability of the Riemann map-

ping, the non-commutativity of the Clifford numbers, and the fact that the multiplication

of two Clifford analytic functions is not necessarily analytic. Nevertheless we have overcome

these difficulties.

Let Σ(t) : ξ = (x(α, β, t), y(α, β, t), z(α, β, t)) be the interface in Lagrangian coordinates

(α, β) ∈ R
2, and let H be the Hilbert transform associated to the water region Ω(t), N =

ξα × ξβ be the outward normal. In this work, we show that the quantity θ = (I − H)z

satisfies such equation

∂2
t θ − aN ×∇θ = G (0.5)

where G is a nonlinearity of cubic and higher orders in nature. We also find a coordinate

change k that transforms (0.5) into an equation consisting of a linear part plus only cubic
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GLOBAL WELLPOSEDNESS OF THE 3-D FULL WATER WAVE PROBLEM

and higher order nonlinear terms.1 As a consequence of this special structure and the faster

L∞ time decay rate 1/t in 3D we prove the global in time wellposedness of the full water

wave equation (0.1) in 3D.

In fact we obtain better results in 3D than in 2D in terms of the initial data set. We

show that if the steepness of the initial interface and the velocity along the initial interface

(and finitely many of their derivatives) are sufficiently small, then the solution of the 3D

full water wave equation (0.1) remains smooth for all time and decays at a L∞ rate of 1/t.

No smallness assumptions are made to the height of the initial interface and the velocity

field in the fluid domain. In particular, this means that the amplitude of the initial interface

can be arbitrary large, the initial kinetic energy 1
2‖v‖

2
L2(Ω(0)) can be infinite. This certainly

makes sense physically. We note that the almost global wellposedness result we obtained

for 2D water wave [22] requires the initial amplitude of the interface and the initial kinetic

energy 1
2‖v‖

2
L2(Ω(0)) being small. One may view 2D water wave as a special case of 3D

where the wave is constant in one direction. In 2D there is one less direction for the wave to

disperse and the L∞ time decay rate is a slower 1/t1/2. Technically our proof of the almost

global wellposedness result in 2D [22] used to the full extend the decay rate and required

the smallness in the amplitude and kinetic energy since we needed to control the derivatives

in the full range. One may think the assumption on the smallness in amplitude and kinetic

energy is to compensate the lack of decay in one direction. However this is merely a technical

reason. In 3D assuming the wave tends to zero at spatial infinity, we have a faster L∞ time

decay rate 1/t. This allows us a less elaborate proof and a global wellposedness result with

less assumptions on the initial data.

0.1. Notations and Clifford analysis. We study the 3D water wave problem in the

setting of the Clifford Algebra C(V2), i.e. the algebra of quaternions. We refer to [9] for an

in depth discussion of Clifford analysis.

Let {1, e1, e2, e3} be the basis of C(V2) satisfying

e2
i = −1, eiej = −ejei, i, j = 1, 2, 3, i �= j, e3 = e1e2. (0.6)

An element σ ∈ C(V2) has a unique representation σ = σ0 +
∑3

i=1 σiei, with σi ∈ R for

0 ≤ i ≤ 3. We call σ0 the real part of σ and denote it by Re σ and
∑3

i=1 σiei the vector

part of σ. We call σi the ei component of σ. We denote σ = e3σe3, |σ|2 =
∑3

i=0 σ2
i . If not

otherwise specified, we always assume in such an expression σ = σ0 +
∑3

i=1 σiei that σi ∈ R,

for 0 ≤ i ≤ 3. We define σ · ξ =
∑3

j=0 σjξj . We call σ ∈ C(V2) a vector if Reσ = 0. We

1We will explain more precisely the meaning of these statements in subsection 0.2.
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4 SIJUE WU

identify a point or vector ξ = (x, y, z) ∈ R
3 with its C(V2) counterpart ξ = xe1 + ye2 + ze3.

For vectors ξ, η ∈ C(V2), we know

ξη = −ξ · η + ξ × η, (0.7)

where ξ · η is the dot product, ξ × η the cross product. For vectors ξ, ζ, η, ξ(ζ × η) is

obtained by first finding the cross product ζ × η, then regard it as a Clifford vector and

calculating its multiplication with ξ by the rule (0.6). We write D = ∂xe1 + ∂ye2 + ∂ze3,

∇ = (∂x, ∂y, ∂z). At times we also use the notation ξ = (ξ1, ξ2, ξ3) to indicate a point in R
3.

In this case ∇ = (∂ξ1
, ∂ξ2

, ∂ξ3
), D = ∂ξ1

e1 + ∂ξ2
e2 + ∂ξ3

e3.

Let Ω be an unbounded2 C2 domain in R
3, Σ = ∂Ω be its boundary and Ωc be its

complement. A C(V2) valued function F is Clifford analytic in Ω if DF = 0 in Ω. Let

Γ(ξ) = −
1
ω3

1
|ξ|

, K(ξ) = −2DΓ(ξ) = −
2
ω3

ξ

|ξ|3
, for ξ =

3∑
1

ξiei, (0.8)

where ω3 is the surface area of the unit sphere in R
3. Let ξ = ξ(α, β), (α, β) ∈ R

2 be a

parameterization of Σ with N = ξα×ξβ pointing out of Ω. The Hilbert transform associated

to the parameterization ξ = ξ(α, β), (α, β) ∈ R
2 is defined by

HΣf(α, β) = p.v.

∫∫
R2

K(ξ(α′, β′) − ξ(α, β)) (ξ′α′ × ξ′β′) f(α′, β′) dα′dβ′. (0.9)

We know a C(V2) valued function F that decays at infinity is Clifford analytic in Ω if and

only if its trace on Σ: f(α, β) = F (ξ(α, β)) satisfies

f = HΣf. (0.10)

We know H2
Σ = I in L2. We use the convention HΣ1 = 0. We abbreviate

HΣf(α, β) =
∫∫

K(ξ(α′, β′) − ξ(α, β)) (ξ′α′ × ξ′β′) f(α′, β′) dα′dβ′

=
∫∫

K(ξ′ − ξ) (ξ′α′ × ξ′β′) f ′ dα′dβ′ =
∫∫

K N ′ f ′ dα′dβ′.

Assume that for each t ∈ [0, T ], Ω(t) is a C2 domain with boundary Σ(t). Let Σ(t) : ξ =

ξ(α, β, t), (α, β) ∈ R
2; ξ ∈ C2(R2 × [0, T ]), N = ξα × ξβ . We know N ×∇ = ξβ∂α − ξα∂β .

Denote [A, B] = AB − BA. We have

Lemma 0.1. 1. Let f = f(α, β), (α, β) ∈ R
2 be a real valued smooth function decays fast

at infinity. We have∫∫
K(ξ(α′, β′) − ξ(α, β)) · (N ′ ×∇′f)(α′, β′) dα′dβ′ = 0. (0.11)

2. For any function f =
∑3

1 fiei satisfying f = HΣf or f = −HΣf , we have

ξβ · ∂αf − ξα · ∂βf = 0. (0.12)

2Similar definitions and results exist for bounded domains, see [9]. For the purpose of this paper, we

discuss only for unbounded domain Ω.
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Lemma 0.2. Let f ∈ C1(R2×[0, T ]) be a C(V2) valued function vanishing at spatial infinity,

and a be real valued. Then

[∂t, HΣ(t)]f =
∫∫

K(ξ′ − ξ) (ξt − ξ′t) × (ξ′β′∂α′ − ξ′α′∂β′)f ′ dα′dβ′. (0.13)

[∂α, HΣ(t)]f =
∫∫

K(ξ′ − ξ) (ξα − ξ′α′) × (ξ′β′∂α′ − ξ′α′∂β′)f ′ dα′dβ′ (0.14)

[∂β, HΣ(t)]f =
∫∫

K(ξ′ − ξ) (ξβ − ξ′β′) × (ξ′β′∂α′ − ξ′α′∂β′)f ′ dα′dβ′ (0.15)

[aN ×∇, HΣ(t)]f =
∫∫

K(ξ′ − ξ) (aN − a′N ′) × (ξ′β′∂α′ − ξ′α′∂β′)f ′ dα′dβ′ (0.16)

[∂2
t , HΣ(t)]f =

∫∫
K(ξ′ − ξ) (ξtt − ξ′tt) × (ξ′β′∂α′ − ξ′α′∂β′)f ′ dα′dβ′

+
∫∫

K(ξ′ − ξ) (ξt − ξ′t) × (ξ′tβ′∂α′ − ξ′tα′∂β′)f ′ dα′dβ′ (0.17)

+
∫∫

∂tK(ξ′ − ξ) (ξt − ξ′t) × (ξ′β′∂α′ − ξ′α′∂β′)f ′ dα′dβ′

+2
∫∫

K(ξ′ − ξ) (ξt − ξ′t) × (ξ′β′∂α′ − ξ′α′∂β′)f ′

t dα′dβ′

The proof of Lemmas 0.1, 0.2 can be found in [23].

0.2. The main equations and main results. We now discuss the 3D water wave. Let

Σ(t) : ξ(α, β, t) = x(α, β, t)e1+y(α, β, t)e2+z(α, β, t)e3, (α, β) ∈ R
2 be the parameterization

of the interface at time t in Lagrangian coordinates (α, β) with N = ξα × ξβ = (N1, N2, N3)

pointing out of the fluid domain Ω(t). Let H = HΣ(t), and

a = −
1
|N |

∂P

∂n
.

We know from [21] that a > 0 and equation (0.1) is equivalent to the following nonlinear

system defined on the interface Σ(t):

ξtt + e3 = aN (0.18)

ξt = Hξt (0.19)

Motivated by [22], we would like to know whether in 3-D, the quantity π = (I − H)ze3

under an appropriate coordinate change satisfies an equation with nonlinearities containing

no quadratic terms. We first derive the equation for π in Lagrangian coordinates.

Proposition 0.3. We have

(∂2
t − aN ×∇)π =

∫∫
K(ξ′ − ξ) (ξt − ξ′t) × (ξ′β′∂α′ − ξ′α′∂β′)ξ′t dα′dβ′

−

∫∫
K(ξ′ − ξ) (ξt − ξ′t) × (ξ′tβ′∂α′ − ξ′tα′∂β′)z′ dα′dβ′e3

−

∫∫
∂tK(ξ′ − ξ) (ξt − ξ′t) × (ξ′β′∂α′ − ξ′α′∂β′)z′ dα′dβ′e3

(0.20)
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Proof. Notice from (0.18)

(∂2
t − aN ×∇)ze3 = ztte3 + aN1e1 + aN2e2 = ξtt (0.21)

and from (0.19) that

(I − H)ξtt = [∂t, H]ξt (0.22)

(0.20) is an easy consequence of (0.13), (0.16) and (0.17) and (0.18), (0.21), (0.22):

(∂2
t − aN ×∇)π = (I − H)(∂2

t − aN ×∇)ze3 − [∂2
t − aN ×∇, H]ze3

= [∂t, H]ξt − [∂2
t − aN ×∇, H]ze3

=
∫∫

K(ξ′ − ξ) (ξt − ξ′t) × (ξ′β′∂α′ − ξ′α′∂β′)ξ′t dα′dβ′

−

∫∫
K(ξ′ − ξ) (ξt − ξ′t) × (ξ′tβ′∂α′ − ξ′tα′∂β′)z′ dα′dβ′e3

−

∫∫
∂tK(ξ′ − ξ) (ξt − ξ′t) × (ξ′β′∂α′ − ξ′α′∂β′)z′ dα′dβ′e3

�

We see that the second and third terms in the right hand side of (0.20) are consisting

of terms of cubic and higher orders, while the first term contains quadratic terms. Unlike

the 2D case, multiplications of Clifford analytic functions are not necessarily analytic, so

we cannot reduce the first term at the right hand side of equation (0.20) into a cubic form.

However we notice that ξt = xte1 + yte2 − zte3 is almost analytic in the air region Ω(t)c,

and this implies that the first term is almost analytic in the fluid domain Ω(t), or in other

words, is almost of the type (I + H)Q in nature, with Q a quadratic term. Notice that the

left hand side of (0.20) is almost analytic in the air region, or of the type (I − H). The

orthogonality of the projections (I − H) and (I + H) allows us to reduce the first term into

cubic in energy estimates.

Notice that the left hand side of (0.20) still contains quadratic terms and (0.20) is in-

variant under a change of coordinates. We now want to see if in 3D, there is a coordinate

change k, such that under which the left hand side of (0.20) becomes a linear part plus only

cubic and higher order terms. In 2D, such a coordinate change exists (see (2.18) in [22]).

However it is defined by the Riemann mapping. Although there is no Riemann mapping in

3D, we realize that the Riemann mapping used in 2-D is just a holomorphic function in the

fluid region with its imaginary part equal to zero on Σ(t). This motivates us to define

k = k(α, β, t) = ξ(α, β, t) − (I + H)z(α, β, t)e3 + Kz(α, β, t)e3 (0.23)

Here K = Re H:

Kf(α, β, t) = −

∫∫
K(ξ(α′, β′, t) − ξ(α, β, t)) · N ′f(α′, β′, t) dα′ dβ′ (0.24)

－6－



GLOBAL WELLPOSEDNESS OF THE 3-D FULL WATER WAVE PROBLEM

is the double layered potential operator. It is clear that the e3 component of k as defined

in (0.23) is zero. In fact, the real part of k is also zero. This is because∫∫
K(ξ′ − ξ) × (ξ′α′ × ξ′β′)z′e3 dα′ dβ′ =

∫∫
(ξ′α′ξ′β′ · K − ξ′β′ξ′α′ · K)z′e3 dα′ dβ′

= −2
∫∫

(ξ′α′∂β′Γ(ξ′ − ξ) − ξ′β′∂α′Γ(ξ′ − ξ))z′e3 dα′ dβ′

= 2
∫∫

Γ(ξ′ − ξ)(ξ′α′zβ′ − ξ′β′zα′)e3 dα′ dβ′ = 2
∫∫

Γ(ξ′ − ξ)(N ′

1e1 + N ′

2e2) dα′ dβ′

So

Hze3 = Kze3 + 2
∫∫

Γ(ξ′ − ξ)(N ′

1e1 + N ′

2e2) dα′ dβ′ (0.25)

This shows that the mapping k defined in (0.23) has only the e1 and e2 components k =

(k1, k2) = k1e1 + k2e2. If Σ(t) is a graph of small steepness, i.e. if zα and zβ are small, then

the Jacobian of k = k(·, t): J(k) = J(k(t)) = ∂αk1∂βk2−∂αk2∂βk1 > 0 and k(·, t) : R
2 → R

2

defines a valid coordinate change (see [23]).

Denote ∇⊥ = (∂α, ∂β), Ugf(α, β, t) = f(g(α, β, t), t) = f ◦ g(α, β, t). Assume that k =

k(·, t) : R
2 → R

2 defined in (0.23) is a diffeomorphism satisfying J(k(t)) > 0. Let k−1 be

such that k ◦ k−1(α, β, t) = αe1 + βe2. Define

ζ = ξ ◦ k−1 = xe1 + ye2 + ze3, u = ξt ◦ k−1, and w = ξtt ◦ k−1. (0.26)

Let

b = kt ◦ k−1 A ◦ ke3 = aJ(k)e3 = akα × kβ , and N = ζα × ζβ . (0.27)

By a simple application of the chain rule, we have

U−1
k ∂tUk = ∂t + b · ∇⊥, and U−1

k (aN ×∇)Uk = AN ×∇ = A(ζβ∂α − ζα∂β), (0.28)

and U−1
k HUk = H, with

Hf(α, β, t) =
∫∫

K(ζ(α′, β′, t) − ζ(α, β, t))(ζ′α′ × ζ′β′)f(α′, β′, t) dα′ dβ′ (0.29)

Let χ = π ◦ k−1. Applying coordinate change U−1
k to equation (0.20). We get

((∂t + b · ∇⊥)2 − AN ×∇)χ =
∫∫

K(ζ′ − ζ) (u − u′) × (ζ′β′∂α′ − ζ′α′∂β′)u′ dα′dβ′

−

∫∫
K(ζ′ − ζ) (u − u′) × (u′

β′∂α′ − u′

α′∂β′)z′ dα′dβ′e3

−

∫∫
((u′ − u) · ∇)K(ζ ′ − ζ) (u − u′) × (ζ′β′∂α′ − ζ′α′∂β′)z′ dα′dβ′e3

(0.30)

We show in the following proposition that b, A − 1 are consisting of only quadratic and

higher order terms. Let K = ReH = U−1
k KUk, P = αe1 + βe2, and

Λ∗ = (I + H)ze3, Λ = (I + H)ze3 − Kze3, λ∗ = (I + H)ze3, λ = λ∗ −Kze3 (0.31)

Therefore

ζ = P + λ. (0.32)
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Let the velocity u = u1e1 + u2e2 + u3e3.

Proposition 0.4. Let b = kt ◦ k−1 and A ◦ k = aJ(k). We have

b =
1
2
(H−H)u − [∂t + b · ∇⊥,H]ze3 + [∂t + b · ∇⊥,K]ze3 + Ku3e3 (0.33)

(A − 1)e3 =
1
2
(−H + H)w +

1
2
([∂t + b · ∇⊥,H]u − [∂t + b · ∇⊥,H]u) (0.34)

+ [AN ×∇,H]ze3 − Aζβ × (∂αKze3) + Aζα × (∂βKze3) + A∂αλ × ∂βλ

Here Hf = e3H(e3f) =
∫∫

e3KN ′e3f
′.

Proof. Taking derivative to t to (0.23), we get

kt = ξt − ∂t(I + H)ze3 + ∂tKze3

= ξt − zte3 − Hzte3 − [∂t, H]ze3 + ∂tKze3

(0.35)

Now

ξt − zte3 − Hzte3 =
1
2
(ξt + ξt) −

1
2
H(ξt − ξt) =

1
2
ξt +

1
2
Hξt =

1
2
(H − H)ξt (0.36)

Combining (0.35), (0.36) we get

kt =
1
2
(H − H)ξt − [∂t, H]ze3 + [∂t, K]ze3 + Kzte3 (0.37)

Making the change of coordinate U−1
k , we get (0.33).

Notice that A ◦ ke3 = akα × kβ . From the definition k = ξ − Λ∗ + Kze3 = ξ − Λ, we get

kα×kβ = ξα × ξβ + ξβ × ∂αΛ∗ − ξα × ∂βΛ∗

− ξβ × (∂αKze3) + ξα × (∂βKze3) + ∂αΛ × ∂βΛ

Using (0.25) and (0.12), we have

ξβ × ∂αΛ∗ − ξα × ∂βΛ∗ = ξβ∂αΛ∗ − ξα∂βΛ∗ = (N ×∇)Λ∗

From (0.18), and the fact that aN ×∇ze3 = −aN1e1 − aN2e2, we obtain

aξα × ξβ + a(N ×∇)Λ∗ = ξtt + e3 + (I + H)(aN ×∇)ze3 + [aN ×∇, H]ze3

= ξtt + e3 −
1
2
(I + H)(ξtt + ξtt) + [aN ×∇, H]ze3

and furthermore from (0.19),

ξtt −
1
2
(I + H)(ξtt + ξtt) =

1
2
(ξtt − Hξtt) −

1
2
(ξtt + Hξtt)

=
1
2
[∂t, H]ξt −

1
2
(ξtt − Hξtt) −

1
2
(Hξtt + Hξtt) =

1
2
[∂t, H]ξt −

1
2
[∂t, H]ξt +

1
2
(H − H)ξtt

Combining the above calculations and make the change of coordinates U−1
k , we obtain (0.34).

�
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GLOBAL WELLPOSEDNESS OF THE 3-D FULL WATER WAVE PROBLEM

From Proposition 0.4, we see that b and A − 1 are consisting of terms of quadratic and

higher orders. Therefore the left hand side of equation (0.30) is

(∂2
t − e2∂α + e1∂β)χ − ∂βλ∂αχ + ∂αλ∂βχ + cubic and higher order terms

The quadratic term ∂βλ∂αχ − ∂αλ∂βχ is new in 3D. We notice that this is one of the null

forms studied in [13] and we find that it is also null for our equation and can be written

as the factor 1/t times a quadratic expression involving some ”invariant vector fields” for

∂2
t − e2∂α + e1∂β . Therefore this term is cubic in nature and equation (0.30) is of the type

”linear + cubic and higher order perturbations”.

We prove the global in time wellposedness of (0.1) by applying the method of invariant

vector fields to (0.30). We note that it is more natural to treat (∂t + b · ∇⊥)2 − AN × ∇

as the main operator for the water wave equation than treating it as a perturbation of the

linear operator ∂2
t − e2∂α + e1∂β . We obtain a uniform bound for all time of a properly

constructed energy that involves invariant vector fields of ∂2
t − e2∂α + e1∂β by combining

energy estimates for the equation (0.30) and a generalized Sobolev inequality that gives a

L2 → L∞ estimate with the decay rate 1/t. We point out that not only does the projection

(I − H) give us the quantity (I − H)ze3, but it is also used in various ways to project

away ”quadratic noises” in the course of deriving the energy estimates. The global in time

existence follows from a local well-posedness result, the uniform boundedness of the energy

and a continuity argument. We state our main theorem.

Let |D| =
√
−∂2

α − ∂2
β , Hs(R2) = {f | (I + |D|)sf ∈ L2(R2)}, with ‖f‖Hs = ‖f‖Hs(R2) =

‖(I + |D|)sf‖L2(R2).

Let s ≥ 27, max{[ s
2 ] + 1, 17} ≤ l ≤ s − 10. Assume that initially

ξ(α, β, 0) = ξ0 = (α, β, z0(α, β)), ξt(α, β, 0) = u0(α, β), ξtt(α, β, 0) = w0(α, β), (0.38)

and the data in (0.38) satisfy the compatibility condition (5.29)-(5.30) of [21]. Let Γ =

∂α, ∂β , α∂α + β∂β , α∂β − β∂α. Assume that
∑

|j|≤s−1

∂=∂α,∂β

‖Γj|D|1/2z0‖L2(R2)+‖Γj∂z0‖H1/2(R2) +‖Γju0‖H3/2(R2)+‖Γjw0‖H1(R2) < ∞ (0.39)

Let

ε =
∑

|j|≤l+3

∂=∂α,∂β

‖Γj |D|1/2z0‖L2(R2) + ‖Γj∂z0‖L2(R2) + ‖Γju0‖H1/2(R2) + ‖Γjw0‖L2(R2). (0.40)

Theorem 0.5 (Main Theorem). There exists ε0 > 0, such that for 0 ≤ ε ≤ ε0, the initial

value problem (0.18)-(0.19)-(0.38) has a unique classical solution globally in time. For each

time 0 ≤ t < ∞, the interface is a graph, the solution has the same regularity as the initial
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data and remains small. Moreover the L∞ norm of the steepness, the acceleration of the

interface, and the derivative of the velocity on the interface decay at the rate 1
t .
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STABLE PATTERNS

AND

SOLUTIONS WITH MORSE INDEX ONE

YASUHITO MIYAMOTO

Abstract. We study shapes of the stable steady states of a shadow reaction-diffusion sys-

tem of activator-inhibitor type and of the local minimizers of a variational problem with
constraint. We show that these stable patterns are closely related to the solutions of

Δu + f(u) = 0 in Ω, ∂νu = 0 on ∂Ω

with Morse index one. Moreover, we see that shapes of the solutions with Morse index one
have a deep relationship with a nonlinear version of the “hot spots” conjecture of J. Rauch.
In particular, we show that when the domain is a disk D, each stable pattern has exactly

two critical points on D, they are on the boundary ∂D, and each level set divides the domain
into exactly two subdomains. Thus the shape of a stable pattern is like a boundary spike
layer.

1. Introduction

In this talk we study shapes of the stable patterns of the two problems: the stationary
problem of a shadow reaction-diffusion system

(SS) ut = DuΔu + f(u, ξ) in Ω × R+, τξt =
1
|Ω|
∫

Ω

g(u, ξ)dx in R+,

∂νu = 0 on ∂Ω × R+

satisfying that

(1.1)
f( · , · ) and g( · , · ) are of class C2, fξ < 0, gξ < 0, and

that there is a function k(ξ) ∈ C0 such that gu(u, ξ) = −k(ξ)fξ(u, ξ)

and the minimization problem of the functional

(1.2) I[u] :=
∫

Ω

(
ε2 |∇u|2

2
− W (u)

)
dx

with constraint

(1.3) m =
1
|Ω|
∫

Ω

udx.

1.1. Shadow reaction-diffusion system. In 1975 Chafee [C75] showed that every non-
constant steady state to a scalar reaction-diffusion equation with the Neumann boundary
condition is unstable. Hence if a steady state is stable, then it should be constant, i.e., a
homogeneous function. In 1978 Casten-Holland [CH78] and in 1979 Matano [Ma79] indepen-
dently showed that the same conclusion holds for a reaction-diffusion equation on a convex
domain in R

N . Hence every model that can be described by a scalar reaction-diffusion equation
does not have a stable inhomogeneous pattern when the domain is convex. In [Ma79] it was
shown that there exist a scalar reaction-diffusion equation and a non-convex domain such that
a stable inhomogeneous steady state exists.

Date: July 15, 2010.
Key words and phrases. Reaction-Diffusion system; Variational problem with constraint; Stability; Hot spots;

Boundary spike layer.
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Spatial dimension Scalar equation (Shadow) system
1 constant [C75] monotone [N94, NPY01]

N (N ≥ 2) constant [CH78, Ma79] ?
Table 1. Stable steady states on a convex domain.

Before going to the next result, we will explain the shadow system. Let us consider the
Neumann problem of the reaction-diffusion system

(FS) ut = DuΔu + f(u, v) in Ω × R+, τvt = DvΔv + g(u, v) in Ω × R+,

∂νu = 0 on ∂Ω × R+, ∂νv = 0 on ∂Ω × R+.

Let Dv → +∞. Then we can expect that v(x, t) tends to a spatially homogeneous function
ξ(t) which depends only on t. Letting v(x, t) = ξ(t) and integrating the second equation of
(FS) with respect to x over Ω, we have (SS). The first equation of (SS) is a scalar homogeneous
equation if ξ is fixed. Hence the techniques of analyzing a homogeneous equation can be used.
(The first equation of (FS) may be an inhomogeneous equation when v is fixed.) We can expect
that the two systems (SS) and (FS) are close in some sense if Dv is large. (See [Mi06a] for
example.) We call (SS) the shadow system of (FS).

In 1994 Nishiura [N94] showed that every steady state to (SS) in a finite interval with
certain conditions on f and g is unstable when u is neither constant nor monotone. Hence if
an inhomogeneous steady state (u, ξ) is stable, then u should be monotone. This result was
generalized by Ni-Poláčik-Yanagida [NPY01] in 2001. Table 1 shows the summary of the results.

1.2. Activator-Inhibitor system. We study the stable steady states to a shadow system in a
high-dimensional domain. It is known that there is a stable inhomogeneous steady state to (SS)
even if the domain is convex, e.g., a ball. For example, the shadow Gierer-Meinhardt system
[GM72]

(GM) ut = ε2Δu − u +
up

ξq
in Ω × R+, τξt = −ξ +

1
|Ω|ξs

∫
Ω

urdx in R+,

∂νu = 0 on ∂Ω × R+,

0 < (p − 1)/q < r/(s + 1), p > 1, q > 0, r > 0, s ≥ 0.

has a stable inhomogeneous steady state called a boundary spike layer even if the domain is
convex. For example, see [W97] for the existence and see [Mi05] for the stability.

On the other hand, there are several classes of nonlinearities such that the system does not
have a stable inhomogeneous steady state. Jimbo-Morita [JM94] showed that the reaction-
diffusion system (FS) with the gradient structure does not have a stable inhomogeneous steady
state provided that the domain is convex and that τ = 1. Yanagida [Y02a] showed that the
same conclusion holds for the reaction-diffusion system (FS) with the skew-gradient structure
on a convex domain if τ > 0 is not small. The skew-gradient (shadow) system includes the
(shadow) Gierer-Meinhardt system when p, q, r, and s satisfy certain conditions. Yanagida’s
result looks to contradict the existence of a stable inhomogeneous steady state to the (shadow)
Gierer-Meinhardt system. However, his result does not cover the case where τ is small, and a
stable inhomogeneous steady state can exist when τ > 0 is small.

Before explaining an effect of τ , we intuitively explain (FS). The activator-inhibitor system
(FS) is a model describing the interaction between the (short range) activator u and the (long
range) inhibitor v. The shadow system (SS) is a limit system where the diffusion coefficient of
v diverges. Thus v becomes a spatially homogeneous function ξ. The activator activates the
production rate of the inhibitor (gu > 0), and the inhibitor suppresses the production rate of
the activator (fv < 0). The production rate of the inhibitor decreases as the inhibitor increases
(gv < 0). However, we do not assume the monotonicity of f in u. We want to consider the
case where the activator reacts autocatalytically. In that case f is not monotone in u. A
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typical example of f is f(u, v) = u(1 − u)(a − u) − αv (0 < a < 1, α > 0). We call (FS) the
activator-inhibitor system if f and g satisfy

(AI) fv < 0, gu > 0, and gv < 0.

Note that if (u, ξ) is a steady state to (SS) for some τ > 0, then (u, ξ) is a steady state to (SS)
for every τ > 0. τ is the rate of reaction speeds between the activator and the inhibitor. When
τ is large, the reaction speed of the inhibitor is slow. Dividing the second equation of (SS) by
τ and letting τ → +∞, we see that ξ changes slowly in time. Therefore we can expect that
the behavior of the solution to (SS) is close to that of the solution to a scalar reaction-diffusion
equation. We can expect that all the inhomogeneous steady states are unstable provided that
the domain is convex (cf. [CH78, Ma79]). When τ is small, the inhibitor reacts quickly. This
effect stabilizes an inhomogeneous steady state, and a stable inhomogeneous steady state can
exist.

By the way, there is a possibility where a stable inhomogeneous steady state becomes unstable
when τ is large. In this case a Hopf bifurcation occurs. [NTY01, WW03] studied in detail the
pair of complex eigenvalues that pass through the imaginary axis. This change from stability
to instability does not appear in a scalar equation, and appears only in a system. The range
of τ for which a steady state is stable is important when one studies the stability of a steady
state to a system.

1.3. Stable patterns of (SS). We want to find all the stable steady states. However, it is
actually impossible to find all the stable steady states. Hence we will change the problem: If
a steady state is stable, then what shape is it? Our strategy is to find a sufficient condition,
which can be determine by the shape, for the steady state to be unstable for all τ > 0. Then
the contrapositive of the sufficient condition becomes the necessary condition for the steady
state to be stable for some τ > 0. In other words we know the shape of the stable steady states.
We give an abstract sufficient condition.

Theorem 1.1 ([Mi06b]). Let (u, ξ) be an inhomogeneous steady state to (SS) with (1.1). If the
second eigenvalue of the eigenvalue problem

Δφ + fu(u, ξ)φ = λφ in Ω, ∂νu = 0 on ∂Ω

is positive, then, for each τ > 0, (u, ξ) is unstable. Thus if (u, ξ) is stable for some τ > 0, then
the Morse index of u (with respect to the first equation of (SS)) is one.

1.4. Example. Let us consider the assumption (1.1). The assumptions fξ < 0 and gξ < 0
are included in (AI). Therefore those are natural in some sense. Although the last assumption
seems to be artificial, (1.1) includes the following two systems:

Example 1.2. The shadow Gierer-Meinhardt system is (GM). (GM) always satisfies (AI). If
p = r − 1, then (1.1) holds.

Example 1.3. The shadow system with the FitzHugh-Nagumo type nonlinearity is

(FHN) ut = DuΔu + u(1 − u)(u − a) − αξ, τξt =
1
|Ω|
∫

Ω

βudx − γξ in R+,

∂νu = 0 on ∂Ω,

0 < a < 1, α > 0, β > 0, and γ > 0.

(FHN) always satisfies (AI) and (1.1).

1.5. Variational problem with constraint. When W is a double well potential, (1.2) with
(1.3) is a model arising in the van der Waals-Cahn-Hilliard theory of phase transitions. (See
[Mo87] and references therein for details of the model.) The two bottoms of the well are
corresponding to two stable states, and u tends to go to one of the bottoms. However, the
constraint prevents u from becoming a constant stable state if m of (1.3) is in between two
local minimum points of W . It is easily expected that a local minimizer exhibits a spatial
pattern.
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If W (u) = (u2 − 1)2/4, if Ω ⊂ R
N is a bounded domain with smooth boundary and if ε is

small, then the shape of energy minimizing sequences is well understood. Modica [Mo87] and
Sternberg [S88] have shown that the limit of minimizers uε as ε ↓ 0 is a function with values ±1
almost everywhere and that the interface minimizes the area under the constraint that the ratio
of |{uε ≈ 1}| and |{uε ≈ −1}| is a certain value. Luckhaus-Modica [LM89] have shown that the
area of minimizing interface is a hypersurface with constant mean curvature. (If N ≤ 7, then
the interface is smooth. If N ≥ 8, the interface may have singularities, however the Hausdorff
dimension of the set of the singularities is at most N − 8.) Sternberg-Zumbrun [SZ98] have
shown that, if Ω is strictly convex, then, for some k ≥ 1, the interface {aε + εk < uε < bε − εk},
the superlevel set {uε > aε + εk} and the sublevel set {uε < bε − εk} are connected, where aε

and bε (aε < bε) go to two stable zeros of −W ′(u) as ε ↓ 0. In [SZ98] the connectivity of the
interface and the boundary was also shown.

In the same research direction as ours Carr-Gurtin-Slemrod [CGS84] have shown that every
non-constant local minimizer is monotone when the domain is a finite interval. Gurtin-Matano
[GM88] studied the shape of the local (and global) minimizers when Ω is a disk, annulus or
cylinder. In [GM88] they have shown that when Ω is a disk, each global minimizer is monotone
in some direction. However, they used the rearrangement technique, and their method is not
applicable to the local minimizers. On the other hand, we use the following sufficient condition
for u not to be a local minimizer (unstable):

Theorem 1.4. Let u be a critical point of (1.2) with (1.3). If the second eigenvalue of the
eigenvalue problem

ε2Δφ + W ′′(u)φ = μφ in Ω, ∂νφ = 0 on ∂Ω

is positive, then u is not a local minimizer. Thus if u is a local minimizer, then the Morse index
of u is one.

2. Solution with Morse index one

Our problem can be reduced the following problem: If the Morse index of u is one, then
what shape is u? However, there are not so many results of this problem. It is because there is
a potential problem. How do we describe the function defined in a high-dimensional domain?
As far as the scalar equation is concerned, every stable steady state is constant. Hence we need
not answer the problem. In the case of the shadow system in an interval, every inhomogeneous
stable steady state can be described as monotone. Our answer (or suggestion) here is the
following: Using the number and the locations of the critical points, we describe the function
defined in a high-dimensional domain.

From now on, we consider the case where the domain is a disk D := {x ∈ R
2; |x| < 1}.

We are in a position to state the main result.

Theorem 2.1 ([Mi06b, Mi07a, Mi10]). Suppose that Ω = D. Let u be a non-constant solution
of

(2.1) Δu + h(u) = 0 in D, ∂νu = 0 on ∂D.

If the Morse index of u is one, then u satisfies the following (a) and (b):
(a) u has exactly two critical points in D and those are on ∂D. In particular, u attains its
maximum and minimum at those two points and there is no critical point in D.
(b) For every c ∈ (minx∈D u(x), maxx∈D u(x)), the c-level set of u is a unique C1-curve whose
edges hit ∂D at two different points and it divides D into exactly two simply connected subdo-
mains.

Fig. 1 shows the shape of u when (u, ξ) is stable. We do not assume smallness or largeness
of the diffusion coefficient Du in (SS). The proof does not rely on the singular perturbation
technique. When Du is small, there are many results about the shape of inhomogeneous steady
states. This theorem says that only the steady state whose shape is like a boundary spike layer
can be stable even if Du is not small. If Du is larger than a certain value, then we can show that
u is symmetric with respect to a line containing the center of the disk [Mi07b]. It is well-known
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Figure 1. The shape of a solution with Morse index one.

that every positive steady state is radially symmetric if the Dirichlet boundary condition is
imposed. However, there seems to be few results about the symmetry of the steady state to a
Neumann problem when the steady state is not the least-energy solution.

If u has an interior peak (e.g., spike or spot), then the top of the peak is a critical point,
hence the steady state is unstable. The stable pattern does not have an interior peak.

3. Proofs and related results

3.1. Proofs. The proof of Theorem 2.1 consists of several lemmas including the following two:

Lemma 3.1 ([Mi06b, Lemma 3.4]). Suppose that Ω = D. Let u be a non-constant solution of
(2.1). By U(θ) we define U(θ) := u(cos θ, sin θ). If Z[Uθ( · )](:= �{Uθ(θ) = 0; θ ∈ R/2πZ}) ≥ 3,
then the second eigenvalue of the eigenvalue problem

(3.1) Δφ + h′(u)φ = λφ in Ω, ∂νφ = 0 on ∂Ω

is positive.

Lemma 3.2 ([Mi07a, Lemma C]). Suppose that Ω = D. Let u be a non-constant solution to
(2.1). If u has a critical point inside D, then the second eigenvalue of (3.1) is positive. Here
we say that (x0, y0) is a critical point of u if ux(x0, y0) = uy(x0, y0) = 0.

In Lemmas 3.1 and 3.2 we do not impose an assumption on h except h ∈ C2.
In the proofs of Lemmas 3.1 and 3.2 the detailed analysis of the zero level set of −(x−x0)uy+

(y − y0)ux is done. The zero-level set (or the nodal curve) gives a relation between the shape
of the solution and the Morse index. The zero-level set is corresponding to the zero-number in
a one-dimensional case.

3.2. Extension of Lemma 3.2. We consider Lemma 3.2 when Ω is a convex domain. It is
expected that the following holds:

Conjecture 3.3 ([Y06, Yanagida]). Let Ω ⊂ R
N be a convex domain. Let u be a non-constant

solution to (2.1). If u has a critical point inside Ω, then the second eigenvalue of (3.1) is
positive.

E. Yanagida pointed out that this conjecture is a nonlinear version of the “hot spots” con-
jecture of J. Rauch.

Conjecture 3.4 ([R74, Rauch]). Let Ω ⊂ R
N be a bounded domain. The maximum and the

minimum of each non-zero eigenfunction corresponding to the second eigenvalue of the Neumann
Laplacian are attained on the boundary.

The “hot spots” conjecture immediately follows from Conjecture 3.3. Lemma 3.2 is the
positive answer of Conjecture 3.3 when the domain is a disk. Table 2 shows the relation among
known results and conjectures. In particular, Conjectures 3.3 and 3.4 can be seen as nonlinear
and high-dimensional versions of Sturm-Liouville theory.
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Morse index Linear Nonlinear
0 The first eigenfunction of ΔN is constant [CH78, Ma79]
1 Conjecture 3.4 Conjecture 3.3
n What shape is an eigenfunction? What shape is u?

Table 2. The relation among [CH78, Ma79] and Conjectures 3.4 and 3.3.

Equation Domain Solution
Conjecture 3.3 Δu + h(u) = 0 Convex domain Any solution

Ni-Takagi ε2Δu − u + up = 0 Any domain Least-energy sol.
Table 3. The relation between Conjecture 3.3 and a Ni-Takagi problem.

Table 3 shows the relation between Conjecture 3.3 and a problem of Ni and Takagi [NT91,
NT93]. If we ignore the restriction on the domain, then Conjecture 3.3 can be seen as a
generalization of a problem of Ni-Takagi.

We consider Conjecture 3.4. It is known that there are several counterexamples of Conjec-
ture 3.4. In 1999 Burdzy-Werner [BW99] gave a counterexample. Their domain is a planar
domain with three holes. Burdzy [B05] later gave another counterexample which is a planar
domain with one hole. There are classes of planar domains for which the conjecture holds.
Banuelos-Burdzy [BB99] proved the conjecture for planar convex domains with two axes of
symmetry. However, another technical assumption is imposed in [BB99]. Jerison-Nadirashivili
[JN00] removed the technical assumption. The method of [JN00] is very different of that of
[BB99]. When the symmetry is not assumed, Atar-Burdzy [AB04] proved the conjecture for
a long domain called the lip domain. This class of domains includes a non-convex domain. It
is widely believed that the conjecture holds for a convex domain. In general it is difficult to
prove the conjecture when the domain does not have symmetries. The author obtained a partial
positive answer.

Theorem 3.5 ([Mi09]). Let Ω be a planar convex domain. Let d := supp,q∈Ω |p − q|. If
(i) d2/|Ω| < 1.378, or
(ii) Ω is in a strip with width l and dl/|Ω| < 1.219,
then Conjecture 3.4 holds.

Acknowledgment. The author thanks to Professor E. Yanagida for informing him that Con-
jecture 3.3 is a nonlinear version of Conjecture 3.4. This work was partially supported by a
COE program of Kyoto University and Grant-in-Aid for Young Scientists (B) (Subject No.
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We consider the nonstationary incompressible Navier-Stokes equations in R
3:

(0.1)

⎧⎨
⎩
∂u

∂t
− Δu+ (u · ∇)u+ ∇p = 0, div u = 0 in x ∈ R

3, t ∈ (0, T ),

u|t=0 = u0,

where u = u(t) = (u1(x, t), u2(x, t), u3(x, t)) and p = p(t) = p(x, t) denote the velocity
vector field and the pressure of fluid at the point (x, t) ∈ R

3 × (0, T ), respectively, while
u0 = (u1

0(x), u
2
0(x), u

3
0(x)) is a given initial velocity vector field.

We are concerned with the ill-posedness of the Cauchy problem for (0.1). More pre-
cisely for a given function space X = X(R3) we say that the Cauchy problem is well-posed
in X if there exists a space Y ⊂ C([0, T ), X) such that for all u0 ∈ X there exists a
unique solution u ∈ Y for (0.1) and the flow map u0 → u = Φ(u0) is continuous from X
to C([0, T ), X). Also we say that the Cauchy problem is ill-posed in X if it is not. The
classical results on the existence theorem of the mild solution were shown by Kato [6]
and Giga-Miyakawa [3]. Making use of the iteration procedure, they constructed a global
solution in the class C([0,∞);Ln(Rn))∩C((0,∞);Lp(Rn)) for n < p ≤ ∞, when an initial
data u0 is small enough in Ln(Rn). To construct a solution in more general classes of ini-
tial data is very important problem. Giga-Miyakawa [4], Kato [7] and Taylor [12] proved
the well-posedness in certain Morrey spaces. Cannone [2] and Kozono-Yamazaki [9] in-
vestigated this problem in Besov spaces. In particular, Koch and Tataru [8] obtained the
global solvability for (0.1), when the initial data u0 is small enough in BMO−1. BMO−1

includes above function spaces and it has been considered as the largest space of initial
data (see Lemarié-Rieusset [10]). On the other hand, Montgomery-Smith [11] introduce
an equation similar to Navier-Stokes equation and proved ill-posedness in the Besov space
B−1

∞,∞, which is larger than BMO−1. In 2008, Bourgain-Pavlović [1] showed that (0.1) is
ill-posed in B−1

∞,∞ by showing norm inflation phenomena of the solution for some initial
data. More precisely, they proved that for any δ > 0 there exist initial data u0 with
‖u0‖B−1∞,∞ < δ such that the corresponding solution u satisfies ‖u(t)‖B−1∞,∞ > 1/δ for some

t < δ. This shows that the flow map Φ is not continuous. On the other hand, Germain [5]
proved that the flow map is not C2 in the Besov spaces B−1

∞,q for q > 2. However he did
not treat ill-posed problem in such spaces. The purpose of my talk is to show ill-posedness
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of 3D-Navier-Stokes equations in Besov spaces B−1
∞,q (q > 2) (see [13]). Thus our result is

an extension of both Bourgain-Pavlović’s and Germain’s results.
We give a sketch of the proof briefly. First, we introduce initial data which is composed

by a sum of r cosine functions. The idea of setting of the initial data is proposed by [1]
and [5]. We take a lacunary frequency set, and the norm of initial data in B−1

∞,q (q > 2)
is controlled by r. Second, we extract an inflation term from second approximation.
Third, we estimate the remainder term y. The remainder term satisfies certain integral
equation composed by first and second approximations including an inflation term. We
also control the remainder term by r. Since we set refined initial data from Bourgain-
Pavlović’s setting, we can get better estimate of second approximation than their estimate.
According to their setting of initial data, using BMO−1 norm to estimate remainder term
y is important. Since we got better estimate of second approximation, we can use the
bilinear estimate of a class of bounded uniformly continuous functions (equipped with the
L∞ norm).
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We are interested in the motion of a membrane that is in contact with a rigid plane.

γ

γSL

γSV

θ

In many cases, the membrane is described by some partial differential equation (such as heat equation) and

on the free boundary (points where the membrane touches the plane) a contact angle condition is prescribed

which originates in the physical properties of the materials in contact (i.e., surface tensions γ, γSV , γSL).

A pioneering beautiful paper on the mathematical aspect of the problem by Alt and Caffarelli (1981) deals

with the stationary case

Δu = 0 in Ω ∩ {u > 0}, |∇u| = Q, u = 0 on Ω ∩ ∂{u > 0}.

They study the functional ∫
Ω

(|∇u|2 +Q2χu>0

)
dx

and show that it possesses minima which are Lipschitz continuous and have linear growth away from the free

boundary. For such harmonic functions they find a representation formula and show that the minima are weak

solutions, while the free boundary is a smooth surface except of a set of zero (n − 1)-dimensional Hausdorff

measure.

On the other hand, Caffarelli and Vázquez (1995) studied the evolutionary problem

ut −Δu = 0 in {u > 0}, |∇u| = 1, u = 0 on ∂{u > 0}

by a different technique. They regularize the problem by adding an absorption term in the following way

uε
t −Δuε = − 1

2χ
′
ε(u

ε), uε ≥ 0.

Here, χε is a smoothing of the characteristic function in the interval (0, ε). The authors show uniform estimates

for the solution of the regularized equation (Lipschitz in space and Hölder in time) and use them to construct

a weak solution of the original problem. They also study the regularity of free boundary in case of shrinking

support.

We are interested in the study of the evolutionary problem with volume constraint

∫
Ω

u(t, x) dx = V ∀t,

which appears, for example, in the free boundary problem modelling the motion of bubbles or droplets on a

surface. The problem becomes

ut −Δu = λ in {u > 0}, |∇u|2 = 2γ on ∂{u > 0}
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and its regularized version is

ut = Δu− γχ′
ε(u) + χu>0λε in (0, T )× Ω, where λε =

∫
Ω

[
utu+ |∇u|2 + γχ′

ε(u)u
]
dx.

Here λ (or λε) are nonlocal terms coming from the volume constraint.

In the regularized problem the volume constraint gives rise to an obstacle-type problem with a nonlocal

obstacle function. Accordingly, the sharp contact angle limit ε → 0 is expected to have two factors influencing

the behaviour on the free boundary: the stronger linear growth due to contact angle condition and the weaker

quadratic growth (curvature) originating in the volume constraint.

With the view of numerical approximation and because of the presence of the global constraint we analyse

the regularized obstacle problem by a minimization method introduced by K. Rektorys and developed by N.

Kikuchi. In this method time variable is discretized and the functional

Jn(u) =

∫
Ω

( |u− un−1|2
2h

+
1

2
|∇u|2 + γχε(u)

)
dx

is minimized. Here we define a special constrained space

Kδ =
{
u ∈ H1

0 (Ω) ;

∫
Ω

χδ(u)u dx = V
}

as the admissible space for minimization.

The (regularization of) characteristic function in the admissible space is essential in order to satisfy the

obstacle condition. Indeed, the minimizers are shown to exist and be nonnegative. The weak solution is then

constructed by deriving uniform estimates in h and δ and taking h, δ → 0. (See, Svadlenka & Omata, 2009 for

details.)

The analysis for the sharp limit ε → 0 is yet to be done. Yamaura constructed L2 - generalized minimizing

movement corresponding to the considered energy without taking into account the volume constraint. It is

expected that a similar technique will basically work for the constrained problem.

Our future plan is to consider the application of phase-field approximation to the contact angle problem.

The phase-field method is superior to the above scalar approach in the sense that it addresses surfaces and

can therefore express contact angles larger than right angle. It is assumed that one can derive a boundary

parabolic monotonicity formula (see [5]) and thus rigorously construct a hypersurface evolving according to its

mean curvature with a prescribed contact angle on the rigid boundary.

Another challenging task is the contact problem arising, e.g., in the modelling of collision of elastic curves

with an obstacle. For this phenomenon, there are numerical results but a suitable mathematical approach to

this hyperbolic free boundary problem is still unknown.
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Abstract

Let H = −Δ + V (x) be three dimensional Schrödinger operator with the
real potential V (x) which decays at infinity. Let Pc be the projection onto
the continuous spectral subspace of L2(R3) for H. Suppose that 0 is not an
eigenvalue nor a resonance of H. Then, we show under suitable decay and
smoothness conditions on V that the propagator e−itH for the Schrödinger
equation i∂tu = Hu admits the expansion as t→ ∞ of the form

∥∥∥∥∥〈x〉
−k−ε

(
e−itHPcu−

k∑
j=0

t−
3

2
−jAju

)∥∥∥∥∥
L∞

≤ Ct−
3

2
−k−σ‖〈x〉k+εu‖L1 (1)

where 0 < σ < ε and Aj, j = 0, 1, . . . , k are finite rank operators, We discuss
the extension of the expansion formula (1) for the case when 0 is an eigenvalue
or/and a resonace of H. The work is in progress and the precise result will
be presented in the talk.
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UNIQUE CONTINUATION AND NONLINEAR DISPERSIVE

EQUATIONS

GUSTAVO PONCE

The aim of this talk is to present recent results obtained in collaboration with
L. Escauriaza, C. E. Kenig, and L. Vega concerning unique continuation properties
of solutions of Schrödinger equations.

First, we shall consider Schrödinger equations of the form

(1) i∂tu + Δu = V (x, t)u, in R
n × [0, 1].

Our first goal is to obtain sufficient conditions on a solution u, the potential V
and the behavior of the solution at two different times, t0 = 0 and t1 = 1, which
guarantee that u ≡ 0 in R

n × [0, 1].

In the case when the potential V ≡ 0 one has, defining the Fourier transform of
a function f as

f̂(ξ) = (2π)−n/2

∫
Rn

e−i ξ·x f(x) dx,

the identity

(2)

eitΔu0(x) = u(x, t)

= (4πit)−
n
2

∫
Rn

e
i|x−y|2

4t u0(y) dy = (2πit)−
n
2 e

i|x|2
4t

̂
e

i| · |2
4t u0

( x

2t

)
,

This shows that this kind of problem (the decay of the Schrödinger equation at
two different times) for the free solution of the Schrödinger equation with data u0

i∂tu + �u = 0, u(x, 0) = u0(x), (x, t) ∈ R
n × R,

is intrinsically related to “uncertainty principles” concerning the decay of a function
f and its Fourier transform, f̂ .

Among these uncertainty principles one has the following one due to G. H. Hardy
([4]) :

If f(x) = O(e|x|
2/β2

), f̂(ξ) = O(e−4|ξ|2/α2

) and αβ < 4, then f ≡ 0.
Also, if αβ = 4, f is a constant multiple of e−|x|2/β2

.

Using (2), Hardy uncertainty principle can be rewritten in terms of the free
solution of the Schrödinger equation :

If u0(x) = O(e−
|x|2
β2 ), eitΔu0(x) = O(e−

|x|2
α2 ), and α β < 4t, then u0 ≡ 0.

In the context of the Schrödinger equation we shall present an extension of this
results to solution of the equation (1).
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As an application we shall consider the semi-linear Schrödinger equation

(3) i∂tu + Δu ± |u|au = 0, in R
n × [0, 1], a > 0.

and give some answers to the following question : given u1, u2 solutions of (3),
what do we have to know about their difference (u1 − u2)(x, t) at two times t = 0
and t = 1 to guarantee that they are equal?

We shall also study the relation of the space decay properties of the global in
time solution of (1) and the following stationary result of Meshkov [7]:

Let w ∈ H2
loc(R

n) be a solution of

(4) Δw + Ṽ (x)w = 0, x ∈ R
n, with Ṽ ∈ L∞(Rn).

(5) If
∫

e2a|x|4/3 |w|2dx < ∞, ∀ a > 0, then w ≡ 0.

Moreover, the exponent 4/3 in (5) is optimal for complex valued potentials Ṽ (x).

As an application we shall obtain results concerning the possible concentration
profiles of blow up solutions and the possible profiles of the traveling waves solutions
of semi-linear Schrödinger equations .

In addition, we shall describe a recent result obtained in collaboration with G.
Fonseca concerning the Benjamin-Ono equation. More precisely, for the initial value
problem associated to the Benjamin-Ono equation

(6)

{
∂tu + H∂2

xu + u∂xu = 0, t, x ∈ R,

u(x, 0) = u0(x),

we establish sharp persistence properties of the solution flow in the weighted Sobolev
spaces Hs(R) ∩ L2(|x|2rdx), s ∈ R, s ≥ 1 and s ≥ r. These generalize previous
works of R. Iorio [5] and [6].
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MODELING HYDRODYNAMICS IN 1D

MARCUS WUNSCH

In this talk, we will present several model equations in one space di-
mension for the Euler equations in three and two space dimensions,
respectively.

We will first discuss results on the generalized Constantin-Lax-Majda
(gCLM) equation,

⎧⎪⎪⎨
⎪⎪⎩

ωt(t, x) + a vωx = vx ω t > 0, a ∈ R,

vx(t, x) = Hω(t, x) = (P.V.)
∫ π

−π
ω(t, y) cot

(
x−y

2

)
dy

ω(0, x) = ω0(x), x ∈ S
1 � R/2πZ.

(1)

This equation was introduced and analyzed by Okamoto, Sakajo &

Wunsch (Nonlinearity, 2008).
If a = 0, (1) reduces to the well-known vorticity model equation

ωt = ωHω of P. Constantin, Lax & Majda (1985), which has an
abundance of solutions blowing up in finite time. In the presence of a
convective derivative (a = 1), one obtains the vorticity model of De

Gregorio (1990).
Finally, if a = −1, the gCLM equation (1) becomes the model equa-

tion of A. Córdoba, D. Córdoba & Fontelos (2005) for the 2D
quasi-geostrophic equations and the Birkhoff-Rott equations describing
the evolution of vortex sheets with surface tension.

A general, heuristic motivation for the study of the gCLM equation
is the paradigm of Ohkitani & Okamoto (2005) that the interplay
of convection vωx and stretching vxω leads to creation or depletion of
finite-time singularities: the size of the parameter a in (1) thus reflects
the impact of the convection.

As an illustration of the adequacy of the gCLM equation (1) for
testing this paradigm, it can be shown that if a = ∞, corresponding to
an ”absolutely dominating” convection, solutions persist for all times.
Moreover, we will demonstrate that there is a continuation criterion
for (1) closely resembling the breakdown criterion of Beale, Kato &

Majda (1984) for the incompressible Euler equations. Finally, it will
be mentioned that the gCLM equation (1) with parameter a = −1/2
has an interesting geometric interpretation: It describes the geodesic
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flow of a fractional Sobolev metric on the Lie group of orientation-
preserving circle diffeomorphisms modulo rotations (cf. Wunsch, J.
Nonl. Math. Phys. (2010)).

In the second part of the talk, we will discuss the generalized Proud-
man-Johnson (gPJ) equation on the real line, which can be regarded
as a nonlocal perturbation of the Burgers equation:

(2)

⎧⎨
⎩
ut(t, x) +

(
u2

2

)
x

= a+3
4

{
x∫

−∞
−

∞∫
x

}
ux(t, ζ)

2 dζ, t > 0

u(0, x) = u0(x), x ∈ R.

The equation for the axisymmetric Euler flow in 2D, corresponding to
the case a = 1, was first derived by Proudman & Johnson (1962); it
is obtained by separating the space variables in the stream function of
the velocity vector u solving the incompressible Euler equations in 2D.
Setting a = −m−3

m−1
in (2), one obtains the axisymmetric Euler flow in

R
m. Moreover, (2) reduces to the Hunter-Saxton equation (Hunter &

Saxton (1991)) modeling orientation waves in nematic liquid crystals
if a = −2, and to the Burgers equation from gas dynamics if a = −3.

Reviewing the papers of Cho & Wunsch (J. Differential Equations,
2010), Wunsch (J. Math. Fluid Mech., 2009), and A. Constantin

& Wunsch (Proc. Japan Acad. Ser. A Math. Sci., 2009), we will
present several new results on the initial value problem (2) and the
periodic boundary problem for the gPJ equation,

(3)

{
utxx + uuxxx = auxuxx

u(0, x) = u0(x), x ∈ S
1.

We will state a novel blowup criterion for (3) and show that certain
geometric properties of the initial data u0 are preserved for all times of
existence. Moreover, we will see that a modification of the method of
characteristics yields global weak solutions for (2) for certain parameter
values of a.

In the final part of this presentation, we will see that both the gCLM
(1) equation with a = 0 and the gPJ equation (2) are embedded in
a wider family of a two-component systems: the generalized Hunter-
Saxton system (Wunsch, SIAM J. Math. Anal. (2010))

(4)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vt(t, x) + vvx =
{∫ x

−∞ − ∫∞
x

} [
α+2

4
vx(t, ζ)

2 − κ
4
w(t, ζ)2

]
dζ,

v(0, x) = v0(x)

wt(t, x) + vwx = α vx(t, x)w(t, x), t > 0,

w(0, x) = w0(x), x ∈ R,
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where α and κ denote numerical constants. This system comprises
the model equations of Hou & Li (2008) for the 3D axisymmet-
ric Euler flow with swirl if (α, κ) = (1, 1), the Hunter-Saxton sys-
tem modeling the nonlinear dynamics of non-dissipative dark matter if
(α, κ) = (−1,±1) (cf. Wunsch, DCDS B (2009)), the gPJ equation if
w =

√−1 vx and a = 2α−1, and the CLM equation if α = κ = ∞. We
will give evidence that the periodic boundary problem corresponding
to (4) not only has blowup solutions but also solutions existing for all
times, and that on the real line there are global weak solutions as in
the case for the gPJ equation (2).

RIMS, Kyoto University, Kyoto 606-8502 Sakyoku Kitashirakawa

Oiwakecho, Japan

E-mail address: mwunsch@kurims.kyoto-u.ac.jp
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Global existence for supercritical wave equations with random

initial data

ZHONG Sijia

In this talk, we will consider about the following nonlinear wave equations

{
∂2

t v −�v + |x|2v + |v|αv = 0,
v(0) = f1, ∂tv(0) = f2,

(0.1)

here v : R × R
d → R.

Our main result is

Theorem 0.1. Suppose that α < 4d
(d+1)(d−2) is positive. Let us fix a real number p such that

max{ 2(2d+3)α
12−(d−2)α , 2(d+1)

d−1 } < p < 2d
d−2 . Let (hn(w), ln(w))∞n=0 be a sequence of independent random

variables on a probability space (Ω,A, p), in which hn and ln are standard Gaussian random vari-

ables. Consider (0.1) with radial initial data

fw
1 =

∞∑
n=1

hn(w)
λn

en, fw
2 =

∞∑
n=1

ln(w)en, (0.2)

where (λ2
n) is the eigenvalues of the harmonic oscillator H = −� + |x|2, λn =

√
2n + d, and

(en)∞n=0 is the orthonormal basis associated to λ2
n. Then for every s < 0, almost surely in w ∈ Ω,

the problem (0.1) has a unique global solution

vw ∈ C(Rt,Hs(Rd))
⋂

Lp(< t >−1 dt,Wθ(p)−,p(Rd)),

with θ(p) = 1
3 − d

3(1
2 − 1

p). Hs and Wθ(p)−,p will be defined later.

Furthermore, the solution is a perturbation of the linear solution

vw(t) = cos(t
√

H)fw
1 +

sin(t
√

H)√
H

fw
2 + ṽw(t),

where ṽw ∈ C(Rt,Hσ(Rd)) for some 0 < σ = 1
3 + d

3 − 2d+3
3p −. Moreover

‖vw‖Hs(Rd) ≤ C(w, s) ln(2 + |t|) 1

2 . (0.3)
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Remark 0.2. By the result of this Theorem, we can see that, for s < 0, the critical α is smaller

than 4
d which is strictly smaller than 4d

(d+1)(d−2) . So for 4
d < α < 4d

(d+1)(d−2) , it is supercritical,

which means when we choose some special kind of the initial data, the result would be better. In

particular, for d = 2, the theorem holds for any α > 0.

Remark 0.3. By the same idea of [5] Lemma 3.2, (please also refer to Lemma of our paper), we

can see that almost surely,

(fw
1 , fw

2 ) ∈
⋂
s<0

(Hs(Rd) ×Hs−1(Rd)),

but the probability of the event {(fw
1 , fw

2 ) ∈ H0(Rd) × H−1(Rd)} is zero. Thus the randomization

process has no smoothing property in the scale of Hs regularity, and in the above statement we

obtain global solutions for data which are not in H0(Rd)×H−1(Rd). On the other hand, our result

is not a ”small data result”.

Remark 0.4. By the result of Koch and Tatăru [9], this theorem might hold for any V (x) that is

radial and behaves like |x|2 for |x| → ∞, for example < x >2. For the sake of conciseness, we just

state the special case of V (x) = |x|2.

By the previous work [6], Burq and Tzvetkov have developed a general theory for constructing

local strong solutions to nonlinear wave equations, posed on compact Riemannian manifolds with

supercritical random initial data. Then in [7], they showed that in a particular case, which is the

nonlinear wave equation with Dirichlet boundary condition posed on the unit ball of R
3, there

would be global solutions by combining the local theory with some invariant measure arguments

in [1], [2], [10], [12] and [5]. Thomann in [11] got some local well posedness for the Schrödinger

equation with a confining potential on the whole space, and then extended it to the one without

the potential. Then recently, Burq, Thomann and Tzvetkov in [4] proved the global existence of

solutions of Schrödinger equations with random initial data in R. The purpose of our paper is

considering global strong solution of the wave equation with the harmonic potential on the whole

space. So we will use some idea from [6], [7], [11], [4] and so on. But first of all, we need to prove

the Strichartz estimate for (0.1).

Let us consider about the linear wave equation without the potential term first, i.e.
{

∂2
t v −�v = 0

v(0) = v0, ∂tv(0) = v1,

then, there is some Strichartz estimate:

‖v‖Lp((0,T ),Lq(Rd)) ≤ C(‖v0‖Hs(Rd) + ‖v1‖Hs−1(Rd)), (0.4)
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where Hs(Rd) is the usual Sobolev space, and admissible pair (p, q) satisfies 2 ≤ p ≤ ∞, 2 ≤ q < ∞
and

1
p

+
d

q
=

d

2
− s,

2
p

+
d − 1

q
≤ d − 1

2
. (0.5)

There are lots of results about Strichartz estimates of the above type on the whole space

R
d, compact manifolds with or without boundary, noncompact manifolds and spaces with other

geometric conditions.

It is well known that there are some similar properties between the problem on the compact

manifolds with the one associated to the harmonic oscillator, so what about our case?

Theorem 0.5. For x ∈ R
d, (p1, q1), (p2, q2) satisfying (0.5), and

1
p1

+
d

q1
=

d

2
− s =

1
p′2

+
d

q′2
− 2,

we have the following estimates for solutions v to (0.1)

‖v‖Lp1 ((0,1),Lq1 (Rd)) ≤ C(‖f1‖Hs(Rd) + ‖f2‖Hs−1(Rd) + ‖F‖
Lp′

2 ((0,1),Lq′
2 (Rd))

), (0.6)

here F is the nonlinear term of the equation.

Remark 0.6. Our result is uniformly with respect to time.

Remark 0.7. This result is not only right for |x|2, but also for any V (x) =
∑d

j=1 ajx
2
j , with aj > 0

and even some V (x) behaving roughly like |x|2, for example < x >2.

To prove this Theorem, we will use the idea from [8] and so on. First, we do the dyadic

decomposition by the idea of [3], and reduce the problem to a fixed frequency. Then, we try to

write out the approximation expression of the operator e−it
√

H (H = −� + |x|2). By calculating

the dispersion of the operator, the result of Theorem is gained by applying the idea of Keel and

Tao [9].

The difference between the proof of (0.4) with (0.6) is that there are cases that the growth of

|x| might be much larger than |ξ|. Fortunately, for this cases, by estimating the Hessian Matrix,

the dispersive effect would even be better.

By the above Theorem, we will prove Theorem 0.1 by the idea of [7]. However, there are some

points we should pay attention to. First, without the periodic condition, we show that there is

some decaying of time t, i.e. vw ∈ Lp(< t >−1 dt,Wθ(p)−,p(Rd)). This would be enough to get the

global result and could be applied to more general cases. Secondly, because we are dealing with

the whole space case, there are some differences in the interpolation theory.
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Family of two-dimensional ideal fluid dynamics related to surface quasi-

geostrophic equation

Koji Ohkitani (University of Sheffield)

Abstract

We study 2D surface quasi-geostrophic (SQG) equation numerically and theoretically. After

reviewing recent results, we consider a generalised class of equations of ideal fluid, where

the active scalar is a fractional power α of Laplacian applied to the stream function. This

includes 2D SQG and 2D Euler equations as special cases. We present some numerical

results of the generalised system and compare them for some different values of α. In an

attempt to unify the whole family systematically, a successive approximation is introduced

to treat the SQG equation.

I. INTRODUCTION

Mathematical study on the SQG equation was initiated in [1, 2]. Since then many papers

have been published regarding the analyses of this equation, which are too numerous to cite

here. Numerical studies have been done, e.g. in [1–6]. Mathematically, the following is

the best result known for its regularity. We consider the SQG equation with hypo-viscous

dissipativity either in R
2 or in T

2

∂θ

∂t
+ (u · ∇)θ = −ν(−�)γθ (0 ≤ γ ≤ 1),

with an initial datum θ(x, 0) = θ0(x). The velocity u = −∇⊥(−�)−1/2θ is a skewed Riesz

transform of θ, where ∇⊥ = (∂y,−∂x). It has been proved that when γ ≥ 1
2

we have no

blow-up [7, 8]. The hypo-viscous equation has been studied numerically in [9]. See also [10]

for more related works.

II. GENERALISED SQG EQUATION FOR INVISCID FLUIDS

We consider a generalised version of SQG equation [3, 11] for inviscid fluids

∂θ

∂t
+ (u · ∇)θ = 0, (1)
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with θ(x, 0) = θ0(x). Here the velocity u is given by

u = ∇⊥ψ, Λαψ = θ (0 ≤ α ≤ 2).

Here Λ ≡ (−�)1/2 is Zygmund operator defined by Fourier transform Λ̃ = |k|. The system

reduces to the 2D Euler equations if α = 2, to the 2D SQG equation if α = 1, and to a

trivially steady state if α = 0.

III. PERTURBATION THEORY: ODE ANALOGY

We recall a perturbation theory à la Poincaré of an ordinary differential equation (ODE)

which depends upon a parameter μ, see e.g. [12, 13]. (We note that notations used in this

section are independent from those in the rest of the extended abstract.)

Consider an ODE

dy

dx
= f(x, y, μ), with an initial datum y(x0, μ) = y0,

which is assumed to be solvable for μ = μ0. If we consider a variation

z(x, μ) =
∂y(x, μ)

∂μ
, with an initial datum z(x0, μ) = 0,

it satisfies
dz

dx
=
∂f(x, Y, μ)

∂Y

∣∣∣∣
Y =y(x,μ)

z +
∂f(x, Y, μ)

∂μ

∣∣∣∣
Y =y(x,μ)

,

which is called an equation of variation.

An approximation for y(x, μ) for small |μ− μ0| may be written

y(x, μ) − y(x, μ0) =
∞∑

n=1

(μ− μ0)
nCn(x),

where Cn(x) are suitable coefficients, e.g.

z(x, μ0) = lim
μ→μ0

y(x, μ) − y(x, μ0)

μ− μ0

= C1(x).

IV. SUCCESSIVE APPROXIMATIONS

We apply the above idea to the generalised SQG equation. We illustrate how this is done

for the first variation. If we take the variation of (1) with respect to α, we find

D

Dt

∂θ

∂α
≡

∂

∂t

∂θ

∂α
+ u · ∇

∂θ

∂α
= −

∂u

∂α
· ∇θ.
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In R
2, we find more explicitly after straightforward manipulations [14]

D

Dt

∂θ

∂α
=

1

2π

∫
R2

(x − y)⊥

|x − y|2
∂θ(y)

∂α
dy · ∇θ(x) +

1

4π

∫
R2

(log |x − y|)2 ∇⊥θ(y)dy · ∇θ(x).

In principle, the equations for higher-order variations may be obtained by successive

differentiations. Given these, we may write, for example, near the 2D Euler limit α = 2

θ(x, t, α) = θ(x, t, 2) +

∞∑
n=1

(α− 2)nθn(x, t),

where θn(x, t) ≡ ∂
n
θ

∂αn
(x, t).

V. CONCLUSION

In fact, under periodic boundary conditions we can carry out the analyses more system-

atically. A formal analysis in this case indicates that all the members in the family behave

similarly with respect to a ’new time variable’ ξ = αt. We discuss the implications of this

scaling, in connection with numerical simulations. These are to be reported in detail in [14].
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Finite volume method for degenerate diffusion
problems
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1 Introduction

The finite volume method (FVM) is a discretization method based on local con-
servation properties of equations so that it is well suited for PDEs of conservation
laws. Although the range of application seems to be smaller than that of the finite
element method (FEM), FVM has its own advantages. For example, FVM natu-
rally satisfies the discrete maximum principle, if it is applied to a linear diffusion
problem. We recall that the discrete maximum principle in FEM holds only when
some shape conditions on the triangulation are satisfied, and such a restriction often
causes some difficulties. In this paper, we shall reveal another advantage of FVM
through the degenerate diffusion problems and the nonlinear semigroup theory.

The purpose of this paper is to report some operator theoretical properties of
FVM applied to a degenerate elliptic equation of the form u−λΔ f (u) = � for λ> 0
and � ∈ L1(Ω) under the homogeneous Dirichlet boundary condition. The function
f is assumed to be continuous and non-decreasing with f (0) = 0. As is well-known,
L1 theory of Brezis and Strauss ([2]) is of great use to deal with this problem. Below,
we shall see that FVM is a suitable discretization method for this problem in the
sense that the discrete version of [2] can be applied. Consequently, we immediately
deduce the generation of the nonlinear semigroup, namely, the unique existence of
a time global solution to a semidiscrete (in space) FVM for a degenerate parabolic
equation of the form ut −Δ f (u) = 0. Then, we readily obtain stability results in L1

and L∞, and order-preserving property for finite volume solutions by the nonlinear
semigroup theory. This is totally new approach to study FVM for degenerate elliptic
and parabolic problems.

As an application, we shall consider a degenerate Keller-Segel system of chemo-
taxis. We shall propose a FVM that preserves the conservation of positivity and to-
tal mass. The time discretization makes use of the forward Euler method, and some
numerical examples will be presented.

Remarks. (1) There are several classes of FVM. We shall concentrate our attention
to a cell-centered classical finite volume method described in [4].
(2) Though we shall restrict our consideration to the two dimensional polygon in
what follows, it is not difficult to extend those results to smooth domains and the
three dimensional cases.
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2 Degenerate parabolic equation and FVM

We consider the finite volume approximation applied to the initial-boundary value
problem for a degenerate parabolic equation,

{
ut −Δ f (u) = 0 in Ω× (0,T ),

u = 0 on ∂Ω× (0,T ), u|t=0 = u0(x) on Ω,
(1)

where Ω ⊂ R
2 denotes a polygonal domain, T an arbitrary positive constant, and

f a non-decreasing continuous function defined on R satisfying f (0) = 0. As is
well-known, Problem (1) describes, for instance, the flow of homogeneous fluid
in porous media, the fast (singular) diffusion problem, and the two phase Stefan
problem in enthalpy formulation.

Supposing that Λ is an index set (set of finite number of positive integers), we
let D = {Di}i∈Λ be a set of open convex polygonal subsets in Ω satisfying the
following conditions (see, for example, Fig. 1 and 2):

(A1) Ω = ∪{Di | i ∈ Λ}.

(A2) Any Di and Dj with i �= j meet only in entire common sides or in vertices.

(A3) There exists a set of points {Pi}i∈Λ such that Pi ∈ Di and Pi �∈ Dj with j �=
i. Further, the line segment connecting Pi with Pj is orthogonal to the line
including σi j, if Di and Dj share a common side σi j.

(A4) If there is a side σ of Di such that σ ⊂ ∂Ω, the accompanying point Pi is in
∂Ω.

Following [4], we consider a family {D = Dh}h of D’s above and call it the ad-
missible meshes of Ω, where h = hD = max{diam (Di) | i ∈ Λ} is the granular-
ity parameter. Moreover we call Di the control volume. We let Λ = Λ ∪ ∂Λ,
where ∂Λ = {i ∈ Λ | the length of (∂Di ∩ ∂Ω) > 0} and Λ = Λ\∂Λ. Further we
set Λi = { j ∈ Λ | Di and Dj share a common side σi j}. Let ψi be the characteristic
function of Di for any i∈Λ. Then, we introduce sets of piecewise constant functions

Xh = span {ψi}i∈Λ, Vh = {�h ∈ Xh | �h(Pi) = 0 (i ∈ ∂Λ)}.
In what follows, we write �i to express �h(Pi) for �h ∈ Xh and i ∈ Λ.

Now, we can state a semidiscrete (in space) finite volume approximation for (1):
find uh ∈C1([0,T ];Vh) such that

⎧⎪⎪⎨
⎪⎪⎩

mi
d
dt

ui(t) = ∑
j∈Λi

γi j
[

f (u j(t))− f (ui(t))
]

(i ∈ Λ, t ∈ (0,T )),

ui(0) = u0,i ≡ 1
mi

∫
Di

u0(x) dx (i ∈ ∂Λ),
(2)

where mi = the area of Di, and γi j = the transmissibility = mi j/di j. (mi j = the
length of σi j, and di j = the distance from Pi to Pj.)
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Figure 1: Admissible meshes by Voronoi diagram.

Figure 2: (left) Acute triangulation; (right) Admissible mesh based on circumcentric
dual mesh of the acute triangulation．

We introduce an operator Ah : Vh →Vh defined as

(Ah�h)(Pi) = − 1
mi

∑
j∈Λi

γi j
[

f (� j)− f (�i)
]

(i ∈ Λ)

for �h ∈Vh. Then, Problem (2) is equivalent to

d
dt

uh(t)+Ahuh(t) = 0 (0 < t < T ), uh(0) = u0,h. (3)

At this stage, we recall the L1 theory to (1) that was developed in early 1970’s
in use of nonlinear semigroup. To summarize it, we set V = L1(Ω) and introduce
operators L and A in V by L� = −Δ� for � ∈ D(L) = {� ∈ W 1,1

0 (Ω) | L� ∈ V} and
A�= L f (�) for � ∈ D(A) = {� ∈V | f (�) ∈ D(L)}, respectively. Then, Problem (1)
is reduced to the nonlinear evolution equation in V :

d
dt

u(t)+Au(t) = 0 (0 < t < T ), u(0) = u0. (4)

It is proved in Brezis and Strauss [2] that the operator −A is m-dissipative in V .
This means that R(I +λA) = D(A) = V and also

‖�− �̂‖1 ≤ ‖�− �̂+λA�−λA�̂‖1 (�, �̂ ∈ D(A); λ> 0),
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where ‖ · ‖p = ‖ · ‖Lp(Ω) for 1 ≤ p ≤ ∞. Then, we can apply theory of Crandall and
Liggett [3] to obtain the generation of semigroup {S(t)}t≥0 on V by

S(t) = s-lim
m→∞

(
I +

t
m

A
)−m

,

and u(t) = S(t)u0 is regarded as the solution of (4). Another important property of
A is the order-preserving, that is,

(I +λA)−1�≥ (I +λA)−1�̂ (�, �̂ ∈V s.t. �≥ �̂; λ> 0).

It is also proved in [2] that the L∞ stability of the resolvent

∥∥(I +λA)−1�
∥∥

∞ ≤ ‖�‖∞ (� ∈ L∞(Ω); λ> 0)

holds. This implies L∞ stability of the semigroup

‖S(t)u0‖∞ ≤ ‖u0‖∞ (u0 ∈ L∞(Ω)).

Our first purpose is to prove the nonlinear finite volume operator Ah has analo-
gous properties with the nonlinear operator A, which allows us to apply nonlinear
semigroup theory in analysis of the finite volume method. Actually, we have the
following.

Theorem 1. For any λ> 0, the operator Ah has the following properties:

(i) R(I +λAh) = Vh .

(ii) ‖�h − �̂h‖1 ≤ ‖�h − �̂h +λAh�h −λAh�̂h‖ for any �h, �̂h ∈Vh.

(iii) (I +λAh)−1�h ≥ (I +λAh)−1�̂h for �h, �̂h ∈Vh such that �h ≥ �̂h.

(iv) ‖(I +λAh)−1�h‖∞ ≤ ‖�h‖∞ for �h ∈Vh.

Then, we immediately deduce the following corollary.

Corollary 1. (i) The operator −Ah is m-dissipative in Vh with respect to the L1

norm. Therefore, Problem (2) is uniquely solvable globally in time and the
solution is given as uh(t) = Sh(t)u0,h, where

Sh(t) = lim
m→∞

(
I +

t
m

Ah

)−m
.

(ii) ‖Sh(t)u0,h −Sh(t)û0,h‖1 ≤ ‖u0,h − û0,h‖1 for u0,h, û0,h ∈Vh and t ∈ [0,T ].

(iii) Sh(t)u0,h ≥ Sh(t)û0,h for u0,h, û0,h ∈Vh such that u0,h ≥ û0,h and t ∈ [0,T ].

(iv) ‖Sh(t)u0,h‖∞ ≤ ‖u0,h‖∞ for u0,h ∈Vh and t ∈ [0,T ].
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In a previous paper, Mizutani et al. [6], we proposed a semidiscrete (in space)
finite element approximation provided with order-preserving and L1 contraction
properties, making use of piecewise linear trial functions and the lumping mass
technique. The crucial step of analysis was to prove that the finite element approx-
imation of A has analogous properties of (i)–(iv) above. However, we could not
follow the method of [2], since we confronted some issues. For example, f (�) is
not a piecewise linear function, even if � is a piecewise linear function. So, we had
to take totally different approach from [2]. For example, we used a discrete Kato’s
inequality to prove the L1 contraction property, and we used the nonlinear Chernoff
formula and a special time-discretization of [1] to prove the L∞ stability of (discrete)
semigroup. Consequently, the proof was long and intricate.

The proof of Theorem 1, however, can be done in the essentially similar way as
[2]. Thus, in this sense, the finite volume approximation is a suitable discretization
method for the operator Δ f (u).

The second purpose of this paper is to make error analysis. The goal of this end
is to derive

lim
h↓0

sup
t∈[0,T ]

‖uh(t)−u(t)‖1 = 0. (5)

In fact, we have the following result in the similar manner as [6].

Theorem 2. If Ω is a convex polygon, u0 is continuous on Ω with the boundary
value zero on ∂Ω, f is strictly increasing continuous function with f (0) = 0, and
the admissible mesh is regular in the sense of [4], then we have the convergence of
the semigroup (5).

3 Degenerate Keller-Segel system

As an application of the previous consideration, we consider the finite volume ap-
proximation for a degenerate Keller-Segel system,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · (∇ f (u)−u∇ϕ(�)) in Ω× (0,T ),

k�t = D�Δ�− k1�+ k2u in Ω× (0,T ),
∂

∂ν
f (u)−u

∂

∂ν
ϕ(u) = 0,

∂�

∂ν
= 0 on ∂Ω× (0,T ),

u|t=0 = u0, �|t=0 = �0 on Ω,

(6)

where Ω denotes a polygonal domain in R
2, f and ϕ are non-decreasing continuous

functions defined on R with f (0) = 0, ν is the outer unit normal vector to ∂Ω, and
D�,k,k1,k2,T are positive constants. In the non-degenerate case f (u) = Duu with a
positive constant Du, Problem (6) describes the aggregation of slime molds resulting
from their chemotactic features. Here, u is defined to be the density of the cellular
slime molds, � the concentration of the chemical substance secreted by molds them-
selves, k the relaxation time, ϕ(�) the sensitive function, and k1�− k2u the ratio of
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generation/extinction. We have developed conservative finite element methods for
the non-degenerate case, cf. [7], [8]. Our schemes made use of Baba-Tabata’s up-
wind technique combined with the mass-lumping based on the barycentric domain
and a semi-implicit time discretization with a time-increment control. That is, at
every discrete time step tn = Δt1 + · · ·+ Δtn, we adjust the time-increment Δtn in
order to obtain a positive solution. Consequently, our finite element approximations
have positivity and mass conservation properties which are important features of the
original system. Furthermore, we succeeded in establishing optimal/quasi-optimal
error estimates in Lp ×W 1,∞ with a suitable p > 2.

We shall propose a finite volume scheme for the degenerate case (6) that pre-
serves the conservation of positivity and total mass. The time discretization makes
use of the forward Euler method. (Our scheme may be regarded as the fully explicit
version of Filbet’s one [5].) Some numerical results will be also presented.
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