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PREFACE

This volume is intended as the proceedings of Sapporo Symposium on Partial
Differential Equations, held on August 23 through August 25 in 2010 at Faculty of
Science, Hokkaido University.

Sapporo Symposium on PDE has been held annually to present the latest devel-
opments on PDE with a broad spectrum of interests not limited to the methods
of a particular school. Professor Taira Shirota started the symposium more than
30 years ago. Professor Koji Kubota and Professor Rentaro Agemi made a large
contribution to its organization for many years.

We always thank their significant contribution to the progress of the Sapporo
Symposium on PDE.

T. Ozawa, Y. Giga, T. Sakajo, S. Jimbo,
H. Takaoka, K. Tsutaya, Y. Tonegawa,
and G. Nakamura
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GLOBAL WELLPOSEDNESS OF THE 3-D FULL WATER WAVE
PROBLEM

SIJUE WU

The mathematical problem of n-dimensional water wave concerns the motion of the inter-
face separating an inviscid, incompressible, irrotational fluid, under the influence of gravity,
from a region of zero density (i.e. air) in n-dimensional space. It is assumed that the fluid
region is below the air region. Assume that the density of the fluid is 1, the gravitational
field is —k, where k is the unit vector pointing in the upward vertical direction, and at time
t > 0, the free interface is 3(t), and the fluid occupies region Q(t). When surface tension is
zero, the motion of the fluid is described by

vi+v:-Vv=-k—-VP on Q(t), t >0,
divv =0, curlv =0, on Q(t), t >0,

P =0, on X(t)
(1,v) is tangent to the free surface (¢, X(t)),

(0.1)

where v is the fluid velocity, P is the fluid pressure. It is well-known that when surface
tension is neglected, the water wave motion can be subject to the Taylor instability [19, 2].
Assume that the free interface X(t) is described by & = £(a,t), where a € R"™! is the
Lagrangian coordinate, i.e. &(a,t) = v(z(a,t),t) is the fluid velocity on the interface,
(o, t) = (vi+v-Vv)(2(a,t),t) is the acceleration. Let n be the unit normal pointing out
of Q(t). The Taylor sign condition relating to Taylor instability is

oP
~ 5=tk nza>0, (0.2)

point-wisely on the interface for some positive constant c¢g. In previous works [20, 21], we
showed that the Taylor sign condition (0.2) always holds for the n-dimensional infinite depth
water wave problem (0.1), n > 2, as long as the interface is non-self-intersecting; and the
initial value problem of the water wave system (0.1) is uniquely solvable locally in time in
Sobolev spaces for arbitrary given data. Earlier work includes Nalimov [16], and Yosihara
[24] on local existence and uniqueness for small data in 2D. We mention the following recent
work on local wellposedness [1, 3, 4, 11, 14, 15, 17, 18, 25]. However the global in time

behavior of the solutions remained open until 2008.

The main content of this extended abstract is from the introduction of [23].
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In [22], we showed that for the 2D full water wave problem (0.1) (n = 2), the quantity
© = (I — 9)y, under an appropriate coordinate change k = k(a,t), satisfy an equation of
the type

970 —i0,0 =G (0.3)
with G consisting of nonlinear terms of only cubic and higher orders. Here §) is the Hilbert
transform related to the water region Q(t), y is the height function for the interface %(¢) :
(z(a,t),y(a, t)). Using this favorable structure, and the L time decay rate for the 2D water
wave 1/t'/2, we showed that the full water wave equation (0.1) in two space dimensions has
a unique smooth solution for a time period [0, /€] for initial data e®, where ® is arbitrary,
¢ depends only on @, and ¢ is sufficiently small.

Briefly, the structural advantage of (0.3) can be explained as the following. We know the

water wave equation (0.1) is equivalent to an equation on the interface of the form
O?u + | D|u = nonlinear terms (0.4)

where the nonlinear terms contain quadratic nonlinearity. For given smooth data, the free
equation d?u + |D|u = 0 has a unique solution globally in time, with L° norm decays at
the rate 1/ "z . However the nonlinear interaction can cause blow-up at finite time. The
weaker the nonlinear interaction, the longer the solution stays smooth. For small data,
quadratic interactions are in general stronger than the cubic and higher order interactions.
In (0.3) there is no quadratic terms, using it we were able to prove a longer time existence
of classical solutions for small initial data in 2D.

Naturally, we would like to know if the 3D water wave equation also posses such special
structures. We find that indeed this is the case. A natural setting for 3D to utilize the ideas
of 2D is the Clifford analysis. However deriving such equations (0.3) in 3D in the Clifford
Algebra framework is not straightforward due to the non-availability of the Riemann map-
ping, the non-commutativity of the Clifford numbers, and the fact that the multiplication
of two Clifford analytic functions is not necessarily analytic. Nevertheless we have overcome
these difficulties.

Let X(¢) : £ = (z(e, B, 1), y(a, B, 1), 2(er, B, t)) be the interface in Lagrangian coordinates
(o, 3) € R?, and let $) be the Hilbert transform associated to the water region Q(t), N =
&a x &g be the outward normal. In this work, we show that the quantity § = (I — $)z
satisfies such equation

020 —aN x VO =G (0.5)
where G is a nonlinearity of cubic and higher orders in nature. We also find a coordinate

change k that transforms (0.5) into an equation consisting of a linear part plus only cubic
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and higher order nonlinear terms.! As a consequence of this special structure and the faster
L* time decay rate 1/t in 3D we prove the global in time wellposedness of the full water
wave equation (0.1) in 3D.

In fact we obtain better results in 3D than in 2D in terms of the initial data set. We
show that if the steepness of the initial interface and the velocity along the initial interface
(and finitely many of their derivatives) are sufficiently small, then the solution of the 3D
full water wave equation (0.1) remains smooth for all time and decays at a L> rate of 1/¢.
No smallness assumptions are made to the height of the initial interface and the velocity
field in the fluid domain. In particular, this means that the amplitude of the initial interface
can be arbitrary large, the initial kinetic energy %HVH%2 (Q(0)) can be infinite. This certainly
makes sense physically. We note that the almost global wellposedness result we obtained
for 2D water wave [22] requires the initial amplitude of the interface and the initial kinetic
energy %HVHQLQ(Q(O)) being small. One may view 2D water wave as a special case of 3D
where the wave is constant in one direction. In 2D there is one less direction for the wave to
disperse and the L™ time decay rate is a slower 1/¢'/2. Technically our proof of the almost
global wellposedness result in 2D [22] used to the full extend the decay rate and required
the smallness in the amplitude and kinetic energy since we needed to control the derivatives
in the full range. One may think the assumption on the smallness in amplitude and kinetic
energy is to compensate the lack of decay in one direction. However this is merely a technical
reason. In 3D assuming the wave tends to zero at spatial infinity, we have a faster L>° time
decay rate 1/t. This allows us a less elaborate proof and a global wellposedness result with

less assumptions on the initial data.

0.1. Notations and Clifford analysis. We study the 3D water wave problem in the
setting of the Clifford Algebra C(V2), i.e. the algebra of quaternions. We refer to [9] for an
in depth discussion of Clifford analysis.

Let {1, e1,e2,e3} be the basis of C(V2) satisfying
e =—1, eej=—eje;, 4,j=1,23 i%#j, e3 = eres. (0.6)

An element o € C(V2) has a unique representation o = g + Zle o;e;, with o; € R for
0 < i < 3. We call og the real part of o0 and denote it by Reo and Zle o;¢e; the vector
part of 0. We call o; the e; component of 0. We denote & = e3oes, |o|? = Zf:o o2. If not
otherwise specified, we always assume in such an expression o = g + Zf’zl oie; that o; € R,

for 0 < ¢ < 3. We define o - € = Z?:o 0;&;. We call o € C(V2) a vector if Reo = 0. We

IWe will explain more precisely the meaning of these statements in subsection 0.2.
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identify a point or vector £ = (z,y, z) € R3 with its C(V3) counterpart & = ze; + yea + zes.

For vectors &, n € C(V2), we know

fn=—¢n+Exm, (0.7)
where £ - i is the dot product, & x n the cross product. For vectors &, ¢, n, £(¢ x 1) is
obtained by first finding the cross product ¢ x 7, then regard it as a Clifford vector and
calculating its multiplication with £ by the rule (0.6). We write D = Jze1 + dyea + 0.e3,
V = (0x,0y,0.). At times we also use the notation & = (£, &2, &3) to indicate a point in R3.
In this case V = (0¢,, 0¢,,0¢,), D = Og,e1 + Og,e2 + Ogqes.

Let Q be an unbounded? C? domain in R?, ¥ = 9 be its boundary and Q¢ be its
complement. A C(V2) valued function F' is Clifford analytic in 2 if DF =0 in Q. Let
Mo -—L Kg--mr@--25  tre=Yee. (09
s ] 3 ] 1
where w3 is the surface area of the unit sphere in R?. Let ¢ = £(a, 3), (o, 3) € R? be a
parameterization of ¥ with N = &, x £g pointing out of Q. The Hilbert transform associated

to the parameterization ¢ = £(a, 3), (a, 3) € R? is defined by

St ) = po. [[ K F) €08 € x €4 o' F)deldB. (09)
We know a C(V3) valued function F that decays at infinity is Clifford analytic in Q if and
only if its trace on X: f(«, 3) = F(&(«, ) satisfies

f=9sf (0.10)
‘We know Y)% = I in L?. We use the convention $x,1 = 0. We abbreviate
9uf(a.0) = [[ K@) =€) (€ x &) f(e’ ) da'ag

- [[ K€ -0 <& avay = [[ kN racas.
Assume that for each t € [0,7], Q(¢) is a C? domain with boundary (). Let 3(t) : £ =
E(a, B,1), (o, B) € R% € € C2(R? x [0,T]), N = &, x £3. We know N x V = €30, — £,.03.
Denote [A, B] = AB — BA. We have

Lemma 0.1. 1. Let f = f(o, ), (o, 3) € R? be a real valued smooth function decays fast
at infinity. We have

J[ K@)~ glaum) - (v x ) ) da'ds o (0.11)
2. For any function f = Z? fie; satisfying f = Hsf or f = —Hxf, we have
€8 Oaf —&a-0pf =0. (0.12)

2Similar definitions and results exist for bounded domains, see [9]. For the purpose of this paper, we
discuss only for unbounded domain €.
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Lemma 0.2. Let f € C1(R?x[0,T]) be a C(Vz) valued function vanishing at spatial infinity,

and a be real valued. Then
09wl = [[ K€ =€) (6~ €)% (€0 — 001 da'ds. (013)
Ous 30l = [[ K€ =€) (6~ €0) % (€00 — €000 f daldy” (010
05,530l = [ K€ =) = 650 x (€0 — €0 delag’ (015)

AN X Vo) = [ [ K€ =) (@N = a'N') x (600 — €00)f' '’ (016)

02,9501 = [ K(& =€) (6~ ) x (60 — €009)1" de'adp
+ [ K€ =06~ ) x (€0~ Gudo) s da'ds 017
+ [[ o€ - )6 - € x (€0 — €005 dalag
+2 [[ K@ - 96— ) x (€ 0w — €005 da'ag
The proof of Lemmas 0.1, 0.2 can be found in [23)].

0.2. The main equations and main results. We now discuss the 3D water wave. Let
N(t) : €, B, t) = x(a, B, t)er+y(a, B, t)ea+2(a, B, t)es, (a, 3) € R? be the parameterization
of the interface at time ¢ in Lagrangian coordinates (o, ) with N = £, x {g = (N1, Na, N3)
pointing out of the fluid domain Q(t). Let $ = Hx (), and
_109pP

|IN| On”

We know from [21] that a > 0 and equation (0.1) is equivalent to the following nonlinear

a=

system defined on the interface X(¢):
St + ez =alN (0.18)
§t = 9N (0.19)

Motivated by [22], we would like to know whether in 3-D, the quantity = = (I — $))zes
under an appropriate coordinate change satisfies an equation with nonlinearities containing

no quadratic terms. We first derive the equation for 7 in Lagrangian coordinates.

Proposition 0.3. We have
(@ —aN x V)m = [[ K(€ =) (&~ €) x (00 - €,00)E da'ad
=[] K€ =06 - 6) % € 0w~ €ludw) dades (020)
~ [[ AK€ =€ - €) x (60 — €0)' daldes



SIJUE WU
Proof. Notice from (0.18)
(0f — aN x V)zez = zyes + aNyer + aNaea = &y (0.21)
and from (0.19) that
(I = 9)éu = [01, H]& (0.22)
(0.20) is an easy consequence of (0.13), (0.16) and (0.17) and (0.18), (0.21), (0.22):
(0 —aN x V)1 = (I — 9)(0} — aN x V)zez — [0} — aN x V, H]ze3
= [0r, H]& — [0} — aN x V, H]zes
— [[ K€ -0 - &) x €00 - €05 da'as
— [ K€ =6~ &) % (€000 — G0 del ey

/@ & =& (& — &) x (€50 — £, 03)2 da' dfes
O

We see that the second and third terms in the right hand side of (0.20) are consisting
of terms of cubic and higher orders, while the first term contains quadratic terms. Unlike
the 2D case, multiplications of Clifford analytic functions are not necessarily analytic, so
we cannot reduce the first term at the right hand side of equation (0.20) into a cubic form.
However we notice that Et = xte1 + yrea — zeg is almost analytic in the air region Q(t)°,
and this implies that the first term is almost analytic in the fluid domain €Q(t), or in other
words, is almost of the type (I + $)Q in nature, with @ a quadratic term. Notice that the
left hand side of (0.20) is almost analytic in the air region, or of the type (I — $). The
orthogonality of the projections (I — $)) and (I 4+ $) allows us to reduce the first term into
cubic in energy estimates.

Notice that the left hand side of (0.20) still contains quadratic terms and (0.20) is in-
variant under a change of coordinates. We now want to see if in 3D, there is a coordinate
change k, such that under which the left hand side of (0.20) becomes a linear part plus only
cubic and higher order terms. In 2D, such a coordinate change exists (see (2.18) in [22]).
However it is defined by the Riemann mapping. Although there is no Riemann mapping in
3D, we realize that the Riemann mapping used in 2-D is just a holomorphic function in the

fluid region with its imaginary part equal to zero on X(t). This motivates us to define
k=k(a,B,t) =&, B,t) — (I + H)z(a, B, t)es + Rz(w, B, t)es (0.23)
Here 8 = Re $:

(o, B,1) //K —&(a, B, 1)) - N' f(, 8/, t) do df’ (0.24)
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is the double layered potential operator. It is clear that the e3 component of k as defined

in (0.23) is zero. In fact, the real part of k is also zero. This is because
/ / K(€ —€) x (& x €y)2 esda’ df’ = / / (€& - K = Ep&o - K)Z'eg da’ dFf
= —2//(5&,8@“5' — &) = 50 T(E =€) ez da’ df

=2 //F(ﬁ' — &) (arzp — Eprzar)es da’ df’ = 2//F(€/ —&§)(Nie1 + Nyez) da’ dpp’
So
Nzes = Rzes + 2//I‘(£’ —&)(Nie1 + Nies) da' df’ (0.25)
This shows that the mapping &k defined in (0.23) has only the e; and ez components k =
(k1, ko) = k1e1 + kgea. If (t) is a graph of small steepness, i.e. if z, and zg are small, then
the Jacobian of k = k(-,t): J(k) = J(k(t)) = Ouk10sks —0ak20sk1 > 0 and k(-,t) : R? — R?
defines a valid coordinate change (see [23]).

Denote Vi = (0a,08), Ugf(a, B,t) = f(g(e, B,1),t) = fog(a,B,t). Assume that k =
k(,t) : R? — R? defined in (0.23) is a diffeomorphism satisfying J(k(t)) > 0. Let k! be
such that ko k~!(a, 3,t) = aes + Bea. Define

C=Cok t=rei+ney+3es, u==¢&ok™ b, and w=¢& 0k L. (0.26)
Let

b=kiok™ Aokes=aJ(k)es =aky x kg, and N =(, x (s. (0.27)
By a simple application of the chain rule, we have

U '0Up =0, +b-Vi, and U, '(aN x V)Uy = AN x V = A(C30a — (a0p), (0.28)
and U,;lﬁUk =H, with

Hi(a, 5.0 = [[ Kl 50~ (0, 8.0)(C x (e By daag’ (029)
Let x = 7o k~!. Applying coordinate change U, ' to equation (0.20). We get
(@45 V1) = AN x V) = [ [ K= 0w w) % (Gpar = G )il de'd?
- / / K(C — ) (u— ) x (g0 — D)3 da’dfles (0.30)
(@ =0 D =0 =) x (Gt G0 da'dFey

We show in the following proposition that b, A — 1 are consisting of only quadratic and

higher order terms. Let K = ReH = U,:lﬁUk, P = ae; + Bez, and
AN =T+ 9H)zes, A= I+ 9H)ze3 — Rzeg, N =T +H)jes, A= —Kzes (0.31)

Therefore

(=Pt (0.32)
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Let the velocity u = uie; + uges + uses.

Proposition 0.4. Let b=k, 0k~ ! and Aok = aJ(k). We have
b= %(H Y- [0, +b- V1, Hlzes + [0+ b- Vi, Klses + Kuges  (0.33)
(A= 1)es = %(—H+ﬁ)w+ %([&—i—b-VL,H]u—m) (0.34)
+ [AN x V, H]zes — Az x (0aK3e3) + Ala % (03K3e3) + ADaX X Oz
Here Hf = esH(esf) = [[esKN'esf'.

Proof. Taking derivative to ¢ to (0.23), we get

ki =& — 0:(I + $)ze3 + 0 Rzes
(0.35)
=& — zie3 — Hzes — [0, H)zes + 0 Rzes

Now
1 — 1 — 1- 1 - 1 _
§e — zie3 — Hzieg = 5(& +&) — 55(& —&) = §§t + Eﬁﬁt = 5({) - 9)&, (0.36)
Combining (0.35), (0.36) we get
1 R
ki = 5(53 —9)E, — [0, Hzes + [0r, Rlzes + Rzies (0.37)

Making the change of coordinate U, ', we get (0.33).
Notice that A o kes = akq X kg. From the definition k = £ — A* + Rzez = £ — A, we get

kaxkg =& X €+ &3 X O A — &4 X OgA*
— &3 X (0afRze3) + &o X (OpRze3) + Ou A X OgA
Using (0.25) and (0.12), we have
€3 X O \" — &q X O™ = Eg0a A" — {0 = (N x V)A*

From (0.18), and the fact that alN x Vzes = —aNje; — alNaeq, we obtain
aa X &g+ a(N x VA" =& +es+ (L +9)(aN x V)zez + [aN x V, 9]zes
1 _
=&u+e3— 5(1 +9) (&t + &) + [aN XV, 9]zes

and furthermore from (0.19),
et — %(I +9) (& + &) = %(ftt — 96u) — %(gtt + 9E4)
1 1 - S 1, - S 1 11— 1 — _
= 5[@,5]& - i(gtt = 9éu) — i(ggtt +9H&u) = 5[@,5’.’]& - 5[@,5]& + 5(5 - 9)E4u

Combining the above calculations and make the change of coordinates U, ! we obtain (0.34).

O



GLOBAL WELLPOSEDNESS OF THE 3-D FULL WATER WAVE PROBLEM

From Proposition 0.4, we see that b and A — 1 are consisting of terms of quadratic and

higher orders. Therefore the left hand side of equation (0.30) is
(02 — €20, + €108)X — 08A0a X + 0o 03X + cubic and higher order terms

The quadratic term 9gAda X — O AJgX is new in 3D. We notice that this is one of the null
forms studied in [13] and we find that it is also null for our equation and can be written
as the factor 1/t times a quadratic expression involving some ”invariant vector fields” for
8,? — €204 + €10g. Therefore this term is cubic in nature and equation (0.30) is of the type
”linear + cubic and higher order perturbations”.

We prove the global in time wellposedness of (0.1) by applying the method of invariant
vector fields to (0.30). We note that it is more natural to treat (9; +b-V,)? — AN x V
as the main operator for the water wave equation than treating it as a perturbation of the
linear operator 07 — €20, + e103. We obtain a uniform bound for all time of a properly
constructed energy that involves invariant vector fields of 87 — €20, + €195 by combining
energy estimates for the equation (0.30) and a generalized Sobolev inequality that gives a
L? — L™ estimate with the decay rate 1/t. We point out that not only does the projection
(I — 9) give us the quantity (I — $)zes, but it is also used in various ways to project
away ”quadratic noises” in the course of deriving the energy estimates. The global in time
existence follows from a local well-posedness result, the uniform boundedness of the energy
and a continuity argument. We state our main theorem.

Let | D] = /=82 — 08, H*(R2) = {£| (I +|D|)*f € LAR2)}, with || fllse = |l (z) =
(I + D) fllp2r2)-

Let s > 27, max{[5] + 1,17} <[ < s —10. Assume that initially

f(aaﬂao) = 50 = (avﬂv Zo(avﬂ))v gt(avﬂvo) = uo(avﬂ)v gtt(a7670) = mo(a,ﬂ)7 (038)

and the data in (0.38) satisfy the compatibility condition (5.29)-(5.30) of [21]. Let I' =
Oa; 03, a0y + 08, 03 — 0. Assume that
Z ||Fj|D|1/2ZOHL2(R2) + ||Fj8z0|\H1/2(R2) + ||Fju0||H3/2(R2) + HrijHHl(RQ) < 00 (039)
8150 0y
Let
e= > |TID[Y220 age) + IT702°| p2re) + [T76°]| /2 ey + [IT7 0% L2gey.  (0.40)

|71<143
=80,

Theorem 0.5 (Main Theorem). There exists €9 > 0, such that for 0 < € < €, the initial
value problem (0.18)-(0.19)-(0.38) has a unique classical solution globally in time. For each

time 0 < t < oo, the interface is a graph, the solution has the same regularity as the initial
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data and remains small. Moreover the L> norm of the steepness, the acceleration of the

interface, and the derivative of the velocity on the interface decay at the rate %

(1]
(2]
(3]
(4]

(5]

[19]
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ON DE GIORGI’'S CONJECTURE AND BEYOND

JUNCHENG WEI

1. INTRODUCTION

The Allen-Cahn equation in RV is the semilinear elliptic problem
(1.1) Au+u—u® =0 inRV.

Originally formulated in the description of bi-phase separation in fluids [5] and
ordering in binary alloys [4], Equation (1.1) has received extensive mathematical
study. It is a prototype for the modeling of phase transition phenomena in a variety
of contexts.

Introducing a small positive parameter ¢ and writing v(z) := u(e~'z), we get

the scaled version of (1.1),
(1.2) E2Av +v—v> =0 inRY.

On every bounded domain © C RY, (1.1) is the Euler-Lagrange equation for the
action functional )
€
J.(v) = /Q SV + (1= 0

We observe that the constant functions v = £1 minimize J.. They are idealized as
two stable phases of a material in €. It is of interest to analyze configurations in
which the two phases coexist. These states are represented by stationary points of
Je, or solutions v. of Equation (1.2), that take values close to +1 in a subregion of
Q2 of and —1 in its complement. The theory of I'-convergence developed in the 70s
and 80s, showed a deep connection between this problem and the theory of minimal
surfaces, see Modica, Mortola, Kohn, Sternberg, [32, 35, 36, 37, 49]. In fact, it
is known that for a family u. of local minimizers of u. with uniformly bounded
energy must converge, up to subsequences, in L!-sense to a function of the form
XE — XEe Where x denotes characteristic function, and 0F has minimal perimeter.
Thus the interface between the stable phases u = 1 and u = —1, represented by
the sets [uc = A] with |A| < 1 approach a minimal hypersurface, see Caffarelli
and Coérdoba [9, 10], Hutchinson and Tonegawa [31], Roger and Tonegawa, [43] for
stronger convergence and uniform regularity results on these level surfaces.

1.1. Formal asymptotic behavior of v.. Let us argue formally to obtain an idea
on how a solution v, of Equation (1.2) with uniformly bounded energy should look
like near a limiting interface I'. Let us assume that T' is a smooth hypersurface
and let v designate a choice of its unit normal. Points d-close to I' can be uniquely
represented as

(1.3) r=y+z2v(y), yeT,|z]<d
A well known formula for the Laplacian in these coordinates reads as follows:
(14) A, =0, + Ar: — szaz.
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Here
I'*“:={y+z2v(y) /yel}.
Ar- is the Laplace-Beltrami operator on I'* acting on functions of the variable y,
and Hr- is its mean curvature. Let ki,...,ky denote the principal curvatures of
T'. Then we have the validity of the expression
N

(1.5) Hp- =" ki

It is reasonable to assume that the solution is a smooth function of the variables
(y,¢), where { = ¢!z, and the equation for v.(y, {) reads

g2 Arecv, — eHrec (y) Ocve +
(1.6) 621)5 +o.—0v2 =0, yel, [¢|<d

We shall make two assumptions:

1. The zero-level set of v, lies within a O(&?)-neighborhood of T', that is in the
region |(| = O(e) and O;v. > 0 along this nodal set, and

2. v-(y, () can be expanded in powers of ¢ as

(17) U&:(Z/,C) = ’UO(Z/, C) + 6U1(y,<) + 621}2(3/7 C) e

where v; are smooth and uniformly bounded together with their derivatives. We
observe also that

o/e 1 1
ay [ [ gl G- lacdw) < Lo <0

Substituting Expression (1.7) in Equation (1.6), using the first assumption, and
letting € — 0, we get

a§v0+v0 -v3=0, (y,{)eT xR
(19) UO(O7y) = 07 aC(an) Z 07 Yy € Fa

while from (1.8) we get
1 1
(1.10) /R[§|6¢v0|2 + 30— ]dC < +oo.

Conditions (1.10) and (1.9) force vo(y, () = w({) where w is the unique solution of
the ordinary differential equation

w' +w—w*=0, w(0)=0, w(foo)==+1,
which is given explicitly by
(1.11) w(¢) := tanh(¢/V?2).
On the other hand, substitution yields that v (y, ) satisfies

(1.12) v + (1 =3w(¢)*)v1 = Hr(y)w'(¢), ¢ € (—o00,00).
Testing this equation against w’(¢) and integrating by parts in { we get the relation

Hr(y)=0 foral yeTl
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which tells us precisely that ' must be a minimal surface, as expected. Hence, we
get v; = —ho(y)w'(¢) for a certain function hg(y). As a conclusion, from (1.7) and
a Taylor expansion, we can write

UE(Z/? C) = w(c - Eho(y)) —+ 521)2 4+ .-

It is convenient to write this expansion in terms of the variable t = { — eho(y) in
the form

(113) UE(:U:C) = U)(t) +E202(t>y) +531)3(t,y) +---
Using expression (1.5) and the fact that I' is a minimal surface, we expand
Hrec(y) = €ClAr ()" +€°¢* Ha(y) + -

where . .
Ar[> =) K, Hs=) K.
Thus setting t = ( — eho(y) and uszin; (1.13), we (:orlnpute
0= Av, +ve +0° = [0} + (1 — 3w(t)?)] (e*va + €3v3)

—w'(t) [e3Arhg + 3 Hzt? + e?|Ar |2 (t +eho) ] + O(e?).
And then letting ¢ — 0 we arrive to the equations
(1.14) Ovy + (1 — 3w?)ve = |Ar|* tw/,
(1.15) Ofvs + (1 — 3w?)v3 = [Arhg + |Ar|*ho + Hs t*] w'.

Equation (1.14) has a bounded solution since [, tw’(t)? dt = 0. Instead the bounded
solvability of (1.15) is obtained if and only if hg solves the following elliptic equation
inl

8
(1.16) Jrlhol(y) == Arho + |Ar[*ho = ¢o 3 k! inT,
i=1
where ¢o = — [, 2w dt/ J w'®dt. Jr is by definition the Jacobi operator of the

minimal surface T.

This talk deals with the problem of constructing entire solutions of Equation
(1.2), that exhibit the asymptotic behavior described above, around a given, fixed
minimal hypersurface T that splits the space RV into two components, and for
which the coordinates (1.3) are defined for some uniform § > 0. A key element for
such a construction is precisely the question of solvability of Equation (1.16), that
determines at main order the deviation of the nodal set of the solution from T'.

To put the above in terms of the original problem (1.1), we consider a fixed
minimal surface I' € RV together with its image by a dilation:

. = ¢ T

We want to find an entire solution u. to problem (1.1) such that for a function h,
defined on I' with

(1.17) sup ||hel|poo(ry < +00,
e>0
we have
(1.18) us(z) = w(( — ehe(ey)) + O(?),
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uniformly for

r=y+Cviey), [(|<-, yel,,

™ |

while
(1.19) |ue(z)| = 1 as dist (z,T:) = +oo.

In what remains of this talk we shall answer affirmatively this question for some
important examples of minimal surfaces. One of them is a non-hyperplanar minimal
graph in R. In this case the solution of (1.1) is a counterexample to a famous
conjecture due to Ennio De Giorgi [15]. As another example, in R® we find entire
solutions of (1.1) with finite Morse index. Our results suggest extensions of De
Giorgi’s conjecture for solutions of (1.1) which parallel known classification results
for minimal surfaces.

2. FrROM BERNSTEIN’S TO DE GIORGI’S CONJECTURE

Ennio De Giorgi [15] formulated in 1978 the following celebrated conjecture
concerning entire solutions of equation (1.1).

De Giorgi’s Conjecture: Let u be a bounded solution of equation (1.1) such
that Oyyu > 0. Then the level sets [u = A| are all hyperplanes, at least for
dimension N < 8.

Equivalently, © must depend only on one Euclidean variable so that it must have
the form u(z) = w((z—p)-v) for some p € RN and some v with |v| = 1 and vx > 0.

The condition 9, u > 0 implies that the level sets of u are all graphs of functions
of the first N —1 variables. As we have discussed in the previous section, level sets of
non-constant solutions are closely connected to minimal hypersurfaces. De Giorgi’s
conjecture is in fact a parallel to the following classical statement.

Bernstein’s conjecture: A minimal hypersurface in RN, which is also the
graph of a smooth entire function of N — 1 variables, must be a hyperplane.

In other words, if I is an entire minimal graph, namely
(2.20) I={(z",2n) |2’ e R¥7', zx = F(z)}

where F' solves the minimal surface equation

(2.21) Hr=V- <L> =0 in RV,

V14 |VEF?
then I' must be a hyperplane, hence F' must be a linear affine function.

Bernstein’s conjecture is known to be true up to dimension N = 8, see Simons
[48] and references therein, while it is false for N > 9, as proven by Bombieri,
De Giorgi and Giusti [7], who found a nontrivial solution to Equation (2.21). To
explain the idea of their construction, let us write =’ € R® as ' = (u,v) € R* x R?
and consider the set

(2.22) T = {(w,v) eR®| |v|>|u/ >0}
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The set {|u| = |v|} € R® is Simons’ minimal cone [48]. The solution found in [7]
is radially symmetric in both variables, namely F' = F(|u|, |v|). In addition, F is
positive in 7" and it vanishes along Simons’ cone. Moreover, it satisfies

(2.23) F(|ul,[v]) = =F(v], [u]) .

Let us write (|ul,|v]) = (rcosé,rsinf). In [17] it is found that there is a function
g(#) with

9(6) >0, in(r/4,7/2), g'(n/2)=0=g(n/4), g'(n/4) >0,
such that for some o > 0,
(2.24) F(|lul,|v]) = g(8)r* +0(r~°) inT.

More importantly this asymptotic formula is correct (with obvious adjustments)
for the derivatives of F. This nontrivial refinement of the result in [7] relies on
a theorem of Simon [47] and a construction of suitable sub/sup-solutions for the
mean curvature operator (2.21).

De Giorgi’s conjecture has been established for N = 2 by Ghoussoub and Gui
[24] and for N = 3 by Ambrosio and Cabré [6]. Savin [45] proved its validity for
4 < N < 8 under the additional assumption
(2.25) lim w(z',zn)=+1 forall z' e RNV-L.

TN—Fo00

The following result shows that De Giorgi’s caveat was justified since the con-
jecture fails for N > 9.

Theorem 1. (del Pino-Kowalczyk-Wei [17]) Let N > 9. Then there is an en-
tire minimal graph T' which is not a hyperplane, such that all € > 0 sufficiently
small there exists a bounded solution uc(z) of equation (1.1) that satisfies proper-
ties (1.17)-(1.19). Besides, Oy u: > 0 and u. satisfies condition (2.25).

A counterexample to De Giorgi’s conjecture in dimension N > 9 was believed
to exist for a long time. Partial progress in this direction was made by Jerison and
Monneau [30] and by Cabré and Terra [8]. See also the survey article by Farina
and Valdinoci [22].

2.1. Outline of the proof. To begin with we observe that a counterexample in
dimension N = 9 automatically provides one in all dimensions. Thus in what
follows we will assume N = 9. For a small € > 0 we look for a solution u. of the
form (near T'.),

(2.26) ue(z) = w(C —ehley)) + (¢ — ehley),y), = =y+(viey),

where y € I';, v is a unit normal to I with vy > 0, h is a function defined on T,
which is left as a parameter to be adjusted. Setting r(y’,y9) = |y'|, we assume a
priori in h that

(2.27) (X +7*)Drhllpemy + (L +1)hllpery < M

for some large, fixed number M, also with a uniform control on (1 + r®)DZh. In
addition, because of (2.23) it is natural to assume that u. and h satisfy similar
symmetries, consistent with those of the minimal graph, namely:

(228) UE(U,V,wg) = _UE(PVaQua —.’L'g), h(u) V) = —h(PV,Qll),
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where P and @ are orthogonal transformations of R*. Most of our argument does
not in fact depend on (2.28) and the significance of this assumption becomes ap-
parent only at the end of the construction.

Letting f(u) = u—u® and using Expression (1.4) for the Laplacian, the equation
becomes

S(ue) == Auc + f(us) =
Arcue — eHy¢ (ey) Ocue +
(2.29) agug + flue) =0, yel., |¢|<d/e.
Letting t = ¢ — eh(ey), we look for u. of the form
ue(t,y) = w(t) + ¢(t,y)
for a small function ¢. The equation in terms of ¢ becomes
(2.30) 3¢+ Ar. ¢+ B+ f(w(t)p + N(¢) + E = 0

where B is a small linear second order differential operator, and

E=Sw(t), N(¢)=f(w+e)-flw)=-f(w)s~f"(w)

While the expression (2.30) makes sense only for |t| < de~!, it turns out that

the equation in the entire space can be reduced to one similar to (2.30) in entire
R x I'y, where F and the undefined coefficients in B are just cut-off far away, while
the operator N is slightly modified by the addition of a small nonlinear, nonlocal
operator of ¢. Rather than solving this problem directly we carry out an infinite
dimensional form of Lyapunov-Schmidt reduction, considering a projected version
of it,

8¢+ Ar, ¢+ Bo+ f'(w(t))p + N(¢) + E =
c(y)w'(t) in RxT,,

(2.31) /R¢>(t,y)w'(t)dt =0 forall yeTl..

The error of approximation E has roughly speaking a bound O(g2r(ey)~2e—7I]),
and it turns out that one can find a solution ¢ = ®(h) to problem (2.31) with
the same bound. We then get a solution to our original problem if A is such that
¢(y) = 0. Thus the problem is reduced to finding h such that

c(y)/Rw' _ /R(E+Bq>(h) + N(@(h))) w'dt = 0.

A computation similar to that in the formal derivation yields that this problem is
equivalent to a small perturbation of Equation (1.16)

8
(2.32) Jr(h) := Arh+ |Ar*h = co Y k¥ +N(h) inT,
i=1

where A'(h) is a small operator. jFrom an estimate by Simon [47] we know that
ki = O(r~'). Hence Hz := Y5 , k3 = O(r~3). A central point is to show that the
unperturbed equation (1.16) has a solution h = O(r~!), which justifies a posteriori
the assumption (2.27) made originally on h. This step uses the asymptotic expres-
sion (2.24). The symmetries of the solution (2.28) allow to reduce the domain of
the problem and we end up solving it in the sector 7' (2.22) with zero Dirichlet
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boundary conditions on Simons’ cone. From (2.24) we have that Hz = O(g(8)r—2)
and we get a priori estimates for the equation Jr(h) = O(g(#)r=2) by constructing
a positive barrier of size O(r~!). The operator Jr satisfies maximum principle and
existence thus follows. The full nonlinear equation is then solved with the aid of
contraction mapping principle. The detailed proof of this theorem is contained in
[17].

The program towards the counterexample in [30] and [6] mimics the classical
program that lead to the proof of Bernstein’s conjecture: the existence of the coun-
terexample is reduced to establishing the minimizing character of a saddle solution
in R® that vanishes on Simon’s cone. Our approach of direct construction is actu-
ally applicable to build solutions, which may be in principle unstable, associated
to general minimal surfaces, as we illustrate in the next section. We should men-
tion that method of infinite dimensional reduction for the Allen Cahn equation in
compact settings has precedents with similar flavor in [3], [41], [33], [16]. Using
variational approach, local minimizers were built in [32].

3. GENERALIZED DE GIORGI CONJECTURE: STABLE SOLUTIONS

The assumption of monotonicity in one direction for the solution u in De Giorgi’s
conjecture implies a form of stability, locally minimizing character for 4 when com-
pactly supported perturbations are considered in the energy. Indeed, the linearized
operator L = A + (1 — 3u?), satisfies maximum principle since L(Z) = 0 for
Z = Ozpu > 0. This implies stability of u, in the sense that its associated quadratic
form, namely the second variation of the corresponding energy,

(3.33) Qb 0) = [ | IVoP + (30— 1)

satisfies Q(¢,1) > 0 for all 1) # 0 smooth and compactly supported. Stability of u
is sufficient for De Giorgi’s statement to hold in dimension N = 2, as observed by
Dancer [13] while it remains an open problem for 3 < N < 8. The monotonicity
assumption actually implies the globally minimizing character of the solution on
each compact set, subject to its own boundary conditions, see [1].

Naturally, one would ask the following generalized De Giorgi Conjecture.

Generalized De Giorgi’s Conjecture: Let u be a bounded and stable solu-
tion of equation (1.1). Then the level sets [u = A] are all hyperplanes, at least for
dimension N <7

The dimension 7 is again motivated by the study of minimal surface. The gener-
alized De Giorgi’s conjecture is in fact a parallel to the following classical statement.

Generalized Bernstein Theorem: A stable minimal hypersurface must be a
hyperplane.

The stability conjecture for minimal surfaces is known to be true in dimension
N = 3 by do Carmo and Peng [21], Fischer-Colbrie and Schoen [23], it is false for
N > 9, as proven by Bombieri, De Giorgi and Giusti [7], who proved that there is a
foliation of Simons’s cone in dimension eight or higher. Yau [50] asked whether one
can prove that a complete minimal hypersurface in R**! (n < 7) is a hyperplane.
Although much hard work on this problem has been done, it remains still open in
dimensions 3 < n < 7.
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Using the foliation of the Simon’s cone, the following theorem shows that the
generalized De Giorgi Conjecture is not true in dimension 8 (and hence higher).

Theorem 2. (Pacard-Wei [42]). Let N = 8. Then there exists a stable and bounded
solution to (1.1) whose level sets approach one of the foliations of the Simons cone.

4. FINITE MORSE INDEX SOLUTIONS IN R3

The Morse index m(u) is defined as the maximal dimension of a vector space
E of compactly supported functions such that

Q,) <0 forall ¢ e E\{0}.

In view of the discussion so far, it seems natural to associate complete, embedded
minimal surfaces I" with finite Morse index, and solutions of (1.1). The Morse index
of the minimal surface I, i(T"), has a similar definition relative to the quadratic form
for its Jacobi operator Jr := Ar + |Ar|?. The number i(T) is the largest dimension
for a vector spaced E of compactly supported smooth functions in I with

/|Vk|2dv —/|A|2k2dV <0 forall keE\{0}
T N

We point out that for complete, embedded surfaces in R?, finite index is equivalent
to finite total curvature, namely

/|K\dV < 400
r

where K denotes Gauss curvature of the minimal surface, see §7 of [27] and refer-
ences therein.

4.1. Embedded minimal surfaces of finite total curvature. The theory of
embedded, minimal surfaces of finite total curvature in R?, has reached a notable
development in the last 25 years. For more than a century, only two examples of
such surfaces were known: the plane and the catenoid. The first nontrivial example
was found in 1981 by C. Costa, [11, 12]. The Costa surface is a genus one complete
and properly embedded minimal surface, which outside a large ball has exactly
three components (its ends). The upper and the lower end are asymptotic to a
catenoid, while the middle end is asymptotic to a plane perpendicular to the axis
of the catenoid. The complete proof of embeddedness is due to Hoffman and Meeks
[28]. In [29] these authors generalized notably Costa’s example by exhibiting a class
of three-end, embedded minimal surface, with the same asymptotic behavior the
Costa surface far away, but with an array of tunnels connecting the upper and the
lower end resulting in a surface with arbitrary genus £ > 1. This is known as the
Costa-Hoffman-Meeks surface with genus £.

As a special case of the main results of [18] we have the following:

Theorem 3. (del Pino-Kowalcyzk-Wei [18]) Let T C R® be either a catenoid or
a Costa-Hoffman-Meeks surface with genus £ > 1. Then for all sufficiently small
e > 0 there exists a solution u. of Problem (1.1) with the properties (1.17)-(1.19).
In the case of the catenoid, the solution found is radially symmetric in two of its
variables and m(u.) = 1. For the Costa-Hoffman-Meeks surface with genus £ > 1,
we have m(u:) = 20+ 3.
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4.2. A general case. In what follows I' is a complete, embedded minimal surface
in R® with finite total curvature. Then I is orientable and the set R® \ " has exactly
two components Sy, S_, see [27]. In what follows we fix a continuous choice of unit
normal field v(y), which conventionally we take it to point towards S, .

For z = (¢',23) € R®, we denote as before, r = r(z) = |2’|. It is known that
after a suitable rotation of the coordinate axes, outside the infinite cylinder r < Ry
with sufficiently large radius Ry, I' decomposes into a finite number m of unbounded
components I'y, ..., 'y, its ends. From a result in [46], we know that asymptotically
each end of I'y either resembles a plane or a catenoid. More precisely, I';, can be
represented as the graph of a function Fj, of the first two variables,

Ty, ={ye® /r(y) > Ro, y3 = Fr(¥) }
where F}, is a smooth function which can be expanded as

3
(4.34) F,(y') = arlogr + by + Z bikf—; +0(r3) asr— +oo,
i=1

for certain constants ag, bg, bk, and this relation can also be differentiated. Here
m

(4.35) ar<ax<...<anm, Zak = 0.
k=1

We say that I" has non-parallel ends if all the above inequalities are strict.
Let us consider the Jacobi operator of I'
(4.36) Jr (h) = Arh + |AI‘|2h

where |Ar|? = k¥ + k3 = —2K. A smooth function z(y) defined on T is called a Ja-
cobi field if Jr(z) = 0. Rigid motions of the surface induce naturally some bounded
Jacobi fields. For example there 4 obvious Jacobi fields associated, respectively, to
translations along coordinates axes and rotation around the x3-axis:

Zl(y):’/(y)'ei7 yera i:172537

(4.37) 24(y) = (—y2,91,0) -v(y), yeT.

We assume that I" is non-degenerate in the sense that these functions are actually
all the bounded Jacobi fields, namely

(4.38) {zeL>®{T) /| Jr(2) =0} = span{z1,22,23,24}.

This property is known in some important cases, most notably the catenoid and
the Costa-Hoffmann-Meeks surface of any order £ > 1. See Nayatani [39, 40] and
Morabito [38].

Theorem 4. (del Pino-Kowalcyzk-Wei [18]) Let N = 3 and T be a minimal surface
embedded, complete with finite total curvature and non-parallel ends, which is in
addition nondegenerate. Then for all sufficiently small € > 0 there exists a solution
ue of Problem (1.1) with the properties (1.17)-(1.19). Moreover, we have

m(ue) = i(T).
Besides, the solution is non-degenerate, in the sense that any bounded solution of

Ap+ (1-3ud)p=0 R
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must be a linear combination of the functions Z;, i = 1,2,3,4 defined as

Z; = 81'”5; 1 =1,2,3, Zy= —x201Ue + T102Uc.

It is well-known that if T" is a catenoid then (I') = 1. Moreover, in the Costa-
Hoffmann-Meeks surface it is known that (") = 2¢ 4+ 3 where £ is the genus of T
See [39, 40, 38.

4.3. Further comments. In analogy with De Giorgi’s conjecture, it seems plau-
sible that qualitative properties of embedded minimal surfaces with finite Morse
index should hold for the level sets of finite Morse index solutions of Equation
(1.1), provided that these sets are embedded manifolds outside a compact set. As
a sample, one may ask if the following two statements are valid:

o The level sets of any finite Morse index solution u of (1.1) in R®, such that
Vu # 0 outside a compact set should have a finite, even number of catenoidal or
planar ends with a common axis.

The above fact does hold for minimal surfaces with finite total curvature and
embedded ends as established by Ossermann and Schoen. On the other hand, the
above statement should not hold true if the condition Vu # 0 outside a large ball
is violated. For instance, let us consider the octant {z1,z2,z3 > 0}. Problem (1.1)
in the octant with zero boundary data can be solved by a super-subsolution scheme
(similar to that in [14]) yielding a positive solution. Extending by successive odd
reflections to the remaining octants, one generates an entire solution (likely to have
finite Morse index), whose zero level set does not have the characteristics above:
the condition Vu # 0 far away corresponds to embeddedness of the ends of the level
sets.

An analog of De Giorgi’s conjecture for the solutions that follow in complexity
the stable ones, namely those with Morse index one, may be the following:

o A bounded solution u of (1.1) in R® with i(u) = 1, and Vu # 0 outside a
bounded set, must be azxially symmetric, namely radially symmetric in two variables.

The solution we found, with transition on a dilated catenoid has this property.
This statement would be in correspondence with results by Schoen [46] and Lépez
and Ros [34]: if i(T") = 1 and T" has embedded ends, then it must be a catenoid.

5. THE CASE OF R2

5.1. Solutions with multiply connected nodal set. The only minimal surface
T" that we can consider in this case is a straight line, to which the planar solution
depending on its normal variable can be associated.

A class of solutions to (1.1) with a finite number of transition lines, likely to
have finite Morse index, has been recently built in [20]. The location and shape of
these lines is governed by the Toda system, a classical integrable model for particles
moving on a line with exponential forces between any two closest neighbors:

(5.39) gfﬂ” — e~ V2fi—tfi-1) _ e—\/i(fj+1—fj), j=1,.. .k
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For definiteness we take fo = —o0, fr41 = +00. It is known that for any given

solution there exist numbers a;-t, b;-t such that

(5.40) fi(z) = a;-t|z| + b;-*L +0(e 1) as z — +o0,
where a;.t < a;ﬁrl, j=1,...,k—1 (long-time scattering).

The role of this system in the construction of solutions with multiple transition
lines in the Allen-Cahn equation in bounded domains was discovered in [16]. In
entire space the following result holds.

Theorem 5. (del Pino-Kowalczyk-Pacard-Wei [20]) Given a solution f of (5.39)

if we scale

fos(2) = V2( — T 108~ + fi(e),

then for all small € there is a solution u. with k transitions layers I'c ; near the
lines xo = f. j(x1). More precisely T'. ; are graphs of functions:

T1 = fe,j(2) + he,j(ex2),
where he j(z) = O(e*)(|z| + 1), with some o > 0. In addition

k

(5.41) ue (1, 22) = Z:l(—l)j_lw(;cl — fe,j(2) = he j(e72))

7=

+or + O(e”),
where o, = — (1 + (—=1)) .

The transition lines are therefore nearly parallel and asymptotically straight, see
(5.40). In particular, if k = 2 and f solves the ODE

2
V2 i) = VG, p0) =0,
and f.(z) := v/2log L + f(ez), then there exists a solution u. to (1.1) in R? with
(5.42) ue(21,22) = w(zy + fe(22) ) + wlzr — fe(z2)) —1 + O(E").

In general in the case of even solutions to the Toda system the deficiency functions
he,j(2) decay exponentially as |z| — oo, c.f. [20].

5.2. Remarks. The solutions (5.41) show a major difference between the theory
of minimal surfaces and the Allen-Cahn equation, as it is the fact that two separate
interfaces interact, leading to a major deformation in their asymptotic shapes. We
believe that these examples should be prototypical of bounded finite Morse index
solutions of (1.1). A finite Morse index solution u should be stable outside a
bounded set. If we follow a component of its nodal set along a unbounded sequence,
translation and a standard compactness argument leads in the limit to a stable
solution. Hence from the result in [13] its profile must be one-dimensional and
hence its nodal set is a straight line. This makes it plausible that asymptotically
the nodal set of u consists of a finite, even number of straight lines, the ends. If
this is the case, those lines are not distributed in arbitrarily: Gui [25] proved that if
e1,... ey are unit vectors in the direction of the ends of the nodal set of a solution
of (1.1) in R?, then the balancing formula Z?il e; = 0 holds.
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As we have mentioned, another (possibly finite Morse index) solution is known,
[14]. This is the so-called saddle solution. It is built by positive barriers with zero
boundary data in a quadrant, and then extended by odd reflections to the rest of
the plane, so that its nodal set is an infinite cross, hence having 4 straight ends.

An interesting question is whether one can find a 4-end family of solutions (5.42)

depending continuously on the parameter € € (0, %) in such a way that when & \, 0
the ends of the nodal set become parallel while when ¢ ,”* 7 they become orthogonal,
as in the case of the saddle solution. Similarly, a saddle solutions with 2k ends with

consecutive angles 7 has been built in [2]. One may similarly ask whether this

solution is in some way connected to the 2k-end family (5.41).
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STABLE PATTERNS
AND
SOLUTIONS WITH MORSE INDEX ONE

YASUHITO MIYAMOTO

ABSTRACT. We study shapes of the stable steady states of a shadow reaction-diffusion sys-
tem of activator-inhibitor type and of the local minimizers of a variational problem with
constraint. We show that these stable patterns are closely related to the solutions of
Au+ f(u) =0 in Q, Oyu =0 on 0N

with Morse index one. Moreover, we see that shapes of the solutions with Morse index one
have a deep relationship with a nonlinear version of the “hot spots” conjecture of J. Rauch.
In particular, we show that when the domain is a disk D, each stable pattern has exactly
two critical points on D, they are on the boundary 0D, and each level set divides the domain
into exactly two subdomains. Thus the shape of a stable pattern is like a boundary spike
layer.

1. INTRODUCTION

In this talk we study shapes of the stable patterns of the two problems: the stationary
problem of a shadow reaction-diffusion system

(SS) U = DuAU+ f(uvf) in ©x R—i—a Tgt = S]-2|/ g(u,f)dx in R+7
Q

Ju=0 on 00 xRy
satisfying that

f(-,-)and g(-, -) are of class C?, f¢ <0, g¢ <0, and

(L.1) that there is a function k(&) € CY such that g, (u, &) = —k(€) fe(u, €)

and the minimization problem of the functional

(1.2) 1[u] ::/ﬂ %—W(u) do

with constraint

1
1.3 m = —/ udx.
(13) 0 Jo

1.1. Shadow reaction-diffusion system. In 1975 Chafee [C75] showed that every non-
constant steady state to a scalar reaction-diffusion equation with the Neumann boundary
condition is unstable. Hence if a steady state is stable, then it should be constant, i.e., a
homogeneous function. In 1978 Casten-Holland [CH78] and in 1979 Matano [Ma79] indepen-
dently showed that the same conclusion holds for a reaction-diffusion equation on a convex
domain in RY. Hence every model that can be described by a scalar reaction-diffusion equation
does not have a stable inhomogeneous pattern when the domain is convex. In [Ma79] it was
shown that there exist a scalar reaction-diffusion equation and a non-convex domain such that
a stable inhomogeneous steady state exists.

Date: July 15, 2010.
Key words and phrases. Reaction-Diffusion system; Variational problem with constraint; Stability; Hot spots;
Boundary spike layer.
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| Spatial dimension || Scalar equation \ (Shadow) system ‘
1 constant [C75] monotone [N94, NPYO01]
N (N >2) constant [CH78, MaT79] ?

TABLE 1. Stable steady states on a convex domain.

Before going to the next result, we will explain the shadow system. Let us consider the
Neumann problem of the reaction-diffusion system

(FS) ug = DyAu+ f(u,v) in Q xRy, v = DyAv + g(u,v) in Q xRy,
O,u=0 on 00 xRy, d,v=0 on 00 x R,.

Let D, — +oo. Then we can expect that v(x,t) tends to a spatially homogeneous function
&(t) which depends only on ¢. Letting v(z,t) = £(t) and integrating the second equation of
(FS) with respect to x over €, we have (SS). The first equation of (SS) is a scalar homogeneous
equation if £ is fixed. Hence the techniques of analyzing a homogeneous equation can be used.
(The first equation of (FS) may be an inhomogeneous equation when v is fixed.) We can expect
that the two systems (SS) and (FS) are close in some sense if D, is large. (See [Mi06a] for
example.) We call (SS) the shadow system of (FS).

In 1994 Nishiura [N94] showed that every steady state to (SS) in a finite interval with
certain conditions on f and g is unstable when wu is neither constant nor monotone. Hence if
an inhomogeneous steady state (u,§) is stable, then u should be monotone. This result was
generalized by Ni-Polac¢ik-Yanagida [NPYO01] in 2001. Table 1 shows the summary of the results.

1.2. Activator-Inhibitor system. We study the stable steady states to a shadow system in a
high-dimensional domain. It is known that there is a stable inhomogeneous steady state to (SS)

even if the domain is convex, e.g., a ball. For example, the shadow Gierer-Meinhardt system
[GMT2]

P 1
(GM) ut:€2Au7u+u— in Q@ xRy, T{t:f§+7,/u’"dx in Ry,
&1 10¢° Ja

O,u=0 on 00 xRy,
0<(p-1/g<r/(s+1),p>1,¢>0,7r>0, s>0.

has a stable inhomogeneous steady state called a boundary spike layer even if the domain is
convex. For example, see [W97] for the existence and see [Mi05] for the stability.

On the other hand, there are several classes of nonlinearities such that the system does not
have a stable inhomogeneous steady state. Jimbo-Morita [JM94] showed that the reaction-
diffusion system (FS) with the gradient structure does not have a stable inhomogeneous steady
state provided that the domain is convex and that 7 = 1. Yanagida [Y02a] showed that the
same conclusion holds for the reaction-diffusion system (FS) with the skew-gradient structure
on a convex domain if 7 > 0 is not small. The skew-gradient (shadow) system includes the
(shadow) Gierer-Meinhardt system when p, ¢, r, and s satisfy certain conditions. Yanagida’s
result looks to contradict the existence of a stable inhomogeneous steady state to the (shadow)
Gierer-Meinhardt system. However, his result does not cover the case where 7 is small, and a
stable inhomogeneous steady state can exist when 7 > 0 is small.

Before explaining an effect of 7, we intuitively explain (FS). The activator-inhibitor system
(FS) is a model describing the interaction between the (short range) activator u and the (long
range) inhibitor v. The shadow system (SS) is a limit system where the diffusion coefficient of
v diverges. Thus v becomes a spatially homogeneous function £. The activator activates the
production rate of the inhibitor (g, > 0), and the inhibitor suppresses the production rate of
the activator (f, < 0). The production rate of the inhibitor decreases as the inhibitor increases
(g» < 0). However, we do not assume the monotonicity of f in u. We want to consider the
case where the activator reacts autocatalytically. In that case f is not monotone in u. A
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typical example of f is f(u,v) = u(l —u)(a —u) —av (0 <a <1, a > 0). We call (FS) the
activator-inhibitor system if f and g satisfy

(AI) fo <0, g,>0, and g, <0.

Note that if (u,§) is a steady state to (SS) for some 7 > 0, then (u,§) is a steady state to (SS)
for every 7 > 0. 7 is the rate of reaction speeds between the activator and the inhibitor. When
7 is large, the reaction speed of the inhibitor is slow. Dividing the second equation of (SS) by
7 and letting 7 — 400, we see that £ changes slowly in time. Therefore we can expect that
the behavior of the solution to (SS) is close to that of the solution to a scalar reaction-diffusion
equation. We can expect that all the inhomogeneous steady states are unstable provided that
the domain is convex (cf. [CH78, Ma79]). When 7 is small, the inhibitor reacts quickly. This
effect stabilizes an inhomogeneous steady state, and a stable inhomogeneous steady state can
exist.

By the way, there is a possibility where a stable inhomogeneous steady state becomes unstable
when 7 is large. In this case a Hopf bifurcation occurs. [NTY01, WWO03] studied in detail the
pair of complex eigenvalues that pass through the imaginary axis. This change from stability
to instability does not appear in a scalar equation, and appears only in a system. The range
of 7 for which a steady state is stable is important when one studies the stability of a steady
state to a system.

1.3. Stable patterns of (SS). We want to find all the stable steady states. However, it is
actually impossible to find all the stable steady states. Hence we will change the problem: If
a steady state is stable, then what shape is it? Our strategy is to find a sufficient condition,
which can be determine by the shape, for the steady state to be unstable for all 7 > 0. Then
the contrapositive of the sufficient condition becomes the necessary condition for the steady
state to be stable for some 7 > 0. In other words we know the shape of the stable steady states.
We give an abstract sufficient condition.

Theorem 1.1 ([Mi06b]). Let (u,&) be an inhomogeneous steady state to (SS) with (1.1). If the
second eigenvalue of the eigenvalue problem

Ap+ fu(u,)p=Xrp in Q, Jdyu=0 on 0N
is positive, then, for each T > 0, (u,§) is unstable. Thus if (u, ) is stable for some 7 > 0, then
the Morse index of u (with respect to the first equation of (SS)) is one.

1.4. Example. Let us consider the assumption (1.1). The assumptions fs < 0 and g < 0
are included in (AI). Therefore those are natural in some sense. Although the last assumption
seems to be artificial, (1.1) includes the following two systems:

Ezample 1.2. The shadow Gierer-Meinhardt system is (GM). (GM) always satisfies (AI). If
p=r—1, then (1.1) holds.

Example 1.3. The shadow system with the FitzHugh-Nagumo type nonlinearity is
1
(FHN) ur = DyAu~+u(l —u)(u —a) — af, TE = 9] / Budx — ¢ in Ry,
Q

dyu=0 on 09,
0<a<l, a>0, >0, and v>0.
(FHN) always satisfies (AI) and (1.1).

1.5. Variational problem with constraint. When W is a double well potential, (1.2) with
(1.3) is a model arising in the van der Waals-Cahn-Hilliard theory of phase transitions. (See
[Mo87] and references therein for details of the model.) The two bottoms of the well are
corresponding to two stable states, and u tends to go to one of the bottoms. However, the
constraint prevents u from becoming a constant stable state if m of (1.3) is in between two
local minimum points of W. It is easily expected that a local minimizer exhibits a spatial
pattern.
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If W(u) = (u?—1)2/4, if @ C RV is a bounded domain with smooth boundary and if ¢ is
small, then the shape of energy minimizing sequences is well understood. Modica [Mo87] and
Sternberg [S88] have shown that the limit of minimizers u. as e | 0 is a function with values +1
almost everywhere and that the interface minimizes the area under the constraint that the ratio
of {us ~ 1}| and |{u. = —1}| is a certain value. Luckhaus-Modica [LM89] have shown that the
area of minimizing interface is a hypersurface with constant mean curvature. (If N <7, then
the interface is smooth. If N > 8, the interface may have singularities, however the Hausdorff
dimension of the set of the singularities is at most N — 8.) Sternberg-Zumbrun [SZ98] have
shown that, if (2 is strictly convex, then, for some k > 1, the interface {a. +¢* < u. < b. — ¥},
the superlevel set {u. > a. + "} and the sublevel set {u. < b. — ¥} are connected, where a,.
and b, (a. < b:) go to two stable zeros of —W'(u) as € | 0. In [SZ98] the connectivity of the
interface and the boundary was also shown.

In the same research direction as ours Carr-Gurtin-Slemrod [CGS84] have shown that every
non-constant local minimizer is monotone when the domain is a finite interval. Gurtin-Matano
[GMB88] studied the shape of the local (and global) minimizers when € is a disk, annulus or
cylinder. In [GMS88] they have shown that when  is a disk, each global minimizer is monotone
in some direction. However, they used the rearrangement technique, and their method is not
applicable to the local minimizers. On the other hand, we use the following sufficient condition
for u not to be a local minimizer (unstable):

Theorem 1.4. Let u be a critical point of (1.2) with (1.3). If the second eigenvalue of the
etgenvalue problem

E2Ap+W"(u)dp = pup in Q, 0,0=0 on 0N

is positive, then u is not a local minimizer. Thus if u is a local minimizer, then the Morse index
of u is one.

2. SOLUTION WITH MORSE INDEX ONE

Our problem can be reduced the following problem: If the Morse index of w is one, then
what shape is u? However, there are not so many results of this problem. It is because there is
a potential problem. How do we describe the function defined in a high-dimensional domain?
As far as the scalar equation is concerned, every stable steady state is constant. Hence we need
not answer the problem. In the case of the shadow system in an interval, every inhomogeneous
stable steady state can be described as monotone. Our answer (or suggestion) here is the
following: Using the number and the locations of the critical points, we describe the function
defined in a high-dimensional domain.

From now on, we consider the case where the domain is a disk D := {z € R?; |z| < 1}.

We are in a position to state the main result.

Theorem 2.1 ([Mi06b, Mi07a, Mil0]). Suppose that Q = D. Let u be a non-constant solution
of
(2.1) Au+h(u) =0 in D, Ju=0 on OD.

If the Morse index of u is one, then u satisfies the following (a) and (b):

(a) u has evactly two critical points in D and those are on OD. In particular, u attains its
mazimum and minimum at those two points and there is no critical point in D.

(b) For every ¢ € (min, .y u(x), max, 5 u(z)), the c-level set of u is a unique C*-curve whose
edges hit 0D at two different points and it divides D into exactly two simply connected subdo-
mains.

Fig. 1 shows the shape of u when (u,§) is stable. We do not assume smallness or largeness
of the diffusion coefficient D,, in (SS). The proof does not rely on the singular perturbation
technique. When D,, is small, there are many results about the shape of inhomogeneous steady
states. This theorem says that only the steady state whose shape is like a boundary spike layer
can be stable even if D, is not small. If D, is larger than a certain value, then we can show that
u is symmetric with respect to a line containing the center of the disk [Mi07b]. It is well-known
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FI1GURE 1. The shape of a solution with Morse index one.

that every positive steady state is radially symmetric if the Dirichlet boundary condition is
imposed. However, there seems to be few results about the symmetry of the steady state to a
Neumann problem when the steady state is not the least-energy solution.

If « has an interior peak (e.g., spike or spot), then the top of the peak is a critical point,
hence the steady state is unstable. The stable pattern does not have an interior peak.

3. PROOFS AND RELATED RESULTS
3.1. Proofs. The proof of Theorem 2.1 consists of several lemmas including the following two:

Lemma 3.1 ([Mi06b, Lemma 3.4]). Suppose that & = D. Let u be a non-constant solution of
(2.1). ByU(0) we define U(0) := u(cos@,sin8). If Z[Uy(-)](:= t#{Up(0) = 0; 6 € R/27Z}) > 3,
then the second eigenvalue of the eigenvalue problem

(3.1) Ap+h' (u)p=Xp in Q, 9,p=0 on IO
1S positive.

Lemma 3.2 ([Mi07a, Lemma C]). Suppose that Q = D. Let u be a non-constant solution to
(2.1). If u has a critical point inside D, then the second eigenvalue of (3.1) is positive. Here
we say that (xo,yo) is a critical point of w if ug(zo,yo) = uy(xo, yo) = 0.

In Lemmas 3.1 and 3.2 we do not impose an assumption on h except h € C2.

In the proofs of Lemmas 3.1 and 3.2 the detailed analysis of the zero level set of —(z—x)u,+
(y — yo)u, is done. The zero-level set (or the nodal curve) gives a relation between the shape
of the solution and the Morse index. The zero-level set is corresponding to the zero-number in
a one-dimensional case.

3.2. Extension of Lemma 3.2. We consider Lemma 3.2 when 2 is a convex domain. It is
expected that the following holds:

Conjecture 3.3 ([Y06, Yanagida]). Let Q C RY be a convex domain. Let u be a non-constant
solution to (2.1). If uw has a critical point inside §, then the second eigenvalue of (3.1) is
positive.

E. Yanagida pointed out that this conjecture is a nonlinear version of the “hot spots” con-
jecture of J. Rauch.

Conjecture 3.4 ([R74, Rauch]). Let Q@ C RY be a bounded domain. The mazimum and the
minimum of each non-zero eigenfunction corresponding to the second eigenvalue of the Neumann
Laplacian are attained on the boundary.

The “hot spots” conjecture immediately follows from Conjecture 3.3. Lemma 3.2 is the
positive answer of Conjecture 3.3 when the domain is a disk. Table 2 shows the relation among
known results and conjectures. In particular, Conjectures 3.3 and 3.4 can be seen as nonlinear
and high-dimensional versions of Sturm-Liouville theory.
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’ Morse index H Linear \ Nonlinear ‘
0 The first eigenfunction of Ay is constant | [CH78, Ma79]
1 Conjecture 3.4 Conjecture 3.3

’ n H What shape is an eigenfunction? \ What shape is u? ‘

TABLE 2. The relation among [CH78, Ma79] and Conjectures 3.4 and 3.3.

’ H Equation \ Domain \ Solution ‘

Conjecture 3.3 Au—+h(u) =0 Convex domain | Any solution
Ni-Takagi e2Au—u+uP =0| Any domain | Least-energy sol.
TABLE 3. The relation between Conjecture 3.3 and a Ni-Takagi problem.

Table 3 shows the relation between Conjecture 3.3 and a problem of Ni and Takagi [NT91,
NT93]. If we ignore the restriction on the domain, then Conjecture 3.3 can be seen as a
generalization of a problem of Ni-Takagi.

We consider Conjecture 3.4. It is known that there are several counterexamples of Conjec-
ture 3.4. In 1999 Burdzy-Werner [BW99] gave a counterexample. Their domain is a planar
domain with three holes. Burdzy [B05] later gave another counterexample which is a planar
domain with one hole. There are classes of planar domains for which the conjecture holds.
Banuelos-Burdzy [BB99] proved the conjecture for planar convex domains with two axes of
symmetry. However, another technical assumption is imposed in [BB99]. Jerison-Nadirashivili
[JNOO] removed the technical assumption. The method of [JNOO] is very different of that of
[BB99]. When the symmetry is not assumed, Atar-Burdzy [ABO04] proved the conjecture for
a long domain called the lip domain. This class of domains includes a non-convex domain. It
is widely believed that the conjecture holds for a convex domain. In general it is difficult to
prove the conjecture when the domain does not have symmetries. The author obtained a partial
positive answer.

Theorem 3.5 ([Mi09]). Let Q be a planar convexr domain. Let d := sup,, ,cq P —q|- If
(i) d*/|Q| < 1.378, or

(i) § is in a strip with width | and dl/|Q)| < 1.219,

then Conjecture 3.4 holds.

Acknowledgment. The author thanks to Professor E. Yanagida for informing him that Con-
jecture 3.3 is a nonlinear version of Conjecture 3.4. This work was partially supported by a
COE program of Kyoto University and Grant-in-Aid for Young Scientists (B) (Subject No.
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We consider the nonstationary incompressible Navier-Stokes equations in R3:

0
0.1) a—?—Au—i—(u-V)u—i—Vp:O, divu=0 in zeRtec(0,T),
uli—0 = up,

where u = u(t) = (u'(z,t),u?(x,t),u*(z,t)) and p = p(t) = p(x,t) denote the velocity
vector field and the pressure of fluid at the point (z,t) € R3 x (0,T), respectively, while
ug = (uj(x),ud(z),ud(x)) is a given initial velocity vector field.

We are concerned with the ill-posedness of the Cauchy problem for (0.1). More pre-
cisely for a given function space X = X (R?) we say that the Cauchy problem is well-posed
in X if there exists a space Y C C([0,7T), X) such that for all uy € X there exists a
unique solution w € Y for (0.1) and the flow map ug — u = ®(uy) is continuous from X
to C([0,T), X). Also we say that the Cauchy problem is ill-posed in X if it is not. The
classical results on the existence theorem of the mild solution were shown by Kato [6]
and Giga-Miyakawa [3]. Making use of the iteration procedure, they constructed a global
solution in the class C'([0, 00); L™(R™))NC((0, 00); LP(R™)) for n < p < oo, when an initial
data ug is small enough in L™(R™). To construct a solution in more general classes of ini-
tial data is very important problem. Giga-Miyakawa [4], Kato [7] and Taylor [12] proved
the well-posedness in certain Morrey spaces. Cannone [2] and Kozono-Yamazaki [9] in-
vestigated this problem in Besov spaces. In particular, Koch and Tataru [8] obtained the
global solvability for (0.1), when the initial data ug is small enough in BMO~'. BMO™!
includes above function spaces and it has been considered as the largest space of initial
data (see Lemarié-Rieusset [10]). On the other hand, Montgomery-Smith [11] introduce
an equation similar to Navier-Stokes equation and proved ill-posedness in the Besov space
B!, which is larger than BMO™'. In 2008, Bourgain-Pavlovi¢ [1] showed that (0.1) is
ill-posed in By, by showing norm inflation phenomena of the solution for some initial
data. More precisely, they proved that for any ¢ > 0 there exist initial data uy with
|uollp=1 . < & such that the corresponding solution u satisfies |[u(t)||z-1 > 1/0 for some
t < &. This shows that the flow map ® is not continuous. On the other hand, Germain 5]
proved that the flow map is not C? in the Besov spaces Bo_ofq for ¢ > 2. However he did
not treat ill-posed problem in such spaces. The purpose of my talk is to show ill-posedness



of 3D-Navier-Stokes equations in Besov spaces B., (¢ > 2) (see [13]). Thus our result is
an extension of both Bourgain-Pavlovi¢’s and Germain’s results.

We give a sketch of the proof briefly. First, we introduce initial data which is composed
by a sum of r cosine functions. The idea of setting of the initial data is proposed by [1]
and [5]. We take a lacunary frequency set, and the norm of initial data in B! (¢ > 2)
is controlled by r. Second, we extract an inflation term from second approximation.
Third, we estimate the remainder term y. The remainder term satisfies certain integral
equation composed by first and second approximations including an inflation term. We
also control the remainder term by r. Since we set refined initial data from Bourgain-
Pavlovi¢’s setting, we can get better estimate of second approximation than their estimate.
According to their setting of initial data, using BMO™! norm to estimate remainder term
y is important. Since we got better estimate of second approximation, we can use the
bilinear estimate of a class of bounded uniformly continuous functions (equipped with the
L norm).
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We are interested in the motion of a membrane that is in contact with a rigid plane.

In many cases, the membrane is described by some partial differential equation (such as heat equation) and
on the free boundary (points where the membrane touches the plane) a contact angle condition is prescribed
which originates in the physical properties of the materials in contact (i.e., surface tensions =y, ysv,ysr)-

A pioneering beautiful paper on the mathematical aspect of the problem by Alt and Caffarelli (1981) deals
with the stationary case

Au=0 inQnN{u>0}, [Vul=Q, u=0 onQnofu > 0}.

They study the functional
(190 + @*xun0) da
Q

and show that it possesses minima which are Lipschitz continuous and have linear growth away from the free
boundary. For such harmonic functions they find a representation formula and show that the minima are weak
solutions, while the free boundary is a smooth surface except of a set of zero (n — 1)-dimensional Hausdorff
measure.

On the other hand, Caffarelli and Vdzquez (1995) studied the evolutionary problem

ug—Au=0 in {u> 0}, [Vu|=1, u=0 ond{u >0}
by a different technique. They regularize the problem by adding an absorption term in the following way
uj — Au® = —3xL(u°), u® > 0.

Here, x. is a smoothing of the characteristic function in the interval (0,¢). The authors show uniform estimates
for the solution of the regularized equation (Lipschitz in space and Holder in time) and use them to construct
a weak solution of the original problem. They also study the regularity of free boundary in case of shrinking
support.

We are interested in the study of the evolutionary problem with volume constraint

/ u(t,z)de =V vt,
Q

which appears, for example, in the free boundary problem modelling the motion of bubbles or droplets on a

surface. The problem becomes

ug—Au=X in{u >0}, |Vul|?> =2y on d{u >0}



and its regularized version is
ur = Au — yxL(u) + Xus0Ae  in (0,T) x Q, where . = / [ugu + [Vul? + XL (wu] da.
Q

Here A (or A.) are nonlocal terms coming from the volume constraint.

In the regularized problem the volume constraint gives rise to an obstacle-type problem with a nonlocal
obstacle function. Accordingly, the sharp contact angle limit ¢ — 0 is expected to have two factors influencing
the behaviour on the free boundary: the stronger linear growth due to contact angle condition and the weaker
quadratic growth (curvature) originating in the volume constraint.

With the view of numerical approximation and because of the presence of the global constraint we analyse
the regularized obstacle problem by a minimization method introduced by K. Rektorys and developed by N.

Kikuchi. In this method time variable is discretized and the functional

_ |u = n—1|? } 2
T = [ (Pt SVl () do

is minimized. Here we define a special constrained space
Ko = {ue Hj(Q); / xs(Wude =V}
Q

as the admissible space for minimization.

The (regularization of) characteristic function in the admissible space is essential in order to satisfy the
obstacle condition. Indeed, the minimizers are shown to exist and be nonnegative. The weak solution is then
constructed by deriving uniform estimates in h and ¢ and taking h,d — 0. (See, Svadlenka & Omata, 2009 for
details.)

The analysis for the sharp limit € — 0 is yet to be done. Yamaura constructed L? - generalized minimizing
movement corresponding to the considered energy without taking into account the volume constraint. It is
expected that a similar technique will basically work for the constrained problem.

Our future plan is to consider the application of phase-field approximation to the contact angle problem.
The phase-field method is superior to the above scalar approach in the sense that it addresses surfaces and
can therefore express contact angles larger than right angle. It is assumed that one can derive a boundary
parabolic monotonicity formula (see [5]) and thus rigorously construct a hypersurface evolving according to its
mean curvature with a prescribed contact angle on the rigid boundary.

Another challenging task is the contact problem arising, e.g., in the modelling of collision of elastic curves
with an obstacle. For this phenomenon, there are numerical results but a suitable mathematical approach to

this hyperbolic free boundary problem is still unknown.
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ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO NONLINEAR
SCHRODINGER EQUATIONS

NAKAO HAYASHI

1. CUBIC NONLINEAR SCHRODINGER EQUATION

We consider the nonlinear Schrodinger equation
1
(1.1) i0u + 5 —Au =\ lul® u

in R, where A = 92, m is mass of particle, A € C. Equation (1.1) is non relativistic
version of nonlinear Klein-Gordon equation

1 1 me? 2
(12) %815’(1— %A’U-f— T’U = —/\|’U| v,
where ¢ is the speed of light. Indeed we change v = e~itme’y to get

1 1 ‘
Qszafu —i0u — %Au = —Al|u)’ u.

If we let ¢ — oo, then we can obtain (1.1). We survay results on asymptotic behavior
of small solutions to the initial value problem and the final value problem for (1.1).

We use the following factorization formula for the free Schrodinger evolution group
U (L) = exp (55 A)such that

() -amon () ()

This formula is useful to study asymptotic behavior of solutions and used in paper
[8]. We have from the above

(L) (L)@ o ()

where we denote

M (t) = eF = B (1) = %17,
a dilation operator
1 x
(D (1) 9)(x) = =o(3)
and
1% <i> =FM™ () F'.
m
Note that m m
D(T) Mm@ =E% 0D ()

Key words and phrases. Modified wave operator, Nonlinear Schrodinger equations.
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Multiplying both sides of (1.1) by Fu (—L) and putting w = FU (L) u, we
obtain

idw = AFU (—i> ul® u.
m

Asymptotic behavior of small solutions to the Cauchy problem for (1.1) is obtained
by showing the right hand side of the above is decomposed into two terms:

AFU (-i) ufu= A" jwlw + R,
m t

where R is considered as a remainder term. Therefore asymptotic behavior of
solutions for (1.1) is determined by the ordinary differential equation

ia o~ m, <2 ~

10y = )\7 || @.

Indeed, for the final value problem, we can find a solution in the neighborhood of
solutions of the ordinary differential equations. We let @ = re’¥, then we have

10y — 1r0p = )\? |7"|2 T
from which it follows that if A = A1 + A2, A1, A2 € R
Or = )\2?7“3, = )\1? |7"|2 .
By a given function ¢, we have for Ay <0
g
~2
(1 — 2ms M logt)

r(t) =

)

[N

and for A\ <0

~12
. d (—2)\2m‘¢5‘ logt>

vi) = 5 f

= M1 2A‘$‘21 ¢
—2/\20g mAz og

2
<1 —2mA; ‘qﬁ‘ logt>

for )\2 =0
2
b (t) = —m M log t.
Thus we have the solution of ordinary differential equation such that
w = re

~ 2
‘QS‘ exp (’Q\le log (1 — 2mAs ‘q&‘ logt)>

~2 3
<1 —2mAg ‘qb‘ 10gt>

’

for Ay < 0 and
re'V

~ ~12
‘gb‘exp (—i)\lm‘gb‘ logt),

g)
Il
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~2
for Ao = 0. We make a changing of variable @ (¢ ‘qb‘ exp < 12 log (1 —2mA; ‘qﬁ‘ log t>>
or o (t ‘qﬁ‘ exp (—h\lm ‘qﬁ‘ 10gt> Then
o (t
w 90( ) ;A2 <0

1
2

(1 —2mA |3 (1)) 1ogt)
@ = 3 (t) exp (—i/\lm 13 (1) logt) Ao = 0.

2. SYSTEM OF NLS 1N 2D

In this section we report the recent results obtained in [5]. We consider a system
of nonlinear Schrédinger equations

{ i@tvl + LA’Ul = AW/UZ

(2.1) i0yv2 + 5~ sz = pv?

in R?, where A = E] 1 07,
C. We make the scaling v; = \/mul and vy =

2,0; = 0/0xj,m1, my are masses of particles and A, €

i Auluz’ to exclude the constants A

and p from system (2.1) to get

2.2) { i0puy + 55— Aul YUTUz,

10rus + AUQ =ul,

where v = \i_ZI € C, |y] = 1. We assume the mass condition

(2.3) 2my = mo

which is called the resonance condition. We also consider the case
(2.4) 2my # ma,my 7 mo

which is call the non resonance condition.
The system (2.2) is non relativistic version of a system of nonlinear Klein-Gordon
equations

(2.5)

2 1 m 62 —
252m18 v — Av + = —YU1V2,
82

__2
Zcm = Uy,

where c¢ is the speed of light.
We introduce the weighted Sobolev space

2
H™* = ¢ f = (fi,f2) €L |fllggme = Y fillggm.. <00 ¢,
j=1
where
Il = 1= 0% (1 4) 1

We write H™ = H™? for simplicity.
Under the resonance condition (2.3) we prove

L2
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Theorem 1. Let 2m; = ma, v < 0,t > 1,w; € H*® and |w; (§)] > 6 > 0. Then
there exists an € > 0 such that (2.2) has a unique global solution

(ul (t) y U2 (t)) eC ([17 OO) ; L2 X LZ)
satisfying the asymptotics

1 t - .
uy (t) — m—lu (m—1> F gy (t, m_l) g

1 t _ .
uz (t) — m—zu <m_z) F gy <t; m—2> L

geo < €, where % <b<l,
wy (§)

+ <Cctt

fort > 1 and any wy such that ||w7]

t,§) = —
Vi (69) 1+ /7] [w1 (€)|logt
and
11 w ()
Vi (0 = e @ T Vi@ () Togt
1 ¢1+(t7€)2

Vil [y 8]

Theorem 2. Let 2m; = mao, v > 0,t > 1, w; € H?? and |wy (€)| > §. Then the
same result as in Theorem 1 holds for

Yoy () = i (€) V3@ lost

and

RG] VA )

1
fort > 1, where 5 <b < 1.

It is known that by the above theorems, the identity &/ (L) = M™ (¢) D (L) FM™ (t) we
see that

Yoy (t) = —i L @ () 2V 3@ (©)logt _ zi Y1y (t,€)°

Uy (t) - %Mml (t) 1/’1+ (t: Z)

L2
s (1) =M™ (0 b (1.7)

< Ct .

Under the non resonance condition we prove

+

L2

. 0,—2b
Theorem 3. Let 2my # ma, my # mao, (q§1+,¢52+) e H2nH . Then there
exists an € > 0 such that (2.2) has a unique global solution

(u1 (t),us () € C ([1,00);L? x L?)

for any (qﬁH_, ¢52+) satisfying 2521 ||¢5]-+ ||H0 < ¢. Furthermore we have the asymp-

totics
¢ ¢
w® -t (=)o | o+ -t (o) e

1
fort > 1, where 5 <b< 1.

<Cct™*
L2

+

L2



NLS EQUATIONS

REFERENCES

[1] J.E.Barab, Nonezistence of asymptotically free solutions for a nonlinear Schrédinger equation,
J. Math. Phys., 25 (1984), pp. 3270-3273.

[2] M. Colin and T. Colin, On a quasilinear Zakharov system describing laser-plasma interactions,
Diff. Integral Equations, 17 (2004), 297-330.

[3] J. Ginibre and T. Ozawa, Long range scattering for nonlinear Schrédinger and Hartree equa-
tions in space dimension n > 2, Commun. Math. Phys., 151 (1993), pp. 619-645.

[4] N.Hayashi, C.Li and P.I.Naumkin, On a system of nonlinear Schridinger equations in 2d,
preprint, to appear in Differental Integral Equations.

[5] N.Hayashi, C.Li and P.L.LNaumkin, Modified wave operator for a system of nonlinear
Schrédinger equations in 2d, preprint

[6] N.Hayashi and P.I.Naumkin, Asymptotics in large time of solutions to nonlinear Schrédinger
and Hartree equations, Amer. J. Math., 120 (1998), pp.369-389.

[7] N.Hayashi and P.I.Naumkin, Large time behavior of solutions for derivative cubic nonlin-
ear Schrédinger equations without a self-conjugate property, Funkcialaj Ekvacioj, 42 (1999),
pp.311-324.

[8] N.Hayashi and T.Ozawa, Scattering theory in the weighted L?(R™) spaces for some

Schrédinger equations, Ann. Inst. H. Poincare Phys., 48 (1988), pp.17-37.

S.Machihara, K.Nakanishi and T.Ozawa, Nonrelativistic limit in the energy space for nonlinear

Klein-Gordon equations, Math. Ann., 332(2002), 603-621.

[9

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, OSAKA UNIVERSITY, OSAKA,
TOKYONAKA, JAPAN
E-mail address: nhayashi@math.sci.osaka-u.ac.jp



On dispersive estimates for Schrodinger equations
Kenji Yajima
Department of Mathematics, Gakushuin University,
1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.

Abstract

Let H = —A+ V(x) be three dimensional Schréodinger operator with the
real potential V' (z) which decays at infinity. Let P. be the projection onto
the continuous spectral subspace of L?(R3) for H. Suppose that 0 is not an
eigenvalue nor a resonance of H. Then, we show under suitable decay and
smoothness conditions on V that the propagator e~ for the Schrodinger
equation 10;u = Hu admits the expansion as t — oo of the form

k
<x>_k_5 (e‘itHPCu — Z t_g_jAju>
=0

where 0 <o <eand A;, j =0,1,...,k are finite rank operators, We discuss
the extension of the expansion formula (1) for the case when 0 is an eigenvalue
or/and a resonace of H. The work is in progress and the precise result will
be presented in the talk.

<Ot R @) a0 (1)

Lo



UNIQUE CONTINUATION AND NONLINEAR DISPERSIVE
EQUATIONS

GUSTAVO PONCE

The aim of this talk is to present recent results obtained in collaboration with
L. Escauriaza, C. E. Kenig, and L. Vega concerning unique continuation properties
of solutions of Schrodinger equations.

First, we shall consider Schrodinger equations of the form
(1) i0iu+ Au =V (x,t)u, in R" x[0,1].

Our first goal is to obtain sufficient conditions on a solution u, the potential V'
and the behavior of the solution at two different times, to = 0 and ¢; = 1, which
guarantee that u = 0 in R™ x [0, 1].

In the case when the potential V' = 0 one has, defining the Fourier transform of
a function f as

~

F(&) = (2m) /2 / 6T f(2) da,
Rn
the identity

e Pug(x) = u(z, t)

(2)

ilz—y|? noiel? .2
= (4m't)_3/ e uo(y) dy = (2mwit) 2 e el o (—),
Rn

This shows that this kind of problem (the decay of the Schrédinger equation at
two different times) for the free solution of the Schrédinger equation with data ug

iOu+ Au=0, u(zr,0)=uy(r), (z,t)eR"xR,

is intrinsically related to “uncertainty principles” concerning the decay of a function
f and its Fourier transform, f.

Among these uncertainty principles one has the following one due to G. H. Hardy
(4]) -
If f(z) = O(el*/7%), f(¢) = O(e~*"/2") and af < 4, then f = 0.

Also, if a3 =4, f is a constant multiple of e~lal?/8%,

Using (2), Hardy uncertainty principle can be rewritten in terms of the free
solution of the Schrédinger equation :

2
|| |=|?

If up(z)=0(e ), e'®ug(x) =0(e =2), and af < 4t, then uy = 0.

In the context of the Schrodinger equation we shall present an extension of this
results to solution of the equation (1).
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As an application we shall consider the semi-linear Schréodinger equation
(3) i0iu + Au =+ |ul®v =0, in R" x[0,1], a> 0.

and give some answers to the following question : given u;, wus solutions of (3),
what do we have to know about their difference (u; — uz)(z,t) at two times ¢t = 0
and t = 1 to guarantee that they are equal?

We shall also study the relation of the space decay properties of the global in
time solution of (1) and the following stationary result of Meshkov [7]:

Let w € H? (R™) be a solution of

oc

(4) Aw+V(z)w=0, zeR" with Ve L R").

(5) If / e2alzl*’? lw|*dx < 0o, Va>0, then w=0.

Moreover, the exponent 4/3 in (5) is optimal for complex valued potentials V ().

As an application we shall obtain results concerning the possible concentration
profiles of blow up solutions and the possible profiles of the traveling waves solutions
of semi-linear Schrédinger equations .

In addition, we shall describe a recent result obtained in collaboration with G.
Fonseca concerning the Benjamin-Ono equation. More precisely, for the initial value
problem associated to the Benjamin-Ono equation

Opu + HO?u + udu = 0, t,x € R,
u(z,0) = uo(z),
we establish sharp persistence properties of the solution flow in the weighted Sobolev

spaces H*(R) N L?(|z|*"dx), s € R, s > 1 and s > r. These generalize previous
works of R. Iorio [5] and [6].

(6)
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MODELING HYDRODYNAMICS IN 1D

MARCUS WUNSCH

In this talk, we will present several model equations in one space di-
mension for the Euler equations in three and two space dimensions,
respectively.

We will first discuss results on the generalized Constantin-Lax-Majda
(gCLM) equation,

wi(t,z) + avw, = v, w t>0, a€eR,
(1) v,(t,x) = Ho(t,z) = (P.V.) flr w(t,y) cot (w—gy) dy
w(0,2) = wy(z), reS' ~R/27Z.

This equation was introduced and analyzed by OKAMOTO, SAKAJO &
WUNSCH (Nonlinearity, 2008).

If @ = 0, (1) reduces to the well-known vorticity model equation
wi = wHw of P. CONSTANTIN, LAX & MAJDA (1985), which has an
abundance of solutions blowing up in finite time. In the presence of a
convective derivative (a = 1), one obtains the vorticity model of DE
GREGORIO (1990).

Finally, if a = —1, the gCLM equation (1) becomes the model equa-
tion of A. CORDOBA, D. CORDOBA & FONTELOS (2005) for the 2D
quasi-geostrophic equations and the Birkhoff-Rott equations describing
the evolution of vortex sheets with surface tension.

A general, heuristic motivation for the study of the gCLM equation
is the paradigm of OHKITANI & OKAMOTO (2005) that the interplay
of convection vw, and stretching v,w leads to creation or depletion of
finite-time singularities: the size of the parameter a in (1) thus reflects
the impact of the convection.

As an illustration of the adequacy of the gCLM equation (1) for
testing this paradigm, it can be shown that if a = 0o, corresponding to
an ”absolutely dominating” convection, solutions persist for all times.
Moreover, we will demonstrate that there is a continuation criterion
for (1) closely resembling the breakdown criterion of BEALE, KATO &
MaJpA (1984) for the incompressible Euler equations. Finally, it will
be mentioned that the gCLM equation (1) with parameter a = —1/2
has an interesting geometric interpretation: It describes the geodesic
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flow of a fractional Sobolev metric on the Lie group of orientation-
preserving circle diffeomorphisms modulo rotations (cf. WUNSCH, J.
Nonl. Math. Phys. (2010)).

In the second part of the talk, we will discuss the generalized Proud-
man-Johnson (gPJ) equation on the real line, which can be regarded
as a nonlocal perturbation of the Burgers equation:

ut(t,m)+(“—2> —“+d{f f}uxtg ¢, t>0

u(0,z) = up(x), v € R.

(2)

The equation for the axisymmetric Euler flow in 2D, corresponding to
the case a = 1, was first derived by PROUDMAN & JOHNSON (1962); it
is obtained by separating the space variables in the stream function of
the velocity vector u solving the incompressible Euler equations in 2D.
Setting a = —Z—:‘? in (2), one obtains the axisymmetric Euler flow in
R™. Moreover, (2) reduces to the Hunter-Saxton equation (HUNTER &
SAXTON (1991)) modeling orientation waves in nematic liquid crystals
if a = —2, and to the Burgers equation from gas dynamics if a = —3.

Reviewing the papers of CHO & WUNsCH (J. Differential Equations,
2010), WuNscH (J. Math. Fluid Mech., 2009), and A. CONSTANTIN
& WUNSCH (Proc. Japan Acad. Ser. A Math. Sci., 2009), we will
present several new results on the initial value problem (2) and the
periodic boundary problem for the gPJ equation,

(3) Utzzr T Ulgry = QUyplyzy
uw(0,x) = up(z), =z €S

We will state a novel blowup criterion for (3) and show that certain
geometric properties of the initial data ug are preserved for all times of
existence. Moreover, we will see that a modification of the method of
characteristics yields global weak solutions for (2) for certain parameter
values of a.

In the final part of this presentation, we will see that both the gCLM
(1) equation with a = 0 and the gPJ equation (2) are embedded in
a wider family of a two-component systems: the generalized Hunter-
Saxton system (WUNSCH, SIAM J. Math. Anal. (2010))

ot )+ ov, = {7 = [} (22 06, O = 5 w(t, 0] dC,

(4) v(0,z) = vo(z)
wy(t, ) + vw, = a v, (t, x)w(t,z), t>0,
w(0,z) =wy(x), z€R,
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where a and k denote numerical constants. This system comprises
the model equations of Hou & L1 (2008) for the 3D axisymmet-
ric Euler flow with swirl if (a,k) = (1,1), the Hunter-Saxton sys-
tem modeling the nonlinear dynamics of non-dissipative dark matter if
(a, k) = (—1,£1) (cf. WunscH, DCDS B (2009)), the gPJ equation if
w = +/—1v, and a = 2 — 1, and the CLM equation if &« = k = co. We
will give evidence that the periodic boundary problem corresponding
to (4) not only has blowup solutions but also solutions existing for all
times, and that on the real line there are global weak solutions as in
the case for the gPJ equation (2).

RIMS, KyoTro UNIVERSITY, KYOTO 606-8502 SAKYOKU KITASHIRAKAWA
OIWAKECHO, JAPAN
E-mail address: mwunsch@kurims.kyoto-u.ac.jp



Global existence for supercritical wave equations with random
initial data

ZHONG Sijia

In this talk, we will consider about the following nonlinear wave equations

{ 0?v — Av + |z]2v + Jv|% = 0,
v(0) = f1, 9w (0) = fo,

here v: R x R? — R.

Our main result is

Theorem 0.1. Suppose that a < m s positive. Let us fir a real number p such that

max{ 122(_2?;_3%%, 22?11)} <p< f—fg. Let (hp(w),ln(w))22, be a sequence of independent random

variables on a probability space (2, A,p), in which h, and I, are standard Gaussian random vari-

ables. Consider (0.1) with radial initial data
o = hp(w
=)

n=1 n

where (M%) is the eigenvalues of the harmonic oscillator H = —A + |z|>, A, = V2n+d, and

(€n)22 is the orthonormal basis associated to 2. Then for every s < 0, almost surely in w € €,

€n, féﬂ :Zln(w)ena (0'2)
n=1

the problem (0.1) has a unique global solution
v € C(Ry, HY(RY)) (LP(< t >~ dt, WP P(RY)),

with §(p) = & — %(% - I%) H* and WOP)=P will be defined later.

Furthermore, the solution is a perturbation of the linear solution

sin(tvH)
VH

where 3 € C(Ry, H (R?)) for some 0 < o = % + g - 2%—;3—. Moreover

v (t) = cos(tVH) fi + f3' +0"(),

1
[0 |32 (may < C(w, s) In(2 + [¢])2. (0.3)



Remark 0.2. By the result of this Theorem, we can see that, for s < 0, the critical o is smaller
than % which is strictly smaller than W((id—ﬂ)' So for % < a< W((id%)’ it is supercritical,
which means when we choose some special kind of the initial data, the result would be better. In

particular, for d = 2, the theorem holds for any a > 0.

Remark 0.3. By the same idea of [5] Lemma 3.2, (please also refer to Lemma of our paper), we

can see that almost surely,

(1, 1) € (O (R x HHRT),
s<0
but the probability of the event {(f*, f¥) € HO(R?) x H=Y(R%)} is zero. Thus the randomization
process has no smoothing property in the scale of H® reqularity, and in the above statement we
obtain global solutions for data which are not in HO(R?) x H~1(R?). On the other hand, our result

is not a “small data result”.

Remark 0.4. By the result of Koch and Tataru [9], this theorem might hold for any V (x) that is
radial and behaves like |x|* for |x| — oo, for evample < x >2. For the sake of conciseness, we just

state the special case of V(x) = |z|2.

By the previous work [6], Burq and Tzvetkov have developed a general theory for constructing
local strong solutions to nonlinear wave equations, posed on compact Riemannian manifolds with
supercritical random initial data. Then in [7], they showed that in a particular case, which is the
nonlinear wave equation with Dirichlet boundary condition posed on the unit ball of R3, there
would be global solutions by combining the local theory with some invariant measure arguments
in [1], [2], [10], [12] and [5]. Thomann in [11] got some local well posedness for the Schrodinger
equation with a confining potential on the whole space, and then extended it to the one without
the potential. Then recently, Burq, Thomann and Tzvetkov in [4] proved the global existence of
solutions of Schrodinger equations with random initial data in R. The purpose of our paper is
considering global strong solution of the wave equation with the harmonic potential on the whole
space. So we will use some idea from [6], [7], [11], [4] and so on. But first of all, we need to prove

the Strichartz estimate for (0.1).

Let us consider about the linear wave equation without the potential term first, i.e.

v — Av=0
v(0) = vg, Ow(0) = vy,

then, there is some Strichartz estimate:

vl ze 0,1, La@ayy < Clvoll s way + V1l s -1 (ray), (0.4)



where H* (]Rd) is the usual Sobolev space, and admissible pair (p, ¢) satisfies 2 <p < 00,2 < g < ©

and
1 d d 2 d—1 d-1

-—+-=--5 -+ — < —. (0.5)
p q 2 P q 2

There are lots of results about Strichartz estimates of the above type on the whole space

R?, compact manifolds with or without boundary, noncompact manifolds and spaces with other

geometric conditions.

It is well known that there are some similar properties between the problem on the compact

manifolds with the one associated to the harmonic oscillator, so what about our case?

Theorem 0.5. For x € R, (p1,q1), (p2,q2) satisfying (0.5), and

1 d d 1 d
—t =g -s=—0+ 52
Prooq 2 2 @
we have the following estimates for solutions v to (0.1)
1Vl o (0,0, 201 )y < Ol ety + 1 f2llres -1 way + NE M o4 0.1y 198 (Ray): (0.6)

here F' is the nonlinear term of the equation.
Remark 0.6. Our result is uniformly with respect to time.

Remark 0.7. This result is not only right for |z|?, but also for any V(x) = Zd

=1 ajsz, with a; > 0

and even some V (x) behaving roughly like |z|?, for example < x >2.

To prove this Theorem, we will use the idea from [8] and so on. First, we do the dyadic
decomposition by the idea of [3], and reduce the problem to a fixed frequency. Then, we try to
write out the approximation expression of the operator e~iVH (H = —A +|z|?). By calculating
the dispersion of the operator, the result of Theorem is gained by applying the idea of Keel and
Tao [9].

The difference between the proof of (0.4) with (0.6) is that there are cases that the growth of
|x| might be much larger than |£|. Fortunately, for this cases, by estimating the Hessian Matrix,
the dispersive effect would even be better.

By the above Theorem, we will prove Theorem 0.1 by the idea of [7]. However, there are some
points we should pay attention to. First, without the periodic condition, we show that there is
some decaying of time t, i.e. v € LP(< t >~1 dt, WIP)=P(R?)). This would be enough to get the
global result and could be applied to more general cases. Secondly, because we are dealing with

the whole space case, there are some differences in the interpolation theory.
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Family of two-dimensional ideal fluid dynamics related to surface quasi-

geostrophic equation
Koji Ohkitani (University of Sheffield)

Abstract
We study 2D surface quasi-geostrophic (SQG) equation numerically and theoretically. After
reviewing recent results, we consider a generalised class of equations of ideal fluid, where
the active scalar is a fractional power « of Laplacian applied to the stream function. This
includes 2D SQG and 2D Euler equations as special cases. We present some numerical
results of the generalised system and compare them for some different values of a. In an
attempt to unify the whole family systematically, a successive approximation is introduced

to treat the SQG equation.

I. INTRODUCTION

Mathematical study on the SQG equation was initiated in [1, 2]. Since then many papers
have been published regarding the analyses of this equation, which are too numerous to cite
here. Numerical studies have been done, e.g. in [1-6]. Mathematically, the following is
the best result known for its regularity. We consider the SQG equation with hypo-viscous

dissipativity either in R? or in T?

00
D V0= —u(=0)0 (<7<,
with an initial datum 6(=,0) = fy(x). The velocity u = —V+(—A)~20 is a skewed Riesz

transform of 6, where V+ = (9,,—0,). It has been proved that when v > % we have no
blow-up [7, 8]. The hypo-viscous equation has been studied numerically in [9]. See also [10]

for more related works.

II. GENERALISED SQG EQUATION FOR INVISCID FLUIDS

We consider a generalised version of SQG equation [3, 11] for inviscid fluids

06
E+(U-V)9:O, (1)



with 0(x,0) = 6y(x). Here the velocity u is given by
u=V=>y), AY=0 (0<a<?2).

Here A = (—A)"Y? is Zygmund operator defined by Fourier transform A = |k|. The system
reduces to the 2D Euler equations if a = 2, to the 2D SQG equation if & = 1, and to a

trivially steady state if o = 0.

I1III. PERTURBATION THEORY: ODE ANALOGY

We recall a perturbation theory a la Poincaré of an ordinary differential equation (ODE)
which depends upon a parameter p, see e.g. [12, 13]. (We note that notations used in this

section are independent from those in the rest of the extended abstract.)

Consider an ODE

d
d—y = f(z,y, p), with an initial datum y(zo, 1) = yo,
x
which is assumed to be solvable for p = pg. If we consider a variation
0
2(z, p) = %’M), with an initial datum z(zg, u) = 0,
1
it satisfies
dz _ Of(z,Y,p) N of (x,Y, )
dz oY Y=y(z,u) O Y=y(z,u)

which is called an equation of variation.

An approximation for y(x, u) for small |1 — pg| may be written

oo

y(, 1) = y(w, o) = > (1 — o)"C(),

n=1

where C),(z) are suitable coefficients, e.g.

. z, - x,
Z(l‘,,uo) _ ulljilo y( lu:j — ZE) ILLO) — Cl(l‘)

IV. SUCCESSIVE APPROXIMATIONS

We apply the above idea to the generalised SQG equation. We illustrate how this is done
for the first variation. If we take the variation of (1) with respect to a, we find

Do a0 9  Ou



In R?, we find more explicitly after straightforward manipulations [14]

Do 1 [ (z—y) Iy
Dtda 27 Jge |z —y|2 Oa

dy - Vo(x) + i /R2 (log|x — 'y|)2 V+0(y)dy - Vo(x).

In principle, the equations for higher-order variations may be obtained by successive

differentiations. Given these, we may write, for example, near the 2D Euler limit oo = 2

O(x,t,a) =0(x,t,2) + i(a —2)"0,(x,t),

n

where 0, (z,t) = Z8(x,t).

V. CONCLUSION

In fact, under periodic boundary conditions we can carry out the analyses more system-
atically. A formal analysis in this case indicates that all the members in the family behave
similarly with respect to a 'new time variable’ ¢ = at. We discuss the implications of this

scaling, in connection with numerical simulations. These are to be reported in detail in [14].

Acknowledgments

It has been partially supported by an EPSRC grant EP/F009267/1. The author has been
supported by Royal Society Wolfson Research Merit Award.

[1] P. Constantin, A.J. Majda and E. Tabak, Singular front formation in a model for quasi-
geostrophic flow, Phys. Fluids 6 (1994) 9-11.

[2] P. Constantin, A.J. Majda and E. Tabak, Formation of strong fronts in the 2-D quasi-
geostrophic thermal active scalar Nonlinearity 7 (1994) 1495-1533.

[3] .M. Held, R.T. Pierrehumbert, S.T. Garner and K.L. Swanson, Surface quasi-geostrophic
dynamics, J. Fluid Mech. 282 (1995) 1-20

[4] K. Ohkitani and M. Yamada, Inviscid and inviscid-limit behavior of a surface quasi-geostrophic
flow, Phys. Fluids, 9 (1997) 876-882.

[5] P. Constantin, Q. Nie and N. Schorghofer, Nonsingular surface quasi-geostrophic flow, Physics
Letters A 241 (1998) 168-172.



[6]

[10]

[11]

[12]

[14]

J. Deng, T.Y. Hou, R. Li and X. Yu, Level Set Dynamics and the Non-blowup of the 2D
Quasi-geostrophic Equation Methods Appl. Anal. 13 (2006) 157-180.

A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative
quasi-geostrophic equation, Invent. Math. 167 (2007) 445-453.

L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-
geostrophic equation, to appear in Acta Math.

K. Ohkitani and T. Sakajo, Oscillatory damping in long-time evolution of the surface quasi-
geostrophic equations with generalised viscosity: a numerical study, Hokkaido University
Preprint Series in Mathematics # 959, April 2010.

P. Constantin, Singular, weak and absent: Solutions of the Euler equations, Physica D 237
(2008) 1926-1931.

C.V. Tran, D.G. Dritschel and R.K. Scott, Effective degrees of nonlinearity in a family of
generalized models of two-dimensional turbulence, Phys. Rev. E (2010) 016301-1-6.

K. Yosida, Bibun hoteishiki no kaiho (Methods of solving differential equations), 2nd ed., in
Japanese, (Iwanami, Tokyo, 1978).

K. Yosida, Sekibun hoteishiki ron, 2nd ed. in Japanese (Iwanami, Tokyo, 1978).

English translation: Lectures on Differential and Integral Equations, K. Yosida, (Dover, New
York, 1991).

K. Ohkitani, manuscript in preparation (2010).



Finite volume method for degenerate diffusion
problems

Norikazu SAITO

Graduate School of Mathematical Sciences
The University of Tokyo

3-8-1 Komaba, Meguro, Tokyo, 153-8914 Japan

norikazu@ms.u-tokyo.ac.jp

1 Introduction

The finite volume method (FVM) is a discretization method based on local con-
servation properties of equations so that it is well suited for PDEs of conservation
laws. Although the range of application seems to be smaller than that of the finite
element method (FEM), FVM has its own advantages. For example, FVM natu-
rally satisfies the discrete maximum principle, if it is applied to a linear diffusion
problem. We recall that the discrete maximum principle in FEM holds only when
some shape conditions on the triangulation are satisfied, and such arestriction often
causes some difficulties. In this paper, we shall reveal another advantage of FVM
through the degenerate diffusion problems and the nonlinear semigroup theory.

The purpose of this paper is to report some operator theoretical properties of
FVM applied to adegenerate elliptic equation of theformu— AAf(u) =gfor A >0
and g € L1(Q) under the homogeneous Dirichlet boundary condition. The function
f isassumed to be continuous and non-decreasing with f(0) = 0. Asiswell-known,
L theory of Brezisand Strauss ([2]) isof great useto deal with this problem. Below,
we shall see that FVM is a suitable discretization method for this problem in the
sense that the discrete version of [2] can be applied. Consequently, we immediately
deduce the generation of the nonlinear semigroup, namely, the unique existence of
atime global solution to a semidiscrete (in space) FVM for a degenerate parabolic
equation of the form u; — Af (u) = 0. Then, we readily obtain stability resultsin Lt
and L>, and order-preserving property for finite volume solutions by the nonlinear
semigroup theory. Thisistotally new approach to study FVM for degenerate elliptic
and parabolic problems.

Asan application, we shall consider adegenerate Keller-Segel system of chemo-
taxis. We shall propose a FVM that preserves the conservation of positivity and to-
tal mass. The time discretization makes use of the forward Euler method, and some
numerical examples will be presented.

Remarks. (1) There are several classes of FVM. We shall concentrate our attention
to a cell-centered classical finite volume method described in [4].

(2) Though we shall restrict our consideration to the two dimensional polygon in
what follows, it is not difficult to extend those results to smooth domains and the
three dimensional cases.



2 Degenerate parabolic equation and FVM

We consider the finite volume approximation applied to the initial-boundary value
problem for a degenerate parabolic equation,

{ut—Af(u):O in Qx(0,T),

)
u=0 on 9Qx(0,T), Uli—o = Up(X) on Q,

where Q  R? denotes a polygonal domain, T an arbitrary positive constant, and
f a non-decreasing continuous function defined on R satisfying f(0) = 0. Asis
well-known, Problem (1) describes, for instance, the flow of homogeneous fluid
in porous media, the fast (singular) diffusion problem, and the two phase Stefan
problem in enthal py formulation.

Supposing that A is an index set (set of finite number of positive integers), we
let 7 = {Di};x be a set of open convex polygonal subsets in Q satisfying the
following conditions (see, for example, Fig. 1 and 2):

(A1) Q=U{D; |ieA}.
(A2) Any Dj and D withi # j meet only in entire common sides or in vertices.

(A3) There exists a set of points {R};_.x such that R € Dj and R ¢ Dj with j #
i. Further, the line segment connecting R with P; is orthogonal to the line
including oij, if D;j and D share acommon side oij.

(A4) If thereisaside o of D; such that o C 0L, the accompanying point B isin
0Q.

Following [4], we consider a family {2 = %} of 2’s above and call it the ad-
missible meshes of Q, where h = hy, = max{diam (D;) | i € A} is the granular-
ity parameter. Moreover we call D; the control volume. We let A = A U OA,
where OA = {i € A | thelength of (OD; N9Q) > 0} and A = A\OA. Further we
set Aj = {j € A | Dj and Dj share acommon side ojj }. Let ¢i be the characteristic
function of D; for any i € A. Then, weintroduce sets of piecewise constant functions

Xn = span {Vi }icxs Vh={h€Xn|vn(R)=0(i € 0A)}.

In what follows, we write vj to express vy (P,) for v, € X, and i € A.
Now, we can state a semidiscrete (in space) finite volume approximation for (1):
find u, € C1([0, T]; V) such that

d .
m i) = 3 7 [F(uj®) ~ fu®)] (eAte©T),
e @
1 .
U(0)=ugi=— [ up(X)dx (i €0A),
' m Jp;

where m; = the area of Dj, and 4j; = the transmissibility = myj/dij. (mjj = the
length of ¢ij, and d;j = the distance from R to P;.)
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Figure 2: (left) Acutetriangulation; (right) Admissible mesh based on circumcentric
dual mesh of the acute triangulation(]

We introduce an operator Ay, : Vi, — V;, defined as

() (R) =~ ¥, 5 [f(o) — ()] (€A
JEA,
for vp, € V. Then, Problem (2) is equivalent to
%Uh(t) +ARUL(t) =0 (0<t<T), up(0) = Uo,h- )]

At this stage, we recall the L theory to (1) that was developed in early 1970's
in use of nonlinear semigroup. To summarize it, we set V = L1(Q) and introduce
operatorsL and AinV by Lo = —-Avforve D(L) ={v € Wol’l(Q) |LveV} and
Av=Lf(v)forve D(A)={veV | f(v) € D(L)}, respectively. Then, Problem (1)
is reduced to the nonlinear evolution equation in'V:

%u(t) +AUt)=0 (0<t<T),  u(0)=uo. (4)

It is proved in Brezis and Strauss [2] that the operator —A is m-dissipative in V.
This meansthat R(l + AA) = D(A) =V and aso

Jo—dlly < lo—3+Mu—MABll; (0,3 € D(A); A>0),



where || [|p = || - ILp(q) for 1 < p < =. Then, we can apply theory of Crandall and
Liggett [3] to obtain the generation of semigroup {S(t) };~, onV by

m

St) = s—Iim(I +rt—nA>_ ,

Moo

and u(t) = S(t)up is regarded as the solution of (4). Another important property of
Aisthe order-preserving, that is,

I+X) 1> 1+ (g,geVst g>§ A>0).
It isalso proved in [2] that the L™ stability of the resolvent
[0+2) ]| <llgl. (9€L7(Q); A>0)

holds. Thisimplies L* stability of the semigroup

IS(t)uoll.. < [Uoll.  (Uo € L7(€)).

Our first purpose is to prove the nonlinear finite volume operator Ay, has analo-
gous properties with the nonlinear operator A, which alows us to apply nonlinear
semigroup theory in analysis of the finite volume method. Actually, we have the
following.

Theorem 1. For any A > O, the operator Ay, has the following properties;
(i) RO+ M) =Vy .
(i) [lon—0nll2 < [lon— O + AMnvn — Mndn|| for any vn,on € Vh.
(i) (14 XAy "Lgn > (I 4+ MAR) "1gh for gn,gn € Vi such that gn, > gp.

(V) [[(1+MAn) *gnlle < llgnll-- for gn € Vh.

Then, weimmediately deduce the following corollary.

Corollary 1. (i) The operator —Ay is m-dissipative in Vj, with respect to the L1
norm. Therefore, Problem (2) is uniquely solvable globally in time and the
solution is given as up(t) = Sy(t)ug h, where

S(0) = lim ( +imAh)_m.

M—oo

(i) [[Sh(t)uoh — Sh(t)donll1 < [|uon — Topllz for uop,dop € Vh andt € [0, T].
(iiif) Sh(t)ugpn > Si(t)lon for ugp,lon € Vi such that ugp > o andt € [0, T].

(iv) [1Sh(t)uonlle < |Uonlle for Up € Vi andt € [0,T].



In a previous paper, Mizutani et al. [6], we proposed a semidiscrete (in space)
finite element approximation provided with order-preserving and L! contraction
properties, making use of piecewise linear trial functions and the lumping mass
technique. The crucial step of analysis wasto prove that the finite element approx-
imation of A has analogous properties of (i)—iv) above. However, we could not
follow the method of [2], since we confronted some issues. For example, f(v) is
not a piecewise linear function, even if v is a piecewise linear function. So, we had
to take totally different approach from [2]. For example, we used a discrete Kato's
inequality to prove the L contraction property, and we used the nonlinear Chernoff
formulaand aspecial time-discretization of [1] to provethe L™ stability of (discrete)
semigroup. Consequently, the proof was long and intricate.

The proof of Theorem 1, however, can be done in the essentially similar way as
[2]. Thus, in this sense, the finite volume approximation is a suitable discretization
method for the operator Af (u).

The second purpose of this paper isto make error analysis. The goal of thisend
isto derive

lim sup un(t) —u(t)]|, = 0. (5)
10tefo,T)
In fact, we have the following result in the ssimilar manner as [6].
Theorem 2. If Q is a convex polygon, Ug is continuous on Q with the boundary
value zero on 0Q, f is strictly increasing continuous function with f(0) = 0, and

the admissible mesh is regular in the sense of [4], then we have the convergence of
the semigroup (5).

3 Degenerate Keller-Segel system

As an application of the previous consideration, we consider the finite volume ap-
proximation for a degenerate Keller-Segel system,

(= V- (V(u)—uVep(n)) in Qx(0,T),
kv = D,Av — kiv + kou in Qx(0,T),
9 d v (6)
af(U)—Uagﬁ(lD—o, 5—0 on aQX(O,T),

(Ult=0 = Uo, v|t=0 = 10 on Q,

where Q denotes a polygonal domain in R?, f and ¢ are non-decreasing continuous
functions defined on R with f(0) = 0, v is the outer unit normal vector to 0€2, and
Dy, k, k1,ko, T are positive constants. In the non-degenerate case f (u) = Dyu with a
positive constant D, Problem (6) describes the aggregation of slime moldsresulting
from their chemotactic features. Here, u is defined to be the density of the cellular
slime molds, v the concentration of the chemical substance secreted by molds them-
selves, k the relaxation time, ¢ (v) the sensitive function, and kyv — kou the ratio of



generation/extinction. We have developed conservative finite el ement methods for
the non-degenerate case, cf. [7], [8]. Our schemes made use of Baba-Tabata's up-
wind technique combined with the mass-lumping based on the barycentric domain
and a semi-implicit time discretization with a time-increment control. That is, at
every discrete time step t, = Aty + - - - + At,,, we adjust the time-increment Aty in
order to obtain a positive solution. Consequently, our finite element approximations
have positivity and mass conservation properties which areimportant features of the
origina system. Furthermore, we succeeded in establishing optimal/quasi-optimal
error estimatesin LP x W1 with asuitable p > 2.

We shall propose a finite volume scheme for the degenerate case (6) that pre-
serves the conservation of positivity and total mass. The time discretization makes
use of the forward Euler method. (Our scheme may be regarded asthe fully explicit
version of Filbet’'s one [5].) Some numerical results will be also presented.
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