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In order to compute crystal growth one needs to efficiently track the interface
between different phases. In simple situations this results in the problem of com-
puting the solution of a geometric evolution equation involving the curvature of
the interface. In this talk, we review a variational formulation for such geometric
evolution laws that leads to discretizations with very good mesh properties, and we
indicate how these formulations can be extended to situations where the interface
evolution is coupled to a bulk equation. For simplicity we state the equations for
curves in the plane first and later indicate how the approach can be generalized
to higher dimensions.

Given a parameterization ~x(ρ, t) : I × [0, T ] → R
2, I := R/Z, of the family of

closed curves Γ(t) ⊂ R
2, we note that the L2- and H−1-gradient flow of length,

i.e. the curvature flow and the surface diffusion flow, respectively, can be written
as

(1) ~xt . ~ν =

{

κ

−κss

, κ ~ν = ~xss ,

with κ the curvature of Γ and ~ν a unit normal. Note that the formulation (1)
is independent of the tangential component, ~xt . ~xs, of the velocity ~xt. However,
when (1) is discretized with the help of piecewise linear finite elements, then the
corresponding discrete tangential velocity is no longer arbitrary. In fact, the spa-
tially discrete solutions are such that the polygonal curves Γh(t), where they are
not locally flat, are equidistributed at every time t > 0.

On introducing the appropriate spaces V h and V h of periodic piecewise lin-
ear vector- and scalar-valued parametric finite elements, we obtain the following
semidiscrete continuous-in-time approximation of (1). Given Γh(0), for t ∈ (0, T ]

find Γh(t) = ~Xh(I, t), with ~Xh(t) ∈ V h, and κh(t) ∈ V h such that

〈 ~Xh
t , χ ~νh〉hh −

{

〈κh, χ〉hh
〈κh

s , χs〉h
= 0 ∀ χ ∈ V h,(2a)

〈κh ~νh, ~η〉hh + 〈 ~Xh
s , ~ηs〉m = 0 ∀ ~η ∈ V h;(2b)

where 〈f, g〉h :=
∫

Γh(t)
f . g ds =

∫

I
f . g | ~Xh

ρ (t)| dρ with 〈·, ·〉hm the mass lumped in-

ner product. It is now straightforward to show that (2b) implies that neighbouring

elements of Γh(t) = ~Xh(I, t) have the same length or are parallel. When introduc-
ing fully discrete approximations, it is possible to use semi-implicit time stepping
or a fully implicit approach. In the former case, we obtain linear schemes that in-
trinsically move mesh points tangentially so that e.g. numerical steady states are
always equidistributed, while the latter leads to highly nonlinear approximations
that truly equistribute at each time level; see [1, 2] and [9], respectively. Both
variants are unconditionally stable.
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An advantage of our scheme (2a,b), that follows from the formulation (1), is
that other geometric evolution laws can be handled easily. For example, nonlinear
curvature flow, including the inverse curvature flow, area preserving curvature
flow, Willmore flow (or elastic flow) for curves, as well as higher codimension flows
of curves in R

d, d ≥ 3, and geodesic flows of curves flowing on a given manifold,
can all be considered; see [1, 2, 10] for details.

The approximation (2a,b) can also be generalized to cover the geometric evolu-
tion of curve networks, where different curves move by their given normal velocities
and where certain conditions have to hold at triple junctions, where three curves
meet at a point. It turns out that the natural generalization of the weak formula-
tion used to derive (2a,b) approximates all the necessary triple junction conditions
correctly; see [1, 2].

Replacing the isotropic curve length |Γ| :=
∫

Γ
1 ds with a weighted length of

the form |Γ|γ :=
∫

Γ
γ(~ν) ds, where γ : R

2 \{~0} → R>0 is a given one-homogeneous
anisotropy function, yields the anisotropic analogues of the geometric evolution
equations of curvature flow and surface diffusion, i.e.

(3) ~xt . ~ν =

{

β(~ν) κγ

−(β(~ν) [κγ ]s)s

, κγ ~ν = [γ′(~ν)]⊥s ,

where ~ν = −~x⊥
s , κγ is the weighted curvature, and β : S1 → R>0 is an anisotropic

mobility. The finite element approximations based on (2a,b) can now be extended
to approximate the flows (3). The fully discrete schemes can be shown to be
unconditionally stable for arbitrary smooth convex anisotropies, in the case of a
fully implicit time discretization ([9]), and for anisotropies of the form

(4) γ(~p) =

[

L
∑

ℓ=1

[γ(ℓ)(~p)]r

]

1

r

=

[

L
∑

ℓ=1

[~p .G(ℓ) ~p]
r

2

]

1

r

,

where G(ℓ) ∈ R
2×2, ℓ = 1 → L, are symmetric and positive definite, and r ∈ [1,∞);

see [3, 10].
Moreover, the ideas presented above naturally generalize to the approximation

of geometric evolution equations for hypersurfaces in R
3. Examples are the mean

curvature flow, nonlinear mean curvature flow and surface diffusion for isotropic
(see [4]) and anisotropic surface energies (see [6]), the Willmore flow and Helfrich
flow (see [5]), as well as the evolution of surface clusters with triple junction lines
and quadruple junction points (see [7]). In all of the isotropic cases, we can show
that our semidiscrete continuous-in-time approximations produce triangulations
with very good mesh qualities, so called conformal polyhedral surfaces; see [4, §4]
for details. Such surfaces are characterized by the fact that the two popular notions
of discrete vertex normals, given by the directions of steepest descent of area and
volume, respectively, coincide; which in turn means that the triangulation cannot
be bad. Related properties can be derived for anisotropic surface energies.

Finally, we can also consider situations where the interface evolution is coupled
to an equation that needs to hold in a bulk domain. For instance, the evolution of
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Figure 1. Solid plates and sectored plates.

a solidifying front Γ(t) in a Stefan problem with anisotropic Gibbs-Thomson law
and kinetic undercooling can be expressed as

(5) ρ (~xt . ~ν) = β(~ν) [α κγ − a u] on Γ(t),

where u, usually a rescaled temperature, satisfies a heat equation in the bulk do-
main Ω, with an energy balance at the interface leading to jumps in the gradient
of u across Γ(t). Coupling our natural parametric finite element approximation of
(5) to a finite element approximation of the evolution of u in the bulk, we are able
to introduce stable fully discrete schemes which mimic the underlying Lyapunov
structure of the continuous problem, see [8]. When u is interpreted as a concentra-
tion, then the studied Stefan problem can be used to model the solidification from
a supersaturated solution, which is relevant for snowflake growth. An example
computation, for a surface energy of the form (4) with a hexagonal prism Wulff
shape, can be seen in Figure 1.
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