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An introduction to the theory of homogenization
for first and second order elliptic pde in random

environments

Panagiotis E. Souganidis
Department of Mathematics

University of Chicago

I will discuss the recently developed theory of homogenization for first and
second order elliptic pde in random environments. I will begin reviewing the
classical theory, then I will discuss the main difficulties one faces when going
from periodic to random environment and I will present the basic results for
Hamilton-Jacobi and fully nonlinear second order equationsw. I wil conclude
with some results about rates of convergence.
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On the weak Harnack inequality for fully nonlinear
PDEs with unbounded ingredients

　
Shigeaki Koike (Saitama University)

In this walk, we discuss the weak Harnack inequality for Lp-viscosity
supersolutions of

P+(D2u) + µ(x)|Du|m ≥ −f(x) in Ω,

where µ ∈ Lq
+(Ω) (q > n), and f ∈ Lp

+(Ω) (q ≥ p > p0 for some p0 ∈ [n/2, n))
are given functions, Ω ⊂ Rn a domain, and m ≥ 1 a constant. Fixing
0 < λ ≤ Λ, we use the following Pucci operators:

P+(X) := max{−trace(AX) | λI ≤ A ≤ ΛI} (X ∈ Sn)

The interior/boundary weak Harnack inequality is a key tool to establish
Hölder continuity of Lp-viscosity solutions, strong maximum principle, maxi-
mum principle in unbounded domains, and also the local maximum principle.

Motivated by a pioneering work [1] by Caffarelli, the notion of Lp-viscosity
solutions was introduced by Caffarelli-Crandall-Kocan-Świȩch [3] to study
fully nonlinear PDEs. Our aim is to establish the weak Harnack inequality
even when f belongs to a wider space than Ln, µ is unbounded, and the
superlinear growth in Du is considered.

After [3], Fok [4] first studied Lp-viscosity solutions of fully nonlinear
PDEs with unbounded ingredients. In [6], we extend some results in [4], e.g.
the ABP maximum principle and the strong solvability, by which we mean
the existence of Lp-strong solutions. Under some restriction, we also obtain
the ABP maximum principle in case when m > 1 (see [5], [6]).

In order to prove the weak Harnack inequality, we follow Caffarelli’s ar-
gument (cf. [2]). However, to this end, we need some modifications because
we deal with unbounded coefficients. For instance, we cannot use “explicite”
fundamental solutions associated with Pucci operators.

We note that Sirakov [10] obtained the Hölder continuity of Lp-viscosity
solutions without the weak Harnack inequality when m = 1, q > n and
p ≥ n.

Moreover, to establish the weak Harnack inequality in the superlinear
case (i.e. m > 1), we obtain the strong solvability of Pucci extremal PDEs
with superlinear terms in [8]. We will mention the local maximum principle
in [9].
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Homogenizations of Partial Differential Equations
with Oscillating Boundary Data

Ki-ahm Lee
Department of Mathematical Sciences

Seoul National University

In this talk we are going to discuss Linear or Nonlinear Partial Differential
Equations with Oscillating Dirichlet or Neumann Boundary data. First, we
are going to overview the possible issues through examples: lower dimensional
character of the boundary and the possibility of multiple limits. And then
we will discuss the homogenization processes of the limits. Finally, we will
find out the averaging of the boundary data with respect to the Nonlinear
PDE.
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Stochastic Homogenization:

An introduction to some recent variants

and to numerical approaches

Claude Le Bris a

aÉcole Nationale des Ponts et Chaussées,

6 & 8, avenue Blaise Pascal, 77455 Marne-La-Vallée Cedex 2 and

INRIA Rocquencourt, MICMAC project, B.P. 105, 78153 Le Chesnay, France

E-mail address: lebris@cermics.enpc.fr

The series of lectures will overview some recent contributions on several theoretical aspects and numerical
approaches in stochastic homogenization. After an introduction to the elementary aspects of stochastic
homogenization, a variant of the classical theory will be presented. It has been introduced in [6], and
further studied in [11, 16]. The relation between stochastic homogenization problems and other multiscale
problems in materials science [7] will be emphasized. Several numerical approaches will be presented: some
for genuinely stochastic problems (where variance issues are a practical concern and need to be addressed
for efficiency purposes, [9, 10, 13]), and some for approximations of stochastic problems when the random
character is only a perturbation of a deterministic model [1, 2, 3, 12, 14]. Most of these contributions are
summarized in [15, 4]. Further details will be available in [5, 11, 17].

The series of talks will be centered around a simple, linear elliptic situation, since the focus is

• (a) deliberately elementary,

• (b) more on the stochastic setting, its relation with situations relevant for applications and its require-
ments in terms of numerical approaches, than

• (c) on the complexity of the equation itself.

However, given the topic of the conference, one purpose of the series of talks will be to draw connections
with more elaborate cases involving nonlinear equations. Several suggestions for application to the nonlinear
setting of the ideas and techniques currently developed in the simple situation will be given. The idea is to
hopefully spark interest in, and foster strong interaction with the audience, expert in nonlinear equations.
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A Hamilton-Jacobi-Bellman equation in the space of probability measures

Andrzej Świȩch

School of Mathematics

Georgia Institute of Technology

Atlanta, GA 30332, U.S.A.

We will present results on the Hamilton-Jacobi-Bellman equation related to an
optimal control problem for a mixed flow of Hamiltonian and gradient type in
the space of probability measures. The optimal control problem is motivated
by a stochastic interacting particle model giving the 2-D Navier-Stokes equa-
tions in the vorticity formulation as mean-field equation. It can be interpreted
as an optimal control problem for an abstract gradient-Hamiltonian flow in
the Wasserstein space. We will introduce an appropriate definition of viscosity
solution for the associated Hamilton-Jacobi-Bellman equation in the space of
probability measures and we will present the basic tools needed to deal with
such equations. We will discuss how to show a comparison theorem and how to
prove that the value function is a viscosity solution. This is a joint work with
Jin Feng.
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The Knothe-Rosenblatt processes by the zero-noise
limit of a class of stochastic controls

Toshio Mikami
Department of Applied Mathematics, Hiroshima University

The Knothe-Rosenblatt rearrangement plays a crucial role in many fields, e.g., the
Brunn-Minkowski inequality and statistics (see [3], [9] and the references therein) and
can be constructed by a system of the Monge-Kantrovich problems for conditional
probabilities (see [5]). In this talk we introduce the stochastic analogue of the Knothe-
Rosenblatt rearrangement which we call the Knothe-Rosenblatt process, via the
stochastic control (see [2] for stochastic control). We give a characterization of the
Knothe-Rosenblatt process via the convergence result similar to below. Let d ≥ 2
and P0, P1 ∈ M1(R

d) := the set of all Borel probability measures on Rd with a weak
topology. Suppose that P0(dx)/dx exists and that

∫
Rd |x|2(P0(dx) + P1(dx)) is finite.

Then for any ε > 0, the minimizer of the following is unique (see e.g. [8], [10], [11]):

inf
{∫

Rd×Rd

d∑
k=1

ε2(k−1)|yk − xk|2μ(dxddyd)
∣∣∣∣ (0.1)

μ(dxd × Rd) = P0(dxd), μ(Rd × dyd) = P1(dyd)
}
,

where xd := (xi)1≤i≤d ∈ Rd. Suppose, in addition, that P1 does not have a pure point
part. Then the unique minimizer of (0.1) weakly converges to P0(dxd)δTKR(xd)(dyd) as
ε → 0, where δx(dy) denotes the delta measure on {x} and TKR denotes the Knothe-
Rosenblatt rearrangement (see [1]).

Let Ad denote the set of all Rd-valued, continuous semimartingales {X(t)}0≤t≤1 on
a (possibly different) complete filtered probability space such that there exists a Borel
measurable βX : [0, 1] × C([0, 1]) �→ Rd for which
(i) ω �→ βX(t, ω) is B(C([0, t]))+-measurable for all t ∈ [0, 1],
(ii) X(t) = X(0) +

∫ t
0 βX(s,X)ds + WX(t) (0 ≤ t ≤ 1).

Here B(C([0, t]))+ := ∩s>tB(C([0, s])), B(C([0, t])) and WX denote the Borel σ-field of
C([0, t]) and an (FX

t )-Brownian motion, respectively, and FX
t := σ[X(s) : 0 ≤ s ≤ t]

(see e.g. [4]).

Definition 0.1 ([6]). Let 1 < k ≤ d, 1 ≤ d1 < · · · < dk = d and Li : [0, 1] ×
Rdi × Rdi−di−1 �→ [0,∞) be Borel measurable (i = 1, · · · , k). For P0, P1 ∈ M1(R

d),
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{Xd(t) = (Xi(t))1≤i≤d}0≤t≤1 ∈ Ad is called the Knothe-Rosenblatt process (for
Brownian motion) if for all i = 1, · · · , k,

βXd
(t,Xd)di

= βXdi
(t,Xdi

), (0.2)

and Xdi
is the unique minimizer of

(0.3)

Vi(P0,di
, P1,di

|Xdi−1
)

:=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
inf{E[

∫ 1
0 L1(t,Yd1(t); βYd1

(t,Yd1))dt]|Yd1 ∈ Ad1 ,

PYd1(0)−1 = P0,d1 , PYd1(1)−1 = P1,d1} =: V1(P0,d1 , P1,d1) (i = 1),
inf{E[

∫ 1
0 Li(t,Ydi

(t); βYdi
(t,Ydi

)di−1,di
)dt]|Ydi

∈ Adi
,

PYdi
(0)−1 = P0,di

, PYdi
(1)−1 = P1,di

, PY−1
di−1

= PX−1
di−1

} (1 < i ≤ k),

where Pt,di
(dxdi

) := Pt(dxdi
× Rd−di) and βYdi

(t,Ydi
) =: (βYdi

(t,Ydi
)dj−1,dj

)i
j=1 ∈

Πi
j=1R

dj−dj−1 for Ydi
∈ Adi

. When it is not confusing, we do not mention the depen-
dence of {Xd(t)}0≤t≤1on P0, P1 and {Li}1≤i≤k.

Remark 0.1 (i) In the definition of Ad, the diffusion matrix is an identity. One can
consider the case where it is a variable matrix. In particular, the Knothe-Rosenblatt
process generally depends on P0, P1, {Li}1≤i≤k and the diffusion matrix. In this talk,
for the sake of simplicity, we do not consider the case where the diffusion matrix is a
variable matrix. (ii) If L1 = |ud1 |2, then Xd1 is the h-path process for Brownian motion,
provided V1(P0,d1 , P1,d1) is finite. In this sense, the Knothe-Rosenblatt process can
be considered as a generalization of the h-path process.

Let 1 ≤ k ≤ d, 1 ≤ d1 < · · · < dk = d and P0, P1 ∈ M1(R
d). For i = 2, · · · , k and

ε > 0,

V ε
i (P0,di

, P1,di
) := inf

{
E

[ i∑
j=1

εj−1
∫ 1

0
Lj(t,Ydj

(t); βYdi
(t,Ydi

)dj−1,dj
)dt

]∣∣∣∣ (0.4)

PYdi
(0)−1 = P0,di

, PYdi
(1)−1 = P1,di

,Ydi
∈ Adi

}
.

We prove that a minimizer of V ε
k (P0, P1) converges to the Knothe-Rosenblatt process

as ε → 0. We first consider the case where k = 2 under the following assumption.
(A.1)j. (i) Lj ∈ C([0, 1]×Rdj ×Rdj−dj−1 : [0,∞)). (ii) For (t, x) ∈ [0, 1]×Rdj , Lj(t, x; ·)
is strictly convex.
(A.2)j. There exists γ > 1 such that

lim inf
u∈Rdj−dj−1 ,|u|→∞

inf{Lj(t, x; u) : (t, x) ∈ [0, 1] × Rdj}
|u|γ

> 0. (0.5)
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(A.3)j.

ΔLj(ε1, ε2) := sup
Lj(t, x; u) − Lj(s, y; u)

1 + Lj(s, y; u)
→ 0 (0.6)

as ε1, ε2 → 0, where the supremum is taken over all (t, x) and (s, y) ∈ [0, 1] × Rdj for
which |t − s| ≤ ε1, |x − y| < ε2 and over all u ∈ Rdj−dj−1 .

Theorem 0.1 Suppose that k = 2 and that (A.1)j -(A.3)j hold for j = 1, 2. Then for
any P0, P1 ∈ M1(R

d) for which the Knothe-Rosenblatt process {Xd(t)}0≤t≤1 exists, a
minimizer {Xε

d(t)}0≤t≤1 of V ε
2 (P0, P1) exists and weakly converges to {Xd(t)}0≤t≤1 as

ε → 0. In addition,

lim
ε→0

E
[∫ 1

0
L1(t,X

ε
d1

(t); βXε
d
(t,Xε

d)d1)dt
]

= V1(P0,d1 , P1,d1), (0.7)

lim
ε→0

E
[∫ 1

0
L2(t,X

ε
d(t); βXε

d
(t,Xε

d)d1,d)dt
]

= V2(P0, P1|Xd1). (0.8)

We consider the case where k > 2. We introduce new assumptions.
(A.1)j’. (i) Lj ∈ C([0, 1] × Rdj × Rdj−dj−1 : [0,∞)). (ii) For (t, x) ∈ [0, 1] × Rdj ,
Lj(t, x; ·) is twice differentiable and there exists CL > 0 such that

inf{< D2
uLj(t, x; u)z, z > |z ∈ Rdj−dj−1 , |z| = 1} ≥ CL,

for all (t, x, u) ∈ [0, 1] × Rdj × Rdj−dj−1 , where D2
u := (∂2/∂ui∂uj)

dj−dj−1

i,j=1 .
(A.4)j. Lj(t, x; o) and DuLj(t, x; u) are bounded on [0, 1] × Rdj × BR for all R > 0,
where BR := {u ∈ Rdj−dj−1||u| ≤ R}.

Remark 0.2 ([7]). Suppose that (A.1)j -(A.4)j hold for j = 1, · · · , k. Set

Hε(t,xdk
; zdk

) := sup
{
< zdk

,udk
> −

k∑
j=1

εj−1Lj(t,xdj
;udj−1,dj

)
∣∣∣∣udk

∈ Rdk

}
.

For the minimizer {Xε
d(t)}0≤t≤1 of V ε

k (P0, P1), there exists a sequence {ϕn}n≥1 of so-
lutions to

∂ϕε(t, x)

∂t
+

1

2
	ϕε(t, x) + Hε(t, x; Dxϕ

ε(t, x)) = 0 ((t, x) ∈ (0, 1) × Rd) (0.9)

such that

bXε
d
(t,Xε

d(t)) = lim
n→∞

DzH
ε(t,Xε

d(t); Dxϕn(t,Xε
d(t))) a.s.. (0.10)
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Let {Xd(t)}0≤t≤1 denote the Knothe-Rosenblatt process. Consider the following
PDEs: for all i = 1, · · · , k,

∂vi(t,xdi
)

∂t
+

1

2
	di

vi(t,xdi
)+ < ∇di−1

vi(t,xdi
), bXdi−1

(t,xdi−1
) > (0.11)

+Hi(t,xdi
;∇di−1,di

vi(t,xdi
)) = 0

((t,xdi
) ∈ (0, 1) × Rdi), where bXd0

:= 0 and

Hi(t,xdi
; z) := sup{< z, u > −Li(t,xdi

; u)|u ∈ Rdi−di−1} (z ∈ Rdi−di−1).

If there exists a classical solution vi(t,xdi
) to (0.11) which attains the maximum in the

duality theorem for Vi (see [5]), then the following holds:

bXdi
(t,xdi

)di−1,di
= DzHi(t,xdi

;∇di−1,di
vi(t,xdi

)), (0.12)

where Dz = (∂/∂zj)
di−di−1

j=1 .
P ε

1,d1
:= P1,d1 and Xε

1,d1
:= Xd1 which is the unique minimizer of V1(P0,d1 , P1,d1),

provided it exists. For i = 2, · · · , k, let (Zε
i,di

)di−1
:= Xε

i−1,di−1
and

d(Zε
i,di

)di−1,di
(t) = bXdi

(t,Zε
i,di

(t))di−1,di
dt + d(WZε

i,di
)di−1,di

(t), (0.13)

and P ε
1,di

:= PZε
i,di

(1)−1. Let Xε
i,di

denote the unique minimizer of V ε
i (P0,di

, P ε
1,di

),
provided it exists. Then we have

Theorem 0.2 Suppose that (A.1)j’, (A.3)j and (A.4)j hold for all j = 1, · · · , k. Then
for any P0, P1 ∈ M1(R

d) for which the Knothe-Rosenblatt process {Xd(t)}0≤t≤1 exists
and for which there exists a solution vi(t,xdi

) ∈ C1,2
b ([0, 1] × Rdi) to (0.11) such that

(0.12) holds for all i = 1, · · · , k, a minimizer {Xε
k,d(t)}0≤t≤1 of V ε

k (P0, P
ε
1,d) exists and

converges to {Xd(t)}0≤t≤1 in the sense of relative entropy as ε → 0:

H(P (Xε
k,dk

)−1|P (Xdk
)−1) :=

1

2
E

[∫ 1

0
|βXε

k,dk
(t,Xε

k,dk
) − bXdk

(t,Xε
k,dk

(t))|2dt
]
→ 0

(0.14)
(ε → 0). For j = 1, · · · , k, we also have

lim
ε→0

E
[∫ 1

0
Lj(t,X

ε
k,dk

(t)dj
; βXε

k,dk
(t,Xε

k,dk
)dj−1,dj

)dt
]

(0.15)

= E
[∫ 1

0
Lj(t,Xdj

(t); bXdj
(t,Xdj

(t))dj−1,dj
)dt

]
.
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Degenerate diffusion equation with a drift potential

Inwon Kim

June 14, 2010

Consider a C2 function Φ(x) : IRn → IR such that Φ(x) → ∞ as |x| → ∞. Also consider
a nonnegative, continuous function ρ0(x) : IR

n → IR which has compact support Ω0. We
study the following equation:

(PMED) ρt = ∆(ρm) +∇ · (ρ∇Φ)

with m > 1 and with initial data ρ0(x). Note that the equation preserves the mass
(
∫
ρ(·, t)dt ≡ C).

In pressure variable u = m
m−1ρ

m−1, the equation becomes

(PMED − P ) ut = (m− 1)u∆y + |∇u|2 +∇u · ∇Φ+ (m− 1)u∆Φ.

Note that in this form the free boundary velocity V = ut
|Du| on Γ = ∂{u > 0} is given by

V = |∇u|+ ∇u

|∇u|
· ∇Φ.

Formally the solution of (PMED) is a gradient flow with the energy

(E) E(ρ) =

∫
ρm(x) + ρ(x)Φ(x)dx

with respect to the Wasserstein distance. Using this observation, it was shown in [CJMTU]
(and earlier in [BH]) that ρ uniformly converges to one of the equilibrium solutions of (E),

ρ∞ = (C − Φ)+

(or combination of different components of above function) in L1-norm as time goes to
infinity. Further, when Φ is convex, one can show that the convergence is exponential.

On the other hand, maximum-principle type arguments hold for the equation. Therefore it
is possible to introduce the notion of viscosity solutions for (PME−D), which is equivalent
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to the notion of weak solutions defined in L1-theory of the solutions. Using the maximum
principle type arguments, we show that the free boundary of the solution uniformly con-
verges to that of the equilibrium solution, with an exponential rate when Φ is convex, as
time goes to infinity.

Besides comparison principle, we have used estimates on the size of the solution with respect
to the local L1-norm, which can be summarized as below:

Lemma -1.1. Let us fix (x0, t0) ∈ IRn × (0,∞). Then there exists k, k′ and C depending
on m, n, Φ and sup ρ0 such that, for 0 < a < 1, the following holds:

(a) If

a−n

∫
Ba(x0)

u(·, t0)dx ≥ ak.

Then u(·, t0 + a) ≥ ak
′
in Ba(x0).

(b) If ∫
B2(0)

u(·, t)dx ≤ a for t1 ≤ t ≤ t2 := t1 + log(1/a)

Then u(·, t2) ≤ Ca1/n+1 on B1(0).

These estimates are obtained via perturbation arguments and previously obtained regularity
results on degenerate diffusion equations. It is possible to improve aforementioned estimates
to obtain the Hölder regularity on the solutions of (PMED) for m ≤ 2, however Hölder
regularity for solutions of (PMED) with m > 2 is still an open question.

As an application, we show a uniform convergence result on diffusion-aggregation equation

ρt = ∆(ρm) +∇ · (ρ∇Φ),

on a n-dimensional torus, withm = 2, where Φ = u∗K andK(x) is a C2, radially symmetric
potential.

This is joint work with L. Chayes, H. Lei and Y. Yao. ([KL], [CKY])
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A Hamilton-Jacobi with discontinuous Hamiltonian arising from weighted mean
curvature flow

Yoshikazu Giga Tokyo, Przemysław Górka, Talca & Warszawa, Piotr Rybka, Warszawa

Our goal is to study the Hamilton-Jacobi equations

ut + H(t, x, u, ux) = 0 in (0, T )× IR, u(0, x) = u0(x), x ∈ IR, (1)

when H is discontinuous. There is a sizable amount of literature on this subject. These papers mostly
deal with the case of H independent of u, so (1) is the heterogeneous eikonal equation, see [CH],[CR],
[DE], [DZS], [T]. Much less is known when the Hamiltonian depends on u.

Our motivation comes from the singular weighted mean curvature (wmc) flow,

βV = σ + κγ on Γ(t). (2)

Here κγ is the weighted mean curvature and it has be to carefully interpreted, [GGR]. Formally, it is
defined as

κγ = −divS (∇Xγ)(X)|X=n(x), (3)

so the wmc flow is a second order parabolic equation. When we consider a well-justified anisotropy
function γ given by the following formula

γ(p1, p2) = |p1|γΛ + |p2|γR,

then it turns out that the (3) does not make any sense.
We want to consider a simple situation of a graph of a function of one variable having finite limits

at infinity. This graph has a central facet,

r

L

− r
00

0

When we properly interpret (3) for γ as above, then (1) becomes (2). Then two basic questions
arise:
(a) existence of solutions,
(b) uniqueness of solutions.

The issue of existence is rather technical, in some interesting situations it relies essentially on the
use of viscosity theory. The basic result was presented in [GGR]. In my talk I will briefly mention the
main ideas, here I will omit the details, because I want to concentrate on uniqueness. More precisely
we want to show a Comparison Principle for viscosity solutions to (1).

We will now present the properties of the Hamiltonian we study and we will state the main result.
We consider the Hamiltonian H given by the following formula,

H(t, x, u, p) =
{ −σ(t, r∗(t), u)m(p), if |x| < r0(t),
−σ(t, x, u)m(p), if |x| ≥ r0(t).

(4)
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Function σ is even and increasing for x > 0 and

0 <
∂σ

∂u
(t, x, u) ≤ M. (5)

We make the following assumption on the discontinuity line defined by the functions r0 and r∗:
(R1) r0, r∗ are bounded continuous functions on [0, T ], for all t ∈ [0, T ] r∗(t) > r0(t) and

Γ = {(t,±r0(t) : t ∈ [0, T ]} is a Lipschitz curve.

This condition reflects our need to localize the discontinuity. It is in line with most of the literature.
Thus, for each time instance, the graph of H looks like

x

H

r
0

The remaining properties of H that we need may be summarized as follows, please note that (H5)
requires extra comments.

(H1) Hamiltonian H is lower semicontinuous in [0, T ]× IR× IR× IR;
(H2) H is continuous away from Γ and it has a jump discontinuity at Γ.
(H3) H∗ is continuous in G = {(t, x) : |x| ≥ r0(t)}, while H∗ is continuous on the closure of

([0, T ]× IR) \G. Here H∗ (resp. H∗) is the standard upper (resp. lower ) semicontinuous envelope
of H .

(H4) For any ε1, ε2 in {−1, 1} we have H(t, ε1x, u, ε2p) = H(t, x, u, p).
(H5) Hamiltonian H is strictly increasing with respect to u, i.e. there is a positive h0, such that

the following inequality holds for all u2, u1, x, t and p,

H(t, x, u2, p)−H(t, x, u1, p) ≥ h0(u2 − u1). (6)

(H6) For all t, u and p function x 7→ H(t, x, u, p) is decreasing for x > r0(t), moreover
H(t, x, u, p) = H(t, r∗(t), u, p) for x ∈ [−r0(t), r0(t)].

(H7) lim
|x|→∞
p→0

H(t, x, u, p) = H∞ ∈ C([0, T ]× IR) locally uniformly with respect to (t, u) ∈ [0, T ]×

IR, i.e. H∞ does not depend upon p.
Remarks. Condition (H4) is just for convenience, but (H5) is essential. It is possible to convert

H given by (4) into one satisfying (6), by means of the following change of variables vnew = etλuold,
where λ = −2M and M is the constant appearing in (5).

Assumption (H7) stems from the fact that we do not impose explicit boundary condition, thus we
have to control the behavior of the Hamiltonian and sub- super-solutions at space infinity. For this
reason we introduce the following notion.

Definition. Let us suppose that H satisfies (H7). We shall say that a piecewise C1-function w is a
supersolution at infinity of (1) provided that w is a supersolution to (1), the following limits exist and
they are uniform with respect to t ∈ [0, T ],

wt → w∞t , w → w∞, wx → 0 as |x| → ∞
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and
w∞t (t) + H∞(t, w∞(t)) ≥ 0. (7)

Here is our main result.
Theorem. Let us assume that a measurable function H satisfies (R1) and (H1–H7) and for u, v ∈
BUC([0, T ]× IR) the following conditions are valid:
(a) v is a supersolution to (1), u is a subsolution to (1) and u(0, x) ≤ v(0, x).
(b) v is a piecewise C1-function.
(c) v is a supersolution of (1) at infinity.
Then, for all t > 0

u(t, x) ≤ v(t, x).

The idea of the proof is to regularize H . Namely we define,

Hδ(t, x, u, p) =





H(t, x, u, p) |x| ≥ r0(t) + δ,

(1− λ
δ )H(t, r∗, u, p) + λ

δ H(t, r0 + δ, u, p) |x| = r0(t) + λ, λ ∈ (0, δ),
H(t, r∗(t), u, p) |x| ≤ r0(t).

This implies that we have to shift the supersolution from the region where we change H . That is, we
set

vδ(t, x) =





v(t, x− δ) for x > δ,
v(t, 0) for x ∈ [−δ, δ],
v(t, x + δ) for x < −δ,

It is important to see that for any ε > 0, one can choose δ so that vδ(0, x) + ε ≥ u(0, x).
Subsequently, we show that vδ + ε is a supersolution while u is a subsolution to

dt + Hδ(t, x, d, dx) = 0. (8)

At this point we may apply the classical comparison to conclude that vδ(t, x) + ε ≥ u(t, x). After
passing to the limit with ε our claim follows.

In order to complete the talk we will present the main points of construction of the viscosity
solutions to (1), all details of this process can be found in [GGR].
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A Game-theoretic Proof for Fattening
of Motion by Curvature and Applications

Qing Liu
Graduate School of Mathematical Sciences

University of Tokyo

In this talk, we intend to present an application of the game method (e.g.,
[3], [2]) for the level-set mean curvature flow equation:

(1)

{
∂tu− |∇u|div( ∇u

|∇u|) = 0 in Rn × (0, T ),

u(x, T ) = u0(x) in Rn.

By comparing the optimal strategies of the game and its inverse one, we
explain the fattening of level sets for examples of “figure eight” type, which
are known to cause fat level sets instantly [1]. One of the advantages is that
we can avoid general parabolic PDE theory, which is usually required in the
rigorous proof of fattening.

Our interpretation can also be applied to the stationary Dirichlet bound-
ary problem:

(2)

{
−|∇U |div( ∇U

|∇U |)− 1 = 0 in Ω,

U(x) = 0 on ∂Ω.

It is an open question whether a (weak) comparison principle of (2) holds
for a general domain Ω [3]. We show that the nonuniqueness of viscosity
solutions of (2) is intimately connected, via games, with the fattening of
positive mean curvature flow. We again take the example of a planar “figure
eight” set to see the loss of comparison principle for (2) even in the weak
sense.
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Travelling waves for the 3D forced mean
curvature motion

Jean-Michel Roquejoffre
Institut de Mathématiques de Toulouse

Université Paul Sabatier

We will explain how to construct travelling waves solutions for the forced
mean curvature motion for graphs, that are asymptotic to those of the eikonal
equation. The relevance of this construction for the unbalanced Allen-Cahn
equation will also be discussed.

Joint work with R. Monneau and V. Roussier.
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Large time behavior of solutions of
Hamilton-Jacobi-Bellman equations with quadratic

nonlinearity in gradients∗

Naoyuki Ichihara† (Hiroshima University)

The talk is concerned with the Cauchy problem for semi-linear parabolic equations of the form⎧⎨⎩∂tu − 1
2
Δu + H(x, Du) = 0 in (0, +∞) × RN ,

u(0, · ) = u0 in RN ,
(1)

where Hamiltonian H = H(x, p) and initial datum u0 satisfy the following assumptions:

(A1) H ∈ C2
p(R2N ), where Ck

p (RN ) denotes the set of functions in Ck(RN ) that are polynomially
growing for any multi-index α ∈ (Z+)N with 0 ≤ |α| ≤ k.

(A2) There exists a g ∈ Cp(RN ) := C0
p(RN ) such that

|DxH(x, p)| ≤ g(x)(1 + |p|2), (x, p) ∈ R2N .

(A3) There exist constants κ1, κ2 > 0 such that

κ1|η|2 ≤ D2
ppH(x, p)η · η ≤ κ2|η|2, (x, p, η) ∈ R3N , (2)

where D2
ppH(x, p) stands for the Hessian of H(x, p) with respect to p.

(A4) There exists a function φ0 ∈ C3
p(RN ) such that lim

|x|→∞
F [φ0](x) = −∞, where F [ · ] is defined

by

F [ψ](x) := −1
2
Δψ(x) + H(x, Dψ(x)), x ∈ RN , ψ ∈ C2(RN ).

(A5) There exists a function φ1 ∈ C3
p(RN ) such that

lim
|x|→∞

(φ0 − φ1)(x) = ∞, inf
x∈RN

(F [φ0](x) − F [φ1](x)) > −∞.

(B1) u0 ∈ Φ0 := {v ∈ Cp(RN ) | infRN (v − φ0) > −∞}.

As a typical example satisfying (A1)-(A5), we have in mind Hamiltonians of the form

H(x, p) =
1
2
a(x)p · p + b(x) · p − V (x), (x, p) ∈ R2N ,

with appropriate a ∈ C∞
p (RN , RN ⊗ RN ), b ∈ C∞

p (RN , RN ) and V ∈ C∞
p (RN ).

Under these assumptions, we study the large time behavior of solutions of (1), specifically,
convergence of the form

u(T, · ) − (φ( · ) − λT ) −→ 0 in C(RN ) as T → ∞, (3)

where λ is a real constant which represents the growth rate of the solution and φ is a function on
RN regarded as a stationary state of the normalized solution u(T, · ) + λT as T → ∞. Pair (λ, φ)
in (3) turns out to be a solution of the time-independent equation, or ergodic problem

−1
2
Δφ + H(x, Dφ) = λ in RN . (4)

∗A part of this talk is based on a joint work with S.-J. Sheu (Academia Sinica, Taiwan).
†Supported in part by Grant-in-Aid for Young Scientists (B), No. 21740076, MEXT.

－23－



Asymptotic behavior of type (3) has been studied in [1, 2] for similar types of second-order
parabolic equations. Paper [1] stays in the periodic setting, namely, equations are considered
in the torus TN instead of RN , and convergence (3) is proved for more general, possibly time-
inhomogeneous, quasi-linear parabolic equations (see [1, Theorem 4.1]). Literature [2] studies
equations whose Hamiltonian is given by

H(x, p) = αx · p + H(p) − f(x), α > 0,

and obtain (3) under the assumption that f and u0 are globally Lipschitz on RN (see [2, Theorem
6.5]).

The principal difference between their works and ours lies in the growth of solutions as |x| → ∞.
Under their settings, solutions become globally Lipschitz continuous with respect to x. This fact
especially leads to a uniform gradient bound on (0,∞) × RN of solutions. In particular, growth
property for H(x, p) as |p| → ∞ does not affect the large time behavior of solutions. Contrary to
their cases, solution u to (1) is locally Lipschitz in general and quadratic nonlinearity in p of H

plays a crucial role in the large time behavior of u.
We now state our main theorems.

Theorem 1. Assume (A1)-(A4). Then, there exists a unique real constant λ∗ such that (4) with
λ = λ∗ has a solution φ ∈ C2(RN ) in the class Φ0. Moreover, if φ, ψ ∈ C2(RN ) are two solutions
of (4) with λ = λ∗, then φ − ψ is constant in RN .

Theorem 2. Assume (A1)-(A5) and (B1). Then, there exists a unique solution u ∈ C1,2((0,∞)×
RN ) ∩ C([0,∞) × RN ) of (1) such that inf0≤t≤T infx∈RN (u(t, x) − φ0(x)) > −∞ for all T > 0.

Theorem 3. Assume (A1)-(A5) and (B1). Let u be the solution of (1), and let λ∗ be the constant
in Theorem 1. Suppose also that

{u(T, · ) + λ∗T |T > 1} is bounded below on any compact subset of RN . (5)

Then, convergence (3) holds for some solution φ ∈ Φ0 of (4).

We emphasize here that Theorem 3 is not obvious at all since solutions of (4) admit ambiguity of
additive constants. In fact, φ in (3) depends on the choice of u0.

Unfortunately, we do not know if (5) is always true. The following (A6) is a sufficient condition
for the validity of (5).

(A6) There exist a function φ2 ∈ C3
p(RN ) such that lim

|x|→∞
F [φ2](x) = −∞ and

(φ − φ0)(x) ≤ α(φ − φ2)(x) + C, x ∈ RN ,

for some C > 0 and 0 < α < κ1/κ2, where κ1, κ2 > 0 are the constants in (A3).

Theorem 4. Assume (A1)-(A5), (B1), and either (A6) or κ1 = κ2 in (A3). Then, (5) is valid.

To prove these theorems, we employ both analytical and probabilistic arguments.

Remark. Initial value problem (1) has a stochastic control interpretation. For each T > 0 and
x ∈ RN , we consider the following minimizing problem:

Minimize J(T, x; ξ) := Ex

[∫ T

0

L(ξt, X
ξ
t ) dt + u0(X

ξ
T )

]
,

subject to Xξ
t = X0 −

∫ t

0

ξs ds + Wt, 0 ≤ t ≤ T,
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where L(x, ξ) := supp∈RN (p · ξ − H(x, p)), ξ = (ξt)0≤t≤T is a given admissible control and W =
(Wt)0≤t≤T denotes an N -dimensional standard Brownian motion. Then, value function u(T, x) :=
infξ J(T, x; ξ) is characterized under suitable assumptions as the unique solution to Hamilton-
Jacobi-Bellman equation (1). From this point of view, it is natural, eventually indispensable, to
consider Hamiltonians and initial data polynomially growing in x since linear growth condition
excludes the so-called LQG (Linear Quadratic Gaussian) control. In the LQG case, H(x, p) and
u0(x) are quadratically growing both in x and p.

Remark. Papers [5, 6] deal with similar types of asymptotic problems in the context of mathe-
matical finance. In those papers, more specific Hamilton-Jacobi-Bellman equations with constant
initial data are discussed under slightly different types of assumptions. Concerning the large time
behavior of solutions, they prove the following:

u(T, · )
T

−→ −λ, u(T, · ) − u(T, 0) −→ φ in C(RN ) as T → ∞.

These convergences are automatically valid if our “unnormalized” (3) is true. Notice here that φ

in the second convergence does not rely on the choice of initial function, whereas φ in (3) does
depend on u0.
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Liouville theorems for supersolutions of
elliptic equations in unbounded domains

Scott N. Armstrong
Department of Mathematics
The University of Chicago

In joint work with Boyan Sirakov, we introduce a new maximum principle-
based method for proving the nonexistence of positive supersolutions of el-
liptic equations. The model equation is −∆u = f(u) in an exterior domain,
where f(u) behaves like a power of u. Even for this semilinear equation we
obtain new (and sharp) results, although our method extends easily to other
types of elliptic equations, such as degenerate quasilinear equations, fully
nonlinear equations, systems of Lane-Emden type, as well as to more general
unbounded domains.
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EXISTENCE OF VISCOSITY SOLUTIONS FOR A
NONLOCAL EQUATION MODELLING POLYMER

CRYSTAL GROWTH

Olivier Ley
IRMAR, INSA de Rennes, France
olivier.ley@insa-rennes.fr

Joint work with Pierre Cardaliaguet and Aurélien Monteillet

The talk is based on [8] and is concerned with the construction of viscosity
solutions for the coupled system

i) u
t
(x, t) = ḡ(v(x, t))|Du(x, t)| in RN × (0, +∞),

ii) v
t
(x, t) − ∆v(x, t) + κḡ(v(x, t))HN−1⌊{u(·, t) = 0} = 0

in RN × (0, +∞),

iii) v(x, 0) = v0(x), u(x, 0) = u0(x) in RN ,

(0.1)

where the unknowns are u, v : RN × (0, +∞) → R, N ≥ 1 ; u
t
, v

t
, Du, Dv

and ∆v denote respectively the time derivatives, the gradient and the Lapla-
cian. The term HN−1⌊{u(·, t) = 0} = 0 is the N − 1-Hausdorff measure
restricted to the set

Γ(t) := {x ∈ RN ; u(x, t) = 0}. (0.2)

The datas κ, ḡ, u0 and v0 satisfy Assumption (A) below.

Following [7, 10], the 3-dimensional version of this system modelizes the
growth of the surface Γ(t) of a polymer crystal in a nonhomogeneous tem-
perature field v(x, t). In this model one describes the evolving surface Γ(t)
of the crystal by (0.2), i.e., as the 0-level-set of the auxiliary function u.

This is the level-set approach, see [11] and references therein. It has ex-
perimentaly been observed that the normal velocity V

n
of the crystal is a

known, positive function of the temperature:

V
n

= ḡ(v(x, t)),

where ḡ is a bell-shaped function depending on the specific polymer ([9]).
Expressing the normal velocity V

n
in terms of the function u gives the eikonal

equation (0.1)-i), which holds at least on the set {u(·, t) = 0}. As for the
temperature field v it has to follow a heat equation with a (negative) heat
source proportional to V

n
HN−1⌊Γ(t). Whence (0.1)-ii).

Similar systems, coupling eikonal and diffusion equations, appear in many
applications: shape optimization, image segmentation, etc. However the
mathematical analysis of such couplings is delicate and few existence or
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uniqueness results are available in the literature. Most of them are con-
cerned with classical solutions on a short time interval. For instance short
time existence and uniqueness of smooth solutions are obtained for system
(0.1) in [10].

The point is that, in general, one cannot expect such a system to have
classical solutions when the time becomes large: indeed the front Γ(t) usu-
ally develops singularities in finite time. For this reason a good description
of this front is obtained by its representation as the 0-level-set of the solution
of an eikonal equation, which has to be understood in the sense of viscosity
solutions. However this approach (which is satisfactory from a numerical
view point) raises severe mathematical difficulties. Such issues have been
overcome in only a very few number of situations: for a dislocation dynam-
ics model, introduced in [1] and analyzed in [2, 3, 4], or for a system arising
in the study of the asymptotics of a Fitzhugh-Nagumo model [5, 12, 13]. In
this later framework, the associated heat equation is of the form

v
t
(x, t) − ∆v(x, t) − ḡ(v(x, t))1{u(·,t)≥0} = 0 , (0.3)

where 1
E

is the indicator function of a set E. In [5, 12, 13] existence of
generalized solutions for this Fitzhugh-Nagumo system is proved, while [6]
contains some uniqueness results. However, system (0.1) turns out to be
much more challenging than the coupling in the Fitzhuch-Nagumo system.
Indeed the surface term HN−1⌊{u(·, t) = 0} in (0.1)-ii) is more singular
than the volume term 1{u(·,t)≥0} in (0.3). For this reason, up to now, only
the long time existence in space dimension N = 2 is known [14].

The aim is to obtain a similar existence result for the physical dimension
N = 3 (and in fact in any dimension). In order to state precisely our main
result, let us introduce the definition of a solution to (0.1).

Definition 0.1. A solution (u, v) of (0.1) on the time interval [0, T ] is a

map (u, v) : RN × [0, T ] → R2 which is bounded, uniformly continuous, such

that u satisfies the equation

u
t
(x, t) = ḡ(v(x, t))|Du(x, t)| in RN × (0, T ), u(x, 0) = u0(x) in RN

in the viscosity sense, with∫
T

0

HN−1({u(·, t) = 0}) < +∞ ,

and such that v(·, 0) = v0 and v satisfies in the sense of distributions

v
t
(x, t) − ∆v(x, t) + κḡ(v(x, t))HN−1⌊{u(·, t) = 0} = 0 in RN × (0, T ) .

In order to explain more precisely our result, we then give the set of
assumptions on the datas, denoted by (A).

(A1) κ is a fixed real number (κ is positive in the case of a negative heat
source and negative otherwise), ḡ : RN → R is Lipschitz continuous,
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bounded, and there exist A, B > 0 such that

A ≤ ḡ(z) ≤ B for all z ∈ R .

(A2) v0 : RN → R is Lipschitz continuous and bounded.

(A3) u0 : RN → R is Lipschitz continuous and satisfies {u0 = 0} =
∂{u0 > 0}. Moreover, we assume that {u0 ≥ 0} is compact and has
the interior ball property of radius r0 > 0, that is,

For all x ∈ K0, there exists y ∈ K0, with x ∈ B(y, r0) ⊂ K0 , (0.4)

where B(y, r0) is the closed ball of radius r0 centered at y.

Our result states that, under the above assumptions, system (0.1) has a
solution:

Theorem 0.2. Under Assumption (A), for any T > 0, there exists at least

one solution to System (0.1). This solution is bounded on RN × [0, T ] and

satisfies, for all x, y ∈ RN , 0 ≤ s, t ≤ T,

|v(x, t) − v(y, t)| ≤ C|x − y|(1 + | log |x − y||),

and

|v(x, t) − v(x, s)| ≤ C|t − s|
1
2 (1 + | log |t − s||).

for some constant C which only depends on the data appearing in Assump-

tion (A) and T.

Note that uniqueness of the solution is an open problem (even in dimen-
sion 2).

Let us now briefly describe the method of proof. The main difficulty
in (0.1) is the singular surface term in the heat equation: to deal with this
term, one has to obtain fine regularity estimates for the level-sets of u. Such
estimates, which cannot be derived from the usual regularity results on
the eikonal equation, have been investigated through several works. When
the velocity x 7→ ḡ(v(x, t)) is positive of class C1,1, the front enjoys the
interior ball property (0.4) [2, 4]; it has an interior cone property when
the velocity is positive and Lipschitz continuous [6]. Unfortunately, for
System (0.1), the interior cone property is not sufficient for guarantying the
stability of the surface term HN−1⌊{u(·, t) = 0}. Moreover we were only
able to prove that the map x 7→ v(x, t) has a modulus of continuity of the
form ω(ρ) = ρ(1 + | log(ρ)|) (even when the front is smooth this map is at
most Lipschitz continuous [10]). Our main and new estimate on the eikonal
equation is an interior paraboloid property for the level-sets of u. We call
paraboloid a solid deformation of the set{

x = (x′, x
N

) ∈ RN−1 × R ; x
N
≥ c|x′|1+γ

}
, c > 0, γ ∈ (0, 1).

This property is obtained under the (weak) assumption that the velocity
x 7→ ḡ(v(x, t)) is of class C0,α. For this, we use a representation formula
for the solutions of (0.1)-i) in terms of optimal control as well as sharp
regularity properties of optimal solutions for this control problem. As a
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direct consequence of the interior paraboloid property one obtains that the
front has an interior cone property. These interior paraboloid and cone
properties are the two key ingredients which allow us to obtain a priori

estimates on the heat flow: indeed, because of the cone property, the front
Γ(t) can be covered by a finite (and controlled) number of Lipschitz graphs.
The stability result on the surface term HN−1⌊{u(·, t) = 0} is a consequence
of the interior paraboloid property.
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A few problems for Hamilton-Jacobi equations
arising from step motions of crystal growth

Yoshikazu Giga
Graduate School of Mathematical Sciences

University of Tokyo
Komaba 3-8-1, Meguro-ku
Tokyo, 153-8914, JAPAN

The growth of crystal is often explained by step motions of crystal sur-
faces. This idea goes back to W. K. Burton, N. Cabrera and F. C. Frank
[BCF]. Several Hamilton-Jacobi equations for heights of crystals are derived
as a continuum limit as each step height goes to zero [EY].

A typical problem in the theory of crystal growth is stability of a facet
(flat portion). This is qualitatively studied by [C] and more quantatively by
[KIO]. The issue is whether perfectly flat crystal surfaces grow keeping its
flatness. It seems that there are two kinds of facets—facet due to interfacial
energy and facet due to kinetics. The first one is found in an equilibrium
shape and it is explained as singularity of surface energy. Its evolution and
stability is also studied, see eg. [GR]. The second one is a facet due to
kinetics and studied in crystal growth literature [C], [KIO]. It is formulated
as follows. We consider an evolution of height h(= hε) of a crystal surface at
x ∈ R2 and at time t which is determined by

ht − σ(x)m(
|∇h|

ε
)

√
|∇h|2 + 1 = 0

Here m(p) = p tanh(1/p) and ε is a criterion of (microscopic) local slope
which is very small. The function σ ≥ 0 is concentration of adatom at the
crystal surface. We consider microscopic time approximation proposed in
[YGR] by introducing microscopic time τ so that

hε(x, ετ) = εu(x, τ) + o(ε) as ε → 0
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to get
ut − σ(x)m(|∇u|) = 0 (1)

Stability of facets in kinetic sense corresponds to the large time asymptotics
of the equation (1) when initial data equals zero which corresponds to a flat
surface. However, if the initial data equals zero, u ≡ 0 is the solution so it is
not interesting. This is because we did not consider step source at a crystal
surface so it is natural to see that crystal surface does not move at all.

Instead, we consider the one-dimensional Dirichlet problem for (1) in
(0,∞) by assigning the speed at zero. A typical problem is to consider σ(x) =
σ0(1 − x2)+, σ0 > 0 and u(0, t) = ct with 0 < c < σ0. Since the Hamiltonian
is non coercive, conventional theory for the large time asymptotics for the
Hamiltonian does not apply. As printed out in [YGR] when u = 0 initially,
one observes that

u(x, t) ∼ ct in (0, xc) as t → ∞,

where xc > 0 is the point such that σ0(1 − x2
c)+ = c. Outside (0, xc), u(x, t)

grows slowly with respect to O(t). Physically, the region (0, xc) is the stable
region of the facet. The conventional theory for coercive Hamiltonians yields
a uniform asymptotics for all domain.

This result is generalized by Q. Liu, H. Mitake and the author [GLM1]
by extending a notion of viscosity solutions defined in a part of a domain
for more general setting. The asymptotics of the Cauchy problem (1) with
slightly different m satisfying m(0) > 0 is studied by Q. Liu, H. Mitake and
the author [GLM2] by introducing a singular Neumann problem. In this talk
we shall explain some of these results.

Finally, we mention the issue of step source. In [SK] an explicit ‘solution’
of evolution with step source is given without defining the notion of solutions
of the equation. A typical example is

ht − |∇h| =
m∑

j=1

vjI(x − aj), (2)

where vj > 0 and I(x) = 1 for x = 0, I(x) = 0 otherwise and aj ∈ R2 is j-th
step source place. A suitable notion of the solution was not known. In a work
with progress the author with his student N. Hamamuki introduced a new
notion for the solution which leads a unique global existence of Lipschitz
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solutions for Lipschitz initial data. One important observation is that we
interpret (2) as

ht − |∇h| =
∑
j=1

(vj − |∇h|)+I(x − aj).

In this talk we also plan to mention these topics.
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----------------------------------------------------------------------------------------------------------

Lecture 1: A tale of two scales: Fundamentals of crystal surface morphological 
evolution 

Abstract:

The goal with this lecture is to introduce basic physical and mathematical concepts 
permeating epitaxial relaxation and growth. This area of research encompasses 
mathematically rich phenomena and at the same time is strongly driven by laboratory
experiments. In materials science, the design of novel devices requires understanding 
how structures on crystal surfaces evolve and fluctuate across several scales, from the 
atomistic to the continuum. In the last few decades, considerable theoretical efforts have 
focused on describing the motion of crystal surfaces. In this talk, I will review a few 
related models and their underlying principles. First, I will introduce the main 
mechanisms of crystal surface motion from a physics perspective, exemplifying the role 
of surface diffusion. Second, I will review past theories that aim to describe crystal 
surface morphological evolution above and below the roughening transition temperature. 
Emphasis will be placed on two scales, macroscale and nanoscale, and corresponding 
models: (i) a thermodynamics approach, which stems from the pioneering works of 
Mullins, Herring and others, on the basis of a continuum surface energy; and (ii) step 
flow models for temperatures below the roughening transition, according to the
celebrated theory of Burton, Cabrera and Frank (BCF). The latter approach invokes the 
motion of line defects of atomic size. A third approach involves kinetic Monte Carlo
simulations, which aim to capture aspects of the atomistic scale. I will discuss merits 
and limitations of these points of view; and mention germane issues of modeling and 
analysis, thus setting the stage for the following two lectures.

----------------------------------------------------------------------------------------------------------
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Lecture 2: From discrete schemes to macroscopic evolution laws: I. Coarse 
graining and homogenization in epitaxial relaxation 

Abstract:

In this lecture, I will focus on derivations and implications of deterministic macroscopic 
laws for the relaxation of crystal surface morphologies at temperatures below the 
roughening transition. At the nanoscale, the surface motion is described by discrete 
equations for the positions of steps. At the macroscale, it is plausible to use Partial 
Differential Equations (PDEs) for the surface height or slope. Such PDEs are usually of 
fourth order (under surface diffusion) and fully nonlinear. The focus of this talk will be 
the linkage between descriptions at the nanoscale and the macroscale, especially in 2+1 
dimensions where the curvature of steps and various anisotropies play an important role. 
My exposition will address: (i) Basic coarse-graining techniques for the formal
derivation of PDEs from discrete schemes for steps; (ii) the case of surface 
reconstructions, where a particular homogenization procedure is applicable; (iii) the 
connection of the derived PDEs to thermodynamics principles, especially to continuum 
singular interfacial energies; and (iv) predictions of PDEs in 2+1 dimensions on the 
basis of numerical simulations, and their possible implications to experiments. For a 
large part of this lecture, I will restrict attention to monotone step trains, in the absence 
of macroscopically flat surface regions (facets). Issues in the modeling of material
deposition (growth) and stochastic effects will be outlined. 

----------------------------------------------------------------------------------------------------------

Lecture 3: From discrete schemes to macroscopic evolution laws: II. Crystal facets 
and boundary conditions

Abstract:

In this talk, I will address subtle physical and mathematical issues in the global 
interpretation of PDEs that govern crystal surface motion below the roughening 
transition. In such temperature regimes, crystal surfaces often develop macroscopically 
flat surface regions, called facets. The existence of facets greatly complicates the 
interpretation of macroscopic evolution laws, since facets usually host microscopic 
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phenomena not captured by continuum theories. First, I will introduce the concept of a 
static facet from a thermodynamics perspective with recourse to the equilibrium shapes 
of crystals. Second, I will discuss the evolution of facets from a macroscopic viewpoint, 
starting with the pioneering work of Spohn who treated facets as free boundaries. This 
approach is intimately connected to the subgradient formulation for macroscopic 
evolution PDEs. Third, I will elaborate on the nature of facets from a kinetic, 
microscopic viewpoint. The connection of discrete schemes for steps to macroscopic 
evolution laws in the presence of facets will be illustrated in this context. I will show 
that, in principle, the discrete schemes are not consistent with the traditional
thermodynamics interpretation of the macroscopic laws. This observation alludes to 
interesting mathematical questions.
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Abstract An epitaxial thin film consists of layers of atoms whose lattice properties are de-
termined by those of the underlying substrate. This paper reviews mathematical modeling,
analysis and simulation of growth, structure and pattern formation for epitaxial systems,
using an island dynamics/level set method for growth and a lattice statics model for strain.
Epitaxial growth involves physics on both atomistic and continuum length scales. For exam-
ple, diffusion of adatoms can be coarse-grained, but nucleation of new islands and breakup
for existing islands are best described atomistically. In heteroepitaxial growth, mismatch be-
tween the lattice spacing of the substrate and the film will introduce a strain into the film,
which can significantly influence the material structure, for example leading to formation
of quantum dots. Technological applications of epitaxial structures, such as quantum dot
arrays, require a degree of geometric uniformity that has been difficult to achieve. Modeling
and simulation may contribute insights that will help to overcome this problem. We present
simulations that combine growth and strain showing the structure of nanocrystals and the
formation of patterns in epitaxial systems.

Keywords Epitaxial growth · Level set method · Island dynamics · Lattice statics · Strain
energy · Nanocrystals · Quantum dots

1 Simulation of Epitaxial Growth

Epitaxy is the growth of a thin film on a substrate in which the crystal properties of the film
are inherited from those of the substrate. Since an epitaxial film can (at least in principle)
grow as a single crystal without grain boundaries or other defects, this method produces
crystals of the highest quality. In spite of its ideal properties, epitaxial growth is still chal-
lenging to mathematically model and numerically simulate because of the wide range of
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length and time scales that it encompasses, from the atomistic scale of Ångstroms and pi-
coseconds to the continuum scale of microns and seconds. This papers reviews our work
on simulation of epitaxial growth and of strain in epitaxial system, with applications to the
structure of nanocrystals and the formation of patterns on epitaxial surfaces. For simulation
of growth we use an island dynamics model with a level set simulation method. Atomistic
strain is computed from a linearized lattice statics model.

1.1 Epitaxial Growth

The geometry of an epitaxial surface consists of step edges and island boundaries, across
which the height of the surface increases by one crystal layer, and adatoms which are
weakly bound to the surface. Epitaxial growth involves deposition, diffusion and attach-
ment of adatoms on the surface. Deposition is from an external source, such as a molecular
beam. The principal dimensionless parameter (for growth at low temperature) is the ratio
D/(a4F), in which a is the lattice constant and D and F are the adatom diffusion coef-
ficient and deposition flux. It is conventional to refer to this parameter as D/F , with the
understanding that the lattice constant serves as the unit of length. Typical values for D/F

are in the range of 104 to 108.
The models that are typically used to describe epitaxial growth include the following:

Molecular dynamics (MD) consists of Newton’s equations for the motion of atoms on an
energy landscape. A typical Kinetic Monte Carlo (KMC) method simulates the dynamics
of the epitaxial surface through the hopping of adatoms along the surface. The hopping
rate comes from an Arrhenius rate of the form e−E/kT in which E is the energy barrier for
going from the initial to the final position of the hopping atom. Island dynamics models,
one of the subjects of this article, describe the surface through continuum scaling in the
lateral directions but atomistic discreteness in the growth direction. Continuum equations
approximate the surface using a smooth height function h = h(x, y, t), obtained by coarse
graining in all directions. Rate equations describe the surface through a set of bulk variables
without spatial dependence.

The island dynamics model described here is solved using a level set simulation method.
Within the level set approach [28, 29, 40], the union of all boundaries of islands of height
k + 1, can be represented by the level set ϕ = k, for each k. For example, the boundaries of
islands in the submonolayer regime then correspond to the set of curves ϕ = 0. Growth of
these islands is described by a smooth evolution of the function ϕ.

Validation of the island dynamics/level set method will be detailed in this article by com-
parison to results from an atomistic KMC model. The KMC model employed is a simple
cubic pair-bond solid-on-solid (SOS) model [46]. In this model, atoms are randomly de-
posited at a deposition rate F . Any surface atom is allowed to move to its nearest neighbor
site at a rate r that is determined by r = r0 exp{−(ES + nEN)/kBT }, where r0 is a prefactor
which is chosen to be 1013 s−1, kB is the Boltzmann constant, and T is the surface tem-
perature. ES and EN represent the surface and nearest neighbor bond energies, and n is the
number of nearest neighbors.

Level set methods have been used for a number of thin film growth problems that are
related to the applications described below. In [13] a level set method was used to simulate
coarsening, and in [43] a level set method was used to describe spiral growth in epitaxy.
A general level set approach to material processing problems, including etching, deposition
and lithography, was developed in [1, 2] and [3]. A similar method was used in [30] for
deposition in trenches and vias.
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1.2 Island Dynamics

Burton, Cabrera and Frank [7] developed the first detailed theoretical description for epi-
taxial growth. In this “BCF” model, the adatom density solves a diffusion equation with an
equilibrium boundary condition (ρ = ρeq), and step edges (or island boundaries) move at
a velocity determined from the diffusive flux to the boundary. Modifications of this theory
were made, for example in [6, 11, 16, 20, 23], to include line tension, edge diffusion and
nonequilibrium effects. These are “island dynamics” models, since they describe an epi-
taxial surface by the location and evolution of the island boundaries and step edges. They
employ a mixture of coarse graining and atomistic discreteness, since island boundaries are
represented as smooth curves that signify an atomistic change in crystal height.

Adatom diffusion on the epitaxial surface is described by a diffusion equation of the form

∂tρ − D∇2ρ = F − 2(d/dt)Nnuc (1)

in which the last term represents loss of adatoms due to nucleation and desorption from the
epitaxial surface has been neglected. Attachment of adatoms to the step edges and the re-
sulting motion of the step edges are described by boundary conditions at an island boundary
(or step edge) � for the diffusion equation and a formula for the step-edge velocity v.

For the boundary conditions and velocity, several different models are used. The simplest
of these is

ρ = ρ∗,

v = D[∂ρ/∂n] (2)

in which the brackets indicate the difference between the value on the upper side of the
boundary and the lower side. Two choices for ρ∗ are ρ∗ = 0, which corresponds to irre-
versible aggregation in which all adatoms that hit the boundary stick to it irreversibly, and
ρ∗ = ρeq for reversible aggregation. For the latter case, ρeq is the adatom density for which
there is local equilibrium between the step and the terrace [7].

Line tension and edge diffusion can be included in the boundary conditions and interface
velocity as in

∂ρ/∂n± = DT (ρ± − ρ∗) − μκ,

v = DT n · [∇ρ] + βρ∗ss + (μ/DE)κss,
(3)

in which ρ± and ∂ρ/∂n± are the limiting values of the adatom density and its normal deriv-
ative at a step from the upper (+) and lower (−) terraces, n is the normal direction at a step
(pointing into the lower terrace), κ is curvature, s is the variable along the boundary, and
DE is the coefficient for diffusion along and detachment from the boundary. The term βρ∗ss

was derived in [20] due to edge diffusion.
A snapshot of the results from a typical level-set simulation is shown in Fig. 1. This figure

shows the epitaxial surface, consisting of islands of various heights, after deposition of 40
layers. Numerical details on implementation of the level set method for thin film growth are
provided in [12].

1.3 Nucleation and Submonolayer Growth

For the case of irreversible aggregation, a dimer (consisting of two atoms) is the smallest
stable island, and the nucleation rate is

dNnuc

dt
= Dσ1〈ρ2〉, (4)
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Fig. 1 Snapshot of a typical
level-set simulation after
deposition of 40 layers

where 〈·〉 denotes the spatial average of ρ(x, t)2 and

σ1 = 4π

ln[(1/α)〈ρ〉D/F ] (5)

is the adatom capture number as derived in [5, 45]. Without the factor σ1, (4) describes the
rate of collisions for a system of uniformly distributed particles that do not stick together; the
factor σ1 provides the leading order correction for particles that stick together. The parameter
α reflects the island shape, and α � 1 for compact islands. Expression (4) for the nucleation
rate implies that the time of a nucleation event is chosen deterministically. Whenever NnucL

2

passes the next integer value (L is the system size), a new island is nucleated. Numerically,
this is realized by raising the level-set function to the next level at a number of grid points
chosen to represent a dimer.

The choice of the location of the new island is determined by probabilistic choice with
spatial density proportional to the nucleation rate ρ2. This probabilistic choice constitutes
an atomistic fluctuation that must be retained in the level set model for faithful simulation of
the epitaxial morphology. For growth with compact islands, computational tests have shown
additional atomistic fluctuations can be omitted [36].

Additions to the basic level set method, such as terms that represent finite lattice constant
effects and edge diffusion (not the term κss but a surrogate term that has a similar effect), are
easily included [37]. The level set method with these corrections is in excellent agreement
with the results of KMC simulations. For example, Fig. 2 shows the island size distribution
(ISD)

ns = �

s2
av

g(s/sav), (6)

where ns is the scaled density of islands of size s, sav is the average island size, and g(x) is a
scaling function. The top panel of Fig. 2 is for irreversible attachment; the other two panels
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Fig. 2 The island size
distribution, as given by KMC
(squares) and LS (circles)
methods, in comparison with
STM experiments (triangles) on
Fe/Fe(001) [44]. The reversibility
increases from top to bottom

include reversibility that will be discussed below. All three panels show excellent agreement
between the results from level set simulations, KMC and experiment.

1.4 Multilayer Growth

In ideal layer-by-layer growth, a layer is completed before nucleation of a new layer starts. In
this case, growth on subsequent layers would essentially be identical to growth on previous
layers. In reality, however, nucleation on higher layers starts before the previous layer has
been completed and the surface starts to roughen. This roughening transition depends on
the growth conditions (i.e., temperature and deposition flux) and the material system (i.e.,
the value of the microscopic parameters). At the same time, the average lateral feature size
increases in higher layers, which we will refer to as coarsening of the surface.

These features of multilayer growth and the effectiveness of the level set method in repro-
ducing them is illustrated in Fig. 3 which shows the island number density N as a function
of time for two different values of D/F from both a level set simulation and from KMC. The
results show near perfect agreement. The KMC results were obtained with a value for the
edge diffusion that is 1/100 of the terrace diffusion constants. The island density decreases
as the film height increases which implies that the film coarsens.

The simulation results presented above have been for the case of irreversible aggregation.
If aggregation is reversible, the KMC method must simulate a large number of detachment
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Fig. 3 Island densities N on
each layer for D/F = 106 (lower
panel) and D/F = 107 (upper
panel) obtained with the level-set
method and KMC simulations.
For each data set there are 10
curves in the plot, corresponding
to the 10 layers

and reattachment events that can slow down the simulations significantly. On the other hand,
in a level set simulation these events can be directly replaced by their time average and there-
fore the simulation only needs to include detachment events that do not lead to a subsequent
reattachment, making the level set method much faster than KMC, as shown in [33]. Re-
versibility can be included in the level set method using the boundary conditions (2) with
ρ∗ = ρeq in which ρeq depends on the local environment of the island, in particular the edge
atom density [8]. For islands consisting of only a few atoms, however, the stochastic nature
of detachment becomes relevant and is included through random detachment and breakup
for small islands, as detailed in [33].

2 Strain in Thin Films

2.1 Numerical Simulations for Thin Films

In heteroepitaxial growth, a thin film of one material (e.g., Ge) is grown on top of a substrate
of a second material (e.g., Si), with perfect, single crystalline structure in both materials and
with the lattice structure of the film determined by the substrate. If the lattice constants af

and as for the film and substrate are different (e.g., aGe = 1.04 ×aSi) then strain is generated
in the film. Figure 4 illustrates the horizontal compression, as well as the resulting vertical
expansion, in the lattice of the film atoms, when they are placed on a substrate of smaller
lattice constant. This strain has important effects on the material structure, as well as on its
electronic properties.

For this system, it is most convenient to define the atomic displacement relative to a single
reference lattice, for example the equilibrium lattice of the substrate, so that the displacement
u in the film is defined relative to a nonequilibrium reference lattice. The bond displacement
dk± is then

dk±(i) = (dk±
1 , dk±

2 , dk±
3 ) = D±

k u(i) − εekχ (7)
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Fig. 4 (a) Equilibrium lattice for
film with lattice size af .
(b) Equilibrium lattice for
substrate with lattice size as .
(c) The reference
(non-equilibrium) lattice in
which strain is introduced due to
lattice mismatch

and the discrete strain components at a point i are defined as

S
pq

k� = D
p

k u� + D
q

� uk − εδk�χ

2
. (8)

In these equations D+
k and D−

k denote forward and backward difference operators, ε =
af −as

as
is the relative lattice displacement and χ is 0 in the substrate and 1 in the film. The

resulting discrete strain equations have a force of size ε along the film/substrate interface.
The atomistic strain energy at a point i has the form

E(i) = α
∑

p=±,k=1,2

(S
p

kk)
2 +

∑
p=±,q=±

(
2β(S

pq

12 )2 + γ S
p

11S
q

22

)
, (9)

where the elastic constant α,β and γ are chosen so that the model is consistent with contin-
uum elasticity, namely,

α = C11/4, β = C44/4, γ = C12/4 (10)

in which Cij are the Voigt constants.
The total energy can be obtained by summing up all the energy densities to get

E total =
∑

i

E(i). (11)

Minimization of this energy leads to a force balance equation

∂E total

∂uk

= 0, for k = 1,2. (12)

Away from boundaries and interfaces, these equations are equivalent to a finite difference
approximation to the equations of continuum elasticity. At a step on a boundary or interface,
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there are deviations from the continuum boundary conditions which can be interpreted as
force distributions on the boundary. Details of the energy density and the discrete force
balance equations can be found in [14, 39].

Computational solution of the strain equations can be computationally challenging. We
apply two methods to reduce the computational complexity. First we use an artificial bound-
ary condition along a plane in the substrate that is everywhere below the film. This greatly
reduces the extent of the computational domain, with no loss of accuracy [19]. Second, we
apply an algebraic multigrid method to solve the strain equations, that greatly accelerates
the computations [9]. Similar methods have been developed and implemented by Smereka
and Russo [38]. Simulations of island dynamics models including elastic effects have been
performed by Hauser, Jabbour and Voigt [18], as well as by Niu et al. [27].

3 Modeling and Simulation for the Structure of Nanocrystals

Layered nanocrystals consist of a core of one material surrounded by a shell of a second
material. Synthesis of layered nanocrystals with precise control over their size and shape
has been achieved by a number of research groups [10, 22, 25, 32] and provides an effective
method for designing material systems with desired optoelectronic properties [22].

Because of the small size of these systems, their atomic structure is epitaxial in many
cases. Lattice mismatch between the materials in the core and shell leads to elastic strain
in a layered nanocrystal. This strain has both structural and optoelectronic consequences. If
the strain is large enough, then it is relieved by irregular growth of the shell [22]; i.e., the
epitaxial structure is lost. As a result, the shell may break off from the core [22].

The present study from [4] employs a simple model for the structure and strain of a
layered nanocrystal. Simulation of this model for a range of geometric and elastic parameters
shows that there is a critical shell size at which strain has maximal influence.

3.1 Core/Shell Model

Denote the lattice constants in the core and shell as lc and ls , respectively. For bonds con-
necting a core atom and a shell atom, the rest length is taken to be the average (lc + ls)/2.
Similarly the elastic coefficients for the bonds connecting a core atom and a shell atom are
taken to be the averages of the elastic coefficients for the pure materials.

The significant geometric parameters are the core radius rc, the shell thickness rs and the
lattice mismatch

ε = lc − ls

lc
. (13)

The core consists of atoms whose lattice position x (before displacement) satisfies |x| ≤ rc ,
and the shell consists of atoms with rc < |x| ≤ rc + rs , as shown in Fig. 5.

3.2 Critical Thickness: Simulation Results

Computational results are presented here from minimization of the total elastic energy (after
removing degenerate modes corresponding to translation and rotation), corresponding to
balance of all of the forces in the system, for 2D (circular, or equivalently rods of infinite
length) and 3D (spherical) nanocrystals. For the harmonic potentials used here, this amounts
to solving a linear system of equations, in which the forcing terms come from the lattice

－49－



J Sci Comput (2008) 37: 3–17

mismatch ε. The simulation results include values of the displacements, the forces and the
energy density. Graphical results will be presented for the last of these. As a figure of merit
for the atomistic strain field in a nanocrystal, we shall use the maximum value Em of the
discrete energy density. Since the energy at each atom consists of elastic energy and bond
energy, the maximum elastic energy may be a good indicator of strain-driven instability.

3.2.1 Elastic Energy Density

Figure 6 show the elastic energy density of 3D layered nanocrystals, of fixed core size rc for
various values of shell thickness rs . In these simulations, the shell has thickness values rs =
1, 2 and 7 monolayers, on a core of radius rc = 8 monolayers. For all of these simulations,
the elastic constants are α = 5, β = 1 and γ = 3 and lattice mismatch is ε = 0.04.

In this figure, the gray scale ranges from black for E = 0 to white for E = Em in which
Em is the largest value of E among the three subfigures; i.e., the scales are same for the
different subfigures. The black region outside of each nanocrystal is a vacuum where there
is no energy. Figure 6 shows that the energy is concentrated in the region of the shell, along
the interface with the core. As the shell thickness increases, the strain energy becomes more
concentrated near the shell/core interface, even though the maximum energy density de-
creases for larger shell thickness. In addition the largest values of the energy density are
close to the diagonal.

(a) 2D (b) 3D

Fig. 5 Basic geometry of core/shell nanocrystal model

(a) (b) c

Fig. 6 Elastic energy density on an equatorial cross section for 3D layered nanocrystals with core size rc = 8
monolayers and with shell thickness rs of size (a) 1 monolayer, (b) 2 monolayers and (c) 7 monolayers
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3.2.2 Critical Thickness

Figure 7 shows the maximum energy density for a layered nanocrystal, as a function of shell
thickness rs , for fixed values of the other parameters, core size rc and elastic constants α, β ,
γ and ε. Figure 7 shows that the maximum energy density increases with increasing shell
thickness rs up to a critical shell thickness r∗

s . For rs > r∗
s , the maximum energy density is

decreasing as a function of rs . The general similarity between the critical shell thickness
in 2D and 3D is indicative of the robustness of this result. The physical core radius of
CdSe/CdS core/shell nanocrystal is ranging from 11.5Å to 19.5Å which is equivalent to
core radius of 3 monolayers to 6 monolayers, since one full monolayer is approximately
3.5Å [32].

Our simulations show weak sensitivity of critical shell thickness r∗
s on the core radius rc .

The critical thickness r∗
s is uniformly 2 monolayers as long as the core size is big enough.

In simulation, for smaller core size than 3 monolayers for 2D layered nanocrystals and 5

Fig. 7 Maximum energy density
Em vs. shell thickness rs for
(a) 2D and (b) 3D nanocrystal of
core radius rc = 8 monolayers

(a)

(b)
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monolayers for 3D layered nanocrystals, the maximum elastic energy density Em occurs at
1 monolayer of shell thickness rs . We also find that the critical shell thickness r∗

s is roughly
independent of the lattice misfit ε and the elastic parameters α, β and γ .

4 Patterns in Epitaxial Systems

4.1 Self-Assembly

Highly ordered and uniformly sized nano patterns play an increasingly important role for
many technological applications. A critical factor for the performance of all such devices is
that the patterns are all within a certain size range (which depends on the material), and that
the dots are essentially all equal in size. It is therefore the focus of a large number of studies
to understand the formation and growth of nano patterns (for recent reviews, see [41, 42]),
and to control their formation and size distribution.

There are various approaches to obtaining arrays of equally sized and spaced nano pat-
terns. In the top-down approach, islands nucleate in previously fabricated nucleation sites.
But structures as small as a few nm are difficult to obtain with standard lithographic tech-
niques. In the bottom-up approach, kinetic and/or thermodynamic factors spontaneously
lead to the formation of quantum dots [15, 17, 24]. Guided or directed self-assembly is
somewhere in-between. In this approach, the goal is to control pattern formation by ma-
nipulating the epitaxial growth process. For example, introduction of subsurface dislocation
arrays introduces a long-range strain field, which alters the potential energy surface (PES),
changing both the adsorption energy Ead and the transition energy Etrans of the PES [31, 35].
The results presented here from [26] simulate the process of directed self-assembly, starting
from a spatially varying PES.

4.2 Epitaxial Growth with Spatially Varying Potential Energy Surface

In this section, we discuss simulations that demonstrate that a properly modified PES for
adatom diffusion can lead to self organization of nano patterns. Adatom diffusion is de-
scribed by a rate for surface diffusion, which is D = D0 exp(−�E/kBT ), where D0 is a
prefactor (chosen to be 1013 s−1), kB is the Boltzmann constant, T is the temperature, and
�E is the energy barrier for surface diffusion, given by �E = Etrans −Ead. We study growth
systematically as a function of Ead and Etrans, which are treated as independent parameters.

For a surface with a spatially varying, anisotropic PES, the diffusion equation (1) be-
comes

∂ρ

∂t
= F + ∇ · (D∇ρ) − 2

dN

dt
+ ∇ ·

(
ρ

kBT
D(∇Ead)

)
. (14)

In (14), D is a diffusion tensor where the diagonal entries are labeled Di(x) and Dj(x), and
correspond to diffusion along the two directions i and j . For simplicity no other direction for
diffusion is included (but could easily be incorporated). F is the deposition flux, dN/dt is
the nucleation rate, and the last term is the thermodynamic drift, where kB is the Boltzmann
constant, and T is the temperature. On island boundaries there is rapid attachment and de-
tachment of adatoms, so that the correct boundary condition is ρ(x) = ρeq(Ddet(x),x), where
Ddet(x) is a (spatially varying) detachment rate [8]. The nucleation rate is given by [37]

dN/dt = σ1〈[(Di(x) + Dj(x))/2]ρ2(x)〉, (15)

where σ1 is the capture number as in (5), and the average 〈·〉 is taken over all lattice sites.
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4.3 Simulation Results

We assume a simple sinusoidal variation of Ead and Etrans. More precisely, for the results
shown in Fig. 8, we assume that the diffusion constant varies between D = 105 s−1 and
D = 107 s−1 along the i-direction, and that in fact LOG10D varies sinusoidally. Diffusion
is isotropic but spatially varying, and we use the notation D = Di(x) = Dj(x). A schematic
of the variations of the PES is shown in the bottom panels of Fig. 8. The periodicity of
the variation of the PES in the i-direction was chosen to be 50 atomic spacings. We also
use a simplified spatial variation of Ddet, and vary it between 422 s−1 and 750 s−1. Smaller
or larger numbers for Ddet, or even a constant Ddet in the same range, lead to very similar
results.

The results shown in Fig. 8 correspond to the thermodynamic limit (left panel), where
only Ead is varied, and the kinetic limit (right panel), where only Etrans is varied. For the
particular choices presented here, the spatial variation of the diffusion constant D is iden-
tical in both cases. The PES is varied only along the i-direction, and is constant along the
j -direction. It is immediately evident from the morphologies that islands almost exclusively
form along stripes in either limit. But in the kinetic limit, the islands are rather large, while
they are much smaller in the thermodynamic limit. Closer inspection shows that the posi-
tions of most islands are inverted. In fact the islands nucleate in the region of fast diffusion
(low potential energy barrier) in the kinetic limit, but nucleate in the region of slow diffusion
in the thermodynamic limit, and that correspondingly all the mass is in these regions.

The explanation for this is the following: In the nucleation rate dN/dt in (14), the para-
meter σ1 is essentially constant, so that dN/dt increases either when D increases, or when
ρ(x) increases. In the kinetic limit (without a thermodynamic drift), ρ(x) is spatially con-
stant (at least before islands start acting as sinks on the surface, which is the case in the
nucleation phase), so that the nucleation rate is dominant in regions where D is large. How-
ever, once a thermodynamic drift is present, the adatom concentration is not constant, and
is in fact largest in regions where Ead has its minimum. If the drift term is large enough,
dN/dt is dominated by a large ρ, which is in regions where D is small (large barrier).

We can now also understand why the islands are much larger in the kinetic limit: Here,
nucleation is determined by a large diffusion constant. But the diffusion constant D also
determines a characteristic length lchar ∼ Dχ , which characterizes the size of and spacing
between islands. The positive exponent χ depends on the degree of reversibility (i.e., Ddet

and F ) [34]. This means that in regions of large D, islands are on average larger and fewer.

Fig. 8 Morphologies as obtained
in the kinetic limit (right) and the
thermodynamic limit (left) (top
panels). A schematic of the
envelope of the underlying
variations of the PES is shown at
the bottom for each case. Note
that each period of the sinusoidal
variation corresponds to 50
lattice constants
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Fig. 9 Morphologies at
coverages � = 0.1 ML (left) and
� = 0.3 ML (right) obtained with
a PES (below) that has a much
narrower variation

On the other hand, in the thermodynamic limit, islands nucleate in the region of small D,
where lchar is smaller, and hence there are more and smaller islands.

The morphologies shown so far were all obtained at a sub-monolayer pre-coalescence
coverage of � = 0.2 ML and with a PES that varies sinusoidally. In Fig. 9 we show the
morphology at different coverages obtained with PES that varies more sharply in certain
regions, and is essentially constant in others. At � = 0.1 ML, the islands are aligned even
better than in the previously discussed cases. Moreover, at � = 0.3 ML, all the islands
that are aligned along the j -direction have coalesced in this direction, while they do not
touch at all along the i-direction. In fact, we get a very regular array of one-dimensional,
monolayer-high nano-wires on the surface. Our simulations suggest a new mechanism by
which quantum wires can be obtained, with a width that can be much smaller.

5 Conclusions

The simulations described above have established the validity of the level set method for
simulation of epitaxial growth. Moreover, the level set method makes possible simulations
that would be difficult for atomistic methods such as KMC; e.g., systems with large rates of
attachment/detachment due to strain [33]. This method can now be used with confidence in
many applications that include epitaxy along with additional phenomena and physics.

Atomistic strain due to lattice mismatch in heteroepitaxy is an important feature of thin
films. The mathematical model and computational method described here make possible
effective simulation of epitaxial systems with strain even in three dimensions; e.g., [27]. This
may allow application to many epitaxial phenomena of scientific and technological interest.
Two examples presented here are the structure of nanocrystals and pattern formation on an
epitaxial surface.

We have examined the elastic energy density of a nanocrystal and the corresponding
critical shell thickness. The simulation results presented above are for a highly idealized
model of a layered nanocrystal. The robustness of these results with respect to variation of
dimension, geometry and material parameters suggests that these results are qualitative and
generally applicable.

The results on pattern formation suggest an approach to guiding self-assembly of nano
patterns. Application of this approach, even in simulation, will require several additional
ingredients, including microscopic models of elasticity and of the strain dependence of the
PES and other properties. Also, strain induced changes of the PES due to the developing
surface morphologies should be included in a more comprehensive model [21].
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1. Introduction

Burton, Cabrera and Frank proposed the theory of step motion on a crystal surface
and evolution of the crystal surface with aid of screw dislocations in [BCF]. According to
their theory steps evolves with the step velocity V of the form

(1) V = v∞(1 − ρcκ),

where κ is the curvature of the step, v∞ is the velocity of straight line step, and ρc is the
critical radius for generation of two dimensional kernel. They also pointed out that, if
screw dislocations appear on the crystal surface, then the steps provided by screw dislo-
cations describe spiral patterns whose centers are the screw dislocations. Consequently
the steps form pyramids, evolve like as a rotating spirals, and then the surface evolves.

In this talk we consider the situation such that a lot of screw dislocations are on the
crystal surface. Some mathematical models for such a situation are proposed from two
points of view; one is the phase field model with Allen–Cahn type equation, and the other
is the level set formulation. Karma and Plapp [KP], or Kobayashi [Ko] proposed phase
field models by Allen–Cahn type equation with multiple-well potentials and the sheet
structure function which expresses the initial surface. On the other hand, Smereka [S] or
the author [O] proposed level set formulations. Generally, the level set formulation (and
also the Allen–Cahn equation) is the methods to describe a motion of interfaces which
divide the domain into two regions. However, spiral curves do not divide the domain
into two regions. To overcome this difficulty, Smereka introduce two auxiliary functions
to describe spiral curves by level sets. However, his model is then a system of partial
differential equation, and does not include some complicated situations, for examples,
there exist two ore more screw dislocations with multiple steps for a screw dislocation.
On the other hand the author combine the idea of level set method and sheet structure
function by [KP] or [Ko]. The author’s model includes more general situations, which the
[KP]’s or [Ko]’s model include, than Smereka’s model. Moreover, the author’s model is
simpler than Smereka’s model so that one can define the solution of the author’s model in
viscosity solution sense. Some mathematical results for the author’s model are obtained
in [O] and [GNO].
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The aim of this talk is to give a brief introduction of the level set method with sheet
structure function for spiral curves and some mathematical results for surface evolution
of the crystal.

2. Level set formulation

Let Ω ⊂ R2 be a bounded domain in R2. We denote by a1, . . . , aN ∈ Ω locations of
the center of each screw dislocations. Here we assume that j-th screw dislocation, whose
center is aj, are denoted by closed neighborhood of aj, which is denoted by Bj ⊂ Ω.

We also assume that ∂Bj is smooth. We set W = Ω \
(⋃N

j=1 Bj

)
. We assume that

Burgers vector �γj at aj is vertical to the surface, and thus we set �γj = (0, 0,mj) where
mj ∈ Z \ {0}. Here the orientation of mj is such that mj > 0 (resp. mj < 0) if the
lattice structure around aj is anti-clockwise (resp. clockwise) spiral staircase, i.e., steps
go around aj anti-clockwise (resp. clockwise).

The spiral pattern Γt at time t ≥ 0 and its orientation �n is given by

(2) Γt := {x ∈ W ; u(t, x) − θ(x) ≡ 0 mod 2πZ}, �n =
∇(u − θ)

|∇(u − θ)|
with an auxiliary function u = u(t, x), where θ is the sheet structure function introduced
by [KP] or [Ko] defined by

θ(x) :=
N∑

j=1

mj arg(x − aj),

and arg(x) is the function describing the argument of x ∈ R2 \ {0}. We note that arg(x)
is the multiple-valued function, however ∇θ is defined as a single-valued function of the
form

∇θ(x) =

(
−x2

x2
1 + x2

2

,
x1

x2
1 + x2

2

)
for x = (x1, x2) ∈ R2 \ {0}.

The reason why we consider θ is a multiple-valued function is to describe a spiral curve
completely. To understand the sense of the formulation (2) it is convenient to introduce
a covering space of W regarding arg(x − aj) as one of parameters

(3) X := {(x, ξ) ∈ W × Rn; arg(x − aj) = ξj for ξ = (ξ1, . . . , ξN)},
where the equality arg(x − aj) = ξj is in the sense of (cos ξj, sin ξj) = (x − aj)/|x − aj|.
In X the inside of the crystal and the step are described by

Ĩu
t := {(x, ξ) ∈ X; u(t, x) −

N∑
j=1

mjξj > 0},(4)

Γ̃u
t := {(x, ξ) ∈ X; u(t, x) −

N∑
j=1

mjξj = 0},(5)
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respectively. The formulation (2) is derived from the projection of Γ̃t onto R2. This
covering space is also useful to avoid the difficulty come from the multiplicity of θ in
mathematical analysis.

To find a solution Γt to (1) we have to introduce a boundary condition on ∂W . In this
talk we assume the Neumann boundary condition

(6) Γt ⊥ ∂W

because of the mathematical reason. Then, we derive the level set equation of (1) and (6)
in usual level set method because θ is locally a smooth function on W . Thus, u satisfies

ut − v∞|∇(u − θ)|
{

1 + ρcdiv
∇(u − θ)

|∇(u − θ)|

}
= 0 in (0, T ) × W,(7)

〈∇(u − θ), �ν〉 = 0 on (0, T ) × ∂W,(8)

where �nu is the outer unit normal vector field of ∂W . The equation (7) is degenerate
parabolic type and non divergence form so that we consider a solution in viscosity solution
sense. One can define the viscosity solution to (7)–(8) in usual way. See [G] the details
of the level set method and the definitions viscosity solution to the degenerate parabolic
equations.

The comparison, existence and uniqueness of viscosity solution to (7)–(8) are obtained
by [O]. The author sets Bj = {x ∈ R2; |x − aj| ≤ ρj} with ρj > 0 in [O]. However, the
results in [O] or [GNO] can be extended to more general Bj in our situation.

Theorem 1 ([O, Theorem 2.1]). Let u, v : [0, T ) × W → R be an upper and lower semi-
continuous viscosity sub- and supersolution, to (7)–(8) on (0, T ) × W , respectively. If
u ≤ v on {0} × W , then u ≤ v on [0, T ) × W .

Theorem 2 ([O, Theorem 2.2]). For u0 ∈ C(W ), there exists a unique time-global vis-
cosity solution u ∈ C([0,∞) × W ) to (7)–(8) with u|t=0 = u0.

To describe the motion of spiral patterns on the crystal surface we have to give an initial
data u0 ∈ C(W ) from given initial curve Γ0. It is not so easy, however Goto, Nakagawa
and the author obtain the existence of u0 for suitable Γ0. See [GNO, §4] for the details.
However, in general, u0 ∈ C(W ) for Γ0 in the level set method is not unique. Thus, it
is important to investigate the uniqueness of level sets with respect to the initial curve.
In [GNO] they proved the uniqueness of level sets. However, the following comparison is
established by adjusting the proof in [GNO].

Theorem 3 ([GNO]). Let u, v : [0, T ) × W → R be an upper and lower semicontinuous

viscosity sub- and supersolution, to (7)–(8) on (0, T ) × W , respectively. If Ĩu
0 ⊂ Ĩv

0 (resp.

(Ĩu
0 ∪ Γ̃u

0)
c ⊃ (Ĩv

0 ∪ Γ̃v
0)

c), then Ĩu
t ⊂ Ĩv

t (resp. (Ĩu
t ∪ Γ̃u

t )
c ⊃ (Ĩv

t ∪ Γ̃v
t )

c), for t ∈ (0, T ), where

Ĩu
t is defined as (4).
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The uniqueness of level sets follows from the above comparison.

3. Surface evolution

We derive the motion of spirals by the followings.

(i) Construct u0 ∈ C(W ) from Γ0.
(ii) Solve (7)–(8) with u|t=0 = u0.
(iii) Sketch {x ∈ W ; u(t, x) − θ ≡ 0 mod 2πZ}.

To investigate the surface evolution, we construct a surface height h(t, x) from u(t, x). By
the theory of dislocations (see [HL]), h satisfies

(9) Δh = −h0divδΓtn

if we have only displacement in the vertical direction and it is small enough, where h0

is the unit height of the step, and δU is the Dirac’s delta measure for U ⊂ R2. By
straightforward calculation we observe that h(t, x) = (h0/2π)θΓt(x), where θΓt is a branch
of θ whose discontinuity is only on Γt, satisfies (9). Once we obtain a solution u to (7)–(8),
we obtain

θΓt(x) = ζ̃(t, x, Θ(x))

with ζ̃ : [0,∞) ×X → R defined as

ζ̃(t, x, z) = z − 2πk if (x, z) ∈ {(y, η) ∈ X ; u(t, x) − z ∈ [2πk, 2π(k + 1))},

where Θj(x) ∈ [0, 2π) is the principal value of arg(x − aj) and Θ(x) =
∑N

j=1 mjΘj(x). If

we obtain h(t, x), the mean growth rate of the surface in [t0, t] is calculated by

Hh(t; t0) :=
1

|W |

∫
W

[h(t, x) − h(t0, x)]dx,

where |W | is the measure of W . If h is smooth for t > 0, then we obtain the growth rate
R(t) from

R(t) =
1

|W |

∫
W

ht(t, x)dx.

In this talk we discuss on the surface evolution by a pair of screw dislocations with
opposite orientations. In [BCF] the authors pointed out that if a pair of screw dislocations
with opposite orientations is too close, then they have no influence to the surface evolution.
For this claim we obtain the following results.

Theorem 4. Let N = 2, m1 = −m2 = 1, and Bj = {x ∈ W ; |x − aj| ≤ ρ} for some
ρ < |a1 − a2|/2. Assume that |a1 − a2| ≤ 2ρc and Ω is large enough. Then, for any
u0 ∈ C(W ) there exists M > 0 such that u(t, x) < M for t > 0, where u(t, x) is a
viscosity solution to (7)–(8).

－60－



We recall that the inside of the crystal is denoted by Ĩu
t defined by (4). Thus, if the crystal

grows up, then u → ∞ as t → ∞. Accordingly, Theorem 4 says that there exists a bound
of height of the surface in this situation.

For the motion of closed curve by (1) C = {x ∈ R2; |x| = ρc} is the stationary solution.
and thus the curve Γ which is a part of circle whose radius is ρc and satisfies (6) only on
∂Bj (j = 1, 2) should be a solution to (1) and (6) for our problem. However, it is not so
clear because there is no continuous stationary solution, which denotes the steady curve
C, to the level set equation of (1) for the closed curve. Then, to prove Theorem 4, we
construct a discontinuous solution to (7)–(8). We observe that there exists θΓ which is a
lower semicontinuous branch of θ whose discontinuity is only on Γ. By straightforward
calculation we observe that θΓ is a viscosity solution to (7)–(8), and thus v := θΓ + M is
also that for M ∈ R. Thus, if we choose M large enough such that u0 ≤ v on W , then
u(t, ·) ≤ v on W for t > 0 from Theorem 1.
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Growth and melting processes of ice crystals govern wide variety of phenomena 
on earth. Hence, this issue has been a subject of interest for centuries. To 
understand crystal growth of ice at the molecular level, one has to observe in-situ 
“elementary steps”, which play a key role during growth and melting processes on 
ice crystal surfaces. However, since observation of ice crystal surfaces by 
scanning probe microscopy is very difficult, so far only one group has succeeded 
in such observation by atomic force microscopy [1]. In this study, we adopted laser 
confocal microscopy combined with differential interference contrast microscopy 
(LCM-DIM), by which elementary steps of protein crystals (3-6 nm in height) could 
be visualized with sufficient contrast levels [2], and tried to visualize 
molecular-level surface morphologies on ice crystal surfaces.  
We first attempted to observe the air-ice interface, since this interface has a much 
larger reflectivity than water-ice interfaces. By further improving LCM-DIM and 
growing ice crystals of higher quality, we finally succeeded in observing ice crystal 
surfaces grown by the two-dimensional (2D) nucleation growth mechanism. When 
steps of neighboring 2D islands coalesced with each other, the contrast of steps 
disappeared completely. Such disappearances of the step contrasts were 
commonly observed all over the crystal surface confirming that we succeeded in 
observing elementary steps (0.37 nm in height), for the first time, by optical 
microscopy. We also succeeded in observing surface melting processes at air-ice 
interfaces. We could visualize the appearances of two types of quasi-liquid layers 
(bulk-liquid like drops (BLD) and thin-liquid like layers (TLL)) and growing 
elementary steps simultaneously on the same crystal surface.  
1) S. Zepeda, Ph.D. thesis, University of California Davis, 2004.  
2) G. Sazaki, et al., J. Crystal Growth, 262, 536-542 (2004).  
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     Recently, spontaneous shape transformation of microstructures fabricated on silicon substrates 

by high temperature annealing has attracted attention because of the potentiality for development of 

novel microstructure fabrication techniques [1]. We have studied the mechanism of the spontaneous 

shape transformation of high-aspect-ratio microstructures, such as one-dimensional (1D) gratings 

[2,3] and two-dimensional (2D) hole arrays [4], on Si(001) substrates. 

     The conventional fabrication technique using reactive ion etching (RIE) with SiO2 mask is 

employed to fabricate high-aspect-ratio microstructures on n-type Si(001) substrates. High 

temperature annealing of the sample is conducted under hydrogen gas ambient using a ramp furnace 

or under ultrahigh vacuum (UHV). The structures of the samples were observed by scanning 

electron microscopy (SEM). For evaluation of cross-sectional profiles, the samples were cleaved 

parallel to (001) plane. 

     When 1D grating structures are annealed above ~ 1000 °C, rounding of the trench corners 

occurs. In Fig. 1, the evolution of a trench corner is shown with the dependence of the corner 

curvature on annealing time. According to the time scaling property of shape transformation 

presented by Herring, the characteristic length scale of a steady state profile evolves as t1/2 and t1/4 as 

the shape transformation occurs by evaporation-condensation and surface diffusion, respectively [5]. 

Thus, the decrease in the curvature as t-1/4 shown in Fig.1 is the evidence suggesting that the 

dominant mass transport mechanism responsible for the shape transformation is surface diffusion, 

although sublimation may be possible at such high temperature. We have performed numerical 

simulations of the shape transformation of one-dimensional trench structures by surface diffusion 

Fig. 1  Annealing time dependence of the curvature of trench corners.  
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using the Mullins’ equation [6], 

2

2
0

2

s
K

kT
cDv s

∂
∂Ω

=
γ

, (1) 

where v is the normal velocity of the surface, s is the arc length along the surface, K is the surface 

curvature, Ds is the diffusion constant, γ is the surface tension, Ω is the atomic volume, and c0 is the 

adatom density on the surface. Figure 2 compares the profile evolution between the experiment and 

the simulation [7]. It is found that the simulation can reproduce the complex profile evolution of the 

1D trenches although the equation (1) assumes an isotropic surface which is inadequate below the 

roughening temperature. 

   Arrays of cylindrical holes with high aspect ratios show more complex shape transformation 

by surface diffusion. Figure 3 shows the shape transformation of hole arrays for the two initial 

Fig. 2  Comparison of the shape transformation between the experiment and 
the simulation using Mullins’ equation. SEM images showing (a) the initial 
trench array and (b) the structure after annealing. In (c), the solid line shows the 
profile obtained by the simulation and open circles correspond to the 
experimental result shown in (b). 

Fig. 3  Cross-sectional SEM images showing the evolution of the square 
arrays of cylindrical holes on Si(001) substrates during annealing in hydrogen 
ambient for two different periods of (a-d) 1.0 µm and (e-h) 1.8 µm. 
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structures with different periods. For both the samples, the radius and depth of the holes are 0.75 and 

3.0 µm, respectively. The periods of the patterns are 1.8 and 1.0 µm. During the early stages of the 

shape transformation, the hole inlets are closed by bulging of the surface around the hole inlet. The 

bulging is characteristic for the shape transformation by surface diffusion. For the shape 

transformation of cylindrical holes the surface bulging is more enhanced than the evolution of 1D 

gratings as shown in Fig. 2 because of the convergence effect of the diffusion on cylindrical surfaces. 

After closing the inlets, vertically elongated voids remain in the bulk Si and subsequently the shape 

relaxation of the buried voids occurs. If the spacing between neighboring voids is sufficiently small, 

coalescence of voids occurs by the lateral expansion of each void, leading to the formation of a large 

plate-shaped void. 

       The shape change of the each void formed by the hole inlet closure is shown in Fig. 4. The 

high resolution SEM observations show that the individual voids are rather faceted. The observed 

facets are identified to be {100}, {110}, {111} and {113} facets, which are well known as 

thermodynamically stable facets for Si. The shape change of the void proceeds while keeping the 

faceted structure, involving variation of the area and shape of the each facet. In addition, it is found 

that the volume of the each void is kept constant during shape change, strongly suggesting that the 

shape change of the buried void occurs by surface diffusion. 

      In order to identify the mechanism of the observed shape change of the void we have 

performed numerical simulations of shape evolution for completely faceted voids by surface 

diffusion. In the simulation, instead of the curvature dependent chemical potential, the mean 

chemical potential [8] of each facet, 

ii KΩ+= 0µµ , (2) 

is employed. Here, Ki is the weighted mean curvature, which is given by 

∑
≠

=
ij

ijij
i

i lf
S

K 1
. (3) 

The summation is taken over all the neighboring facets of the i-th facet. Si is the area of the i-th facet, 

lij is the length of the intersection between the i-th and j-th facets, and fij is a numerical factor 

determined by the geometry 

21

)()(

ij

iijj
ij

c

c
f

−

−
=

nn γγ
, (4) 

where n is the unit normal vector of the surface, γ is the surface free energy per unit area, and cij = 

ni⋅nj. The normal velocity of the i-th facet is determined by the total atom flux into the i-th facet 

from all the neighboring facets. Thus the normal velocity vi of the i-th facet is given by 

∑
≠

Ω
=

ij
ijij

i
i Jl

S
v , (5) 
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where Jij is the flux into the i-th from j-th facets. We assume the flux as 

ij

jis
ij xkT

cDJ
∆

−
=

µµ0 , (6) 

where ∆xij is the effective diffusion distance between the ith and jth facets [9]. Here, for simplicity, 

we define the effective diffusion distance as ∆xij = Si
1/2 + Sj

1/2. 

     The simulation result of the evolution of a polyhedral void composed of {100}, {110}, {111}, 

and {113} facets in a cubic crystal is shown in Fig. 4. In the simulation, we used the surface free 

energies of Si reported in the literature [10]. The good agreement between the simulation and 

experiment implies that the dominant mass transport mechanism responsible for the shape change of 

the faceted voids is surface diffusion. 

      In conclusion, we have studied the evolution of high-aspect-ratio microstructures fabricated 

on Si substrates during high temperature annealing. For evolution of 1D trenches and 2D arrays of 

cylindrical holes on Si substrates, we have shown the dominant mass transport mechanism is surface 

diffusion. It has been found that the evolution of the macroscopic profile of 1D structure is well 

reproduced by the Mullins’ equation. We have also performed numerical simulations of the shape 

change of a completely faceted void via only surface diffusion driven by the mean chemical potential 

differences between the facets. The simulation has reproduced the observed shape evolution of a 

single void in bulk Si during annealing. 

 

Fig. 4  SEM observations (upper panels) and simulation results (lower panels) 
of the evolution of a faceted void during annealing. In the experimental result, 
the annealing times are 5, 10, 20, and 40 min. 
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Kink generation by the association of 2D clusters 
Peter G. Vekilov 

University of Houston, Houston Texas, USA 
 
Abstract: 
 
The density of kinks along the growth steps of a faceted crystal scales the step velocity 
and hence the rate of growth of the crystal. The classical mechanism of kink generation, 
as a result of the thermal fluctuations of the step edge, was put forth by J. W. Gibbs; 
Burton, Cabrera and Frank posited that density of kinks generated be this mechanism 
will not increase in a supersaturated solution. In the 1970, it was proposed that on steps 
of low kink density, additional kinks may be generated by the one-dimensional 
nucleation of new crystal rows.   
 
We demonstrate for the crystallization of Zn-insulin a novel mechanism of kink 
generation, whereby 2D clusters of several insulin molecules pre-formed on the terraces 
between steps associate to the steps. This mechanism results in several-fold higher kink 
density, faster rate of crystallization, and a high sensitivity of the kinetics to small 
increases of the solute concentration.   
 
Rhombohedral crystals of Zn-insulin hexamers form in the islets of Langerhans in the 
pancreases of many mammals. The suggested function of crystal formation is to protect 
the insulin from proteases and increase the degree of conversion of soluble proinsulin.  
To accomplish this, crystal growth should be fast and adaptable to rate fluctuations in 
the conversion reaction.   
 
If the found mechanism operates during insulin crystallization in vivo, it could be a part 
of the biological regulation of insulin production and function. For other crystallizing 
materials in biological and non-biological systems, this mechanism provides an 
understanding of the often seen non-linear acceleration of the kinetics. 
 
Proc. Natl. Acad. Sci. USA 103, 1681 (2006). 
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Interdisciplinary Conference on “Mathematical Aspects of Crystal Growth”, 
Sapporo July 26-30.  

ATOMISTIC AND COARSE-GRAINED MODELING
OF EPITAXIAL THIN FILM GROWTH 
Jim Evans, Iowa State University 

ABSTRACT:

Homoepitaxial thin film growth (A on A) by vapor deposition on perfectly flat single-element 
single-crystal surfaces corresponds to growth of a single-crystal of the element A. Here, the term 
“epitaxy” means that the deposited atoms reside at the natural discrete locations or adsorption 
sites to propagate the perfect periodic structure of the underlying crystalline substrate. Numerous 
experimental studies have been performed on such systems over the last two decades via 
scanning probe microscopy and surface-sensitive diffraction under well-controlled (impurity-
free) conditions. These are the simplest possible most well-defined thin film or crystal growth 
systems, and thus provide an ideal venue for detailed atomistic-level modeling, or for exploration 
of coarse-grained or multiscale modeling strategies [1,2]. Figure 1 shows three different 
modeling strategies for homoepitaxial growth ranging from a fully discrete (atomistic) treatment 
to a fully continuum description of evolution of a film height function, h(x,t).

Fig.1 Schematic of different modeling strategies: atomistic LG; 2D continuum step-dynamics; 3D continuum PDE 

For homoepitaxial growth, the equilibrium configuration or morphology of the film is trivial 
(under typical growth conditions). Loosely speaking, an equilibrated partial layer of atoms on a 
flat surface aggregates into a single 2D (one atom high) island [3]. Equilibrated multiple layers 
of deposited atoms form a flat film [4]. However, despite these simple equilibrium states, the 
morphologies of films deposited under typical growth conditions display a rich variety of 
complex morphologies. This complex behavior results from the feature that deposition drives the 
system very far-from-equilibrium, and the resultant non-equilibrium morphologies depend on the 
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details of the (surface diffusion) kinetics. For submonolayer deposition, atoms aggregate into 
multiple “small” 2D islands which can have complex non-equilibrium shapes (e.g., dendrites or 
fractals). For multilayer deposition, one typically finds “kinetic roughening” associated with the 
inhibited diffusion of deposited atoms from higher to lower layers. As a result, multilayer growth 
is “unstable” and characterized by the formation of 3D mounds (multilayer stacks of 2D islands).  

There remain fundamental open issues regarding both submonolayer and multilayer growth 
regimes. Can one provide a precise description of the island size distribution (ISD) and spatial 
distribution of 2D islands on the surface during submonolayer growth? It is natural to tessellate 
the surface so that each island is surrounded by its own “capture zone” (CZ) and most atoms 
landing within that capture zone aggregate with the corresponding island. Then, one can also 
attempt to characterize the capture zone area distribution (CZD) [4]. For multilayer growth, one 
can find a delay in the mounding instability, followed by a regime of strong mound steepening, 
and then a subsequent regime of slope (or shape) selection and mound coarsening. These 
features, and especially the mound coarsening dynamics, are still incompletely characterized. 

Atomistic modeling when combined with analysis via kinetic Monte Carlo (KMC) simulation, 
has provided a precise characterization of many aspects of evolving film morphology and also 
detailed insight into many of these issues [1,2].  However, coarse-grained modeling alternatives 
are appealing from the perspective of algorithmic efficiency, and also to provide deeper insight 
into fundamental issues such as development 2D island distributions or 3D mound coarsening 
dynamics. In addition, there is potential for analytic theory to contribute to our understanding of 
these systems. We provide an overview of recent progress and the current state of the field. 

SUBMONOLAYER GROWTH AND ISLAND FORMATION

Fig.2 Left: Island size distributions versus critical size (i). Right: simulated island and CZ distribution. 

For submonolayer deposition, deposited atoms diffuse on the across the surface and aggregate 
into 2D islands. The overall process involves a competition between nucleation of new islands 
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and growth of existing islands. Traditionally, one prescribes a critical size i such that only islands 
of more than i atoms are stable (but those of i or less atoms are unstable to dissociation and are in 
quasi-equilibrium with the diffusing adatoms). In the mid-1960’s (mean-field) rate equation 
treatments were developed by Zinzmeister, Venables, et al., to describe the island density and 
size distribution during submonolayer deposition. Only in the 1990’s following precise analysis 
by KMC simulation of atomistic models was it recognized that there is a fundamental failure of 
mean-field nucleation theory to describe the island size distribution (ISD). These theories neglect 
a subtle correlation between island size and separation. More precisely, they neglect the feature 
that larger islands have more distant neighbors and much larger capture zones (CZ’s). 

One on-going goal is to develop a reliable analytic beyond-mean-field theory for the ISD. It 
appears that the optimum strategy is to consider simultaneously the island sizes and capture zone 
areas, so that the theoretical development accounts for the complex stochastic geometry of the 
island distribution. Perhaps most important is a reliable treatment of the spatial aspects of 
nucleation. Recently attention has turned to characterization of the capture zone area distribution 
(CZD), which like the ISD encodes important information about the island nucleation process 
(and specifically the critical size i). 

Another aspect of recent efforts relates to efficient simulation algorithms. Atomistic simulation 
becomes extremely expensive for larger critical size i. The difficulty in nucleating islands results 
in a high density of rapidly diffusing atoms on the surface which must all be tracked by the KMC 
simulation. An alternative is to replace an atomistic description of deposition and terrace 
diffusion with a continuum PDE description. However this must be coupled to a description of 
island nucleation and growth. Various step-dynamics type strategies (level-set, phase-field) have 
been applied, as have hybrid atomistic-continuum treatments, and a very different “geometry-
based simulation” approach which is based on stochastic geometry of the CZ distribution. 

MULTILAYER GROWTH AND MOUND FORMATION 

Fig.3 Multilayer deposition of 25 ML of Ag on Ag(100) at 230 K with flux F=0.02 ML/s. Images (50 50
nm2) show well-developed square mounds. (a)  STM data; (b) KMC simulation. The magnitude of the 
Ehrlich-Schwoebel (ES) step-edge barrier inhibiting downward transport was adjusted to 0.07 0.01 eV in 
the model in order to match experiment. 
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Fig.4 Bird’s eye view of wedding-cake-like mound morphologies of 3ML Ag films on Ag(111): (a) STM 
(b) KMC at 150 K; (c) STM (d) KMC at 180 K. Simulation results for the mean size of the top terrace as 
a function of ES-barrier for the B-step. Experimental values are matched for B-step ES-barrier of 0.08 eV. 

Figures 3 and 4 illustrate the success of atomistic modeling and KMC simulation in describing 
complex mound morphologies observed in growing films. However a natural goal of 
mathematical modeling has been to develop deeper understanding of these phenomena exploiting 
coarse-grained modeling. Most effort has focused on development and application of an 
appropriate continuum PDE (see Fig.1) for a height function, h(x,t), which can describe this 
behavior. The challenge is to select the appropriate form for the surface diffusion current J which 
will depend on the local surface slope, curvature, etc. There have been various phenomenological 
forms proposed for this current particularly in the physics literature. However, it is not clear 
whether these capture the correct behavior. There is also the issue of whether stochastic noise is 
important in morphological evolution should be included. (A simplistic analysis which indicates 
that evolution is effectively deterministic should be questioned.)  

A more recent strategy has been to utilize step-dynamics modeling (see Fig.1) where one treats 
the steps at the edges of islands in each layer as continuous curves. Then, it is necessary to 
specify their growth velocity, and also to treat the creation of new islands and steps at the top of 
mounds and the annihilation of steps at the bottom of mounds.  This approach has been quite 
effective in elucidating mound steepening as well as shape and slope selection. Another approach 
is to coarse-grain the step-dynamics model to rigorously obtain a 3D continuum PDE model. 
This approach has been attempted by several groups and certainly provides some new insights, 
but is still far from providing practically-usable and reliable PDE’s for film evolution [6]. 

MORE COMPLEX HETEROEPITAXIAL SYSTEMS 

Extensive studies of generally more complex heteroepitaxial growth (A on B) have often been 
motivated by the desire to create functional surface nanostructures. Here, there are additional 
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complications especially associated with strain due to lattice-mismatch. As a result, even the 
equilibrium film morphologies can be complex (e.g., arrays of self-organized 3D islands or 
quantum dots). Our recent work [3,4] in this direction which has explored new possibilities 
offered by deposition on alloy substrates (e.g., A on BC or B+C on BC). In the former case, we 
carefully select A and BC to avoid lattice-mismatch, and thus focus on the effect of features 
other than strain of film growth (specifically “quantum size effects” which can lead to selection 
of special heights and the development of flat-topped islands or mesas) [7].  

The case B+C on BC corresponds to self-growth of an alloy for which the equilibrium state is 
trivial (perfect 2D alloy islands for submonolayer films; perfect flat alloy surfaces for multilayer 
films). However, deposition drives the system out-of-equilibrium and there has long been interest 
in the competition between growth and alloy ordering. We have performed realistic modeling for 
codeposition of Ni & Al on NiAl(110) to explore non-equilibrium behavior [8]. See Fig.5. 

Fig. 5 STM and modeling of sequential co-deposition of Ni and Al on NiAl(110): order-dependence. 
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Dislocation dynamics

R. Monneau ∗

May 28, 2010

The crystal defects called dislocations are lines whose typical length in metallic alloys is
of the order of 10−6m, with thickness of the order of 10−9m (see Figure 1 for an example of
observations of dislocations by electron microscopy).

In the face centered cubic structure, dislocations may move at low temperature in well
defined crystallographic planes (the slip planes), at velocities of the order of 10 ms−1.

Figure 1: Dislocations in a Al-Mg alloy

The concept of dislocations has been introduced and developed in the XXth century, as
the main microscopic explanation of the macroscopic plastic behaviour of metallic crystals.
Since the beginning of the 90’s, the research field of dislocations has enjoyed a new boom
based on the increasing power of computers, allowing simulations with a large number of
dislocations. This simultaneously motivated new theoretical developments for the modelling
of dislocations, and mathematical analysis of these models (see for instance [1] for a review
of different models of dislocation dynamics).

The plan of these lectures is the following:
-Lecture 1: Introduction to dislocation dynamics.
-Lecture 2: Mean curvature motion (MCM) as a singular limit of dislocation dynamics
-Lecture 3: Homogenization of dislocation dynamics and of particle systems

∗CERMICS, Ecole nationale des Ponts et Chaussées, 6 et 8 avenue Blaise Pascal, Cité Descartes, Champs-
sur-Marne, 77455 Marne-la-Vallée Cedex 2
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Lecture 1: Introduction to dislocation dynamics

We consider a dislocation line which is the boundary of an open set Ω contained in a slip
plane in a crystal (see Figure 2).

Dislocation line
Slip plane

Figure 2: Example of a bounded dislocation line in a slip plane

We will show that we can associate an invariant to the dislocation line, which is called
the Burgers vector b. If the mechanical behaviour of the crystal outside of the dislocation
is well described by the equations of elasticity, we will explain how to compute the classical
expression of the stress σ = σ[Ω] created by the dislocation. Only one component of the
stress tensor σ will be important to define the dynamics of the dislocation. This component
is called the resolved Peach-Koehler force c = c[Ω] and is defined as

c = b · σ · n

where b is the Burgers vector and n is the normal to the slip plane. We will show that there
exists a function c0 (the kernel defined on the slip plane) such that we can write

c = c0 � 1Ω

where 1Ω is the caracteristic function of the set Ω in the slip plane. We will explain how this
kernel is related to certain Levy operators and Dirichlet to Neumann operators.

The dynamics of the dislocation is basically given by the normal velocity Vn (in the
slip plane) to the curve Γt = ∂Ωt (where we now denote by Ωt the openset to show the
dependence on the time t). This normal velocity is given by

(0.1) Vn = c[Ωt](x, t) with c[Ωt] = c0 � 1Ωt .

The dynamics of a dislocation is then a system coupling the equations of elasticity for
the displacement field and a geometric motion for the dislocation curve. After eliminating
the displacement, the dynamics reduces to a single non-local geometric equation (0.1). It
is convenient to see the open set Ωt as the super-level set {x, u(x, t) > 0} for a function u
solving the following non-local Hamilton-Jacobi equation:

(0.2)
∂u

∂t
=

(
c0 � 1{u(·,t)>0}

)
|Du|.

The mathematical theory of viscosity solution and its extensions will be presented as a
framework to study such kind of equations. The main mathematical difficulty is the fact
that the inclusion principle can be lost for the open sets Ωt = {x, u(x, t) > 0}.
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Lecture 2:
Mean curvature motion (MCM) as a singular limit of dislocation dynamics

This lecture will focus on the special case where we concentrate all the negative part of
the kernel c0 in a Dirac mass. In that case we will show that we can mathematically recover
a comparison principle for a suitable formulation. This can be formally written as

c0 = J − 1

2

(∫
Rn

J

)
δ0

where n = 2 for the plane, but we consider also higher dimensional generalizations. Here J
is the following function

0 ≤ J(−z) = J(z) =
g(z/|z|)
|z|n+1

· 1{|z|>1}

where the smooth function g describes the anisotropy of the problem due to the elasticity of
the crystal (which is natural for anisotropic dislocation curves like you van see on Figure 1).
I will then consider a Slepčev reformulation of the problem (0.2) for a new level set function
v which is now formally solution of the following equation:

∂v

∂t
=

(
c0 � 1{v(·,t)>v(x,t)}

)
(x) · |Dv|

which is rigorously interpreted as a viscosity solution (to define precisely) of the equation

(0.3)
∂v

∂t
=

{
−1

2

(∫
Rn

J

)
+

(∫
Rn

dzJ(z)1{v(x−z,t)>v(x,t)}

)}
· |Dv|.

We will then try to understand the behaviour of the level sets at a large scale. This is known
in physics that at large scale the dynamics of a single dislocation can be well approximated
by a certain mean curvature motion. To recover mathematically this fact, we will consider
the following rescaling for a small parameter ε > 0

vε(x, t) = v

(
x

ε
,

t

ε2 ln ε

)
.

This rescaling is almost a parabolic rescaling. We will then show that the limit as ε goes to
zero of vε is a function v0 which solves a certain anisotropic mean curvature motion (MCM)
which has a variational interpretation (see [2]). This limit motion is also connected to the
Bence, Merriman, Osher algorithm proposed to compute numerically the solution to MCM.
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Lecture 3: Homogenization of dislocation dynamics and of particle systems

In a more general situation, we will consider not only a single dislocation but an infinite
number of dislocations that are given by the level sets Γk

t = {x, w(x, t) = k} , k ∈ Z, for a
level sets function w. Then we can write a Slepčev formulation of this problem as

(0.4)
∂w

∂t
=

{
c1(x) +

(∫
Rn

dzJ(z)�w(x − z, t) − w(x, t)�
)}

· |Dw|

where �·� is an integer part called the floor function and c1 = 0 if there is no additional
stress in the material. We will consider the particular case where there are periodic obtacles
to the motion of dislocations in the crystal. This last case can be modelled assuming that
the function c1 is a general Zn-periodic function. Here c1 represents the additional stress
created by the obstacles. Physically the function w can be interpreted as the plastic strain in
the material. A natural question is then: at large scales, what is the macroscopic dynamics
corresponding to the motion of a density of dislocation curves. This is a homogenization
problem. This corresponds to consider the rescaling for a small parameter ε:

wε(x, t) = εw

(
x

ε
,
t

ε

)
.

We will show (see [4]) that wε converges to a function w0 as ε goes to zero, where w0 is a
solution of a PDE of the form

(0.5)
∂w0

∂t
= H̄(Dw0, Lw0)

where H̄ is an effective Hamiltonian that we can compute and L is a certain non-local
operator. This limit equation has also a mechanical interpretation as the plastic law in
elasto-visco-plasticity of crystals. Up to our knowledge, this is the first rigorous derivation
of such a law (even if we consider a very particular situation).

This homogenization result is also naturally connected to the homogenization of the
dynamics of particles with two-body interactions (see for instance [3]).
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Behavior of solutions to an area-preserving crystalline motion

Tetsuya ISHIWATA ∗

joint work with Shigetoshi YAZAKI(University of Miyazaki)

1 Introduction

When a block of ice crystal is illuminated by strong beams, the ice crystal starts to melt
inside of the crystal as well as the surface and each water region forms a snowflake-like-
pattern which has six petals, called “Tyndall figure” (see Figure 1 (a)). This figure has a
vapor bubble in water region and when this figure is refrozen, the vapor bubble remains in
the ice as a hexagonal disk (see Figure 1 (b)). This hexagonal disk is a kind of negative
crystals and the interior region is filled with water vapor saturated at that temperature.
McConnel([6]) found these disks in the ice of Davos lake. Nakaya called this hexagonal disk
“Kuuzou(空像)” in Japanese and investigated its properties [7].

(a) (b)
Figure 1: (a) Tyndall figures (seen from 45◦ to the c-axis) and (b) a negative crystal (by U.

Nakaya).

In [5], we proposed a motion equation for a polygonal curve in the plane as a simple
model of the formation process of negative crystals after the water region in a Tyndall figure
is completely refrozen. This model equation is obtained by a gradient flow of total surface
energy under an area-preserving constraint:

Vi = H − Hi.

Here Vi is the outward normal velocity on the i-th facet Fi of vapor region Ω(t) (enclosed
region by a polygon), Hi is the crystalline curvature of Fi and H is the average of all

∗Department of Mathematical Sciences, College of Systems Engineering and Science, Shibaura Institute of

Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama 337-8570, JAPAN. E-mail: tisiwata@shibaura-

it.ac.jp
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crystalline curvatures. This equation is called area-preserving crystalline motion or area-
preserving crystalline curvature flow. Crystalline motion is a singular weighted curvature flow
with non-smooth surface energy γ and J. Taylor[8] and Angenent and Gurtin [1] proposed
the framework of crystalline motions. In this framework, the interfaces are restricted in
the class of polygonal curves (two dimensional case) which satisfy an admissibility condition
based on the equilibrium shape of the crystal. This equilibrium shape is called the Wulff
shape and plays important roles for not only the definition of the crystalline curvature and
admissibility condition, but also the asymptotic behavior of the solution polygons. The
detailed formulations will be mentioned in next section.

In the case that an initial shape Ω0 is convex, the solution polygon Ω(t) keeps its con-
vexity. S. Yazaki [9, Part I] show that no facets disappear globally in time and the solution
polygon converges to the rescaled Wulff shape whose area is equal to that of Ω0 in the Haus-
dorff metric. However, when the vapor region is surrounded by the ice region in refreezing
process, many fine facets appear on the interface and the shape of the vapor region is not
convex in general. Thus, in this talk, we consider the case that Ω0 is not convex. In this
case, there is a possibility that the solution has some singularities in finite time, for exam-
ple, facet-extinction and self-intersection of the interface. We show the sufficient conditions
on the Wulff shape and an initial polygon to keep admissibility of the solution polygons.
Moreover, we also show that the solution polygon from non-convex initial polygon becomes
convex in finite time.

2 Area-preserving crystalline motion

Crystalline energy and the Wulff shape. Let γ = γ(n) be a positive continuous function
defined on S1 and describe interfacial energy density for the direction n. In this note, we
consider the case where the Wulff shape of γ, Wγ = {x ∈ R2|x · n ≤ γ(n) for all n ∈ S1},
is a convex polygon. Such γ is called crystalline energy. If Wγ is a J-sided convex polygon
(J ≥ 3), then Wγ is expressed as

Wγ =
J⋂

i=1

{
x ∈ R2; x · νi ≤ γ(νi)

}
,

where νi = n(φi) and φi is the exterior normal angle of the i-th facet with φi ∈ (φi−1, φi−1 +
π) for all i (φ0 = φJ , φJ+1 = φ1). We define a set of normal vectors of Wγ by Nγ =
{ν1, ν2, . . . , νJ}.
Polygons and polygonal curves. Let Ω be N -sided polygon in the plane R2, P its bound-
ary, that is, P = ∂Ω and label the position vector of vertices pi (i = 1, 2, . . . , N) in an
anticlockwise order: P =

⋃N
i=1 Fi, where Fi = {(1 − t)pi + tpi+1; t ∈ [0, 1]} is the i-th facet

(p0 = pN , pN+1 = p1). The length of Fi is di = |pi+1 − pi|, and then the i-th unit tangent
vector is ti = (pi+1 − pi)/di and the i-th unit outward normal vector is ni = −t⊥i , where
(a, b)⊥ = (−b, a). We define a set of normal vectors of P by N = {n1, n2, . . . , nN}. Let θi be
the exterior normal angle of Fi. Then ni = n(θi) and ti = t(θi) hold (θ0 = θN , θN+1 = θ1),
where t(θ) = (− sin θ, cos θ).

We define the i-th hight function hi = pi · ni = pi+1 · ni (h0 = hN , hN+1 = h1). By
using {hi−1, hi, hi+1} and {ni−1, ni, ni+1}, the length of i-th facet di is described as follows:

di =
χi−1,i(hi−1 − (ni−1 · ni)hi)√

1 − (ni−1 · ni)2
+

χi,i+1(hi+1 − (ni · ni+1)hi)√
1 − (ni · ni+1)2

, i = 1, 2, . . . , N,
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where χi,j = sgn(ni ∧ nj) and a1 ∧ a2 = det(a1, a2) is the determinant of the 2 × 2 matrix
with column vectors a1, a2. Since ni · nj = cos(θi − θj), we have another expression:

di = −(cot ϑi + cot ϑi+1)hi + hi−1 cosec ϑi + hi+1 cosec ϑi+1, i = 1, 2, . . . , N, (1)

where ϑi = θi − θi−1. Note that 0 < |ϑi| < π holds for all i. Furthermore, the i-th vertex pi

(i = 1, 2, . . . , N) is described as follows:

pi = hini +
hi−1 − (ni−1 · ni)hi

ni−1 · ti
ti. i = 1, 2, . . . , N. (2)

Admissibility and crystalline curvature. We call Ω and P admissible (associated with
Wγ) if and only if N = Nγ holds and any adjacent two normal vectors in the set N are also
adjacent in the set Nγ , i.e., for any i, there exists j such that {νj , νj+1} = {ni, ni+1} holds.

Let P be an admissible polygonal curve. For each facet Fi a crystalline curvature is
defined by

H(Fi) = χi
lγ(ni)

di
, i = 1, 2, . . . , N,

where χi = (χi−1,i + χi,i+1)/2 is the transition number and it takes +1 (resp. −1) if P is
convex (resp. concave) around Fi in the direction of −ni, otherwise χi = 0; and lγ(ni) is
the length of the j-th facet of Wγ if ni = νj . If Ω is an admissible convex polygon, then
ni = νi and χi = 1 for all i = 1, 2, . . . , N = J ; and moreover, if Ω = Wγ , then the crystalline
curvature is 1. In this note, we call a facet which zero transition number “inflection facet.”

We note that the total interfacial crystalline energy on P is

Eγ =
N∑

i=1

γ(ni)di, (3)

and the crystalline curvature H(Fi) is characterized as the first variation of Eγ on P at Fi

with a suitable norm. Here and hereafter, we denote H(Fi) by Hi for short.
Area-preserving crystalline motion. The normal velocity on Fi in the direction ni is
Vi = ḣi. Here and hereafter, we denote that the derivative of a function u = u(t) with respect
to time t by u̇. The area-preserving crystalline motion is the gradient flow of Eγ along P
which encloses a fixed area, and it is described as follows:

Vi = H − Hi, i = 1, 2, . . . , N, (4)

where

H =
∑N

i=1 Hidi

L
is the average of the crystalline curvature, and L =

∑N
k=1 dk is the total length of the curve

P. From (1), we have

ḋi = −(cot ϑi + cot ϑi+1)Vi + Vi−1 cosec ϑi + Vi+1 cosec ϑi+1, i = 1, 2, . . . , N. (5)

Furthermore, by (2) we have

ṗi = Vini +
Vi−1 − (ni−1 · ni)Vi

ni−1 · ti
ti, i = 1, 2, . . . , N. (6)

Note that (4), (5) and (6) are equivalent each other. It is easy to check that the enclosed
area A(t) =

∑N
i=1 hidi/2 is preserving in time: Ȧ(t) =

∑N
i=1 Vidi = 0.
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3 Results

For any given admissible initial polygon Ω0, we have short time existence and uniqueness
result by the standard argument since (5) is the system of ordinary differential equations.

Known results for convex polygons. What might happen to Ω(t) as t tends to the
maximal existence time T ≤ ∞? For this question, we have the following result.

Theorem 1 Let the crystalline energy be γ > 0. Assume the initial polygon Ω0 is an N -
sided admissible convex polygon. Then the solution admissible polygon Ω(t) exists globally
in time keeping the area enclosed by the polygon constant A, and Ω(t) converges to the shape
of the boundary of the Wulff shape ∂Wγ∗ in the Hausdorff metric as t tends to infinity, where
γ∗(ni) = γ(ni)/W , W =

√
|Wγ |/A for all i = 1, 2, . . . , N and |Wγ | =

∑N
k=1 γ(nk)lγ(nk)/2

is enclosed area of Wγ .

This theorem is proved in Yazaki [9, Part I] by using the anisoperimetric inequality or Brünn
and Minkowski’s inequality and the theory of dynamical systems.

Our results for non-convex polygons.

In the previous case, the solution polygon keeps its convexity and admissibility, that is,
the length of each facet is positive globally in time and the self-intersection of P(t) never
occur. However, if Ω0 is non-convex, the facet-extinction or the self-touching may occur
in finite time. Indeed, we can easily construct the example of the self-intersection of P(t)
and Ω(t) becomes non-admissible after the singularity. Thus, the admissibility of solution
polygons may break down in finite time. To track the motion globally in time in the class
of admissible polygons, we prepare the following assumptions:

(A1) Wγ is symmetric with respect to the origin.

(A2) Transition numbers of Ω0 are all nonnegative: χi ≥ 0 for any i.

Theorem 2 Assume the assumptions (A1) and (A2). Let Ω0 be an N -sided non-convex
admissible polygon. Then, there exists T1 > 0 such that the solution polygon is an N-sided
admissible polygon for 0 ≤ t < T1 and there exists at least one inflection facet whose length
tends to zero as t → T1. Moreover, Ω(t) converges to an admissible polygon Ω∗ in the
Hausdroff topology as t → T1 and area of Ω∗ is equal to area of Ω0.

This theorem means that we can restart the motion with the initial polygon Ω∗ and
obtain the solution in the class of admissible polygons beyond the singularity. If Ω∗ is non-
convex, then we can apply Theorem 2 again and again. We finally have a finite sequence
of facet-extinction time : 0 < T1 < T2 < · · · < Tm < +∞. Then, we obtain the following
convexity result.

Theorem 3 Assume that the same assumption as in Theorem 2. Then, the solution polygon
becomes convex at t = Tm.

After the convexity phenomena occurs, we can apply Theorem 1. Therefore, the solution
polygon exists globally in time in the class of admissible polygons and the solution polygon
finally converges to the rescaled Wulff shape.
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4 For negative crystals

For usual crystal case, enclosed region describes the crystal and then normal vector n is
direction from the crystal to its outside region. However, for negative crystal case, the
outside region describes the crystal. Thus, applying the area-preserving crystalline motion
to understand the motion of the boundary of negative crystals, we need to use γ(−n) as the
interfacial energy density. Therefore, we use the figure:

J⋂
i=1

{
x ∈ R2; x · (−νi) ≤ γ(νi)

}
,

as the Wulff shape for negative crystal case.
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Short Time Uniqueness Results for Solutions of
Nonlocal and Non-Monotone Geometric Equations

Hiroyoshi MITAKE
(Hiroshima University, JSPS Young Researcher (PD))

1 Introduction

This talk are based on a joint work [6] with Pro-
fessors Barles and Ley. The goal of this talk is to
explain what a non-monotone evolution of compact
hypersurfaces {Γt}t≥0 ⊂ RN moving according to
the non-local law of propagation

V = h(x, t,Ωt, n(x), Dn(x)) on Γt (1)

is and to describe a method to show short time
uniqueness results for the initial-value problem for
level-set (or geometric) equations of (1). Here V is
the normal velocity of Γt which depends, through
the evolution law h, on time t, on the position of
x ∈ Γt, on the set Ωt enclosed by Γt, on the unit
normal n(x) to Γt at x pointing outward to Ωt and
on its gradient Dn(x) which carries the curvature
dependence of the velocity.

The main example we have in mind is the dislo-
cation dynamics, i.e., Equation (1) with

h = c0(·, t) ∗ 1Ωt
+ c1(·, t) − div (n(x)) on Γt, (2)

where the functions c0, c1 : RN × [0, T ] → R are
given functions which are bounded, Lipschitz con-
tinuous in x (uniformly with respect to t) and
c0, Dxc0 ∈ L∞([0, T ];L1(RN )), “∗” denotes a con-
volution with respect to x variable and 1A is the
indicator function of a set A. Note that div (n(x))
is (n−1 times) the mean curvature of Γt at a point
x ∈ Γt. This example is of interest in applications
and a physical assumption is that the kernel c0 may
change sign. It makes this motion non-monotone
as it will be explained later. This feature is the
main difficulty to overcome to study the evolution.
We refer to [6] for more general nonlocal and non-
monotone geometric equations.

2 Derivation of Level-Set Equa-
tions of (2) and Level Set Ap-
proach

First of all, we present a formal derivation of the
level set equation of (1) with (2). We assume that
there exists a smooth function u : RN × [0, T ] → R
such that

Γt = {x ∈ RN | u(·, t) = 0},
Ωt = {x ∈ RN | u(·, t) > 0} and Du �= 0 on Γt.

A classical calculation yields

V =
ut

|Du|
and n = − Du

|Du|
.

Inserting the above formulae in (1) with (2), we
obtain

ut =
(
c[1{u≥0}](x, t) + div

( Du

|Du|

))
|Du|

in RN × (0, T ), (3)

where

c[1{u≥0}](x, t)

:=
∫
RN

c0(x − y, t)1{u(·,t)≥0}(y) dy + c1(x, t).

The level set approach to front propagations can
be described as follows generally. For a given
smooth hypersurface Γ0 in RN (front at time t =
0), choose u0 : RN → R such that

Γ0 = {x ∈ RN | u0(x) = 0}

and solve (in some sense) the Cauchy problem for
(3) with the initial value u0, and, finally, regard

{x ∈ RN | u(x, t) = 0}.
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as the front Γt at time t. This approach was in-
troduced by Osher and Sethian [19] for numerical
calculations and then developed, from a theoreti-
cal point of view, by Evans and Spruck [13] for the
mean curvature motion and by Chen, Giga and
Goto [11] for general velocities by using the the-
ory of viscosity solution (see [12]). We refer to the
monograph [16] for more details.

In order to guarantee level set approach, we need
to consider the fundamental questions: (i) whether
this Cauchy problem have a viscosity solution, (ii)
whether viscosity solutions are unique and (iii)
whether Γt depends only on Γ0 and not on the
shape of u0 outside of Γ0. We can give a positive
answer for (i) and (ii) for short time. In this talk,
we shall only address question (ii). For question
(i), we refer to [17, 20, 5, 6]. Question (iii) have
not been solved yet. Finally, it is worth mention-
ing that when such motion (1) is local, i.e., when h
does not depend on Ωt, and monotone (see below),
then it is proved by Barles and Souganidis in [9]
that the motion can be defined and studied by the
level set approach.

3 Non-Monotone Motion

In recent years, there has been much interest on the
study of front propagations problems in cases when
the normal velocity of the front depends on a non-
local way of the enclosed region like (1). This inter-
est was motivated by several types of applications
like dislocations’ theory or FitzHugh-Nagumo type
systems or volume dependent velocities. It is worth
pointing out that in many of the above mentioned
applications, one faces non-monotone motions. We
first recall that a motion (1) is said to be monotone
when the inclusion principle holds, i.e., when

Ω1
0 ⊂ Ω2

0 ⇒ Ω1
t ⊂ Ω2

t for any t > 0.

A motion is non-motone when the inclusion prin-
ciple does not hold.

We consider an easy example.

Example 1. Let us consider the evolution of com-
pact hypersurfaces {Γt}t≥0 ⊂ R2 moving according
to the non-local law of propagation

V = −Vol (Ωt) on Γt. (4)

When we start from circles with radius a > 0,
then (4) can be reduced to consider the initial-value

problem of the ordinary differential equation

Ṙ(t) = −R(t)2 and R(0) = a.

Solve the above problem and denote the solutions
by Ra(t). We have

Ra(t) =
a

at + 1
.

Then let us consider the initial surfaces

Γ1
0 := {x ∈ R2 | |x| = 1},

Γ1/2
0 (t) = {x ∈ R2 | |x − 1

2
| =

1
2
}.

By calculating that

R1(t) − (R 1
2
(t) +

1
2
) = − t(t + 3)

2(t + 1)(t + 2)
< 0,

we see that non-monotone motion happens.

Γ1
0, Γ2

0 Γ1
t , Γ2

t

From viewpoint of auxiliary functions u1, u2, we
observe the followings.

x x

u1
0, u2

0 u1(·, t), u2(·, t)

This observation tells us that we cannot expect the
comparison principle for the level set equation for
(4).

Finally, we note that in this example we ignore
the curvature term for simplicity of calculation, but
non-monotone motion still can happen even though
we add the curvature term.
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For such class of equations, the level set ap-
proach cannot be used directly since the classical
comparison arguments of viscosity solutions’ the-
ory fail and therefore, the existence and unique-
ness of viscosity solutions to these equations be-
come an issue. Though the existence properties
for such motions seem now to be well understood
(see [17, 20, 5]), this is not the case for unique-
ness. In particular, there are not many uniqueness
results for curvature dependent velocities. While
there are many results of existence and uniqueness
for the motion (1) with (2) without a curvature
term, as far as I know, there are only two works
by Forcadel [14] and Forcadel and Monteillet [15]
which investigate the motion (1) with (2), which
is included by our equations with general assump-
tions. We describe here the study for the motion
(1) with (2) without a curvature term. A short
time existence and uniqueness result was first ob-
tained in [2]. Long time existence and uniqueness
results were obtained when the velocity is positive,
i.e.,

h > 0 on Γt, (5)

by Alvarez, Cardaliaguet and Monneau in [1] and
by Barles and Ley in [7] by different methods. In
[3], they presented a new notion of weak solutions
of the level set equation (see [3, Definition 1.1])
and gave the global existence of these weak solu-
tions and analysed the uniqueness of them when
(5) holds. A similar concept of solutions already
appeared in [17, 20]. In [4], a new perimeter esti-
mate for the evolving fronts with uniform interior
cone property was proposed and by using this, the
uniqueness result for dislocation dynamics equa-
tions was obtained and asymptotic equations of
a FitzHugh-Nagumo type system, still under the
positiveness assumption (5). Since the studies by
[1, 7, 3, 4], it is now well-known that estimates
on lower gradient bound and perimeter of 0-level
sets of viscosity solutions of associated local equa-
tions are key properties to obtain existence and
uniqueness results for nonlocal equations derived
from dislocation dynamics model. Finally, we no-
tice that in this talk, we do not use the perimeter
estimate in an essential way but elementary mea-
sure estimates.

4 Fattening Difficulty

Let us describe the main difficulty of our problem.
Considering the non-local part as a given function,
we are led to the study the (local) Cauchy problem⎧⎨⎩ut =

(
c(x, t) + div

( Du

|Du|
))

|Du| in RN × (0, T ),

u(·, 0) = u0 in RN ,
(6)

where u0 ∈ W 1,∞(RN ) and c ∈ C(RN × [0, T ])
are bounded and Lipschitz continuous with respect
to the x variable. One of our main results is a
short time lower gradient bound estimate for the
viscosity solution of (6), i.e.,

|Du(x, t)| ≥ η(t) > 0
in a neighborhood of {u(·, t) = 0}. (7)

For first-order eikonal equations, lower gradient
bound comes naturally from the Barron-Jensen’s
approach (see [18]). For second-order equations
like (6), it is affected by the “diffusion” term and
the non-empty interior difficulty and therefore we
cannot expect that the property (7) holds gener-
ally and for long-time. Indeed, in [10], they con-
sider the simple example of (6) with c ≡ 1 and
smooth u0 such that Du0 �= 0 on the initial front
{u0 = 0}. They prove that, up to choose suitable
u0, fattening may occur for arbitrary t > 0, i.e.,
the front may develop an interior. Also, it is worth
pointing out that we are dealing with the function
h which is allowed to change sign in (1), contrary
to [1, 7, 3, 4] where (5) is one of the main assump-
tion to get uniqueness. It may give rise of fattening,
see [8, Proposition 4.4].

It is precisely this reason which implies that
there are not many results on the nonlocal second-
order equations like the level sets equations (3) and
we cannot expect the global uniqueness result un-
der our general assumptions. Therefore, we can say
that our short-time result is optimal in a sense.

Finally, we explain the key idea to obtain (7)
for viscosity solutions of (6). In order to get it,
we make the following assumption on u0. There
exist constants λ0, δ0 ∈ (0, 1), η0 > 0 and ν ∈
C(RN , RN ) such that

u0(x + λν(x)) ≥ u0(x) + λη0 in U0 (8)

for all λ ∈ [0, λ0], where U0 := {x ∈ RN | |u0(x)| ≤
δ0}. Then we prove that such a property is pre-
served for the solution of (6), at least for short
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time, i.e.,

u(x + λν(x), t) ≥ u(x, t) + λη(t) in Ut (9)

for all λ ∈ [0, λ], t ∈ [0, t ∧ T ] and some t > 0,
λ ∈ (0, λ0], where η : [0, t ∧ T ] → [0,∞) is a non-
increasing continuous function such that

η(t) > 0 for all t ∈ [0, t ∧ T ) (10)

and Ut := {x ∈ RN | |u(x, t)| ≤ δ0/4}. See [6,
Theorem 4] for the proof.

We derive lower gradient estimate (7) from (9)
formally here. We have

λη(t0) ≤ u(x0 + λν(x0), t0) − u(x0, t0)
= λ〈Du(x0, t0), ν(x)〉 + o(λ‖ν‖∞)
≤ λ|Du(x0, t0)|‖ν‖∞ + o(λ‖ν‖∞)

in a neighborhood of {u(·, t) = 0}

for all t ∈ [0, t ∧ T ] with o(r)/r → 0 as r → 0.
Dividing λ in the above and taking a sufficiently
small λ ∈ (0, λ], we get the lower estimate (7).

Finally, I explain about the geometrical inter-
pretation of (8) easily. Assume that Γ0 is a C2 hy-
persurface. Then it is well known that the signed
distance function ds

Γ0
to Γ0 is C2. It follows that

(8) hold with u0 such that u0 = ds
Γ0

in a neigh-
borhood of Γ0. Indeed, setting ν(x) = Du0(x), we
have

u0(x + λν(x))

=u0(x) + λ|Du0(x)|2 + λω(λ)

≥u0(x) + λ
min |Du0(x)|2

2

where ω is a modulus of continuity of Du0. We
refer to [6, Section 3] for details.

5 Short Time Uniqueness

We state a short time uniqueness result for solu-
tions of the Cauchy problem for (3).

Theorem 1 (Uniqueness Result of Solutions in a
Short Time). If there exist viscosity solutions of the
initial-value problem (3), they are unique in RN ×
[0, t], where t is given by (9).

Remark 1. We need to discuss existence results,
but here we omit it. See [6] for details.

Proof. Suppose that there exist viscosity solutions
u1 and u2 of (3) with the same initial value. Let
τ ∈ (0, T ] which shall be fixed later and set

δτ := max
RN×[0,τ ]

|(u1 − u2)(x, t)|.

Then by using a result of continuous dependence
of solutions (see [6, Theorem 1]), we have

δτ ≤ M1κτ (τ + τ1/2), (11)

where

κτ := sup
t∈[0,τ ]

∫
RN

|1{u1(·,t)≥0}(y) − 1{u2(·,t)≥0}(y)| dy.

(12)

Note that

|1{u1(·,t)≥0}(y) − 1{u2(·,t)≥0}(y)|
≤1{−δτ≤u1(·,t)<0}(y) + 1{−δτ≤u2(·,t)<0}(y).

We fix
t∗ ∈ (0, t ∧ T ),

where t is given by Theorem 9. Take τ ≤ t∗ small
enough in order that δτ ≤ δ0/4, the lower-bound
gradient estimate (7) holds on [0, τ ] and, for all
t ∈ [0, τ ], η(t) ≥ η(t∗) =: η > 0.

We have, for i = 1, 2,∫
RN

1{−δτ≤ui(·,t)<0}(y) dy

=LN ({−δτ ≤ ui(·, t)}) − LN (Ωi
t), (13)

since Ωi
t := {ui(·, t) > 0} ⊂ {−δτ ≤ ui(·, t)}.

We claim that

{−δτ ≤ ui(·, t)} ⊂ (I +
δτ

η
ν)−1(Ωi

t)

for t ∈ [0, τ ] and τ small enough. (14)

We recall that ψλ = (I + λν) is a C1-
diffeomorphism when λ is enough small. To prove
the claim, let (x, t) ∈ RN × [0, τ ] such that
ui(x, t) ≥ −δτ and set

λ =
δτ

η
.

We distinguish two cases. If ui(x, t) ≥ δ0/4, then,
by the regularity of solutions (see [6, Proposition
3]),

ui(x + λν(x), t) ≥ ui(x, t) − L|ν(x)|λ
≥ δ0/4 − L‖ν‖∞λ ≥ 0
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for some L > 0 and all λ ≤ δ0/(4L‖ν‖∞). If −δτ ≤
ui(x, t) ≤ δ0/4, then, by (9),

ui(x + λν(x), t) ≥ ui(x, t) + λη ≥ −δτ + λη = 0

for δτ ≤ δ0/4, λ ≤ λ and t ≤ t. Finally, (14) holds
if τ is such that

τ ≤ t and δτ ≤ min
{δ0

4
,

ηδ0

4L‖ν‖∞, ηλ

}
.

By continuity of u1, u2 which achieve the same
initial condition, it is always possible to find τ >
0 small enough in order that this latter condition
holds.

Note that Ωi
t ⊂ B(0, RT ) for some RT > 0, since

we are considering compact hypersurface evolution.
By a change of variable, up to take λ, and so τ,
smaller, we have

LN ((I + λν)−1(Ωi
t))

=
∫

Ωi
t

det(D(I + λν)−1)dx

≤(1 + 2Nλ||Dν||∞)LN (Ωi
t),

since det(D(I + λν)−1) = 1 − λ tr(Dν) + o(λ).
From (11), (13) and (14), it follows

κτ ≤ 2(LN ((I +
2δτ

η0
ν)−1(Ωi

t)) − LN (Ωi
t))

≤ 4Nδτ

η0
LN (B(0, RT )). (15)

Therefore, we get

δτ ≤ C

η
δτ (τ +

√
τ)

for some constant C > 0 which is independent of
τ . For τ small enough, we have δτ = 0. It follows
u1 = u2 on RN × [0, τ ].

We consider τ = sup{τ > 0 | u1 = u2 on RN ×
[0, τ ]}. If τ < t∗, then we can repeat the above
proof from time τ instead of 0. Finally, we have
u1 = u2 on RN × [0, t∗] for all t∗ < t, which gives
the conclusion.
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Stability analysis of steady states for surface diffusion equation

in a bounded domain

Yoshihito Kohsaka1

(Muroran Institute of Technology)

1 Introduction

The motion of curves or surfaces under geometric evolution equations is related to the
motion of phase boundaries. For example, the mean curvature flow equation

V = H

is a well-known geometric equation, which describes a motion of anti-phase boundaries
and also a grain growth (see [1, 9]). Here, V is the normal velocity of the evolving surface
and H is the mean curvature of surface where we use the sign convention that a sphere
with the normal pointing to the inside has positive curvature.

In this talk, we study the surface diffusion equation

V = −∆H,

which was derived by Mullins [10] to model the motion of interfaces in the case that
the motion of interfaces is governed purely by mass diffusion within the interfaces (for
simplicity we set the diffusion constant to 1). Here, ∆ is the Laplace-Beltrami operator.
More precisely, we consider the following problem. Given an bounded domain Ω ⊂ R2 we
look for evolving curves Γ = {Γt}t>0 (for a definition, see Gurtin [5]), which lies in Ω and
satisfies ∂Γt ⊂ ∂Ω, with the properties for t > 0:

V = −κss on Γt,

^(∂Ω,Γt) = π/2 at ∂Ω ∩ Γt,

κs = 0 at ∂Ω ∩ Γt.

(1.1)

Here, κ is the curvature of Γt and a subscript s denotes the differentiation with respect
to an arc-length parameter. Then we observe that (1.1) has the basic properties:

d

dt
LΓt ≤ 0,

d

dt
AΓt = 0.

Here we denote by AΓt the area enclosed by the evolving curve Γt and ∂Ω at time t and
by LΓt the length of Γt at time t.

Our goal in this talk is to derive criteria of linearized stability based on the work of [4],
[3], [8] which deal with the mean curvature flow. The analysis in the case of the surface
diffusion is more difficult since the surface diffusion equation is fourth order nonlinear
parabolic P.D.E.. For the convenience of readers, we show some differences between the
mean curvature flow equation and the surface diffusion equation.

1e-mail: kohsaka@mmm.muroran-it.ac.jp
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• The curvature flow: V = κ

– The gradient flow of the length LΓt with respect to the L2-inner product.

– Not area-preserving.

– Steady states are the line segments.

– Sharp interface model as a singular limit of Allen-Cahn equation.

• The surface diffusion: V = −κss
– The gradient flow of the length LΓt with respect to the H−1-inner product (cf. [11]).

– Area-preserving.

– Steady states are the line segments and the circular arcs.

– Sharp interface model as a singular limit of Cahn-Hilliard equation.

This talk is based on the results in [6]. In the depends, the criteria of the linearized
stability of steady states for the three-phase problem with triple junction will be showed
in some special cases (cf. [7]).

2 Linearized problem and its eigenvalue problem

To study the linearized stability of a steady state Γ∗ with a constant curvature κ∗, we
introduce the following linearized problem around Γ∗:

ρt = −∂2σ(∂2σ + κ2∗)ρ for σ ∈ (l−∗ , l
+
∗ ), t > 0 ,

(∂σ ± h±∗ )ρ = 0 at σ = l±∗ ,
∂σ(∂

2
σ + κ2∗)ρ = 0 at σ = l±∗ .

(2.1)

Here, σ is an arc-length parameter of Γ∗ in [l−∗ , l
+
∗ ] and h±∗ are the curvature of ∂Ω at

Γ∗ ∩ ∂Ω. Furthermore, the linearization of the area-preserving property is∫ l+∗

l−∗

ρ dσ = 0. (2.2)

Since the original problem (1.1) has the area-preserving property, we need to analyze the
linearized problem (2.1) for functions ρ satisfying (2.2).

Let us study the eigenvalue problem corresponding to the linearized problem (2.1). In
what follows we need the duality pairing 〈·, ·〉 between (H1(l−∗ , l

+
∗ ))

′ and (H1(l−∗ , l
+
∗ )) and

the following weak formulation.

Definition 2.1 We say that uv ∈ H1(l−∗ , l
+
∗ ) for a given v ∈ (H1(l−∗ , l

+
∗ ))

′ with 〈v, 1〉 = 0
is a weak solution of {

−∂2σuv = v for σ ∈ (l−∗ , l
+
∗ ) ,

∂σuv = 0 at σ = l±∗
(2.3)

if uv satisfies

〈v, ξ〉 =
∫ l+∗

l−∗

∂σuv∂σξ dσ

for all ξ ∈ H1(l−∗ , l
+
∗ ).

－95－



In addition we also introduce the symmetric bilinear form on H1(l−∗ , l
+
∗ )

I[ρ1, ρ2] :=

∫ l+∗

l−∗

(
∂σρ1∂σρ2 − κ2∗ρ1ρ2

)
dσ + h+∗ ρ1ρ2

∣∣
σ=l+∗

+h−∗ ρ1ρ2
∣∣
σ=l−∗

and the inner product

(ρ1, ρ2)−1 :=

∫ l+∗

l−∗

∂σuρ1∂σuρ2 dσ

where uρi ∈ H1(l−∗ , l
+
∗ ) for a given ρi ∈ (H1(l−∗ , l

+
∗ ))

′ with 〈ρi, 1〉 = 0 is defined as the
weak solution of (2.3).

By choosing an appropriate domain of definition, the linearized operator in (2.1) is
given by

A : D(A) → H, 〈Aρ, ξ〉 :=
∫ l+∗

l−∗

∂σ(∂
2
σ + κ2∗)ρ ∂σξ dσ

with D(A) =
{
ρ ∈ H3(l−∗ , l

+
∗ )

∣∣ (∂σ ± h±∗ )ρ = 0 at σ = l±∗ and

∫ l+∗

l−∗

ρ dσ = 0
}
,

H = {ρ ∈ (H1(l−∗ , l
+
∗ ))

′ | 〈ρ, 1〉 = 0}.

Let us analyze the spectrum of A in order to decide on the stability behaviour of
the linearized problem (2.1). Using classical principles of the variational calculus, we can
describe the spectrum of A with the help of the bilinear form I and the inner product
(· , ·)−1. In fact, if ρ is an eigenfunction to the eigenvalue λ, it holds

λ(ρ, ξ)−1 = (Aρ, ξ)−1 = −I[ρ, ξ] .

We remark that eigenvalues λ 6= 0 always correspond to eigenfunctions which have the
mean value zero. This is a natural request from (2.2). First we have the following lemma
for the operator A.

Lemma 2.2 (i) The operator A is self-adjoint with respect to the inner product (·, ·)−1.
(ii) The spectrum of A contains a countable system of real eigenvalues.

In addition, we have the following lemmas for the eigenvalues of A.

Lemma 2.3 Let
λ1 ≥ λ2 ≥ λ3 ≥ · · ·

be the eigenvalues of A (taking the multiplicity into account).
(i) It holds for all n ∈ N

λn = − inf
W∈Σn

sup
ρ∈W\{0}

I[ρ, ρ]

(ρ, ρ)−1

, λn = − sup
W∈Σn−1

inf
ρ∈W⊥\{0}

I[ρ, ρ]

(ρ, ρ)−1

.

Here Σn is the collection of n-dimensional subspaces of V and W⊥ is the orthogonal
complement with respect to the inner product (· , ·)−1.
(ii) The eigenvalues λn depend continuously on h+∗ , h

−
∗ and κ2∗; and are monotone de-

creasing in each of the parameters h+∗ , h
−
∗ and (−κ2∗).
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Lemma 2.4 (i) Assume κ∗ 6= 0. Then the operator A has a zero eigenvalue if and only
if

a

c
+
b

c
(h+∗ + h−∗ ) + h+∗ h

−
∗ = 0 (2.4)

where

a =|κ∗|2L∗ sin(|κ∗|L∗) ,

b =sin(|κ∗|L∗)− |κ∗|L∗ cos(|κ∗|L∗) ,

c =− L∗ sin(|κ∗|L∗)−
2

|κ∗|
cos(|κ∗|L∗) +

2

|κ∗|

with L∗ = l+∗ − l−∗ . Furthermore, it holds the inequality

b2

c2
− a

c
> 0 . (2.5)

(ii) Assume that κ∗ = 0. Then the operator A has a zero eigenvalue if and only if

12

L2
∗
+

4

L∗
(h+∗ + h−∗ ) + h+∗ h

−
∗ = 0 . (2.6)

(iii) If we interpret a, b, and c as functions of κ∗, we obtain

a

c
→ 12

L2
∗

and
b

c
→ 4

L∗
as κ∗ → 0 .

(iv) The multiplicity of a zero eigenvalue is equal to one for all h+∗ , h
−
∗ , and κ∗.

Set

D(h+∗ , h
−
∗ , κ∗, L∗) =

a

c
+
b

c
(h+∗ + h−∗ ) + h+∗ h

−
∗ .

Let Nu be the number of the unstable eigenvalues and also let N0 be the number of the
zero eigenvalues (counting the multiplicity). Then, we are led to the following theorem.

Theorem 2.5 (i) If D(h−∗ , h
+
∗ , κ∗) > 0 and h−∗ > −b/c, then Nu = N0 = 0.

(ii) If D(h−∗ , h
+
∗ , κ∗) = 0 and h−∗ > −b/c, then Nu = 0 and N0 = 1.

(iii) If D(h−∗ , h
+
∗ , κ∗) < 0, then Nu = 1 and N0 = 0.

(iv) If D(h−∗ , h
+
∗ , κ∗) = 0 and h−∗ < −b/c, then Nu = 1 and N0 = 1.

(v) If D(h−∗ , h
+
∗ , κ∗) > 0 and h−∗ < −b/c, then Nu = 2 and N0 = 0.

Remark 2.6 D(h+∗ , h
−
∗ , κ∗, L∗) = 0 draws the hyperbola in (h−∗ , h

+
∗ )-plane. Theorem 2.5

says that above the upper arc of the hyperbola we have only negative eigenvalues, which
imply the stability of steady states. Underneath of it and above the lower arc of the
hyperbola, we have one positive eigenvalue, which means that the number of unstable
modes is one. Furthermore, underneath of it, we have two positive eigenvalues, which
mean that the number of unstable modes is two.
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1 Introduction

The aim of these notes is to give an elementary introduction to embedded anisotropic mean
curvature flow in codimension one, with some attention to crystalline mean curvature flow.
We will also discuss very briefly the generalization to a multiphase problem in the plane,
namely to crystalline evolutions of planar partitions. For a better understanding of the
arguments of the notes, some knowledge on motion by mean curvature in the euclidean
setting would be recommended. We refer the reader to the introductory parts of the following
references: [43], [94], [69], [70], [95], [12], [13], [72], [73], [74], [75], [96], [57], [86], [5], [68],
[81], [100], [23].
We will mostly concentrate on the derivation of the evolution laws, rather than on detailed
proofs: one reason for this is to keep the exposition whithin a limited number of pages.
Another reason is that the proofs can be found in the original papers.
Apart from the initial section, where we often try to minimize the assumptions on the function
φo, and from the final section on partitions, the view point that we will adopt here is mostly
based on the use of the anisotropic signed distance function d

φ
. As a consequence, we will not

consider the evolution problem looking at the maps parametrizing the manifolds (see [105]
and references therein for this parametric approach), but instead we will look only at the
images of the maps. This approach is closely related to various derivations of mean curvature
flow that can be found in the literature on phase transitions [65], [66], [67], [18], [56]. In this
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respect, a very quick presentation of the reaction-diffusion approximation to crystalline mean
curvature flow is also presented.
Mathematical and physical motivations for anisotropic mean curvature flow can be found in
the large number of papers present in the literature devoted to this subject, as well as detailed
reference lists. We apologyze with the reader, since the bibliography in these notes is largely
incomplete. We sometimes quote references weakly related to the treated argument, but that
we believe to be useful for a more general point of view on that subject.

2 Notation

Since we will consider Finsler norms [119], [16], [108], [107], on Rn and their duals, we believe
that it is more clear to use a notation which distinguishes the base manifold from its tangent
space, and as most as possible vectors from covectors.
Therefore we set M = Rn and V = TxM = Rn the tangent space to M at any x ∈ M , and
TM = M × V (resp. T �M = M × V �, V � the dual of V ) the tangent (resp. cotangent)
bundle to M . We denote by · and | · | the scalar product and the norm in V , respectively,
and by d(·) the euclidean distance in M . Recall that V can be identifed with V �(1).
Ln is the Lebsegue measure and Hk the k-dimensional euclidean Hausdorff measure in M
for k ∈ {0, . . . , n}. Recall that Hn = Ln [11]. If B ⊂ M is measurable, we often write
Ln(B) = |B|. We will use the words orthogonal, unit vector etc. in the euclidean sense. If F
is a set, we let P(F ) be the class of all subsets of F .
We denote by Λ1V (resp. Λ1V ) the space of one-covectors (resp. one-vectors) of V . On
these two vector spaces, we have the norm | · | induced by the euclidean norm [76], [80]. We
sometimes use the symbol Λ1V and sometimes V � (which are thought of as row vectors);
similarly for Λ1V and V (column vectors). We usually omit the symbol T of transpositon
when we write a column vector in components. The duality between Λ1V and Λ1V is denoted
by 〈·, ·〉.
Recall that any covector ξ� ∈ Λ1V is a linear map V → R. If |ξ�| = 1 (where |ξ�| :=
max{〈ξ�, ξ〉 : ξ ∈ Λ1V, |ξ| = 1}) we can uniquely associate with ±ξ� its kernel, which is an
hyperplane in V . Therefore there is a bijection(2) between the set of unit covectors and the
set of all oriented hyperplanes of V passing through the origin. We denote by G� (resp. G)
the set of all oriented (resp. unoriented) hyperplanes of V passing through the origin; using
the euclidean scalar product, with such a hyperplane we can uniquely associate a unit vector
(resp. unit vector up to its sign), orthogonal to the hyperplane. Sometimes we will identify
G� with Sn−1 := {v ∈ V : |v| = 1}. We refer the reader to [76], [80] for more details on the
Grassmann algebra.
Covector fields on M have lower indices

ω : x ∈ M → ω(x) = (ω1(x), . . . , ωn(x)) ∈ Λ1V.

1There is an isometric isomorphism T : V → V � defined as 〈ξ�, ξ〉 = T (ξ) ·ξ� for any ξ� ∈ V �, and similarly,

there is an isometric isomorphism T � : V � → V defined as 〈ξ�, ξ〉 = T �(ξ�) · ξ for any ξ ∈ V . Since V can be

identified with V ∗∗, we have TT � = IdV
∗ , T �T = IdV .

2Sometimes it is useful to use another identification: a hyperplane H of V can be identified with the linear

map πH : V → V which is the orthogonal projection of V onto H . If ξ is a unit vector which is orthogonal

to H , we have πV = Id − ξ ⊗ ξ, where the symbol ξ ⊗ ξ stands for the (0, 2)-tensor that is represented by the

(n × n) matrix having ξiξj as its ij-th entry.
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Given a function f : M → R of class C1, we denote by dfx ∈ Λ1V the differential of f at
x ∈ M .
Vector fields (or contravariant vector fields) on M have upper indices,

X : x ∈ M → X(x) = (X1(x), . . . ,Xn(x)) ∈ V. (2.1)

If X is of class C1, the divergence of X is defined as divX :=
∑

n

i=1
∂X

i

∂x
i
.

Given a function f : M → R of class C1, gradf = ( ∂f

∂x
1 , . . . , ∂f

∂x
n
)T is the vector field gradient

of f . To simplify the notation, we write ∇f in place of gradf . If necessary, dfx will be
identified with ∇f(x), using the euclidean scalar product. If f is of class C2, the Laplacian
of f is defined as Δf := div ∇f .
Given open sets Ω ⊆ M , Ω′ ⊆ Rm, m ≥ 1, and a map ψ : M → Ω′ of class C1, ψ =
(ψ1, . . . , ψm), we denote by dψx ∈ L(V,W ) the differential of f at x, where W is the tangent
space to Ω′ at any of its points. The Jacobian (m × n) matrix representing dψx is indicated
by Jψ(x). If i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, the ij-entry (Jψ(x))ij of Jψ(x) is ∂ψ

i

∂x
j
(x).

Hence the i-th column of the transposed matrix (Jψ(x))T is ∇ψi(x).
Given a smooth vector field X = (X1, . . . ,Xn), we denote by ∇X the matrix (∇X)ij = ∇iX

j .
If v = (v1, . . . , vn) is a column vector in Λ1V and A, B are (n × n)-matrices, we use the
notation Av, vT A to denote respectively the vectors of components (Av)i = Aijv

j , and
(vA)i = Ajiv

j .
The symbol E (resp. E(t) for t belonging to some real interval, Ei for i ∈ N) will denote a
closed subset of M with compact boundary such that E = int(E) (resp. E(t) = int(E(t)),
Ei = int(Ei)).

Definition 2.1 (Lipschitz boundaries). We say that E is Lipschitz if the boundary ∂E
of E can be written, locally, as the graph of a Lipschitz function with respect to a suitable

(n − 1)-dimensional orthogonal coordinate system. We will write ∂E ∈ Lip(M).

Recall that if ∂E ∈ Lip(M), then [11] for Hn−1-almost every x ∈ ∂E it is well defined the
tangent plane Tx(∂E), which is identified with ±νE(x), where

νE(x) = ν(x) ∈ Sn−1

is the unit covector normal to ∂E at x and points toward the complement M \E of E. Lips-
chitz and polyhedral boundaries (with a finite number of facets) will be useful in connection
with crystalline anisotropies. In this context, if F is a facet of a polyhedral ∂E, we denote
by ∂F (resp. int(F )) the relative boundary (resp. the relative interior) of F . We define

ν̃F (2.2)

to be the Hn−2-almost everywhere defined unit normal to the relative boundary ∂F of F ,
lying in the hyperplane HF containing F , and pointing outside of F .

－105－



3 Anisotropic functionals on boundaries

Let M×G� be the unit cotangent bundle of M [16]. Let σ : M×G� → [0,+∞] be a measurable
function. We shall assume that σ(x, ·) is even(3), namely σ(x, ξ�) = σ(x,−ξ�), so that we can
consider σ as defined on M×G. The domain of σ is the set {(x, ξ�) ∈ M×G : σ(x, ξ�) < +∞},
which coincides with M × G in case that σ is continuous. Let a : M → [0,+∞] be a given
function(4). defined everywhere on M . Associated with σ and a, we can consider the following
anisotropic functional [76], [42], [7], [8] defined on boundaries:

F(E) :=
∫

∂E

σ(x, ν(x))a(x) dHn−1(x) =
∫

∂E

σ(x, ν)a dHn−1, ∂E ∈ Lip(Rn). (3.1)

The functional F can be extended to the class of finite perimeter sets (where now the unit
normal ν must be intended in a proper measure theoretic sense [11]): we will not need such
an extension in these notes. Useful lower semicontinuity properties of this extension(5) can
be found in [11].
The boundary ∂E, also called interface, divides the two sets E and M \E, sometimes called
phases. In case σ is independent of x and a ≡ 1, the quantity σ(v) can be considered as a
surface tension v [1] associated with the hyperplane passing through the origin, orthogonal
to the unit covector v.

3.1 The function φo

Define the function φo : T �M → [0,+∞] to be the one-homogeneous extension of σ(x, ·) on
the whole space of one-covectors, i.e.,

φo(x, ξ�) := |ξ�|σ

(
x,

ξ�

|ξ�|

)
, (x, ξ�) ∈ T �M. (3.2)

Then φo(x, ·) is one-homogeneous, i.e.,

φo(x, λξ�) = |λ|φo(x, ξ�), (x, ξ�) ∈ T �M, λ ∈ R, (3.3)

The function φo(x, ·) is even, since we supposed σ(x, ·) to be even(6). We consider the function
φo(x, ·) as acting on differentials dfx of functions f : M → R at x ∈ M .
We have(7)

F
φ

o(E) :=
∫

∂E

φo(x, ν)a(x) dHn−1(x) = F(E). (3.4)

For computational convenience, from now on we will consider the functional F
φ

o in place of
F . The gradient flow of the functional F

φ
o will lead to anisotropic mean curvature flow: we

will mostly be concerned with the case of a function φo which is independent of x and a ≡ 1.
3Various results that we will present could be extended without assuming that σ(x, ·) is even, but we prefer

to keep this assumption in order to make simpler the presentation.
4We shall see that if σ does not depend on x, from a geometric point of view it is natural to take a to be a

positive constant. For simplicity, the reader can assume a ≡ 1. We notice that, by redefining σ, one can also

include the function a into the new σ. We prefer however to keep σ and a separate.
5Strictly related to the convexity of the function φo(x, ·) defined in (3.2) below.
6If σ(x, ·) were not even, we should drop the absolute value on the right hand side of (3.3) and take λ > 0.
7We prefer to skip the dependence on a of the functional.
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For all x ∈ ∂E for which ν(x) is defined, we introduce [40], [39] the normalized covariant
vector field(8)

νE

φ
o(x) :=

νE(x)
φo(νE(x))

= ν
φ

o(x). (3.5)

In components ν
φ

o = (ν
φ

o

1, . . . , νφ
o

n
).

If F ⊂ ∂E is a facet of a polyhedral set ∂E, we set(9)

ν
φ

o(F ) :=
ν(F )

φo(ν(F ))
, (3.6)

where ν(F ) is the unit normal to int(F ) pointing toward M \ E.
We define(10)

B
φ

o(x) :=
{
ξ� ∈ Λ1V : φo(x, ξ�) ≤ 1

}
, x ∈ M. (3.7)

The set B
φ

o(x) uniquely identifies φo(x, ·), in view of the homogeneity property (3.3).
Notice that if φo ∈ C1

(
M × (Λ1V \ {0})

)
, (3.3) yields

φo(x, ξ�) = ξ� · φo

ξ
�(x, ξ�), (x, ξ∗) ∈ M × (Λ1V \ {0}), (3.8)

where φo

ξ
� denotes the gradient of φo(x, ·) with respect to ξ�.

Definition 3.1 (Spatial homogeneity). We say that σ (resp. φo) is spatially homogeneous

if it is independent of x.

In this case we write φo : Λ1V → [0,+∞], and the right hand side of formula (3.7) is denoted
by B

φ
o (11).

Example 3.2 (Dual norms). The first examples of spatially homogeneous φo are the fol-
lowing:

- φo(ξ�) = |ξ�| (euclidean norm, isotropic case).

- φo(ξ�) =
√∑

n

i,j=1 gijξ�

i
ξ�

j
, where (gij) is a positive definite symmetric matrix (Rie-

mannian norm). In this case B
φ

o is an ellipsoid centered at the origin(12). See Figure
2.

- Let p ∈ (1,+∞) and φo(ξ�) := (
∑

n

i=1 |ξ
�

i
|p)1/p (lp norms). If p > 2 then ∂B

φ
o is of class

C2 but there are some points of ∂B
φ

where its second fundamental form vanishes. If
p ∈ (1, 2) then ∂B

φ
is not of class C2.

- A relevant case in these notes is when B
φ

o is a (convex) n-dimensional polyhedron
centered at the origin, and centrally symmetric [112], [113], [115]. See Figure 1.

- Another interesting case is when B
φ

o = C × [−1, 1], where C is an (n− 1)-dimensional
centrally symmetric convex body [24].

8In the quoted references this vector field is denoted by νφ.
9Do not confuse this notation with the notation in (2.2).

10The set Bφ
o(x) is sometimes called Frank diagram, at least under some further assumptions on φo.

11The set {v : v = ρν, ν ∈ Sn−1, ρ = 1
σ(ν)

} = ∂Bφ
o is sometimes called polar plot of σ.

12If gij would depend on x, then the ellipsoid would depend on x, and M would become the simplest example

of Riemannian manifold.
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Remark 3.3 (Degenerate cases). Let σ be spatially homogeneous: if there exists v ∈ Sn−1

such that σ(v) = 0, then the whole line Rv is contained in B
φ

o . In particular, B
φ

o is
unbounded. On the other hand, if there exists v ∈ Sn−1 such that σ(v) = +∞, then Rv \ {0}
is not contained in B

φ
o (hence the origin is not an interior point of B

φ
o). For example

[15], [19], setting I := {(ξ�

0 , ξ�) ∈ R × Λ1V  Λ1R1+n : −ξ2
0 + |ξ�|2 ≤ 1}, we can take

φo(ξ�

0 , ξ�) := inf{λ > 0 : (ξ�

0 , ξ�) ∈ λI} for any (ξ�

0 , ξ�) ∈ Λ1Rn+1. Note that I is star-shaped
with respect to the origin, the origin is not in the interior of I, and φo takes also the value
+∞. Examples of unbounded B

φ
o have been considered in [78], see also [31].

Definition 3.4 (Convexity). We say that φo : T �M → [0,+∞) is convex if φo(x, ·) is

convex for any x ∈ M .

Remark 3.5. All functions φo in Example 3.2 are convex. In addition they satisfy(13)

λ|ξ| ≤ φo(x, ξ), (x, ξ�) ∈ T �M, (3.9)

for a suitable constant λ > 0 (depending on φo).

Definition 3.6 (Metrics on T �M). The symbol M(T �M) denotes the class of metrics on

T �M , namely of all continuous functions φo : T �M → [0,+∞) which are convex, and satisfy

(3.3) and (3.9).

Among convex φo we are mainly interested in the crystalline ones [112].

Definition 3.7 (Crystalline metrics). If φo ∈ M(T �M) is spatially homogeneous and B
φ

o

is a polyhedron we say that φo is crystalline.

3.1.1 The map T
φ

o

For a fixed x, we now define a map that will play a major role in the analysis of anisotropic
mean curvature flow. In order to give the definition, we assume the validity of one of the two
following hypotheses: either

(φo)2 ∈ C1 (T �M) (3.10)

or
φo is convex. (3.11)

Notation. If φo satisfies (3.10) the symbol ∇
ξ

�((φo)2) denotes the gradient vector field of
(φo(x, ·))2 with respect to ξ�. Assumption (3.11) is equivalent to the convexity of (φo(x, ·))2,
and in this case the same symbol ∇

ξ
�(φo)2 denotes the subdifferential [106] of (φo(x, ·))2 with

respect to ξ�. Moreover, if (3.11) holds, then φo

ξ
� denotes the subdifferential of φo(x, ·) with

respect to ξ�.
13If we assume continuity of φo, in view of (3.3) inequality (3.9) becomes equivalent to the inequality

λ|ξ| ≤ φ(x, ξ) ≤ φ
o

(x, ξ
�

), (x, ξ
�

) ∈ T
�

M,

for two constants 0 < λ ≤ Λ < +∞. Relevant consequences are that Bφ
o(x) contains the origin in its interior,

and it is star-shaped (with respect to the origin).
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Definition 3.8 (The map T
φ

o). Let x ∈ M . We define T
φ

o(x, ·) : Λ1V → P(Λ1V ) as

T
φ

o(x, ξ�) :=
1
2
(∇

ξ
�((φo)2))(x, ξ�). (3.12)

Under assumption (3.11), T
φ

o(x, ·) is sometimes called duality map [45], and it is a possibly
multivalued maximal monotone operator [44]. It is multivalued when φo is crystalline.
Note that T

φ
o(x, ·) is one-homogeneous, namely

T
φ

o(x, λξ�) = |λ|T
φ

o(x, ξ�), (x, ξ�) ∈ T �M, λ ∈ R.

Example 3.9 (Riemannian case). If φo(x, ξ) = (
∑

n

i,j=1 gij(x)ξ�

i
ξ�

j
)1/2 is a Riemannian

metric, then(14) (T
φ

o(x, ξ�))i =
∑

n

j=1 gij(x)ξ�

j
.

In the case considered in Remark 3.3, where (φo(ξ�))2 = −(ξ�

0)2+(ξ�

1)2+· · · (ξ�

n
)2, the map T

φ
o

takes ξ� = (ξ�

0 , ξ�

1 , . . . , ξ�

n
) into (−ξ�

0 , ξ
�

1 , . . . , ξ�

n
), exchanging the sign of the zeroth component.

Remark 3.10. If φo is spatially homogeneous and ξ� ∈ ∂B
φ

o , then T
φ

o(ξ�) is a suitable
normalization(15) of the exterior normal cone orthogonal to ∂B

φ
o at ξ�.

Definition 3.11. Let ∂E be Lipschitz and let x ∈ ∂E be a point where ν(x) is defined. If

(3.10) holds we define [40], [39] the contravariant vector field nE

φ
= n

φ
at x as

n
φ
(x) := T

φ
o(x, ν

φ
o(x)) = φo

ξ
�(x, ν

φ
o(x)).

In components(16) n
φ

= (n1
φ
, . . . , nn

φ
). If φo is convex, n

φ
is sometimes called the Cahn-

Hoffman vector field.
Notice that, using (3.3), it follows that

〈ν
φ

o(x), n
φ
(x)〉 = 1. (3.13)

Remark 3.12 (Cahn-Hoffman selections). Under the sole assumption (3.11), and sup-
posing also for simplicity that φo is spatially homogeneous, there are several possible choices
of vector fields η : ∂E → V which satisfy η(x) ∈ T

φ
o(ν

φ
o(x)) for Hn−1-almost every x ∈ ∂E,

since in this case T
φ

o(ν
φ

o(x)) is a (compact) convex set. In Section 4 we will impose further
regularity on η in order to define what we will call φ-regular sets.

If F ⊂ ∂E is a facet of a polyhedral ∂E and φo is crystalline, we set

B̃F

φ
:= T

φ
o(ν

φ
o(F )), (3.14)

see Figure 5. Note the presence of the symbol φ (that we are going to define in the next
section) on the left hand side of (3.14).

14The map Tφ
o is used to exchange the indices from lower to upper.

15See the fifth item of Remark 3.18 below.
16Pay attention to the notation: n is the dimension of V , nφ is the vector field.
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3.2 The convex function φ

Under one of the two assumptions (3.10), (3.11), given x ∈ M we can consider the image
Σ(x) of the boundary of the star-shaped set B

φ
o(x) via the map T

φ
o(x, ·),

Σ(x) := T
φ

o(x, ∂B
φ

o(x)).

If B
φ

o(x) is not convex then it may happen, for instance in n = 2 dimensions and if ∂B
φ

o

is a smooth simple closed curve having the origin in its interior, that Σ(x) is a curve with
cusps and self-intersections [78]. These kind of singularities cannot occur if φo is convex(17),
and in this case it is possible to define a function φ : TM → [0,+∞] as follows:

φ(x, ξ) := inf {λ > 0 : (x, ξ) ∈ λT
φ

o(x,B
φ

o(x))} , (x, ξ) ∈ TM.

Then φ(x, ·) is one-homogeneous, namely

φ(x, λξ) = |λ|φ(x, ξ), (x, ξ) ∈ TM, λ ∈ R. (3.15)

Moreover Σ(x) = ∂T
φ

o(x,B
φ

o(x)). Finally, if we define

B
φ
(x) := T

φ
o(x,B

φ
o(x)),

then
B

φ
(x) = {(x, ξ) ∈ TM : φ(x, ξ) ≤ 1},

and φ is convex (i.e., φ(x, ·) is convex for any x ∈ M).

Remark 3.13. As it follows from the above presentation, when writing the symbol φ we
assume that φo is convex (and, as a consequence, so is φ).

Definition 3.14 (Metrics on TM). The symbol M(TM) denotes the class of metrics on

TM , namely of all continuous functions φ which are convex and satisfy (3.15) and

φ(x, ξ) ≥ μ|ξ|, (x, ξ) ∈ TM,

for a suitable constant μ > 0 (depending on φ).

Definition 3.15 (Regular metrics on TM). Let φ ∈ M(TM). We say that φ is regular

if for any x ∈ M the set B
φ
(x) has boundary of class C∞ and each principal curvature of

∂B
φ
(x) is strictly positive at each point of ∂B

φ
(x). We denote by Mreg(TM) the class of all

regular metrics in TM .

It is possible to prove that if φ ∈ Mreg(TM), then B
φ

o(x) has boundary of class C∞ and
each principal curvature of ∂B

φ
o(x) is strictly positive at each point of ∂B

φ
o(x). Namely,

φo ∈ Mreg(T �M). See also [105] for a list of related propertied.

Example 3.16 (Minkowski space). If a metric φ on TM is spatially homogeneous, it is
a norm on Λ1V , called a Minkowski norm (or Minkowski metric). The normed vector space
(Λ1V, φ) is called Minkowski space [119] and is the simplest example of a Finsler manifold
[16].

17It is not the aim of these notes to investigate the interesting case of a nonconvex Bφ
o .

－110－



The symbol ∇
ξ
(φ2) (resp. φ

ξ
) denotes the subdifferential of (φ(x, ·))2 (resp. of φ(x, ·)) with

respect to ξ.

Definition 3.17 (The map T
φ
). Let x ∈ M . We define T

φ
(x, ·) : Λ1V → P(Λ1V ) as

T
φ
(x, ξ) :=

1
2
(∇

ξ
(φ2))(x, ξ), (x, ξ) ∈ TM. (3.16)

T
φ
(x, ·) is a one-homogeneous maximal monotone map.

Remark 3.18 (Duality). Assume φo ∈ M(T �M) and φ ∈ M(TM). The following proper-
ties hold [107], [119].

- φ(x, ξ) = sup
{
〈ξ�, ξ〉 : ξ� ∈ Λ1V, φo(x, ξ�) ≤ 1

}
for any (x, ξ�) ∈ TM(18);

- φoo = φ (the dual of Λ1V can be identified with Λ1V );

- if φo is crystalline then φ is crystalline;

- if T
φ

o(x, ·) and T
φ
(x, ·) are single valued, then [39]

- for any x ∈ M , ξ ∈ Λ1V \ {0} and ξ� ∈ Λ1V \ {0} we have φo(x, φ
ξ
(x, ξ)) =

φ(x, φo(x, ξ�)) = 1, and φo(x, ξ�)φ
ξ
(x, φo

ξ
�(x, ξ�)) = ξ�, φ(x, ξ)φo

ξ
�(x, φ

ξ
(x, ξ)) = ξ;

- T
φ
(x, ·)T

φ
o(x, ·) = IdΛ1

V
, T

φ
o(x, ·)T

φ
(x, ·) = IdΛ1V .

- Assume for simplicity that φo is spatial homogeneous. Then T
φ

(resp. T
φ

o) takes ∂B
φ

(resp. ∂B
φ

o) onto ∂B
φ

o (resp. onto ∂B
φ
). If ξ ∈ ∂B

φ
, T

φ
(ξ) is the intersection of the

closed outward normal cone to ∂B
φ

with ∂B
φ

o .

Remark 3.19. Assuming φ to be convex, it is equivalent(19) to develop the theory starting
with φ and then defining φo by duality (replace φ by φo and Λ1V with Λ1V in the first item
of Remark 3.18).

Example 3.20 (Polyhedral dual bodies). In Figure 1 for a crystalline φo, we show B
φ

o

and its dual body B
φ
. If ξ ∈ ∂B

φ
is a point in the relative interior of a facet, then the normal

cone T
φ
(ξ) to ∂B

φ
at ξ is a vertex in ∂B

φ
o ; if ξ ∈ ∂B

φ
is a point in the relative interior of an

edge, then T
φ
(ξ) is a closed edge in ∂B

φ
o ; if ξ ∈ ∂B

φ
is a vertex, then T

φ
(ξ) is a closed facet

in ∂B
φ

o .

When φ (resp. φo) is regular and spatially homogeneous, we simply write φ ∈ M(Λ1V ) (resp.
φo ∈ M(Λ1)).

Remark 3.21. Let φ ∈ M(Λ1V ) be spatially homogeneous. We give here a recipe to
construct the dual body B

φ
o of B

φ
, see Figure 2. Assume for simplicity that φ ∈ C1(Λ1V \{0}).

Take a point ξ ∈ ∂B
φ
. Then T

φ
(ξ)

|T
φ
(ξ)| is orthogonal to ∂B

φ
at ξ, and points out of B

φ
. Moreover

|T
φ
(ξ)| = (dist(T

ξ
(∂B

φ
), 0))−1.

Indeed, setting ξ� := T
φ
(ξ), we have that ξ� realizes the maximum in the first item of

Remark 3.18, so that 1 = φ(ξ) = 〈ξ�, ξ〉. Therefore 1 = φ(ξ) = |ξ�|〈νB
φ , ξ〉, and hence

18The function φ(x, ·) is sometimes called the support function of Bφ
o(x), and Bφ

o(x) is called the polar

reciprocal of Bφ(x), [119, pag. 50]. Bφ
o(x) is called the dual body of Bφ(x). Once we assume φo to be convex,

then the right hand side of the first item in Remark 3.18 can be taken as the definition of φ.
19There could be, however, geometrical or physical reasons to prefer Bφ instead of Bφ

o as the starting point

of the theory.
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Figure 2: Pick ξ ∈ ∂Bφ. The covector Tφ(ξ) ∈ ∂Bφo is orthogonal to ∂Bφ, and |Tφ(ξ)| =
〈νBφ(ξ), ξ〉−1.
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|ξ�| = 〈νB
φ , ξ〉−1. It is then enough to observe that the euclidean distance dist(T

ξ
(∂B

φ
), 0)

between the tangent space T
ξ
(∂B

φ
) to ∂B

φ
at ξ and the origin equals 〈νB

φ , ξ〉. In this way
we construct B

φ
o , starting from B

φ
, since ∂B

φ
o consists of all points of the form T

φ
(ξ), with

ξ ∈ ∂B
φ
.

Remark 3.22 (The Legendre transform). Some of the above concepts, as it can be
seen from formula (3.17) below, can be given in terms of the Legendre transform, that for
completeness we recall here. Let f : TM → [0,+∞) be a continuous function, such that for
any x ∈ M the map ξ → f(x, ξ) is convex and(20) of class C1. Define f� : T �M → (−∞,+∞]
as

f�(x, ξ�) := sup{〈ξ�, ξ〉 − f(x, ξ) : ξ ∈ Λ1V }.

Let E := {(ξ, τ) ∈ Λ1V × R : τ > f(x, ξ)} be the epigraph of f(x, ·), which is a convex set.
Given ξ� ∈ Λ1V \ {0}, consider in V ×R the set Pξ

�

of all parallel hyperplanes orthogonal to
(ξ�,−1). If there is does not exist any point in ∂E for which the tangent space to ∂E belongs
to Pξ

�

, then f�(x, ξ�) = +∞. Otherwise, if there exists one point z ∈ ∂E having tangent
space belonging to Pξ

�

, we take the unique πξ
�

∈ Pξ
�

containing z. Then we consider the
intersection of πξ

�

with the vertical axis {0}×R, and we define f�(x, ξ�) as minus the vertical
component of such an intersection, namely

f�(x, ξ�) = −t, (0, t) = πξ
�

∩ {(ξ, τ) ∈ Λ1V × R : ξ = 0}.

For example,

ν ∈ Λ1V, c ∈ R, f(x, ξ) = 〈ξ, ν〉 + c ⇒ f�(ξ�) =

{
−c if ξ� = ν,

+∞ if ξ� �= ν,

α ∈ R, f(x, ξ) = α|ξ|2 ⇒ f�(ξ�) =
1
4α

|ξ�|2,

and for a non everwywhere differentiable function a similar construction gives

f(x, ξ) = φ(ξ) ⇒ f�(ξ�) =

{
0 if φo(ξ�) ≤ 1,
+∞ if φo(ξ�) > 1.

(3.17)

3.3 The distance function dist
φ

We shall assume from now on that φ : TM → [0,+∞) is continuous(21).

Definition 3.23. Given x, y ∈ M we set

dist
φ
(x, y) := inf

{∫ 1

0
φ(γ, γ̇) dt : γ ∈ AC([0, 1];M), γ(0) = x, γ(1) = y

}
, (3.18)

20Even if f(x, ·) is C1 and not convex (or convex but not of class C1), still f�(x, ·) is defined and it is convex.
21Discontinuous φ(·, ξ) have been considered in [3], [4], see also the references in these papers.
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where AC([0, 1];M) denotes the class of all absolutely continuous [11] curves γ : [0, 1] → M .
Notice that if φ is spatially homogeneous and convex, then dist

φ
(x, y) = φ(y − x). Recall

that if φ(x, ξ) = |ξ|, we set dist
φ

= d.
For any F ⊆ M we denote

dist
φ
(x, F ) := inf

y∈F

dist
φ
(x, y), x ∈ M.

The next definition will be used only for rather regular sets.

Definition 3.24 (Signed φ-distance). Assume that ∂E ∈ Lip(M). We define the signed

φ-distance function from ∂E negative in E and positive in M \ E as

d
φ
(x) := dist

φ
(x,E) − dist

φ
(x,M \ E). x ∈ M. (3.19)

3.3.1 φ-Volume

Once we have the distance dist
φ

at our disposal, we can define the n-dimensional Hausdorff
measure Hn

φ
with respect to the distance dist

φ
[76], i.e., for S ⊆ Rn

Hn

φ
(S) :=

ωn

2n
lim

ρ→0+
inf

{
+∞∑
i=1

(diamdistφ
(Si))n : S ⊆

+∞⋃
i=1

Si, diamdistφ
(Si) < ρ

}
, (3.20)

where, if F ⊆ Rn, diamdistφ
(F ) := sup{d

φ
(x, y) : x, y ∈ F}, and ωn := Ln({ξ ∈ M : |ξ| < 1}).

Notice that if φ is spatially homogeneous, then Hn

φ
(B

φ
) = ωn, since diamdistφ

(B
φ
) = 2.

Example 3.25. Assume that φ is spatially homogeneous and riemannian, i.e., φ(ξ) = |
√

gξ|
for any ξ ∈ V , where g = (gij) is a symmetric positive definite (n × n)-matrix, and we write
g =

√
gT

√
g. Then

Ln(B
φ
) =

ωn

det
√

g

Hn

φ
(S) = det

√
g Ln(S) =

ωn

Ln(B
φ
)
Ln(S) = Hn(T

φ
(S)).

We recall the following representation result for the Hausdorff measure [46].
Define

vol
φ
(x) :=

ωn

Ln

(
B

φ
(x)

) , x ∈ M. (3.21)

Theorem 3.26 (Representation of φ-volume). If B ⊆ Ω is a Borel set, then

Hn

φ
(B) =

∫
B

vol
φ

dx. (3.22)

The distance function d
φ

is useful for various reasons; one of them is that it gives a natural
extension of ν

φ
o out of ∂E.
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3.4 Eikonal equation and extensions

Let φ ∈ Mreg(TM) and ∂E be compact and of class C∞. It is possible to prove that there
exists a tubular neighbourhood of ∂E where the signed φ-distance d

φ
in (3.19) is smooth, see

also [85].
The proof of the following theorem can be found for instance in [40]. See [17], [52] for related
results.

Theorem 3.27 (Eikonal equation). Let ∂E be compact and let U ⊂ Rn be a tubular

neighbourhood of ∂E such that d
φ
∈ C∞(U). Then d

φ
satisfies the eikonal equation in U :

(φo(x,∇d
φ
(x)))2 = 1, x ∈ U, (3.23)

so that in particular

∇d
φ

= ν
φ

o on ∂E.

Definition 3.28 (Extension of n
φ
). Under the assumptions at the beginning of the section,

we can extend the Cahn-Hoffman vector field n
φ

on the whole of U as follows:

N
φ

:= T
φ

o(x,∇d
φ
(x)), x ∈ U. (3.24)

Note that
φo(x,N

φ
(x)) = 1, 〈N

φ
(x),∇d

φ
(x)〉 = 1, x ∈ U.

3.5 Appendix: definitions of ∇
φ
, div

φ
, Δ

φ
. φ-Distributional perimeter

Assume that φo ∈ Mreg(T �M). For completeness, we define here various operators(22)
naturally related to φo. If u ∈ C2(M) we define the vector field

∇
φ
u(x) := T

φ
o(x,∇u(x)), x ∈ M. (3.25)

Note that if φ(x, ξ) = (
∑

n

i,j=1 gij(x)ξiξj)1/2 is a riemannian metric in M , then the i-th
component of ∇

φ
u(x) equals

∑
n

j=1 gij(x)∇ju(x) where (gij) is the inverse of (gij).
If η ∈ C1(M ;V ) we set

div
φ

η := divη + ∇ (log(vol
φ
)) · η,

Δ
φ
u := div

φ
∇

φ
u.

(3.26)

With the above definitions we have the following Gauss-Green type formula.

Proposition 3.29 (Divergence Theorem). If Ω ⊂ M is a bounded open set of class C1,

u ∈ C1(Ω) and g ∈ C1(Ω;Λ1V ) ∩ C(Ω;Λ1V ), then∫
Ω

udiv
φ
g dHn

φ
+

∫
Ω
∇u · g dHn

φ
= −

∫
∂Ω

u νΩ
φ

o · g φo(x, νΩ)vol
φ

dHn−1. (3.27)

22For simplicity, we give the definitions independently of the function a (see (3.1)), or more precisely

assuming the validity of (3.29) below. See also [29].
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Proof. Definition (3.26) of div
φ

implies

u div
φ
g vol

φ
= u divg vol

φ
+ u ∇(log(vol

φ
)) · g vol

φ

= div(u g vol
φ
) −∇u · g vol

φ
.

Hence, using the Gauss-Green Theorem and recalling (3.22), we get∫
Ω

u div
φ
g dHn

φ
=

∫
∂Ω

u νΩ · g
ωn

Ln(B
φ
)

dHn−1 −

∫
Ω
∇u · g dHn

φ

=
∫

∂Ω
u ν

φ
o

Ω · g φo(x, νΩ)vol
φ

dHn−1 −

∫
Ω
∇u · g dHn

φ
.

In view of (3.27) it is natural to introduce the surface measure

dP
φ
(B) :=

∫
B∩∂E

φo(x, ν(x))vol
φ
(x) dHn−1(x), B ⊆ M. (3.28)

Remark 3.30. A rather natural choice of the function a in (3.1) and (3.4) is

a = vol
φ
. (3.29)

With this choice we have that F
φ

o equals the functional in (3.28) when B = M . This
functional turns out to be the φ-perimeter, defined in the distributional sense [3], [40], and
also the φ-Minkowski content [76], [11], [40], [21], defined as

Mn−1
φ

(∂E) := lim
ρ→0+

Hn

φ
({x ∈ M : dist

φ
(x, ∂E) < ρ})

2ρ
, (3.30)

but not(23) the (n − 1)-dimensional Hausdorff measure with respect to dist
φ
,

Hn−1
φ

(S) :=
ωn−1

2n−1
lim

ρ→0+
inf

{
+∞∑
i=1

(diamdistφ
(Si))k : S ⊆

+∞⋃
i=1

Si, diamdistφ
(Si) < ρ

}
, (3.31)

where ωn−1 := Ln−1(ξ ∈ Rn−1 : |ξ| < 1}). It is interesting to observe that, adopting
(3.28) as the definition of (n − 1)-dimensional φ-measure, it turns out that B

φ
satisfies the

isoperimetric property [40]. Eventually, other geometric measures could be considered [119],
[10], for instance the Benson area [41], [10].(24)

23Even for a spatially homogeneous φ [40].
24If ξ� ∈ Λ1V , it is possible to prove that |ξ�| = sup {det[ξ�, ν1, . . . , νn−1]}, where the supremum is taken

over all unit covectors ν1, . . . , νn−1 ∈ Λ1V , and [ξ�, ν1, . . . , νn] denotes the matrix having ξ�, ν1, . . . , νn as

columns. Such an inquality can be checked using the Hadamard inequality |det A| ≤
Q

n

j=1

`P
n

i=1 a2
ij

´1/2
,

where A = (aij) is a n × n matrix. The Benson area of ∂E is then defined as
R

∂E
b(x, ν) dHn−1, where

b(x, ·) : ξ� ∈ Λ1V → max
˘
det[ξ�, ν1, . . . , νn−1] : νi ∈ Λ1V, φo(x, νi) ≤ 1

¯
. This surface measure is strictly

related to the De Giorgi mass [64], [10], which turns out to be, for instance for a spatially homogeneous φo,R
∂E

λ(T ) dHn−1, where λ(T ) := sup{Hn−1(η(Bφ ∩ T )) : η = (η1, . . . , ηn−1) ∈ GL(T, T ), φo(ηi) ≤ 1 ∀i ∈
{1, . . . , n − 1}} for any T ∈ G.
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4 φ-regular sets

Assume in this section that φo is convex and spatially homogeneous(25). The next definitions
become interesting when T

φ
o is multivalued hence, roughly speaking, when B

φ
o has corners,

edges, etc. In these notes, we will apply these definitions in the crystalline case.
Let ∂E be Lipschitz. In order to look for a solution of an anisotropic (and in particular
crystalline) mean curvature flow starting from ∂E, it is necessary to devise a certain class of
regularity for the flowing hypersurfaces.
We will give different definitions, depending on whether we want to consider a whole neigh-
bourhood of ∂E or not. All definitions have advantages and disadvantages. One motivation
for considering the neighbourhoods comes from phase transitions (in particular the reaction-
diffusion approximation considered in Section 9), where the interface is diffuse.
Let us begin with the definitions using the neighbourhoods, and with the most stringent one.
Recall that ∇d

φ
naturally extends the covector field ν

φ
o out of ∂E, and N

φ
extends the vector

field n
φ
.

Definition 4.1 (Neighbourhood-Lipschitz φ-regular sets). We say that E is neighbourhood-

Lipschitz φ-regular if there exists a tubular neighbourhood U of ∂E and a vector field η ∈
Lip(U ; Λ1V ) such that η(x) ∈ T

φ
o(∇d

φ
(x)) for almost every x ∈ U .

If T
φ

o is single-valued then T
φ

o(∇d
φ
(x)) is a singleton and it reduces to the vector field N

φ
.

Lipschitz regularity seems to be the strongest regularity one can require. Nevertheless, a
difficulty related to Definition 4.1 is that the divergence(26) of η belongs just to L∞(U),
hence has not, a priori, a well defined trace on ∂E. This difficulty remains in the following
definition (27).

Definition 4.2 (Neighbourhood-L∞ φ-regular sets). We say that E is neighbourhood-

L∞ φ-regular if there exists a tubular neighbourhood U of ∂E and a bounded vector field η
such that divη ∈ L∞(U) and η(x) ∈ T

φ
o(∇d

φ
(x)) for almost every x ∈ U .

Let us now pass to a (rather intrinsic) definition. Define

Nor
φ
(∂E;M) := {N : ∂E → M : N(x) ∈ T

φ
o(νE

φ
(x)) for Hn−1 a.e. x ∈ ∂E}.

Definition 4.3 (Lipschitz φ-regular sets). We say that E is Lipschitz φ-regular if there

exists a vector field η ∈ Nor
φ
(∂E;M) ∩ Lip(∂E;M). We say that E is polyhedral Lipschitz

φ-regular if E is Lipschitz φ-regular and it is polyhedral(28).

The difficulties related to constructing a vector field with Lipschitz regularity on ∂E in explicit
examples are essentially the same as the ones in Definition 4.1; in addition, when talking about
the divergence of η, we are forced now to speak about a tangential divergence. On facets, the
tangential divergence we will consider will be the euclidean tangential divergence [109] divτ .
Again, one could relax the regularity of η in Definition 4.3, for instance by requiring η to be
bounded with tangential divergence in L2(∂E) or in L∞(∂E).

25Various definitions could be generalized for φo depending on x, at least when φo ∈ Mreg(TM).
26One advantage: this divergence is taken in the ambient space M .
27Definition 4.2 could be in turn relaxed by requiring divη ∈ L2(U).
28All polyhedral sets considered in these notes are assumed to have a finite number of facets.
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BB φφ ο

Τ φ ο

E

Figure 3: A Lipschitz φ-regular set E when Bφ is the square [−1, 1]2. Curved portions of ∂E may
be present: we will see that there the crystalline curvature must vanish.

Definition 4.4 (L∞-φ-regular sets). We say that a polyhedral set E is L∞-φ-regular if

there exists a vector field η ∈ Nor
φ
(∂E;M) having tangential divergence divτη in L∞(∂E).

Finally, we point out another notion that has been considered in [27].

Definition 4.5 (rB
φ
-condition). Let r > 0. We say that E satisfies the rB

φ
-condition if,

for any x ∈ ∂E, there exists y ∈ M such that

rB
φ

+ y ⊆ E and x ∈ ∂ (rB
φ

+ y) .

It turns out that if E is neighbourhood-Lipschitz φ-regular then there exists r > 0 such that E
and M \ E satisfy the rB

φ
-condition. Moreover, if E is convex then E is neighbourhood-L∞

φ-regular if and only if E and M \ E satisfy the rB
φ
-condition for some r > 0.

4.1 Examples

If n = 2, the structure of a Lipschitz φ-regular set E is, roughly speaking, the following:
∂E is a closed simple Lipschitz curve which is a sequence (with a precise order) of segments
parallel to some edge of ∂B

φ
and of segments or arcs corresponding to vertices of ∂B

φ
.

Example 4.6 (A Lipschitz φ-regular curve). Let φ(ξ) := max{|ξ1|, |ξ2|}, so that B
φ

=
[−1, 1]2, and let E be as in Figure 3. At the vertices of ∂E the vector νE

φ
is not defined.

However, let v be a vertex of ∂E, and let F1 and F2 be the two arcs or segments of ∂E having
v as a vertex. For any x in the relative interior of Fi, the closed convex set T

φ
o(νE

φ
(x)) is

either a segment or a singleton, independent of x and depending only on Fi. Let us denote
it by Ki. What makes E Lipschitz φ-regular is the fact that K1 ∩ K2 is a singleton. This
produces a unique vector at each vertex of ∂E; then we can construct infinitely many vector
fields η ∈ Nor

φ
(∂E; R2) ∩ Lip(∂E; R2) lying inside the dotted triangles with the assigned

values at the vertices.
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c
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c

s

Figure 4: E is not L∞-φ-regular. Any Cahn-Hoffman selection is forced to jump at the points p, q, s, w
of ∂E.

On the other hand, for the same φ as in Example 4.6, the euclidean unit ball is not Lipschitz
φ-regular, and not even L∞-φ-regular. Its regularity is analogous to the regularity of the
square in the euclidean geometry.

Example 4.7 (The circle is not L∞-φ-regular). Let n = 2 and φ be as in Example 4.6.
Let E := {z ∈ R2 : |z| ≤ 1}, see Figure 4. Then E is not Lipschitz φ-regular. Indeed,
T

φ
o(νE

φ
(p)) is the upper horizontal segment [a, b] of ∂B

φ
(we depict a corresponding dotted

triangle at p). Similarly, T
φ

o(νE

φ
(q)) is the right vertical segment [b, c] of ∂B

φ
. On the other

hand, any point x on ∂E lying in the (relatively) open arc A between p and q is such that
T

φ
o(νE

φ
(x)) = b. We deduce that any vector field η ∈ Nor

φ
(∂E; R2) must fulfill η ≡ b on A,

and η ≡ c on the open arc on ∂E between q and ω. Hence, any vector we choose inside the
dotted triangles (for instance, the triangle at q) will produce a discontinuity in the vector
field η (at q). We conclude that E is not L∞-φ-regular.

Example 4.8 (A Lipschitz φ-regular polyhedral surface). Let B
φ

be as in Figure 1,
and E as in Figure 5. If x ∈ int(Q) then νE

φ
(x) coincides with the top vertex of ∂B

φ
o , and

T
φ

o(νE

φ
(x)) is the top facet B̃Q

φ
of ∂B

φ
. We depict T

φ
o(νE

φ
(x)) as a pyramid. Therefore η(x)

is constrained to lie in B̃Q

φ
. If x ∈ ∂E is in the interior of an edge (say the edge l) of ∂Q,

then νE

φ
is not defined at x. However the intersection T l

φ
of B̃Q

φ
with B̃F

φ
is defined, and it is

the top edge of the frontal facet of ∂B
φ
. We have depicted this set as a triangle. Therefore

η(x) is constrained to lie in T l

φ
. If x ∈ ∂E is a vertex (say the vertex p) of ∂Q, then νE

φ

is not defined at p. What is defined is the intersection w of B̃Q

φ
∩ B̃F

φ
∩ B̃L

φ
, and we have

depicted this point at p as a segment. Therefore η(p) must coincide with w, see also Figure
1. A choice of a vector field η ∈ Nor

φ
(∂E; R3) ∩ Lip(∂E; R3) can be made by hand.

4.2 Normal traces

We give here some notions that will be useful in the definition of the crystalline mean curva-
ture. Recall the definition of ν̃F given in (2.2)
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Q

E

Figure 5: Bφ is as in Figure 1.

E

Figure 6: cF is independent of the choice of η among all vector fields making E Lipschitz φ-regular.

Definition 4.9 (The normal traces cF ). Let E be a polyhedral Lipschitz φ-regular set, let

η ∈ Nor
φ
(∂E;M) ∩ Lip(∂E;M), and let F ⊂ ∂E be a facet of ∂E. We define the normal

trace function cF ∈ L∞(∂F ) as

cF := ν̃F · η. (4.1)

Example 4.10. Let n = 2, B
φ

and E be as in Figure 3. In Figure 6 we depict a vector field
η which makes ∂E Lipschitz φ-regular. The constants cF do not depend on the particular
choice of η. The dotted vectors at the vertices indicate the unit normals (in the line containing
the facet F ) pointing outward F (i.e., ν̃F ).
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B φ

E

Figure 7: on the edges of ∂E the vector η must lye in the dotted regions

ν
~ F

ν~ F

ν~

F

F

~ F
ν

B φ

E

q

p

Figure 8: A Lipschitz φ-regular set E when Bφ is the cube. On the relative interior of [p, q] the
function cF is negative (and constant).

Example 4.11. Let n = 3, B
φ

= [−1, 1]3, and E be the set of Figure 8. E is a polyhedral
Lipschitz φ-regular set, since it is possible to construct a vector field η ∈ Nor

φ
(∂E; R3) ∩

Lip(∂E; R3). Indeed, first we identify η on the vertices of ∂E. If v is a vertex of ∂E, the
intersection of B̃Q

φ
over all facets Q of ∂E containing v is a singleton: we define this singleton

to be the value of η at v (see the bold vectors in Figure 7). Next, on a facet Q ⊂ ∂E, it is
enough to take suitable convex combinations of the values of η at the vertices of Q (possibly
first subdividing Q into two or more rectangles if Q itself is not a rectangle) to obtain the
required properties on η.
The bold vectors at the vertices of ∂E are the unique possible values for η. The vector field
ν̃F points outside of F , and on ]p, q[ points toward E. The pyramids with vertex on the
relative interior of the two facets having [p, q] in common represent the corresponding facets
of ∂B

φ
(for instance, T

φ
o(ν

φ
o(F )) for the facet F ), i.e. the range of admissibility of η. It

follows that cF is negative on ]p, q[, while cF is positive on the remaining relatively open
edges of ∂F .

Given a Lipschitz φ-regular set E, in general it is possible to prove (see for instance [34],
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[35]) that cF does not depend on the choice of η in Nor
φ
(∂E;M) ∩ Lip(∂E;M), and for

Hn−1-almost every x ∈ ∂F

cF (x) =

⎧⎨⎩
max{〈ν̃F (x), ξ〉 : ξ ∈ T

φ
o(ν

φ
o(F ))} if ν̃F (x) points outside E,

min{〈ν̃F (x), ξ〉 : ξ ∈ T
φ

o(ν
φ

o(F ))} if ν̃F (x) points inside E.

(4.2)

Remark 4.12. For a polyhedral Lipschitz φ-regular set, it is possible to extend the notion of
normal trace also to vector fields N ∈ Nor

φ
(∂E;M) with divτN ∈ L∞(∂E): such a normal

trace turns out to coincide with the right hand side of (4.2).
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5 First variations: functionals on boundaries

In this section we discuss the first variation of the functional F
φ

o , in order to devise a possible
notion of φ-mean curvature. In the computations of this section it appears to be useful to
have at our disposal quantities (such as the Cahn-Hoffman vector field) defined on a tubular
neighbourhood of the interface ∂E.

5.1 Spatially homogeneous smooth φo

Let us assume that φo is spatially homogeneous and of class C1(Λ1V \ {0}). Let us also
assume that ∂E is of class C2, and that there are no x ∈ ∂E where φo(νE(x)) = 0. This is in
particular satisfied if φo is in addition a metric on Λ1V , in view of (3.9).
Let us introduce a class of admissible variations. Let Ψ ∈ C∞

c
(M × R;M), and set Ψ

λ
(x) :=

Ψ(x, λ) for any x ∈ M and λ ∈ R. Assume that Ψ0 = Id, and Ψ
λ
− Id has compact support

in M for any λ ∈ R. We can write

Ψ
λ
(x) := x + λX(x) + o(λ),

where X := ∂Ψ
λ

∂λ |λ=0
. The vector field X = (X1, . . . ,Xn) can be considered as the initial

velocity field of the deformation.
A direct computation shows that

det(∇Ψ
λ
) = 1 + λtr(∇X) + o(λ). (5.1)

In particular
d

dλ
|det(∇Ψ

λ
)|

λ=0 = divX. (5.2)

Set
E

λ
:= Ψ

λ
(E).

The next result was proved essentially in [39] (see also [31]), in the case of a convex regular
metric φo. The proof that we present here does not require the convexity of φo, and is slightly
different.

Theorem 5.1 (First variation I). We have

d

dλ
F

φ
o(E

λ
)|λ=0 = cn

∫
∂E

(
divX − ni

φ
ν

φ
o

j
∇iX

j

)
φo(ν) dHn−1, (5.3)

where cn := ωn

Ln(B
φ
) .

Proof. Let u ∈ C2(M) be such that E = {u ≤ 0}, ∂E = {u = 0}, and ∇u �= 0 on ∂E.
Then(29) νE = ∇u

T

|∇u| on ∂E. Define v
λ

: M → R as

v
λ
(Ψ

λ
(x)) := u(x), x ∈ M. (5.4)

29νE is considered as a covector field (rows), while ∇u as a vector field (columns). Sometimes in the sequel

of these notes we will omit the transposition symbol, identifying νE with ∇u

|∇u|
.
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If |λ| is small enough, we have

E
λ

= {Ψ
λ
(x) : u(x) ≤ 0} = {y : u(Ψ−1

λ
(y) ≤ 0} = {v

λ
≤ 0},

∂E
λ

= {v
λ

= 0}, ∇v
λ
�= 0 on ∂E

λ
, hence

νE
λ =

∇vT

λ

|∇v
λ
|

on ∂E
λ
.

In order to proceed in the proof, we recall the area and coarea(30) formulas [76].

- The area formula: if g : M → R is integrable, f : M → M is an injective Lipschitz
map, and Ω ⊆ M , then ∫

f(Ω)
gdy =

∫
Ω

g(f)|det(∇f)| dx.

- The coarea formula: if w ∈ Lip(M) satisfies ess − inf |∇w| > 0, g : M → R is integrable,
and μ ∈ R, then ∫

{w>μ}
g dHn−1 =

∫ +∞

μ

(∫
{w=s}

g

|∇w|
dHn−1

)
ds. (5.5)

It is also useful to make the following observation: we have

Hn−1(∂E
λ
) =

∫
∂E

|∇v
λ
(Ψ

λ
)||det(∇Ψ

λ
)|

|∇u|
dHn−1. (5.6)

Indeed, if ρ > 0, the area formula with the choice f = Ψ
λ
, Ω = {|u| < ρ} (so that f(Ω) =

{|v
λ
| < ρ}) and g(x) = |∇v

λ
|, gives∫

{|v
λ
|<ρ}

|∇v
λ
(y)| dy =

∫
{|u|<ρ}

|∇v
λ
(Ψ

λ
(x))||det(∇Ψ

λ
(x))| dx. (5.7)

Hence, by the coarea formula applied to the left hand side of (5.7) with the choice w = v
λ
,

and by the smoothness of ∂E
λ

it follows

lim
ρ→0+

1
2ρ

∫
{|u|<ρ}

|∇v
λ
(Ψ

λ
)||det(∇Ψ

λ
)| dx

= lim
ρ→0+

1
2ρ

∫
ρ

−ρ

Hn−1 ({v
λ

= s}) ds = Hn−1(∂E
λ
).

(5.8)

On the other hand, using again the coarea formula with the choice w = u and the smoothness
of u it follows

lim
ρ→0+

1
2ρ

∫
{|u|<ρ}

|∇v
λ
(Ψ

λ
)||det(∇Ψ

λ
)| dx =

∫
∂E

|∇v
λ
(Ψ

λ
)||det(∇Ψ

λ
)|

|∇u|
dHn−1. (5.9)

30The coarea formula appears implicitely in [61].

－124－



Then (5.6) follows from (5.8) and (5.9).
We now pass to the proof of (5.3). Using the area formula, and arguing as in the proof of
(5.6), we have

1
cn

F
φ

o(E
λ
) =

∫
∂E

λ

φo

(
∇v

λ

|∇v
λ
|

)
dHn−1 =

∫
∂E

φo

(
∇v

λ

|∇v
λ
|
(Ψ

λ
)
)
|det∇Ψ

λ
|
|∇v

λ
|

|∇u|
dHn−1

(5.10)
Differentiating (5.4) with respect to xj it follows ∂u

∂x
j

= ∂v
λ

∂y
i
(δij + λ∂X

i

∂y
j
), hence if we set

J(x) := (∇X(x))T , x ∈ U,

we have(31)
∇v

λ
(Ψ

λ
(x))T = ∇u(x)T (Id + λJ(x))−1, x ∈ U. (5.11)

In particular
∇v

λ
(Ψ

λ
) = ∇u if λ = 0, that is on ∂E.

From (5.11) it follows

d

dλ

(
∇v

λ
(Ψ

λ
(x))T

)
|λ=0

= −∇u(x)T J(x), x ∈ U. (5.12)

Using (5.12) and (5.2) it follows

d

dλ

(
|det∇Ψ

λ
|
|∇v

λ
|

|∇u|

)
|λ=0

= tr((Id −
∇u

|∇u|
⊗

∇u

|∇u|
)∇X). (5.13)

As a consequence of (5.11) and (5.12), at any point x ∈ U we have

d

dλ

[
∇v

λ
(Ψ

λ
)T

|∇v
λ
(Ψ

λ
)|

]
|λ=0

= −
∇uT

|∇u|
J + 〈

∇uT

|∇u|
J,

∇u

|∇u|
〉
∇uT

|∇u|
. (5.14)

Using (3.5), (5.10), (5.14), (5.13) we have

1
cn

d

dλ
F

φ
o(E

λ
)|λ=0 =

∫
∂E

〈 −ν∇XT + 〈ν∇XT , νT 〉 ν, n
φ
〉 dHn−1

+
∫

∂E

(
divX − 〈νT∇X, νT 〉

)
φo(ν) dHn−1.

(5.15)

Recalling (3.13) we have that the second addendum 〈n
φ
, 〈νT∇X, νT 〉ν〉 on the right hand

side of (5.15) can be written as

〈νT∇X, νT 〉〈ν
φ

o , n
φ
〉φo(ν) = 〈νT∇X, νT 〉φo(ν),

(where we have used (3.13)), and therefore cancels with the the fourth addendum. Then (5.3)
follows.

Remark 5.2. We note once more that Theorem 5.1 is valid without assuming that φo is
convex.

31Recall that with our conventions the gradient vector field ∇u(x) is a column.
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Remark 5.3. The previous computation holds also for a function σ (resp. φo) defined on
a relatively open subset S of Sn−1 (resp. on {λξ� : ξ� ∈ S, λ ∈ R}), provided ∇v

λ

|∇v
λ
|(x) still

belongs to S.

Definition 5.4. We set

div
τ,φ

X := tr((Id − n
φ
⊗ ν

φ
o)∇X) = divX − ni

φ
ν

φ
o

j
∇iX

j .

Notice that the matrix32 Id − n
φ
⊗ ν

φ
o is not symmetric.

Definition 5.5 (φ-mean curvature). We define

κ
φ

:= div
τ,φ

n
φ
, H

φ
:= κ

φ
ν

φ
o on ∂E.

The following result shows that we can equivalently define the φ-mean curvature using the
divergence in M , provided we use the natural extension of n

φ
.

Lemma 5.6. Let φo ∈ Mreg(T �M) and let N
φ

: U → M be the extension of n
φ

as defined
in (3.24). Then

κ
φ

= divN
φ

= φo

ξ
�

i
ξ

�

j

(∇d
φ
)∇2

ij
d

φ
= Δ

φ
d

φ
.

Proof. Define f(z) := 〈νE(x), N
φ
(z)〉 for any z ∈ U . Then f has a maximum at x (with value

φo(νE(x))). Therefore ∇f(x) = 0, i.e., νE

j
(x)∇iN

j

φ
(x) = 0. Hence ν

φ
o

j
(x)∇iN

j

φ
(x) = 0.

We now assume in particular that φo is convex.

Corollary 5.7 (First variation II). Let φo ∈ Mreg(T �M). We have

d

dλ
F

φ
o(E

λ
)|λ=0 = cn

∫
∂E

〈H
φ
,X〉 φo(ν) dHn−1. (5.16)

Proof. Split X as

X = X⊥,φ
+ Xτ , X⊥,φ

:= 〈X,∇d
φ
〉 N

φ
=: ψN

φ
, Xτ := X − X⊥,φ

.

Note that 〈X⊥,φ
,∇d

φ
〉 = 〈X,∇d

φ
〉, and that 〈Xτ ,∇d

φ
〉 = 0, namely Xτ is a tangent vector

field to ∂E. From (5.3) it follows that the function

X →
d

dλ
F

φ
o(E

λ
)|λ=0

is linear with respect to X. Moreover, it is possible to show that the contribution of Xτ to
F

φ
o(E

λ
) is of order o(λ). Therefore we can neglect Xτ in the first variation, and consider

only X⊥,φ
. We have

1
cn

d

dλ
F

φ
o(E

λ
)|λ=0 =

∫
∂E

(
div(ψN

φ
) − N i

φ
ν

φ
o

j
∇i(ψN j

φ
)
)

φo(ν) dHn−1

=
∫

∂E

(
ψdivN

φ
− ψN i

φ
ν

φ
o

j
∇iN

j

φ

)
φo(ν) dHn−1,

32To be consistent with the indices, here Id has one lower index and one upper index, and nφ ⊗ νφ
o is a

(1, 1) tensor.
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where, recalling (3.13), we have used N i

φ
ν

φ
o

j
∇i(ψN j

φ
) = 〈∇ψ,N

φ
〉+ψN i

φ
ν

φ
o

j
∇iN

j

φ
. Therefore

d

dλ
F

φ
o(E

λ
)|λ=0 = cn

∫
∂E

ψ
(
divN

φ
− N i

φ
ν

φ
o

j
∇iN

j

φ

)
φo(ν) dHn−1

which is (5.16).

Corollary 5.8. We have the integration by parts formula

cn

∫
∂E

div
τ,φ

X φo(ν) dHn−1 = cn

∫
∂E

〈H
φ
,X〉φo(ν) dHn−1, X ∈ C1

c
(M ;M).

Example 5.9. Let φo ∈ Mreg(T �M) be spatially homogeneous. Then

κ
φ

= n − 1 on ∂B
φ
. (5.17)

Take u(ζ) = 1 − φ(ζ) for ζ ∈ M ; then ∇u(ζ) = −φ
ξ
(ζ). Hence φo

ξ
(∇u(ζ)) = −ζ/φ(ζ) on M .

Consequently κ
φ

= −div
φ
(φo

ξ
(∇u(ζ))) = div(ζ/φ(ζ)). Then, as ζ · φ

ξ
(ζ) = φ(ζ), we have

div
(

ζ

φ(ζ)

)
=

divζ

φ(ζ)
−

ζ · φ
ξ
(ζ)

φ2(ζ)
=

n

φ(ζ)
−

1
φ(ζ)

=
n − 1
φ(ζ)

.

Example 5.10. Let n = 2, and assume that φo(ξ�) = φo(ξ�) = ργ(θ), where (ρ, θ) are polar
coordinates in the ξ�-plane, i.e., ξ�

1 = ρ cos θ, ξ�

2 = ρ sin θ. Then the curvature κ
φ

of a smooth
curve ∂E is (see for instance [39] and the next section)

κ
φ

= κ(γ + γ
θθ

), (5.18)

where γ
θθ

denotes the second derivative of γ with respect to θ.

5.1.1 Curves: parametric computation

Let us compute the first variation of F
φ

o in the special case n = 2, using a parametric
approach. Write ν = ν(θ) = −(cos θ, sin θ) = τ(θ)⊥, where ⊥ denotes the counterclock-wise
rotation of π/2, and define γ : [0, 2π[→ R as

γ(θ) := σ(ν)

In this section M = R2.

Theorem 5.11 (First variation: curves). Let α : [0, 1] → R2 be a regular parametrization

of ∂E. Let β ∈ C2
c
([0, 1]; R2), λ ∈ R, and α

λ
:= α + λβ. Then

d

dλ
Fσ(E

λ
)|λ=0 =

∫ 1

0
〈(γ(θ) + γ

θθ
(θ))κν, β〉 dt, (5.19)

where α
λ

is a regular parametrization of ∂E
λ
, and κ = 1

|α′|2
(α′′−〈α′′, α

′

|α′|〉
α
′

|α′|) is the euclidean

curvature of ∂E, where ′ denotes the derivative with respect to t ∈ [0, 1].
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Proof. Set τ
λ

= τ
λ
(t) := α

′
λ
(t)

|α′
λ
(t)| = (− sin θ

λ
(t), cos θ

λ
(t)), and set −ν

λ
:= τ⊥

λ
. We have

d

dλ
F(E

λ
) =

d

dλ

∫ 1

0
γ(θ

λ
(t))|α′

λ
(t)| dt

=
∫ 1

0
γ

θ
(θ

λ
)
dθ

λ

dλ
|α′

λ
| dt +

∫ 1

0
γ(θ

λ
) τ

λ
· β′ dt =: I

λ
+ II

λ

We have, integrating by parts and using d

dt
τ
λ|λ=0 = −κν,

II|λ=0 = −

∫ 1

0
γ

θ
(θ)

dθ
λ

dt |λ=0
τ · β dt +

∫ 1

0
γ(θ)κν · β dt (5.20)

= −

∫ 1

0
γ

θ
(θ)θ′τ · β dt +

∫ 1

0
γ(θ)κν · β dt.

To compute dθ
λ

dλ |λ=0
we differentiate α′ + λβ′ = |α′ + λβ′|(− sin θ

λ
, cos θ

λ
) with respect to λ.

We have
β′ = τ · β′ τ + |α′|ν

dθ
λ

dλ |λ=0

which implies
dθ

λ

dλ |λ=0
= ν ·

β′

|γ′|
.

Substituting in (5.20), integrating by parts, using dν

dθ
= −τ and dθ

dt
= κ, gives

I|λ=0 =
∫ 1

0
γ

θ
(θ)ν · β′ dt =

∫ 1

0
γ

θθ
(θ)κν · β dt +

∫ 1

0
γ

θ
(θ)θ′τ · β dt,

and (5.19) follows.

5.2 Inhomogeneous φo

We define
κ

φ
:= div

φ
n

φ
= divn

φ
+ ∇(log(vol

φ
)) · n

φ
, (5.21)

and the vector mean curvature κ
φ

to ∂E as H
φ

:= κ
φ
ν

φ
o .

The proof of the next theorem can be found in [39].

Theorem 5.12 (First variation). Let φo ∈ M(T �M). Adopting the same notation of

Theorem 5.1, we have

d

dλ
F

φ
o(E

λ
)|λ=0 =

∫
∂E

〈H
φ
,X〉φo(x, ν)vol

φ
dHn−1. (5.22)
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5.3 The crystalline case

The computation of the first variation of F
φ

o is much more complicated in the crystalline
case, because of the nondifferentiability of both the surface and the integrand. We report
here some results from [34], [35], which indicate how to define the crystalline mean curvature.
Let φo be crystalline. Let E be a polyhedral neighbourhood-Lipschitz φ-regular set, let
U ⊃ ∂E be an open set of M and η ∈ Lip(U ;V ) such that η ∈ T

φ
o(∇d

φ
) almost everywhere

in U . Let Ψ ∈ Lip(U × R;M), with Ψ(x, λ) := x + λX(x), for a given initial velocity
field X ∈ Lip(U ;M). In the computation of the first variation of F

φ
o we now find some

technical difficulties: for instance we have to be able to Hn−1–a.e. take the divergence of X
on ∂E. This is not immediately guaranteed from the reguarity of X, since divX is in L∞(U).
We therefore prefer to slightly change our point of view. Assume then E to be polyhedral
Lipschitz φ-regular, and define

Hdiv :=
{
N ∈ Nor

φ
(∂E;M) : divτN ∈ L2(∂E)

}
.

Let X ∈ Lip(∂E;V ). As in the smooth case, F
φ

o does not change under infinitesimal tangen-
tial variations. Therefore we restrict ourselves to consider φ-normal fields, hence we assume
that X can be written as X = ψη, where ψ ∈ Lip(∂E) and η ∈ Nor

φ
(∂E;M) ∩ Lip(∂E;M).

In order to continue, we have to extend ψ and η in a suitable neighbourhood of ∂E. One
can show that there exist ε > 0 and an open set U containing ∂E such that the map
(x, λ) ∈ ∂E × (−ε, ε) → x + λη(x) ∈ U is bilipschitz. We write (πη(·), λη(·)) ∈ ∂E × (−ε, ε)
on U the inverse of this map. Define ψe ∈ Lip(U), ηe ∈ Lip(U ; Rn) as ψe(z) := ψ(πη(z)),
ηe(z) := η(πη(z)), and set Xe := ψeηe. For λ ∈ R with |λ| small enough, define Ψ(z, λ) :=
z + λψe(z)ηe(z), and let Ψ

λ
and E

λ
be as Section 5.1.

Theorem 5.13. We have

inf
ψ∈Lip(∂E),cn

R
∂E

ψ
2
φ

o(ν)dHn−1≤1
lim

λ→0+

F
φ

o(E
λ
) −F

φ
o(E)

λ
= − min

N∈Hdiv

K(N), (5.23)

where

K(N) := cn

∫
∂E

(divτN)2φo(ν)dHn−1. (5.24)

The minimization problem in (5.23) in general may admit more than one solution, and two
minimizers have the same divergence. In the following we denote by Nmin ∈ Hdiv a minimizer.

Definition 5.14 (Crystalline mean curvature). We define the φ-mean curvature κE

φ
of

E as κE

φ
= κ

φ
:= divτNmin ∈ L2(∂E).

For simplicity of notation, we will sometimes write κ
φ

in place of κE

φ
.

It turns out that the φ-mean curvature of ∂B
φ

is constantly equal to n − 1.
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E

F

Figure 9: the vector field Nmin : ∂E → R2 is, on facets and arcs of ∂E, the linear combination of the
values of η at the vertices.

Example 5.15 (Polygonal curves). Let n = 2. Let us compute explicitely the φ-curvature
of a two-dimensional Lipschitz φ-regular set E, letting η ∈ Nor

φ
(∂E; R2)∩Lip(∂E; R2). Given

a facet F ⊂ ∂E (in this case F equals a segment [z,w]), the minimum problem (5.27) becomes

inf
{ ∫

]z,w[
(N ′(s))2dH1(s) : N ∈ L2(]z,w[; Π[z,w]), N ′ ∈ L2(]z,w[),

N(x) ∈ T
φ

o(ν
φ

o(x)) for a.e. x ∈ ]z,w[, N(z) = cz, N(w) = cw

}
,

where cz (resp. cw) is the orthogonal projection of η(z) (resp. of η(w)) on the line Π[z,w],
with the correct sign, and ]z,w[ is the relative interior of [z,w].
We now observe that the above minimum problem has a unique solution NF

min, which is
simply the linear function connecting cz at z with cw at w. Hence, when n = 2, not only
the divergence of a minimizer is unique, but also the minimizer itself. If we now repeat this
procedure for any facet, and on each facet we add to NF

min the proper (constant) normal
component to F , we end up with the vector field Nmin : ∂E → R2 whose divergence is the
φ-curvature of ∂E. An example of this vector field is depicted in Figure 9. Curved regions
in ∂E have zero φ-curvature. On the other hand, if F is a facet of ∂E ⊂ R2 and BF ⊂ ∂B

φ

is the corresponding facet in ∂B
φ
, κF

φ
is constant on F and

κF

φ
= δF

|BF |

|F |
on int(F ), (5.25)

where δF ∈ {0,±1} is a convexity factor: δF = 1 (resp. δF = −1, δF = 0) if E is locally
convex (resp. if E is locally concave, E is neither locally convex nor locally concave) at F .

Lipschitz φ-regular sets have φ-curvature which is more regular than being only square inte-
grable [35].

Theorem 5.16 (Regularity). We have κ
φ
∈ L∞(∂E). Moreover, κ

φ
has bounded variation

on all facets of ∂E corresponding to facets of ∂B
φ
.
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Remark 5.17. Assume that ∂E is a polyhedral Lipschitz φ-regular set. We do not know
under which further conditions on ∂E (if any) the functional K in (5.24) admits a minimizer
in Hdiv ∩ Lip(∂E;M) or not. See also formula (8.5) (and Remark 5.18) below: in that case
a discontinuous minimizing vector field with bounded divergence is constructed on the facet
F .

5.3.1 A minimum problem on F : φ-mean curvature on F

In this section we can assume for simplicity that n = 3 and that cn = 1. The case n = 2
is trivial. E is a polyhdral Lipschitz φ-regular set. We recall some notation that we have
already occasionally used. The symbol F will always denote a (polyhedral) facet of ∂E such
that B̃F

φ
is a facet of B

φ
. If [p, q] is a closed edge of a polyhedral set, by ]p, q[ we denote the

relative interior of [p, q].
ΠF is the affine plane spanned by the facet F . Whenever necessary, we identify ΠF with the
plane parallel to ΠF and passing through the origin, and F with its orthogonal projection
on this latter plane. We will assume for simplicity that B̃F

φ
contains the origin of ΠF in its

interior, and is symmetric with respect to the origin itself.
We let φ̃F : ΠF → [0,+∞[ be the convex and one-homogeneous function on ΠF such that
{φ̃F ≤ 1} = B̃F

φ
. We denote by φ̃o

F
the dual of φ̃F (recall the first item of Remark 3.18). If

no confusion is possible, we omit the dependence on F of φ̃F , thus writing φ̃ in place of φ̃F .
We indicate by κB

e
φ

the φ̃-curvature of a Lipschitz φ̃-regular set B ⊂ ΠF . We also set

Pe
φ
(F ) :=

∫
∂F

φ̃o(ν̃F ) dH1.

We want to recall another way to define the crystalline mean curvature κE

φ
on a facet F of

∂E, using a localized minimum problem on F . Set

Nor
φ
(F ; ΠF ) :=

{
N ∈ L∞(F ; ΠF ) : N(x) ∈ T

φ
o(ν

φ
o(F )) for H2 a.e. x ∈ F

}
.

Any N ∈ Nor
φ
(F ; ΠF ) with divN ∈ L2(int(F )) admits a normal trace 〈ν̃F , N〉 on ∂F . Set

Hdiv(F ; ΠF ) :=
{
N ∈ Nor

φ
(F ; ΠF ) : divN ∈ L2(F ), 〈ν̃F , N〉 = cF H1 a.e. on ∂F

}
.

We define the functional K(·, F ) : Hdiv(F ; ΠF ) → [0,+∞) as

K(N,F ) :=
∫

F

(divN)2 φo(νE)dH2 = φo(ν(F ))
∫

int(F )
(divN)2 dH2. (5.26)

The minimum problem
inf {K(N,F ) : N ∈ Hdiv(F ; ΠF )} (5.27)

admits a solution, and two minimizers have the same divergence. Let us denote by NF

min a
solution of problem (5.27). It turns out that

κE

φ
= divNF

min, H2 a.e. in F.

Notice once more that the above equality says that the crystalline φ-mean curvature of ∂E can
be obtained, on the facet F , as the divergence of a vector field which minimizes a problem
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localized on F . However this minimum problem depends on the shape of ∂E around F :
indeed, we are assigning the normal trace of NF

min on ∂F via the functions cF .
The following remark is useful in concrete situations, and is a consequence of the strict
convexity of the functional K in the divergence.

Remark 5.18 (Minimality criterion). Let f = divN where N is a vector field belonging
to Hdiv(F ; ΠF ). Assume that f satisfies the Euler-Lagrange inequality∫

F

fdiv(N − N) dH2 ≤ 0, N ∈ Hdiv(F ; ΠF ). (5.28)

Then N is a solution of (5.27).

As a corollary of this minimality criterion it follows that if f is constant on F then (5.28) is
satisfied (with the equality in place of the inequality).
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6 φ-calibrability

Theorem 5.16 makes possible to speak of the jump set of κ
φ

on the facets of ∂E corresponding
to facets of ∂B

φ
. If F ⊂ ∂E is such a facet, it may be of interest finding necessary and

sufficient conditions on E and F ensuring that the jump set of κ
φ

on F is empty: that is, to
prove that κ

φ
is continuous on F . Assume that this is the case: then for small times in the

crystalline mean curvature flow, F is expected to translate parallely to itself if κ
φ

is constant
on F or to bend if κ

φ
is continuous but not constant on F .

Definition 6.1 (Calibrability). We say that F is φ-calibrable if κE

φ
is constant on F .

Recalling Definition 6.1 and the results of Section 5.3.1, we deduce, for instance in n = 3
dimensions, that a facet F is φ-calibrable if and only if there exists a vector field N : F → ΠF

which is a solution to: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N ∈ L∞(F ; ΠF ),

N(x) ∈ T
φ

o(ν
φ

o(F )) for H2 a.e. x ∈ F,

divN =
1
|F |

∫
∂F

cF dH2,

〈ν̃F , N〉 = cF H1 a.e. on ∂F.

(6.1)

The quantity
1
|F |

∫
∂F

cF dH2 =: vF

can be interpretated as the mean velocity of F , and is sometimes called weighted mean
curvature; in case of a convex F with E convex at F (see Definition 6.3 below) this velocity
is positive. Hence

−vF ν
φ

o(F )

represents the normal velocity vector of F .
To construct examples of facet breaking in crystalline mean curvature flow, the first step is
exactly to find facets which are not φ-calibrable. Therefore, we are led to look for criteria
that allow to decide whether a facet is φ-calibrable or not [34], [35].
Given a finite perimeter set [11] B in the hyperplane HF containing F , we denote by ∂∗B
the reduced boundary of B. We also let

cB(x) :=

{
max{ν̃B · p : p ∈ B̃F

φ
} if x ∈ ∂∗B \ ∂F,

cB(x) = cF (x) if x ∈ ∂∗B ∩ int(F ).
(6.2)

The following result is proved in [36].

Theorem 6.2 (Characterization). F is φ-calibrable if and only if for any B ⊆ F of finite

perimeter we have

vB :=
1
|B|

∫
∂
∗
B

cB dH2 ≥
1
|F |

∫
∂F

cF dH2. (6.3)
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Before sketching the proof of Theorem 6.2, let us recall [14] that given a function u of bounded
variation in F and a vector field X ∈ L∞(F ;HF ), the following generalized Gauss-Green
formula holds: ∫

F

udivX dx +
∫

F

θ(X,Du)|Du| =
∫

∂F

[X · ν̃F ] u dH1.

Here Du is the distributional derivative of u, which is measure; moreover, the density
θ(X,Du), the total variation measure |Du| and the normal trace [X, ν̃F ] are suitably weakly
defined.
Sketch of proof of Theorem 6.2. The implication F φ-calibrable ⇒ vB ≥ vF can be proved
as follows. We know that divN = vF on F . Therefore, integrating divN on F and using the
Gauss-Green Theorem we get

|B|divN =
∫

B

divN dx =
∫

∂
∗
B

ν̃B · N dH1 ≤

∫
∂
∗
B

cB dH1,

where in the last equality we use also the definition (6.2) of cB .
The opposite implication can be proved as follows. Assume by contradiction that F is not
φ-calibrable. Given any λ ∈ R define Ω

λ
:= {x ∈ F : divNmin(x) < λ}. Using Theorem 5.16

it follows that there exists λ < vF such that Ω
λ
�= ∅ has finite perimeter. We have, using the

properties of functions of bounded variations [11] and the Gauss-Green theorem,∫
Ω

λ

divNmin dx = −

∫
int(F )∩∂

∗Ω
λ

θ(Nmin,D1Ω
λ
) dH1 +

∫
∂F

[Nmin · ν̃F ]1Ω
λ

dH1

= −

∫
int(F )∩∂

∗Ω
λ

θ(Nmin,D1Ω
λ
) dH1 +

∫
∂F∩∂

∗Ω
λ

[Nmin · ν̃F ] dH1.

It is now possible to prove the following property:

−θ(Nmin,D1Ω
λ
)(x) = max{ν̃Ω

λ(x) · p : p ∈ B̃F

φ
} H1 − a.e. x ∈ int(F ) ∩ ∂∗Ω

λ
,

and also the property [Nmin · ν̃
F ] = cF = cΩ

λ
on ∂F ∩∂∗Ω

λ
. Therefore −θ(Nmin,D1Ω

λ
) = cΩ

λ

on int(F ) ∩ ∂∗Ω
λ
, and hence ∫

Ω
λ

divNmin dx =
∫

∂
∗Ω

λ

cΩ
λ

dH1.

It follows
vF > λ >

1
|Ω

λ
|

∫
Ω

λ

divNmin dx =
1

|Ω
λ
|

∫
∂
∗Ω

λ

cΩ
λ

dH1 ≥ vF ,

which is a contradiction.
Heuristically, proving that a facet instantly breaks during the subsequent crystalline mean
curvature flow means to find a subset B ⊂ F such that vB < vF .

6.1 The case of convex facets

Definition 6.3 (Convexity at a facet). We say that E is convex at F if E lies, locally

around F , from one side of the hyperplane HF containing F .
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It is possible to prove that if the Lipschitz φ-regular set E is convex at F , then F is Lipschitz
φ̃F -regular. Under this convexity assumption, we have that vF = 1

|F |

∫
∂F

φ̃o

F
(ν̃F ) dH1. In

addition κ
φ

turns out to be convex in F .
The following result is proved in [36].

Theorem 6.4. Assume that E is convex at F and that F is convex. Then F is φ-calibrable

if and only if

sup
∂F

κF

e
φ

≤
1
|F |

∫
∂F

φ̃o

F
(ν̃F ) dH1. (6.4)

The sup in (6.4) is the essential supremum, since κF

e
φ

is a function in L∞(∂F ). Recall that

κ̃F

φ
is the φ̃F -curvature of ∂F (as a subset of ΠF ).

Hence, under the assumptions of Theorem 6.4, problem (6.1) is solvable if and only if the
φ̃-curvature of ∂F is bounded above by the constant on the right hand side of (6.4); this
means, roughly speaking, that the edges of ∂F cannot be too “short”.
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7 Anisotropic mean curvature flow

In this section we quickly recall the definition of anisotropic mean curvature flow, and we
present the main example of evolution. We will not consider the case of unbounded hyper-
surfaces (such as graphs on the whole of Rn−1, for instance).

7.1 Regular case

We assume in this subsection that φ ∈ Mreg(TM).

Definition 7.1 (φ-mean curvature flow). Let T > 0 and, for any t ∈ [0, T ], let E(t) ⊂ M
be a set with compact boundary. We say that (E(t))

t∈[0,T ] is a smooth φ-mean curvature flow

in [0, T ] starting from E = E(0) if the following conditions hold:

(i) there exists an open set A ⊂ M × [0,+∞) such that ∪
t∈[0,T ](∂E(t) × {t}) ⊂ A and, if

we define

d
φ
(z, t) := dist

φ
(z,E(t)) − dist

φ
(z,M \ E(t)), z ∈ M, t ∈ [0, T ],

we have d
φ
∈ C∞

(
A

)
;

(ii)
∂

∂t
d

φ
(x, t) = divnE(t)

φ
(x), x ∈ ∂E(t), t ∈ [0, T ]. (7.1)

Observe that ∂

∂t
d

φ
is positive for an expanding set.

Example 7.2. Given R0 > 0, let us show that {ξ ∈ M : φ(ξ) < R0} has an evolution
shrinking self-similarly under the flow (7.1). Looking for a solution of the form {ξ ∈ M :
φ(ξ) < R(t)}, we have d

φ
(z, t) = φ(z) − R(t), and (7.1) becomes Ṙ = −n−1

R
(recall Example

5.9). Hence R(t) =
√

R2
0 − 2(n − 1)t for t ∈ [0, R

2
0

2(n−1) ), which disappears for times larger

than R
2
0

2(n−1) .

The evolution law (7.1) is the gradient flow of F
φ

o [2], [63], [6]. We refer for instance to the
papers [39] and references therein for more.

7.2 Crystalline case

Assume now that φ is crystalline. Unless n = 2, the definition of crystalline mean curvature
flow is much more involved. Let us begin with the two-dimensional case (M = R2).

7.2.1 Curves

Let ∂E ⊂ R2 be a closed simple polygonal curve, Sj ⊂ ∂E an edge of length Lj > 0 and
νj the exterior euclidean unit normal to Sj. We define δSj

to be 1 (resp. -1) if Sj and its
two adjacent edges form a convex (resp. concave) curve, and 0 otherwise. Let LB

φ
(νj) be

the length of the edge of ∂B
φ

having νj as exterior normal: we will restrict here to consider
polygonal curves ∂E (and ∂E(t)) which consist of a sequence of segments having the same
ordered set of normal orientations as ∂B

φ
. Such a ∂E is Lipschitz φ-regular.

－136－



S

jS (t)
S j

jν

L

νj

Lj(t)
L (ν )j

(ν )jBϕ

Bϕkj(t) =δ
j

Figure 10: The motion by crystalline curvature starting from the curve in bold when Bφ is an
octagone. We depict the motion also after the disappearing of some edge.

Recall that the crystalline curvature of Sj equals

κj

φ
:= δSj

LB
φ
(νj)

Lj

,

see (5.25).
Given two parallel segments S1, S2, we call the distance vector of S2 from S1 the vector having
norm dist(S1, S2) pointing from S1 to S2.
Let us define the local in time crystalline curvature flow of a polygonal Lipschitz φ-regular
curve (with a finite number of sides), supposing that no side disappears.

Definition 7.3. Let ∂E(t) be a family of time-parametrized polygonal Lipschitz φ-regular

curves. We say that ∂E(t) moves by crystalline curvature in [0, T ], T > 0, if each side either

translates parallel to itself or stays still (and does not disappear) for any j, the distance vector

hj(t) between the edge Sj(t) and Sj(0) is of class C1([0, T ]), and(33)

ḣj(t)
φo(νj)

= −κj

φ
(t)νj , t ∈ [0, T ].

Convex portions of the curve contract in the direction of their inner normal, while concave
portions expand in the direction of the outer normal (see Figure 10). See [114], [116], [98],
[79], [82], [87], [88], [83], [84], [98], [110], [111], [120] for various qualitative properties.

7.2.2 Hypersurfaces

In this section we recall a definition of crystalline mean curvature flow (for which the set B
φ

shrinks self-similarly). Recall that ∂E(t) is always assumed to be compact and Lipschitz. The
next definition has been used in [32] (see also [30] in two dimensions) to prove a comparison
principle for crystalline mean curvature flow.

33See also Remark 10.14 below.
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Definition 7.4 (Neighbourhood-L∞ φ-regular flow). Let T > 0. A neighbourhood-L∞

φ-regular flow on [0, T ] is a map t ∈ [0, T ] → E(t) ⊂ M satisfying the following properties:

(i) there exists an open set A ⊂ M × [0,+∞) such that ∪
t∈[0,T ](∂E(t) × {t}) ⊂ A and

d
φ
(z, t) := dist

φ
(z,E(t)) − dist

φ
(z,M \ E(t)) is Lipschitz in A;

(ii) there exists a bounded vector field n : A → V such that n ∈ T
φ

o(∇d
φ
) almost everywhere

in A, divn ∈ L∞(A), and there exists λ > 0 such that∣∣∣∣∂d
φ

∂t
(z, t) − divn(z, t)

∣∣∣∣ ≤ λ|d
φ
(z, t)| for a.e. (z, t) ∈ A. (7.2)

In (7.2) the divergence of n is taken in M , hence we avoid to restrict it on a specific boundary.
Notice also that the left hand side of (7.2) tends to zero as d

φ
(z, t) tends to zero(34).

Other definitions could be given by imposing for instance in addition that E(t) and M \E(t)
satisfy the rB

φ
-ball condition (see [27]), or by imposing the evolution law only on the flowing

manifold, possibly using the vector field N
E(t)
min . We do not give any detail here. We refer to

the already mentioned papers, to [20] and to Section 8.

Remark 7.5. We are not aware of a local existence theorem of the flow even starting from
a polyhedral set E in n ≥ 3 dimensions, one of the reasons being the presence of the facet-
breaking phenomenon. A short time existence and uniqueness result has been proved in [26],
provided E is convex. In view of the poor knowledge on existence and uniqueness of crystalline
mean curvature flow in three dimensions, it is not yet completely clear that Definition 7.4 is
the most natural one for this kind of geometric flows.

34For euclidean motion by mean curvature (φ(·) = | · |), the left hand side of (7.2) can be controlled by |d| ||
times the L∞-norm squared of the length of the second fundamental form of the flowing manifolds.
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Figure 11: the initial set E = E(0) and Bφ = [−1, 1]3.

8 Facet-breaking in crystalline mean curvature flow in three

dimensions

In this section we assume n = 3 (so that M = R3), we fix B
φ

:= [−1, 1]3 and we let E = E(0)
be the set depicted in Figure 11. We want to construct a short-time crystalline mean curvature
flow E(t) starting from E (with a proper choice of a, b, c, d, e) in the sense of Definition 7.4, in
the case when the frontal facet F (and its opposite one) splits (at time zero) into two facets,
while all the other facets (some of which do not remain rectangular for small positive times)
do not split.
In what follows, we often use the same symbol to indicate an edge and its length.

8.0.3 On φ-calibrability of F

It is clear that E is convex at F , but F is not convex, hence Theorem 6.4 cannot be applied.
Nevertheless, the following proposition [33] holds.

Proposition 8.1. F is φ-calibrable if and only if

b ≥
cd

c + d
, c ≥

ab

a + b
. (8.1)

Remark 8.2. The implication F φ-calibrable ⇒ (8.1) was proved in [33] applying Theorem
6.2, taking B as the rectangle with sides c and d, and next as the rectangle with sides a and
b. The opposite implication was proved using Remark 8.3 below to the three subrectangles
of F partitioning F .
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We notice however that inequalities (8.1) express exactly condition (6.4). Indeed κF

e
φ

= 0 on
the edges ]S, T [ and ]T,U [. Moreover if |L| stands for the length of one of the four remaining
edges d = [R,Z], a = [Z, V ], b = [U, V ] and c = [R,S], which we generically denote by L, we
have, recalling (5.25),

κF

e
φ

=
2
|L|

on int(L).

Therefore the supremum of κF

e
φ

is reached either at the edge b or at the edge c. We distinguish

two cases. The first case is when b ≤ c, so that the supremum of κF

e
φ

is reached at the edge b.
Then the second inequality in (8.1) is automatically satisfied, since a/(a + b) < 1. A direct
computation gives cF = 1 on ∂F (see (4.1) and Example (4.11)); therefore∫

∂F

cF dH1 = 2(a + d).

Since |F | = cd + b(a − c), the inequality (6.4) reads as 2
b
≤ 2(a+d)

cd+ab−bc
, which is equivalent to

b ≥ cd

c+d
, and gives the first inequality in (8.1).

If b ≥ c, the supremum of κF

e
φ

is reached at the edge c. Then the first inequality in (8.1) is

automatically satisfied. Moreover inequality (6.4) reads as 2
c
≤ 2(a+d)

cd+ab−bc
, which is equivalent

to c ≥ ab

a+b
.

8.0.4 On φ-calibrability of the other facets of ∂E

All facets of ∂E different from F and its opposite one are φ-calibrable, since they are rect-
angles. For rectangular facets F such that E is convex at F this is a direct consequence of
Theorem 6.4. For instance, consider the right lateral facet F2 of E: the edges of F2 are b and
e. Assume b ≤ e. Theorem 6.4 reads as 2

b
≤ 2(b+e)

be
, which is always satisfied (with the strict

inequality).
However there are rectangular facets Q ⊂ ∂E such that E is not convex at Q. The φ-
calibrability of those facets follows from the following result.

Remark 8.3. Let R ⊂ R2 be a rectangle with edges l1, . . . , l4 parallel to the coordinate axes,
let ν̃i be the exterior unit normal to R at int(li) and let |li| be the length of li. Let l1 and l3 be
the edges parallel to the x-axis, l1 the lower one, and l2 be the right edge. Fix for simplicity
the origin at the intersection between l4 and l1. Let αi ∈ [−1, 1] for i = 1, . . . , 4. Consider
the vector field n := (n1, n2) defined, for (x, y) ∈ R, as

n1(x, y) :=
α2x

|l1|
− α4

(
1 −

x

|l1|

)
= n1(x), n2(x, y) :=

α3y

|l4|
− α1

(
1 −

y

|l4|

)
= n2(y).

Notice that n1 (resp. n2) depends only on x (resp. on y). Then

divn =
α2 + α4

|l1|
+

α3 + α1

|l4|
=

|l2|(α2 + α4)
|R|

+
|l3|(α3 + α1)

|R|
= |R|−1

4∑
i=1

αi|li|.

Moreover, 〈ν̃i, n〉 = αi for i = 1, . . . , 4. Indeed, for instance on l3 (resp. on l4) we have
〈ν̃3, n(x, y)〉 = n2(x, |l4|) = α3 (resp. 〈ν̃4, n(x, y)〉 = −n1(0, y) = α4).
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The vector field n satisfies also |n1|, |n2| ≤ 1. Summarizing⎧⎨⎩
max {|n1|, |n2|} ≤ 1 in int(R),
div n = |R|−1

∑4
i=1 αi|li| in int(R),

〈n, ν̃i〉 = αi, in int(li).
(8.2)

Fix now
a = 2, b = 1/4, c = 1, d = 1, e = 1/2. (8.3)

With these choices,
the facet F is not φ − calibrable,

in view of Proposition 8.1.

8.0.5 On φ-calibrability of facets of ∂E(t), t > 0

Let us consider a set E(t) of the form depicted in Figure 13, for a fixed t > 0 small enough,
hence in particular the edge [α(t), β(t)] is short enough.
Let us consider facets F2(t), F5(t), F6(t), P (t) and its opposite one: these are rectangular
facets where the set E(t) is convex. These facets are φ-calibrable as a consequence of Theorem
6.4.
Concerning facets F3(t), (F \ P )(t) and its opposite one: these are rectangular facets, and
they are φ-calibrable thanks to Remark 8.3.
Facets F1(t) and F4(t): these are non rectangular facets. Notice that F1 = F1(0) satisfies
ess − sup

∂F1
κF1

e
φ

< Pe
φ
(F1)/|F1|, which implies that ess − sup

∂F1(t) κ
F1(t)
e
φ

< Pe
φ
(F1(t))/|F1(t)|

for short times. φ-calibrability of F1(t) follows from Theorem 6.2.
The most delicate analysis requires the facet F4(t), since E(t) is neither convex nor concave
at F4(t). It is possible to prove that F4(t) is φ-calibrable under the assumptions (8.3), for
t > 0 small enough.

8.0.6 Construction of the flow

We now want to show that E(t) is a crystalline mean curvature flow, in the sense of Def-
inition 7.4. Each set E(t) is Lipschitz φ-regular, since a vector field in Nor

φ
(∂E(t); R3) ∩

Lip(∂E(t); R3) can be constructed by hand.

Step 1. Construction of the velocity field divN(·, 0) on ∂E.

We construct a vector field N(·, 0) ∈ Hdiv(∂E; R3) at time 0 as follows. Let Q be a facet
of ∂E, consider NQ

min, and define, for H2-almost every x ∈ int(Q), the two components of
N(x, 0) lying in the plane ΠQ as NQ

min(x). Add the proper constant third component on each
int(Q) in such a way that the three-dimensional vector field (still denoted by N(·, 0)) belongs
to Hdiv(∂E; R3). The initial normal velocity of ∂E is then divN(·, 0) on int(Q). For the
moment, this definition of velocity is not explicit.

Step 2. Identification of divN(·, 0) on facets different from F and its opposite one.

Each facet Q of ∂E different from F and its opposite is φ-calibrable. It follows that, on Q,
the initial normal velocity equals the constant appearing on the right hand side of the partial
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Figure 12: P and F \ P is a partition of the frontal facet F of ∂E. We depict the vector field N on
∂P and on ∂(F \ P ). The construction is based on Remark 8.3.

differential equation in (8.2) expressing the divergence of the vector field, namely vQ. This
is a consequence of Remark 5.18 and the sentence after it.
To determine this constant we have to find the values of αi, i.e. the value of cQ on each facet
Q. We have

(i) cF6 = 1 on ∂F6, cF1 = 1 on ∂F1, cF2 = 1 on ∂F2, cF5 = 1 on ∂F5. Hence

divNE

min = 2(d+e)
de

on int(F6)

divNE

min = 2(a+e)
ae

on int(F1),

divNE

min = 2(b+e)
be

on int(F2),

divNE

min = 2(c+e)
ce

on int(F5).

(ii) cF3 = 1 on ∂F3 and cF4 = 1 on ∂F4 except that on ]T, J [, where cF3 = cF4 = −1, see
Figures 11 and 7.

Step 3. Identification of divN(·, 0) on F and on its opposite facet.

Let us consider the facet F (the arguments for the facet opposite to F are the same). We
have cF = 1 on ∂F . We know that there does not exist a vector field defined on int(F ) having
constant divergence, whose normal trace on ∂F is one and lying in T

φ
o(ν

φ
o(F )).

Let us subdivide F into two rectangles P and F \ P as in Figure 11; in Figure 12 the two
rectangles are depicted disjoint. We use the explicit construction of Remark 8.3 separately
on P and F \ P , taking the constants αi as follows.

- On ∂P all αi are equal to one;

- on ∂(F \ P ) the αi are equal to one except that on the dotted segment l, where the
corresponding αj is equal to −1.

Remark 8.3 provides two vector fields

MP : P → R2, M
F\P : F \ P → R2,

with the following properties:

(a) MP ∈ Hdiv(P ; ΠF ), divMP ≡ 2(d+c)
dc

on int(P );
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Figure 13: Picture of the set E(t) for small positive t

(b) M
F\P ∈ Hdiv(F \ P ; ΠF ), divM

F\P ≡ 2(a−c)
b(a−c) = 2

b
.

The vector field N is explicit, since the construction in Remark 8.3 is explicit.
Observe that

divMP < divM
F\P . (8.4)

We let

N :=
{

MP on int(P ),
M

F\P on int(F \ P ).

It is interesting to observe that the component of N in ΠF orthogonal to l is continuous along
l, see Figure 12. On the other hand, the component of N in ΠF tangent to l is discontinuous
along l. It follows that

N is discontinuous on int(F ),

and
divN ∈ L∞(F ).

In particular, N ∈ Hdiv(F ; ΠF ).
Let us now check that N satisfies the Euler-Lagrange inequality (5.28). The divergence of N
is constant on the interior of P and F \P , and therefore, to check that (5.28) holds, we have
to prove that

2(d + c)
dc

∫
int(P )

div(N − N) dH2 +
2
b

∫
int(F\P )

div(N − N) dH2 ≤ 0 ∀N ∈ Hdiv(F ; ΠF ).

(8.5)
We have

2(d + c)
dc

∫
int(P )

div(N − N) dH2 +
2
b

∫
int(F\P )

div(N − N) dH2

=
2(d + c)

dc

∫
∂P

〈ν̃P ,N − N〉 dH1 +
2
b

∫
∂(F\P )

〈ν̃F\P ,N − N〉 dH1

=
(

2(d + c)
dc

−
2
b

)∫
l

〈ν̃P ,N − N〉 dH1 ≤ 0,

(8.6)
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since 2(d+c)
dc

− 2
b

< 0 by (8.4), and since, by construction, the normal trace of N on int(l) is
maximal (in the direction of ν̃P ) among all vector fields satisfying the same constraints (see
Figure 12), so that 〈N (x) − N(x), ν̃P (x) ≥ 0 for H1-almost every x ∈ l.
Using Remark 5.18, we conclude that N is a solution of (5.27), and therefore divN is the
φ-mean curvature of ∂E on int(F ), and divN = divN(·, 0) on int(F ).

Step 4. Construction of the normal velocity of ∂E(t).
Let us now consider the set E(t) for small positive times, constructed by flowing (shrinking)
a generic facet L(t) of ∂E(t) with constant normal velocity equals to 1

|L(t)|

∫
∂L(t) c

L(t) dH1.
Observe that all facets of ∂E(t) are φ-calibrable, so they do not further subdivide. In addition,
on each int(L(t)) the normal velocity equals the divergence of a solution of (5.27) (where F
is replaced by L(t)).
Through steps 1-4 we have constructed a flow starting from E. Actually, this is the unique
crystalline mean curvature flow of E in a reasonably large class of flows.

Remark 8.4. The vector field N previously defined admits an extension (by lines) in U ×
[0, T ], where U is a suitable open set containing ∂E(t), t ∈ [0, T ]. More precisely, let y ∈ U
and let x ∈ ∂E(t) be the unique point with the property that y belongs to the straight line{
x + sN(x, t)

}
s∈R (this property is fulfilled if U is sufficiently thin, and for those points x

where N(x, t) is continuous, hence if t > 0 for all points, while if t = 0 excluding points on
the segment l). Then we define N(y, t) := N(x, t). With this definition the evolution that we
have constructed is in the sense of Definition 7.4. It turns out that this evolution is unique
in that class.

－144－



9 The reaction-diffusion approximation

Motion by mean curvature can be approximated by the zero-level sets of solutions of a singu-
larly perturbed parabolic equation of Ginzburg-Landau type [67], [56]. This approximation
result can be generalized to anisotropic and crystalline mean curvature flow, and several
authors contributed to the final results, which are sometimes valid even efter the onset of
singularities (excluding fattening). A partial list of references can be found for instance in the
papers [38], [29]. In this section we briefly recall the main statement in the crystalline case,
and one of its consequences, namely the comparison principle, which implies a uniqueness
result.

Assume that φo is crystalline. Let us introduce the relaxed evolution law. Let Ω ⊂ M be a
smooth bounded open set. For s ∈ [−1, 1] let W (s) := (1 − s2)2 and ψ := W ′/2. We denote
by γ the unique smooth strictly increasing function(35) exponentially asymptotic, at ±∞, to
the two stable zeroes ±1 of ψ, satisfying

−γ′′ + ψ(γ) = 0, γ(0) = 0. (9.1)

Let δ ≥ 3 be a fixed natural number such that, if for any ε ∈ (0, 1] we let ξε := δ| log ε|, then
γ(±ξε) = ±1 + O(ε2δ), γ′(±ξε) = O(ε2δ). Denote by γε a smooth increasing function which
coincides with γ on [−ξε, ξε] and assumes the corresponding asymptotic values ±1 outside
the interval (−2ξε, 2ξε).
Let ε ∈ (0, 1], T > 0 and let u0 belong to the Sobolev space H1(Ω), and suppose also that

E
φ
(u0) :=

∫
Ω

φo(∇u0)2 + W (u0) dx < +∞.

Let us consider the problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

εut − εdiv(T
φ

o(∇u)) +
1
ε
ψ(u) � 0 in Ω × (0, T ),

u(·, 0) = u0(·) in Ω,

T
φ

o(∇u) · νΩ = 0 on ∂Ω × (0, T ).

(9.2)

Let us define what is a solution to (9.2). For the definitions of parabolic spaces, we refer for
instance to [71]. For an introduction to parabolic partial differential equations we refer for
instance to [99].

35An hyperbolic tangent.
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Definition 9.1 (Sub/super solutions). A pair (u, ζ) is a subsolution of (9.2) if, for any

T > 0, the following properties hold:

(i) u ∈ L∞(0, T ;H1(Ω)) ∩ H1(0, T ;L2(Ω)) and ζ ∈ (L2(Ω × (0, T )))n;

(ii) for any ϕ ∈ H1(Ω; [0,+∞)) and a.e. t ∈ (0, T )∫
Ω

(
εutϕ + εζ · ∇ϕ +

1
ε
ψ(u)ϕ

)
dx ≤ 0; (9.3)

(iii) u(x, 0) ≤ u0(x) for a.e. x ∈ Ω;

(iv) for a.e. (x, t) ∈ Ω × (0, T )
ζ(x, t) ∈ T

φ
o(∇u(x, t)). (9.4)

The pair (u, ζ) is a supersolution of (9.2) if (i) and (iv) hold, and conditions (ii) and (iii)

hold with ≥ in place of ≤. The couple (u, ζ) is a solution of (9.2) if it is both a subsolution

and a supersolution.

By (i), (iv) and the one-homogeneity of T
φ

o , it follows that ζ ∈ L∞
(
0, T ; (L2(Ω))n

)
.

The following results hold.

Lemma 9.2 (Comparison). Let (u−, ζ−) and (u+, ζ+) be respectively a subsolution and a

supersolution of (9.2). Then u− ≤ u+ a.e. in Ω × (0, T ).

Theorem 9.3 (Existence and uniqueness). Problem (9.2) admits a solution (u, ζ). More-

over, if (u1, ζ1) and (u2, ζ2) are two solutions of (9.2), then u1 = u2 a.e. in Ω × (0, T ).

9.1 Approximation and comparison principle

Following [30] and [32] we recall the convergence and comparison results.

Theorem 9.4 (Convergence). Let E(t) be a neighbourhood-L∞ φ−regular flow on [0, T ].
For any ε > 0 let uε be the solution of problem (9.2) with the ε-dependent initial datum

uε(x, 0) = u0
ε
(x) := γε

(
d

φ
(x, 0)
ε

)
, (9.5)

where as usual d
φ
(x, 0) := dist

φ
(x,E(0))−dist

φ
(x,M \E(0)). Let Σε(t) denote the zero level

set of uε(·, t)(36). Then there exist ε0 ∈ ]0, 1] and a constant C depending on (E(t))
t∈[0,T ],

and independent of ε ∈ ]0, ε0], such that for any ε ∈ ]0, ε0]

Σε(t) ⊂ {x ∈ Ω : dist(x, ∂E(t)) ≤ Cε| log ε|2},

∂E(t) ⊂ {x ∈ Ω : dist(x,Σε(t)) ≤ Cε| log ε|2},
t ∈ [0, T ]. (9.6)

Using Lemma 9.2 and Theorem 9.4 it is possible to deduce the following result.
36Since uε(·, t) is not a priori a continuous function, this zero level set must be properly defined.
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Corollary 9.5 (Uniqueness). Let E1(t) and E2(t) be two neighbourhood-L∞ φ-regular flows

on [0, T ]. Then

E1(0) ⊆ E2(0) ⇒ E1(t) ⊆ E2(t), t ∈ [0, T ].

Hence E1(0) = E2(0) ⇒ E1(t) = E2(t) for any t ∈ [0, T ].

As a consequence, a φ-regular flow depends only on E(0), hence it does not depend on the
choice of the vector field which makes it neighbourhood-L∞ φ-regular.

Remark 9.6. We are not aware of a direct proof of the comparison principle for crystalline
mean curvature flow in n ≥ 3 dimensions, without using the reaction-diffusion approximation.

－147－



10 Anisotropic functionals on partitions and crystalline flow
of planar triods

Functionals defined on boundaries have a rather natural extension as functionals defined on
bounded variation functions taking a finite number of values (sometimes called functionals
on partitions)(37). As in the two-phases case, we will not study such functionals in full
generality(38), and we will confine ourselves to the following particular situation: only one
anisotropy φo will be used, that will be assumed convex and spatially homogeneous. Only
special partitions will be considered, consisting of a finite number of Lipschitz phases.
Let φ ∈ M(TM) be spatially homogeneous. By a Lipschitz hypersurface with Lipschitz
boundary we mean a (n − 1)-dimensional set Σ ⊂ M which can be written locally as the
graph of a Lipschitz function defined on an open subset of Rn−1, and such that each point of
its relative boundary ∂Σ can be written locally as the graph of a Lipschitz function defined
on an open Lipschitz subset of Rn−2. If x ∈ Σ (resp. x ∈ ∂Σ) we denote by Tx(Σ) (resp.
Tx(∂Σ)) the tangent space to Σ (resp. to ∂Σ) at x. We also denote by Π

Tx(Σ) (resp. Π
Tx(∂Σ))

the orthogonal projection on Tx(Σ) (resp. on Tx(∂Σ)). Any Lipschitz function or vector field
defined on Σ will be considered as defined up to ∂Σ.
Given a Lipschitz hypersurface Σ ⊂ M with boundary, we define

M
φ
(Σ) :=

∫
Σ

φo(ν) dHn−1, (10.1)

where ν(x) is a euclidean unit normal vector to Σ at Hn−1-almost every x ∈ Σ.

Definition 10.1 (Lipschitz partitions). A Lipschitz (resp. smooth) partition of M is a

finite family {Ei}i of subsets(39) of M such that ∪iEi = Rn, Ei ∩ Ej = ∅ for i �= j, and

∂Ei ∩ ∂Ej , when it is nonempty, is a Lipschitz (resp. smooth) hypersurface with Lipschitz

(resp. smooth) boundary, called interface. If n = 2, by a m-multiple junction of {Ei} (m ≥ 3
a natural number) we mean a point q belonging to m distinct interfaces. If in addition m = 3
we say that q is a triple junction of {Ei}.

Given a Lipschitz partition {Ei} of M , we set

Σij := ∂Ei ∩ ∂Ej , i �= j, Γ :=
⋃
i,j

Σij, J :=
⋃
i,j

∂Σij, (10.2)

where ∂Σij is the relative boundary of Σij, and

M
φ
(Γ) :=

∑
i,j

M
φ
(Σij). (10.3)

We denote by νij a Hn−1-a.e. defined euclidean unit normal to Σij and we set ν
φ

o

ij :=
νij/φo(νij). For notational simplicity, when n = 2 the sets ∂Ei ∩∂Ej are also denoted by Σ

k
,

37These latter functionals are in turn generalized by functionals defined on special functions of bounded

variation, such as the Mumford-Shah functional [11].
38See [11], [53], [54], [55] and references therein.
39Called phases.
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using one index only, and ν
φ

o

ij will be denoted by ν
φ

o

k. When n = 2 the set Γ is sometimes
called network.
When {E1, E2, E3} is a partition of R2 into three sets having only one triple junction (denoted
by q) the set Γ defined in (10.2) will be called triod, and denoted by Π. If the partition is
Lipschitz φ-regular in the sense of Definition 10.8 below, the triod is said to be Lipschitz
φ-regular. We call angles of Π the three angles at q between Σ1, Σ2, Σ3.

10.1 First variation

Assume φ ∈ Mreg(TM) is spatially homogeneous. We assume that Σ is a (n−1)-dimensional
smooth bounded embedded orientable manifold with (smooth) boundary. ν is a smooth
euclidean unit normal vector field to Σ, smoothly defined up to ∂Σ. We define, at each point
of Σ, ν

φ
o := ν/φo(ν), n

φ
:= T

φ
o(ν

φ
o), and on Σ the φ-mean curvature κ

φ
of Σ as κ

φ
:= divτnφ

.

Definition 10.2 (φ-conormal vector). We denote by n∂Σ
φ

: ∂Σ → M the vector field

defined as follows: if x ∈ ∂Σ then

(i) n∂Σ
φ

(x) ∈
{
span

(
Tx(∂Σ), n

φ
(x)

)}⊥
;

(ii) |n∂Σ
φ

(x)| = |n
φ
(x) − Π

Tx(∂Σ)nφ
(x)|;

(iii) n∂Σ
φ

(x) points out of Σ.

Observe that dim
{

span
(
Tx(∂Σ), n

φ
(x)

)⊥
}

= 1, since n
φ
(x) and Tx(∂Σ) are linearly inde-

pendent, as a consequence of 〈ν
φ

o(x), n
φ
(x)〉 = 1.

If φ(ξ) = |ξ|, then n∂Σ
φ

is the usual conormal unit euclidean vector pointing out of Σ. Note
also that in n = 2 dimensions condition (i) reduces to n∂Σ

φ
(x) · n

φ
(x) = 0, and condition (ii)

reduces to |n∂Σ
φ

(x)| = |n
φ
(x)|.

10.1.1 The smooth 2-dimensional case

In this subsection we assume n = 2 (hence M = R2) and we compute the first variation of
M

φ
using a parametric approach [37], for φ ∈ Mreg(TM).

Theorem 10.3 (Curves with boundary). Let Σ ⊂ R2 be a smooth simple curve with

boundary ∂Σ = {p, q}. Let α : [0, 1] → R2 be a regular parametrization of Σ with α(0) = p
and α(1) = q. Let β ∈ C2([0, 1]; R2), λ ∈ R, and let Σ

λ
be the curve parametrized by α + λβ.

Then

d

dλ
M

φ
(Σ

λ
)|λ=0 =

∫
Σ

κ
φ
ν

φ
o · β φo(ν)dH1 + n∂Σ

φ
(q) · β(1) + n∂Σ

φ
(p) · β(0). (10.4)
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Proof. Set τ := α
′

|α′| and ν := τ⊥, where ⊥ is the counterclockwise rotation of π/2. Recalling
(10.1) we have

d

dλ
M

φ
(Σ

λ
)|λ=0 =

d

dλ

∫ 1

0
φ◦

((
α′ + λβ′

)⊥)
dt|

λ=0

(10.5)

=
∫ 1

0
φo

ξ
(ν) · (β⊥)′ dt = −

∫ 1

0

d

dt
(φo

ξ
(ν)) · β⊥ dt − φo

ξ
(ν(q))⊥ · β(1) + φo

ξ
(ν(p))⊥ · β(0).

We now observe that β⊥ = −β ·ντ +β ·τν. Moreover, φo

ξ
(ν) = n

φ
by definition, and from [39]

we have φo

ξξ
(ν)τ · ν = 0 and κ

φ
= κφo

ξξ
(ν)τ · τ , where κ is the euclidean curvature. Therefore,

using dν

dt
= dν

ds

ds

dt
= κν|α′| where s is the arclength parameter, we have∫ 1

0

d

dt
(φo

ξ
(ν)) · β⊥ dt = −

∫ 1

0
κφo

ξξ
(ν)τ · τ ν · β|α′| dt = −

∫
Σ

κ
φ
ν

φ
o · β φo(ν)dH1. (10.6)

Then (10.4) follows from (10.5) and (10.6).

Corollary 10.4 (Networks). Let {Ei} be a smooth partition of R2 and let q be a m-

multiple junction of {Ei}, m ≥ 3. Let Σ1, . . . ,Σm be the m arcs of the partitions meeting

at q. Let αi : [0, 1] → R2 be a regular parametrization of Σi such that αi(1) = q for any

i = 1, . . . ,m. Let βi ∈ C2([0, 1]; R2) be such that βi(0) = 0 and βi(1) = βj(1) =: β(1)
for every i, j ∈ {1, . . . ,m}, let λ ∈ R and Σi

λ
be the curve parametrized by αi + λβi and

Γ
λ

:=
⋃

m

i=1 Σi

λ
. Then

d

dλ
M

φ
(Γ

λ
)|

λ=0
=

∫
Γ

κ
φ
ν

φ
· β φo(ν)dH1 + β(1) ·

m∑
i=1

n∂Σi

φ
(q). (10.7)

In particular, if for any βi as above we have d

dλ
M

φ
(Γ

λ
)|

λ=0
= 0, then each Σi has zero φ-mean

curvature, and
m∑

i=1

n∂Σi

φ
(q) = 0. (10.8)

10.1.2 The smooth n-dimensional case

In this subsection we assume n ≥ 2 and we state the first variation of M
φ

[37]. Let Ψ
λ

and
X be as in Section 5.1.

Theorem 10.5 (First variation: manifolds with boundary). Let Σ ⊂ M be a smooth

hypersurface with boundary. Set Σ
λ

:= Ψ
λ
(Σ). Then

d

dλ
M

φ
(Σ

λ
)|

λ=0
=

∫
Σ

κ
φ
ν

φ
o · X φo(ν)dHn−1 +

∫
∂Σ

n∂Σ
φ

· X dHn−2. (10.9)

Remark 10.6. If n = 2, the right hand side of (10.9) reduces to right hand side of (10.4).
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Corollary 10.7 (Partitions). Let {Ei} be a smooth partition of M . Set Σij

λ
:= Ψ

λ
(Σij)

and Γ
λ

:=
⋃

m

i=1 Σij

λ
. Then

d

dλ
M

φ
(Γ

λ
)|

λ=0
=

∫
Γ

κ
φ
ν

φ
· X φo(ν)dHn−1 +

∫
Γ

⎛⎝∑
i,j

n
∂Σij

φ

⎞⎠ · X dHn−2. (10.10)

In particular, if d

dλ
M

φ
(Γ

λ
)|

λ=0
= 0, then each Σij has zero φ-mean curvature and the balance

condition holds: ∑
i,j

n
∂Σij

φ
= 0 on Γ. (10.11)

From now on, up to the end of the notes, we will assume n = 2 (so that M = R2) and φ
crystalline.

10.1.3 The crystalline case in n = 2 dimensions

We denote by Lip
ν,ϕ

(Γ; R2) the space of vector fields N : Γ → R2 such that N|Σij

∈

Lip(Σij; R2) and N|Σij
(x) ∈ T

φ
o(ν

φ
o

ij(x)) for H1-almost every x ∈ Σij. Set

N :=

{
N ∈ Lip

ν,ϕ
(Γ, R2) :

∑
i,j

(N|Σij

) ∂Σij = 0 on J

}
. (10.12)

See the appendix for more on the balance condition.

Definition 10.8 (Lipschitz φ-regular partitions). If N �= ∅, the partition {Ei} is said

to be Lipschitz φ-regular.

We now want to define the φ-mean curvature. if {Ei}i is a Lipschitz φ-regular partition of
M then the minimum problem

min
{∫

Γ
(divτN)2 φo(ν) dH1 : N ∈ N

}
(10.13)

admits a unique(40) solution which identifies the direction along which the functional (10.3)
decreases most quickly. Let Nmin : Γ → R2 be the solution of problem (10.13).

Definition 10.9 (Crystalline curvature of a network). Let {Ei} be a Lipschitz φ-regular

partition. We define the φ-curvature κ
φ

of Γ as

κ
φ

:= divτNmin, a.e. on Γ.

10.2 Triods

In this section we report some results on triods from [28]. We denote by n a positive integer
and we assume that B

φ
= Pn, where Pn denotes the regular polygon of n (n even) sides of

length L inscribed in the unit circle centered at the origin of R2, having two horizontal sides
and oriented in clockwise sense.

40Remember that we are considering partitions in the plane.
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Figure 14: (i) Elementary, (ii) quasi-elementary, (iii) non-polygonal triod (Bφ = P8). Note that
κφ = 0 on S3 in (i) and (ii), κφ < 0 on S4 in (ii), and κφ = 0 on γ4 in (iii).
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Figure 15: These triods have the same evolution according to system (10.18). Our convention is to
take the orientation as in (i).

Definition 10.10 (Elementary, quasi-elementary and non-polygonal triods). Let

Π = ∪3
j=1Σj be a Lipschitz φ-regular triod. We say that Π is elementary if

(E) each interface Σj is the union of a segment Sj of finite length Lj > 0 and a half–line

Rj such that Sj and Rj reproduce two consecutive sides of B
φ
, see Figure 14 (i).

We say that Π is degenerate if two interfaces satisfy (E) and the remaining one is a half-line.

We say that Π is quasi-elementary if two interfaces satisfy (E) and the remaining one Σ
k

is

the union of two segments S4 and S
k

of finite lengths, L4 > 0 and L
k

> 0 respectively, and a

half–line R
k

such that S4 and S
k
, and S

k
and R

k
, reproduce two consecutive sides of B

φ
, see

Figure 14 (ii).

We say that Π is non-polygonal if two interfaces satisfy (E) and the remaining one Σ
k

is the

union of a curve γ4, a segment S
k

of finite length L
k

> 0 and a half–line R
k

such that S
k

and R
k

reproduce two consecutive sides of B
φ
, see Figure 14 (iii).

Given a triod Π and N ∈ N , we set Aj := Sj ∩ Rj for any j = 1, 2, 3 such that Rj �= ∅,
A4 := S4 ∩ S

k
if Π is quasi-elementary, and A4 := γ4 ∩ S

k
if Π is non-polygonal.
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Conventions: let ν be the H1-almost everywhere defined euclidean unit normal to Π oriented
in such a way that ν|int (Sj) ·N(Aj) > 0. We set νj := ν|int (Sj), τj := −ν⊥

j
and lj := Lj τj, for

any j = 1, 2, 3, and also j = 4 if Π is quasi-elementary. Thus {τj , νj} is a positively oriented
basis of R2 and, without loss of generality, we assume that each lj points towards q. We
denote by κ

φ
(lj) the φ-curvature of Sj.

For an elementary triod, we assume that S1 is horizontal and Σ2 and Σ3 are given in coun-
terclockwise sense as in Figure 15. We denote by Vj , Wj the vertices of the side of Pn

(in clockwise sense) having νj as outer normal and by Mj the middle point of the segment
[Vj ,Wj ]. Note that

τ1 · ν3 = −τ1 · ν2, ν1 · τ3 = −ν1 · τ2, τ1 · ν3 = −ν1 · τ3. (10.14)

We recall the notion of stability [37].

Definition 10.11 (Stable triods). Let Π be a φ-regular triod. We say that Π is stable if

(Nmin)|Σj

(q) is not a vertex of B
φ

for any j = 1, 2, 3. We say that Π is unstable if it is not

stable.

Non-polygonal triods are always unstable, while elementary, degenerate and quasi-elementary
triods can be either stable or unstable.

10.3 Crystalline flows of triods

As usual, given two parallel (possibly infinite) segments S1, S2, we call the distance vector of
S2 from S1 the vector having norm dist(S1, S2) pointing from S1 to S2.

Definition 10.12. Let T > 0 and Π be an elementary triod (resp. degenerate). For any

t ∈ [0, T ], let Π(t) be a Lipschitz φ-regular triod and q(t) its triple junction. We say that

t ∈ [0, T ] �→ Π(t) is a φ-curvature flow starting from Π = Π(0) if for any t ∈ (0, T )

(i) Π(t) is either elementary or quasi-elementary or non-polygonal (resp. degenerate);

(ii) for any j = 1, 2, 3, each Rj(t) has zero normal velocity and each Sj(t) is parallel to

Sj(0) = Sj;

(iii) for each j = 1, 2, 3, and also j = 4 if Π(t) is quasi-elementary, denoting by hj(t) the

distance vector of the segment Sj(t) from Sj(0) = Sj , then hj ∈ C1([0, T ]; νjR) and⎧⎪⎨⎪⎩
ḣj(t)
φo(νj)

= −κ
φ
(lj(t)) νj

hj(0) = 0.

(10.15)

Remark 10.13. Since φo(νj) is a constant independent of j ∈ {1, 2, 3, 4}, the system in
(10.16) is equivalent, up to a rescaling in time, to

ḣj(t) = −κ
φ
(lj(t)) νj . (10.16)
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Figure 16: P4 admits infinitely many unordered pairs {Y, Z} satisfying X0 +Y +Z = 0 in correspon-
dence of X0 = M1. P6 has a unique pair in correspondence of all X ∈ ∂P6.

Let
hν

j
(t) := hj(t) · νj, for j = 1, 2, 3, 4. (10.17)

Then hj(t) = hν

j
(t) νj and, with this notation, system (10.16) becomes⎧⎨⎩ḣν

j
(t) = −κ

φ
(lj(t)) = −

1
Lj(t)

[
Nmin|Σj(t)

( q(t) ) − Nmin(Aj(t) )
]
· τj

hν

j
(0) = 0.

(10.18)

Remark 10.14. Sj(t) moves in the same direction of νj if and only if κ
φ
(lj(t)) < 0. Further-

more, system (10.18) is invariant under the change of the orientation of Π(t) (see Figure 15).

Finally, it is possible to prove the following short time existence and uniqueness theorem for
the φ-curvature flow of a triod.

Theorem 10.15. Let Π be elementary and stable. Then there exist T >0 and a unique stable

φ-curvature flow t ∈ [0, T ) �→ Π(t) starting from Π for any t ∈ [0, T ].

10.4 Appendix

The angles of an elementary triod are given by the angles between the vectors νj ’s and are
determined by the balance condition at q (see (10.12)) that, in turn, is related to the existence
of admissible triplets.

Definition 10.16 (Admissible triplets). We call admissible triplet any triplet of vectors

(X,Y,Z) ∈ (∂B
φ
)3 satisfying

X + Y + Z = 0. (10.19)

It is possible to prove the following result.

Lemma 10.17 (Geometry of admissible triplets). Let ψ : R2 → [0,+∞) be a convex

norm on R2. Let X ∈ ∂B
ψ
. Then there exist two distinct vectors Y, Z in ∂B

ψ
such that

(X,Y,Z) is an admissible triplet. Moreover, if either B
ψ

is strictly convex or for any segment

S ⊂ ∂B
ψ

parallel to X ∈ ∂B
ψ

we have |S| ≤ |X|, then the unordered pair {Y, Z } is unique.

Finally, if there exist X0 ∈ ∂B
ψ

and a segment S ⊂ ∂B
ψ

parallel to X0 with |S| > |X0|,
then there are infinitely many unordered pairs {Y, Z } of distinct vectors in ∂B

ψ
such that

(X0, Y, Z) is an admissible triplet.
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Example 10.18. If B
ψ

= P4 and X0 = M1 (see Figure 16), then |S| = 2|X0|; hence there are
infinitely many pairs {Y,Z} of distinct vectors in ∂P4 satisfying X0 + Y + Z = 0. Moreover,
any elementary triod has always two angles of π/2. If B

ψ
= P6 and X = V1 (see Figure 16),

then |S| = |V1|; hence for any X ∈ B
ψ

there exists a unique unordered pair {Y,Z} satisfying
(10.19).
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[65] P. De Mottoni, M. Schatzman, Évolution géométrique d’interfaces, C.R. Acad. Sci. Paris
Sér. I Math. 309 (1989), 453–458.

[66] P. De Mottoni, M. Schatzman, Development of interfaces in N -dimensional space, Proc.
Roy. Soc. Edinburgh 116A (1990), 207–220.

[67] P. De Mottoni, M. Schatzman, Geometrical evolution of developed interfaces, Trans.
Amer. Math. Soc. 347 (1995), 1533–1589.

[68] K. Ecker: Regularity Theory for Mean Curvature Flow. Progress in Nonlinear Differential
Equations and their Applications, 57. Birkhäuser, Boston, MA, 2004.
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Abstract

We summarize in this lectures some of our results about the Minimizing Total
Variation Flow, which have been mainly motivated by problems arising in Image
Processing. First, we recall the role played by the Total Variation in Image Pro-
cessing, in particular the variational formulation of the restoration problem. Next
we outline some of the tools we need: functions of bounded variation (Section 2),
paring between measures and bounded functions (Section 3) and gradient flows in
Hilbert spaces (Section 4). Section 5 is devoted to the Neumann problem for the
Total variation Flow. Finally, in Section 6 we study the Cauchy problem for the
Total Variation Flow.
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1 The Total Variation Flow in Image Processing

We suppose that our image (or data) ud is a function defined on a bounded and piecewise
smooth open set D of IRN - typically a rectangle in IR2. Generally, the degradation of the
image occurs during image acquisition and can be modeled by a linear and translation
invariant blur and additive noise. The equation relating u, the real image, to ud can be
written as

ud = Ku+ n, (1)

where K is a convolution operator with impulse response k, i.e., Ku = k ∗ u, and n is an
additive white noise of standard deviation �. In practice, the noise can be considered as
Gaussian.

The problem of recovering u from ud is ill-posed. First, the blurring operator need
not be invertible. Second, if the inverse operator K−1 exists, applying it to both sides of
(1) we obtain

K−1ud = u+K−1n. (2)

Writing K−1n in the Fourier domain, we have

K−1n =

(
n̂

k̂

)∨

where f̂ denotes the Fourier transform of f and f∨ denotes the inverse Fourier transform.
From this equation, we see that the noise might blow up at the frequencies for which k̂
vanishes or it becomes small.

The typical strategy to solve this ill-conditioning is regularization. Then the solution
of (1) is estimated by minimizing a functional

J(u) =∥ Ku− ud ∥2
2 + ∥ Qu ∥2

2, (3)

which yields the estimate

u = (KtK + QtQ)−1Ktud, (4)

Q being a regularization operator.

The first regularization method consisted in choosing between all possible solutions
of (2) the one which minimized the Sobolev (semi) norm of u∫

D
∣Du∣2 dx,

which corresponds to the case Qu = ∇u. Then the solution of (3) given by (4) in the
Fourier domain is given by

û =
k̂

∣k̂∣2 + 4�2∣�∣2
ûd.
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From the above formula we see that high frequencies of ud (hence, the noise) are at-
tenuated by the smoothness constraint. This was an important step, but the results
were not satisfactory, mainly due to the inability of the previous functional to resolve
discontinuities (edges) and oscillatory textured patterns. The smoothness constraint is
too restrictive. Indeed, functions in W 1,2(D) cannot have discontinuities along rectifi-
able curves. These observations motivated the introduction of Total Variation in image
restoration models by L. Rudin, S. Osher and E. Fatemi in their seminal work [23]. The a
priori hypothesis is that functions of bounded variation (the BV model) [2],[13],[24]) are
a reasonable functional model for many problems in image processing, in particular, for
restoration problems ([22],[23]). Typically, functions of bounded variation have disconti-
nuities along rectifiable curves, being continuous in some sense (in the measure theoretic
sense) away from discontinuities. The discontinuities could be identified with edges.

On the basis of the BV -model, Rudin-Osher-Fatemi [23] proposed to solve the fol-
lowing constrained minimization problem

Minimize
∫
D
∣Du∣ dx

with
∫
D
Ku =

∫
D
ud,

∫
D
∣Ku− ud∣2 dx = �2∣D∣.

(5)

The first constraint corresponds to the assumption that the noise has zero mean, and the
second that its standard deviation is �. The constraints are a way to incorporate the
image acquisition model given in terms of equation (1). Under some assumption∥∥∥∥ud − ∫

Ω
ud

∥∥∥∥ ≥ �2,

the constraint ∫
D
∣Ku− ud∣2 dx = �2∣D∣ (6)

is equivalent to the constraint ∫
D
∣Ku− ud∣2 dx ≤ �2∣D∣,

which amounts to say that � is an upper bound of the standard deviation of n. Moreover,
assuming that K1 = 1, the constraint

∫
DKu =

∫
D ud is automatically satisfied [10].

In practice, the above problem is solved via the following unconstrained minimization
problem

Minimize
∫

Ω
∣Du∣ dx+

�

2

∫
Ω
∣Ku− ud∣2 dx (7)

for some Lagrange multiplier �.

The most successful analysis of the connections between (5) and (7) was given by A.
Chambolle and P.L. Lions in [10]. Indeed, they proved that both problems are equivalent
for some positive value of the Lagrange multiplier �.
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Let us define the functional Φ : L2(Ω)→ (−∞,+∞] by

Φ(u) =

⎧⎨⎩
∫

Ω
∥Du∥ if u ∈ BV (Ω)

+∞ if u ∈ L2(Ω) ∖BV (Ω).

(8)

Proposition 1 If u is a solution of (5), then there is some � ≥ 0 such that

−�Kt(Ku− ud) ∈ ∂Φ(u). (9)

In particular, the Euler-Lagrange equation associated with the denoising problem,
that is, for problem (5) with K = I, is the equation

−�(u− ud) ∈ ∂Φ(u). (10)

Formally,

∂Φ(u) = −div

(
Du

∣Du∣

)
.

Now, the problem is to give a sense to (10) as a partial differential equation, describing
the subdifferential of Φ in a distributional sense.

Motivated by the image restoration problem we initiated in [3] the study of the min-
imizing total variation flow ut = div( Du

∣Du∣). Indeed, this PDE is the gradient descent
associated to the energy ∫

Ω
∣Du∣.

Observe that we are not considering the constraints given by the image acquisition
model in this simplified energy. Thus our conclusions will not directly inform us about
the complete model (5). Instead, our purpose was to understand how the minimizing
total variation flow minimizes the total variation of a function. There are many flows
which minimize the total variation of a function. Let us mention in particular the mean
curvature motion ([21])

∂u

∂t
= ∣Du∣div

(
Du

∣Du∣

)
. (11)

Indeed, this flow corresponds to the motion of curves in IR2 or hypersurfaces S(t) in IRN

by mean curvature, i.e.,
Xt = HN⃗ (12)

where X denotes a parametrization of S(t), H denotes its mean curvature and N⃗ the
outer unit normal. The classical motion given by (12) corresponds to the gradient descent
of the area functional

∫
S dS. Both flows, the classical mean curvature motion (12), and

its viscosity solution (11) formulation have been studied by many authors, we refer in

－166－



particular to the work by L.C. Evans and J. Spruck [14]. They proved, in particular, that
the total variation of the (viscosity) solution of (11) decreases during the evolution, as
it should happen since the flow decreases the (N − 1) Haussdoff measure of the level set
surfaces of the solution u and the total variation corresponds to the integral of the (N-1)
Hausdorff measure of the boundaries of the level sets. Let us compare the behaviour
of the minimizing total variation flow with respect to the mean curvature motion flow.
The viscosity solution formulation on the classical mean curvature motion has to be
interpreted as follows. If S(t) is a surface moving by mean curvature with initial condition
S(0), and u(0, x) is the signed distance to S(0), i.e., if u(0, x) = d(x, S(0)) when x is
outside S(0), and u(0, x) = −d(x, S(0)) if x is inside S(0), then S(t) = {x : u(t, x) =
0} for any t ≥ 0, where u(t, x) is the viscosity solution of (11). This is the level set
formulation of the classical motion by mean curvature, initially proposed by S. Osher and
J. Sethian in [21] and whose mathematical analysis was given in [14] and was followed
by many other works. In particular, as it was shown by G. Barles, H.M. Soner and P.
Souganidis [7], if instead of embedding S(0) as the zero level set of a continuous function
we just set u(0, x) = �C(0) where C(0) is the region inside S(0), and we assume that
S(0) is a smooth surface, then u(t, x) = �C(t) where C(t) is the region inside S(t). Thus,
the mean curvature motion flow decreases the total variation of �C(0) by decreasing the
(N − 1)-Haussdorff measure of the boundary S(t) of C(t) [15]. Now, since the total
variation of any function u0(x) = ℎ�C is

TV (ℎ�C) = ℎPer(C)

we see that two basic ways of minimizing the total variation of such a function are:
either we decrease the height of u0(x) or we decrease the perimeter of its boundary. Our
purpose was to explain which strategy was followed by the minimizing total variation
flow. As we shall see below, under some geometric conditions for the sets C(0), the
strategy of the minimizing total variation flow consists in decreasing the height of the
function without distortion of its boundary, while a distortion of the boundary will occur
when these conditions are not satisfied, in particular, this will happen at points with
a strong curvature. Thus the strategy followed by the minimizing total variation flow,
compared to the one followed by the mean curvature motion is quite different. This gives
an idea of the behaviour of (5), at least what are the infinitesimal effects of (5) on the
initial datum u(0, x). The methods and results obtained can also be used to produce
particular explicit solutions of the denoising problem which corresponds to the kernel K
in (7) being the identity, i.e., K = I.

2 Functions of Bounded Variation

Due to the linear growth condition on the Lagrangians associated with the total variation,
the natural energy space to study them is the space of functions of bounded variation. In
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this section we collect some basic results of the theory of functions of bounded variation.
For more information we refer the reader to [2], [13], [17], [24].

2.1 Definitions

Throughout this section, Ω denotes an open subset of IRN .

Definition 1 A function u ∈ L1(Ω) whose partial derivatives in the sense of distributions
are measures with finite total variation in Ω is called a function of bounded variation.
The vector space of functions of bounded variation in Ω is denoted by BV (Ω). Thus
u ∈ BV (Ω) if and only if u ∈ L1(Ω) and there are Radon measures �1, ..., �N with finite
total mass in Ω such that∫

Ω
u
∂'

∂xi
dx = −

∫
Ω
'd�i ∀' ∈ C∞0 (Ω), i = 1, ..., N.

.

If u ∈ BV (Ω), the total variation of the measure Du is

∥Du∥ = sup
{∫

Ω
u div(�) dx : � ∈ C∞0 (Ω, IRN), ∣�(x)∣ ≤ 1 for x ∈ Ω

}
.

The space BV (Ω), endowed with the norm

∥u∥BV = ∥u∥1 + ∥Du∥,

is a Banach space. If u ∈ BV (Ω), the total variation ∥Du∥ may be regarded as a measure,
whose value on an open set U ⊆ Ω is

∥Du∥(U) = sup
{∫

U
u div(�) dx : � ∈ C∞0 (U, IRN), ∣�(x)∣ ≤ 1 for x ∈ U

}
.

We also use ∫
U
∥Du∥

to denote ∥Du∥(U).

For u ∈ BV (Ω), the gradient Du is a Radon measure that decomposes into its abso-
lutely continuous and singular parts

Du = Dau+Dsu.

Then Dau = ∇uℒN where ∇u is the Radon-Nikodym derivative of the measure Du
with respect to the Lebesgue measure ℒN . There is also the polar decomposition Dsu =−−→
Dsu∣Dsu∣ where ∣Dsu∣ is the total variation measure of Dsu.

The total variation is lower semi-continuous. More concretely, we have the following
result.
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Theorem 1 Suppose that ui ∈ BV (Ω), i = 1, 2, ..., and ui → u in L1
loc(Ω). Then

∥Du∥(Ω) ≤ lim inf
i→∞

∥Dui∥(Ω).

We say that u ∈ L1
loc(Ω) is locally of bounded variation if 'u ∈ BV (Ω) for any

' ∈ C∞0 (Ω). We denote by BVloc(Ω) the space of functions which are locally of bounded
variation.

Here and in what follows we shall denote by ℋ� the Hausdorff measure of dimension
� in IRN . In particular, ℋN−1 denotes the (N − 1)-dimensional Hausdorff measure and
ℋN , the N -dimensional Hausdorff measure, coincides with the (outer) Lebesgue measure
in IRN .

2.2 Approximation by Smooth Functions

Theorem 2 Assume that u ∈ BV (Ω). There exists a sequence of functions ui ∈ C∞(Ω)∩
BV (Ω) such that

(i) ui → u in L1(Ω);

(ii) ∥Dui∥(Ω)→ ∥Du∥(Ω) as i→∞.

Moreover,

(iii) if u ∈ BV (Ω) ∩ Lq(Ω), q < ∞, we can find the functions ui such that ui ∈ Lq(Ω)
and ui → u in Lq(Ω);

(iv) if u ∈ BV (Ω) ∩ L∞(Ω), we can find the ui such that ∥ui∥∞ ≤ ∥u∥∞ and ui → u in
L∞(Ω)-weakly∗.

Finally,

(v) if ∂Ω is Lipschitz continuous one can find the ui such that

ui∣∂Ω = u∣∂Ω for all i.

Theorem 3 Assume that u ∈ BV (Ω). There exists a sequence of functions ui ∈ C∞(Ω)∩
BV (Ω) such that

(i) ui → u in L1(Ω);

(ii) if U ⊂⊂ Ω is such that ∥Du∥(∂U) = 0, then

lim
i→∞
∥Dui∥(U) = ∥Du∥(U).
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Moreover, if u ∈ Lq(Ω), 1 ≤ q <∞ or u ∈ L∞(Ω), one can find the ui satisfying (iii) or
(iv), respectively, of the above result.

Definition 2 Let ui, u ∈ BV (Ω), i = 1, 2, .... We say that ui strictly converges to u in
BV (Ω) if both conditions (i), (ii) of Theorem 2 hold.

Definition 3 Let ui, u ∈ BV (Ω), i = 1, 2, .... We say that ui weakly∗ converges to u in
BV (Ω) if ui → u in L1

loc(Ω) and Dui weakly∗ converges to Du as measures in Ω.

Proposition 2 If ui, u ∈ BV (Ω). Then ui → u weakly∗ in BV (Ω) if and only if {ui} is
bounded in BV (Ω) and converges to u in L1

loc(Ω). Moreover, if

∥Dui∥(Ω)→ ∥Du∥(Ω) as i→∞,

and we consider the measures

�i(B) =
∫
B∩Ω

Dui, �(B) =
∫
B∩Ω

Du,

for all Borel set B ⊂ IRN . Then �i ⇀ � weakly∗ as (vector valued) Radon measures in
IRN .

Theorem 4 If (uk) ⊆ BV (Ω) strictly converges to u and f : IRN → IR is continuous
and 1-positively homogeneous, we have

lim
k→∞

∫
Ω
�f

(
Duk
∥Duk∥

)
d∥Duk∥ =

∫
Ω
�f

(
Du

∥Du∥

)
d∥Du∥

for any bounded continuous function � : Ω→ IR. As a consequence

f

(
Duk
∥Duk∥

)
∥Duk∥ weakly∗ converge in Ω to f

(
Du

∥Du∥

)
∥Du∥.

In particular, ∥Duk∥ → ∥Du∥ weakly∗ in Ω.

2.3 Traces and Extensions

Assume that Ω is open and bounded with ∂Ω Lipschitz. We observe that since ∂Ω is
Lipschitz, the outer unit normal � exists ℋN−1 a.e. on ∂Ω.

Theorem 5 Assume that Ω is open and bounded, with ∂Ω Lipschitz. There exists a
bounded linear mapping

T : BV (Ω)→ L1(∂Ω,ℋN−1)
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such that ∫
Ω
u div(') dx = −

∫
Ω
' ⋅ dDu+

∫
∂Ω
' ⋅ �Tu dℋN−1

for all u ∈ BV (Ω) and ' ∈ C1(IRN , IRN). Moreover, for any u ∈ BV (Ω) and for ℋN−1

a.e. x ∈ ∂Ω, we have

lim
r→0+

r−N
∫
B(x,r)∩Ω

∣u− Tu(x)∣ dy = 0.

Theorem 6 Let Ω be an open bounded set, with ∂Ω Lipschitz. Then the trace operator
u → Tu is continuous between BV (Ω), endowed with the topology induced by the strict
convergence, and L1(∂Ω,ℋN−1 ∂Ω).

Theorem 7 Assume that Ω is open and bounded, with ∂Ω Lipschitz. Let u1 ∈ BV (Ω),
u2 ∈ BV (IRN ∖ Ω). We define

v(x) =

⎧⎨⎩
u1(x) if x ∈ Ω

u2(x) if x ∈ IRN ∖ Ω.

Then v ∈ BV (IRN) and

∥Dv∥(IRN) = ∥Du1∥(Ω) + ∥Du2∥(IRN ∖ Ω) +
∫
∂Ω
∣Tu1 − Tu2∣dℋN−1.

In particular, if

Eu =

⎧⎨⎩
u(x) if x ∈ Ω

0 if x ∈ IRN ∖ Ω.

then Eu ∈ BV (IRN) provided u ∈ BV (Ω).

2.4 Sets of Finite Perimeter and the Coarea Formula

Definition 4 An ℒN measurable subset E of IRN has finite perimeter in Ω if �E ∈
BV (Ω). The perimeter of E in Ω is P (E,Ω) = ∥D�E∥(Ω).

We shall denote the measure ∥D�E∥ by ∥∂E∥ and P (E, IRN) by Per(E).

Theorem 8 Let E be a set of finite perimeter in Ω and let D�E = �E∥D�E∥ be the
polar decomposition of D�E. Then the generalized Gauss-Green formula holds∫

E
div(') dx = −

∫
Ω
⟨�E, '⟩d∥D�E∥

for all ' ∈ C1
0(Ω, IRN).
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Theorem 9 (Coarea formula for BV-functions)
Let u ∈ BV (Ω). Then

(i) Eu,t := {x ∈ Ω : u(x) > t} has finite perimeter for ℒ1 a.e. t ∈ IR and

(ii) ∥Du∥(Ω) =
∫ ∞
−∞

P (Eu,t,Ω)dt.

(iii) Conversely, if u ∈ L1(Ω) and ∫ ∞
−∞

P (Eu,t,Ω)dt <∞,

then u ∈ BV (Ω).

2.5 Isoperimetric Inequality

Theorem 10 (Sobolev inequality)
There exists a constant C > 0 such that

∥u∥LN/N−1(IRN ) ≤ C∥Du∥(IRN)

for all u ∈ BV (IRN).

If u ∈ L1(Ω), the mean value of u in Ω is

uΩ =
1

ℒN(Ω)

∫
Ω
u(x) dx.

Theorem 11 (Poincaré’s inequality)
Let Ω be open and bounded with ∂Ω Lipschitz. Suppose that Ω is connected. Then∫

Ω
∣u− uΩ∣ dx ≤ C∥Du∥(Ω) ∀u ∈ BV (Ω)

for some constant C depending only on Ω.

Theorem 12 Let N > 1. For any set E of finite perimeter in IRN either E or IRN ∖ E
has finite Lebesgue measure and

min
{
ℒN(E),ℒN(IRN ∖ E)

}
≤ C[Per(E)]

N
N−1

for some dimensional constant C.

Theorem 13 (Embedding Theorem)
Let Ω be open and bounded, with ∂Ω Lipschitz. Then the embedding BV (Ω)→ LN/N−1(Ω)
is continuous and BV (Ω)→ Lp(Ω) is compact for all 1 ≤ p < N

N−1
.

The continuity of the embedding of Theorem 13 and Theorem 11 imply the following
Sobolev-Poincaré inequality

∥u− uΩ∥p ≤ C∥Du∥(Ω) ∀u ∈ BV (Ω), 1 ≤ p ≤ N
N−1

(13)

for some constant C depending only on Ω.
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3 Pairings Between Measures and Bounded Func-

tions

In this section we give some of the main points of the results about pairing between
measures and bounded functions given by G. Anzellotti in [6] (see also [18]).

3.1 Trace of the Normal Component of Certain Vector Fields

It is well known that summability conditions on the divergence of a vector field z in Ω
yield trace properties for the normal component of z on ∂Ω. In this section we define a
function [z, �] ∈ L∞(∂Ω) which is associated to any vector field z ∈ L∞(Ω, IRN) such
that div(z) is a bounded measure in Ω.

Let Ω be an open set in IRN , N ≥ 2, and 1 ≤ p ≤ N , N
N−1

≤ q ≤ ∞. We shall
consider the following spaces:

BV (Ω)q := BV (Ω) ∩ Lq(Ω)

BV (Ω)c := BV (Ω) ∩ L∞(Ω) ∩ C(Ω)

X(Ω)p := {z ∈ L∞(Ω, IRN) : div(z) ∈ Lp(Ω)}

X(Ω)� := {z ∈ L∞(Ω, IRN) : div(z) is a bounded measure in Ω}.

In the next theorem we define a paring ⟨z, u⟩∂Ω, for z ∈ X(Ω)� and u ∈ BV (Ω)c.
We need the following result, which can be easily obtained by the same technique that
Gagliardo uses in [16] in proving his extension theorem L1(∂Ω)→ W 1,1(Ω).

Lemma 1 Let Ω be a bounded open set in IRN with Lipschitz boundary. Then, for
any given function u ∈ L1(∂Ω) and for any given � > 0 there exists a function w ∈
W 1,1(Ω) ∩ C(Ω) such that

w∣∂Ω = u∫
Ω
∣∇w∣ dx ≤

∫
∂Ω
∣u∣ dℋN−1 + �

w(x) = 0 if dist(x, ∂Ω) > �.

Moreover, for any fixed 1 ≤ q <∞, one can find the function w such that

∥w∥q ≤ �.

Finally, if one has also u ∈ L∞(∂Ω), one can find w such that

∥w∥∞ ≤ ∥u∥∞.
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Theorem 14 Assume that Ω ⊂ IRN is an open bounded set with Lipschitz boundary
∂Ω. Denote by �(x) the outward unit normal to ∂Ω. Then there exists a bilinear map
⟨z, u⟩∂Ω : X(Ω)� ×BV (Ω)c → IR such that

⟨z, u⟩∂Ω =
∫
∂Ω
u(x)z(x) ⋅ �(x) dℋN−1 if z ∈ C1(Ω, IRN) (14)

∣⟨z, u⟩∂Ω∣ ≤ ∥z∥∞
∫
∂Ω
∣u(x)∣ dℋN−1 for all z, u. (15)

Proof. For u ∈ BV (Ω)c ∩W 1,1(Ω) and z ∈ X(Ω)�, we define

⟨z, u⟩∂Ω :=
∫

Ω
u div(z) dx+

∫
Ω
z ⋅ ∇u dx.

We remark that if u, v ∈ BV (Ω)c ∩W 1,1(Ω) and u = v on ∂Ω then one has

⟨z, u⟩∂Ω = ⟨z, v⟩∂Ω for all z ∈ X(Ω)�.

In fact, by standard techniques in Sobolev spaces theory, we can find a sequence of
functions gi ∈ D(Ω) such that, for all z ∈ X(Ω)�, one has

⟨z, u− v⟩∂Ω =
∫

Ω
(u− v) div(z) dx+

∫
Ω
z ⋅ ∇(u− v) dx

= lim
i→∞

( ∫
Ω
gi div(z) dx+

∫
Ω
z ⋅ ∇gi dx

)
= 0.

Now, we define ⟨z, u⟩∂Ω for all u ∈ BV (Ω)c by setting

⟨z, u⟩∂Ω = ⟨z, w⟩∂Ω,

where w is any function in BV (Ω)c ∩W 1.1(Ω) such that u = w on ∂Ω. This is a valid
definition, in view of the preceding remark and because of the Lemma 1.

To prove (15), we take a sequence un ∈ BV (Ω)c ∩ C∞(Ω) converging to u as in
Theorem 2 and we get

∣⟨z, u⟩∂Ω∣ = ∣⟨z, un⟩∂Ω∣ ≤
∣∣∣∣∫

Ω
un div(z) dx

∣∣∣∣+ ∥z∥∞ ∫
Ω
∣∇un∣ dx

for all z and for all n. Hence, taking limit when n→∞ we have

∣⟨z, u⟩∂Ω∣ ≤
∣∣∣∣ ∫

Ω
u div(z) dx

∣∣∣∣+ ∥z∥∞ ∫
Ω
∥Du∥.

Now, for a fixed � > 0 we consider a function w as in Lemma 1. Then

∣⟨z, u⟩∂Ω∣ = ∣⟨z, w⟩∂Ω∣ ≤ ∥w∥∞
∫

Ω∖Ω�
∣div(z)∣+ ∥z∥∞

( ∫
∂Ω
∣u∣ dx+ �

)
,

where Ω� = {x ∈ Ω : dist(x, ∂Ω) > �}. Since div(z) is a measure of bounded total
variation in Ω,

lim
�→0+

∫
Ω∖Ω�
∣div(z)∣ dx = 0.

Consequently, (15) holds.
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Theorem 15 Let Ω be as in Theorem 14. Then there exists a linear operator  :
X(Ω)� → L∞(∂Ω) such that

∥(z)∥∞ ≤ ∥z∥∞ (16)

⟨z, u⟩∂Ω =
∫
∂Ω
(z)(x)u(x) dℋN−1 for all u ∈ BV (Ω)c (17)

(z)(x) = z(x) ⋅ �(x) for all x ∈ ∂Ω if z ∈ C1(Ω, IRN). (18)

The function (z) is a weakly defined trace on ∂Ω of the normal component of z. We
shall denote (z) by [z, �].

Proof. Take a fix z ∈ X(Ω)�. Consider the functional F : L∞(∂Ω)→ IR defined by

F (u) := ⟨z, w⟩∂Ω,

where w ∈ BV (Ω)c is such that w∣∂Ω = u. By estimate (15),

∣F (u)∣ ≤ ∥z∥∞ ∥u∥1.

Hence there exists a function (z) ∈ L∞(∂Ω) such that

F (u) =
∫
∂Ω
(z)(x)u(x) dℋN−1

and the result follows.

Obviously, X(Ω)p ⊂ X(Ω)� for all p ≥ 1 and the trace [z, �] is defined for all z ∈
X(Ω)p.

3.2 The Measure (z,Du)

Approximating by smooth functions and applying Green’s formula, the following result
can be deduced easily.

Proposition 3 Let Ω be as in Theorem 14 and 1 ≤ p ≤ ∞. Then, for all z ∈ X(Ω)p
and u ∈ W 1,1(Ω) ∩ Lp′(Ω), one has∫

Ω
u div(z) dx+

∫
Ω
z ⋅ ∇u dx =

∫
∂Ω

[z, �]u dℋN−1. (19)

In the sequel we shall consider pairs (z, u) such that one of the following conditions
holds ⎧⎨⎩

a) u ∈ BV (Ω)p′ , z ∈ X(Ω)p and 1 < p ≤ N ;

b) u ∈ BV (Ω)∞, z ∈ X(Ω)1;

c) u ∈ BV (Ω)c, z ∈ X(Ω)�.

(20)
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Definition 5 Let z, u be such that one of the conditions (20) holds. Then we define a
functional (z,Du) : D(Ω)→ IR as

⟨(z,Du), '⟩ := −
∫

Ω
u' div(z) dx−

∫
Ω
uz ⋅ ∇'dx.

Theorem 16 For all open set U ⊂ Ω and for all function ' ∈ D(U), one has

∣⟨(z,Du), '⟩∣ ≤ ∥'∥∞ ∥z∥L∞(U)

∫
U
∥Du∥, (21)

hence (z,Du) is a Radon measure in Ω.

Proof. Take a sequence un ∈ C∞(Ω) converging to u as in Theorem 3. Take ' ∈ D(U)
and consider an open set V such that supp(') ⊂ V ⊂⊂ U . Then

∣⟨(z,Dun), '⟩∣ ≤ ∥'∥∞ ∥z∥L∞(U)

∫
V
∥Dun∥ for all n ∈ IN.

From here, taking limit as n→∞, the result follows.

We shall denote by ∣(z,Du)∣ the measure total variation of (z,Du) and by
∫
B
∣(z,Du)∣,∫

B
(z,Du) the values of these measures on every Borel set B ⊂ Ω.

As a consequence of the above theorem, the following result holds.

Corollary 1 The measures (z,Du), ∣(z,Du)∣ are absolutely continuous with respect to
the measure ∥Du∥ and∣∣∣∣∫

B
(z,Du)

∣∣∣∣ ≤ ∫
B
∣(z,Du)∣ ≤ ∥z∥L∞(U)

∫
B
∥Du∥

for all Borel sets B and for all open sets U such that B ⊂ U ⊂ Ω. Moreover, by the
Radon-Nikodym Theorem, there exists a ∥Du∥-measurable function

�(z,Du, ⋅) : Ω→ IR

such that ∫
B

(z,Du) =
∫
B
�(z,Du, x) ∥Du∥ for all Borel sets B ⊂ Ω

and
∥�(z,Du, ⋅)∥L∞(Ω,∥Du∥) ≤ ∥z∥∞.

Assume u, z satisfy one of the conditions (20). By writing

z ⋅Dsu := (z,Du)− (z ⋅ ∇u) dℒN ,
we have that z⋅Dsu is a bounded measure. Furthermore, with an approximation argument
to the one used in the proof of Theorem 16, we have that z ⋅Dsu is absolutely continuous
with respect to ∥Dsu∥ (and, thus, it is a singular measure respect to ℒN), and

∣z ⋅Dsu∣ ≤ ∥z∥∞∣Dsu∣. (22)
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3.3 The Green formula

Lemma 2 Assume u, z satisfy one of the conditions (20). Let un ∈ C∞(Ω) ∩ BV (Ω)
converging to u as in Theorem 2. Then we have∫

Ω
z ⋅ ∇un dx→

∫
Ω

(z,Du).

Proof. For a given � > 0, we take an open set U ⊂⊂ Ω such that∫
Ω∖U
∥Du∥ < �.

Let ' ∈ D(Ω) be such that '(x) = 1 in U and 0 ≤ ' ≤ 1 in Ω. Then∣∣∣∣∫
Ω

(z,Dun)−
∫

Ω
(z,Du)

∣∣∣∣ ≤
∣⟨(z,Dun), '⟩ − ⟨(z,Du), '⟩∣+

∫
Ω
∣(z,Dun)∣(1− ') +

∫
Ω
∣(z,Du)∣(1− ').

Since
lim
n→∞
⟨(z,Dun), '⟩ = ⟨(z,Du), '⟩,

lim sup
n→∞

∫
Ω
∣(z,Dun)∣(1− ') ≤ ∥z∥∞ lim sup

n→∞

∫
Ω∖U
∥Dun∥ < � ∥z∥∞,∫

Ω
∣(z,Du)∣(1− ') ≤ � ∥z∥∞

and � is arbitrary, the lemma follows.

We give now the expected Green’s formula relating the function [z, �] and the measure
(z,Du).

Theorem 17 Let Ω be a bounded open set in IRN with Lipschitz boundary and let z, u
be such that one of the conditions (20) holds, then we have∫

Ω
u div(z) dx+

∫
Ω

(z,Du) =
∫
∂Ω

[z, �]u dℋN−1. (23)

Proof. We assume that (20) (a) holds, in the general case an extension of Proposition
3 is needed. Take a sequence of functions un ∈ C∞(Ω) ∩ BV (Ω) converging to u as in
Theorem 2. Then, by Lemma 2 and Proposition 3, we have∫

Ω
u div(z) dx+

∫
Ω

(z,Du) = lim
n→∞

(∫
Ω
un div(z) dx+

∫
Ω
z ⋅ ∇un dx

)

= lim
n→∞

∫
∂Ω

[z, �]un dℋN−1 =
∫
∂Ω

[z, �]u dℋN−1.
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Remark 1 Observe that with a similar proof to the one the above theorem, in the case
Ω = IRN , the following integration by parts formula, for z and w satisfying one of the
conditions (20), holds: ∫

IRN
w div(z) dx+

∫
IRN

(z,Dw) = 0. (24)

In particular, if Ω is bounded and has finite perimeter in IRN , from (24) it follows∫
Ω

div(z) dx =
∫
IRN

(z,−D�Ω) =
∫
∂∗Ω

�(z,−D�Ω, x) dℋN−1. (25)

Notice also that as a consequence of Corollary 1, if z1, z2 ∈ X(IRN)p and z1 = z2

almost everywhere on Ω, then �(z1,−D�Ω, x) = �(z2,−D�Ω, x) for ℋN−1-almost every
x ∈ ∂∗Ω.

If Ω is a bounded open set with Lipschitz boundary, then (25) has a meaning also if
z is defined only on Ω and not on the whole of IRN , precisely when z ∈ L∞(Ω; IRN) with
div(z) ∈ LN(Ω). In this case we mean that �(z,−D�Ω, ⋅) coincides with [z, �].

Remark 2 Let Ω ⊂ IR2 be a bounded open set with Lipschitz boundary, and let zinn ∈
L∞(Ω; IR2) with div(zinn) ∈ L2

loc(Ω), and zout ∈ L∞(IR2∖Ω; IR2) with div(zout) ∈ L2
loc(IR

2∖
Ω). Assume that

�(zinn,−D�Ω, x) = −�(zout,−D�IR2∖Ω, x) for ℋ1 − a.e x ∈ ∂Ω.

Then if we define z := zinn on Ω and z := zout on IR2 ∖ Ω, we have z ∈ L∞(IR2; IR2) and
div(z) ∈ L2

loc(IR
2).

4 Gradient Flows

One of the more important examples of maximal monotone operator in Hilbert spaces
comes from the optimization theory, they are the subdifferentials of convex functions
which we introduce next.

Hereafter H will denote a real Hilbert space, with inner product (/) and norm ∥ ∥.

4.1 Convex functions in Hilbert spaces

A function ' : H →]−∞,+∞] is convex provided

'(�u+ (1− �)v) ≤ �'(u) + (1− �)'(v)

for all � ∈ [0, 1] and u, v ∈ H.
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We denote

D(') = {u ∈ H : '(u) ∕= +∞} (effective domain).

We say that ' is proper if D(') ∕= ∅.
We say ' is lower semi-continuous (l.s.c) if un → u inH implies '(u) ≤ lim infn→∞ '(un).

Some of the properties of ' are reflected in its epigraph:

epi(') := {(u, r) ∈ H × IR : r ≥ '(u)}.

For instance, it is easy to see that ' is convex if and only if epi(') is a convex subset of
H; and ' is lower semi-continuous if and only if epi(') is closed.

The subdifferential ∂' of ' is the operator defined by

w ∈ ∂'(z) ⇐⇒ '(u) ≥ '(z) + (w/u− z) ∀ u ∈ H.

We say u ∈ D(∂'), the domain of ∂', provided ∂'(u) ∕= ∅.
Observe that 0 ∈ ∂'(z)⇐⇒ '(u) ≥ '(z) ∀ u ∈ H ⇐⇒

'(z) = min
u∈D(')

'(u).

Therefore, we have that 0 ∈ ∂'(z) is the Euler equation of the variational problem

'(z) = min
u∈D(')

'(u).

If (z, w), (ẑ, ŵ) ∈ ∂', then '(z) ≥ '(ẑ) + (ŵ/z − ẑ) and '(ẑ) ≥ '(z) + (w/ẑ − z).
Adding this inequalities we get

(w − ŵ/z − ẑ) ≥ 0.

Thus, ∂' is a monotone operator.

Next we will discuss the relation between subdifferentials, directional derivatives and
the Gâteaux derivative. Let ' : H →] −∞,+∞]. The directional derivative Dv'(u) of
' at the point u ∈ D(') in the direction v ∈ H is defined by

Dv'(u) = lim
�↓0

'(u+ �v)− '(u)

�

whenever the limit exists. If there exists w ∈ H such that Dv'(u) = (v/w) for all v ∈ H,
then ' is called Gâteaux differentiable at u, and w is called the Gâteaux derivative of '
at u, which will be denoted by '′(u).
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Proposition 4 Let ' : H →]−∞,+∞] be convex and proper. If ' is Gâteaux differen-
tiable at u, then

∂'(u) = {'′(u)}.

Proof. Given w ∈ H, since ' is convex, we have

('′(u)/w − u) = Dw−u'(u) = lim
�↓0

'(u+ �(w − u))− '(u)

�

= lim
�↓0

'(�w + (1− �)u)− '(u)

�
≤ '(w)− '(u).

Hence, '′(u) ∈ ∂'(u).

On the other hand, if v ∈ ∂'(u), given w ∈ H and � > 0, we have

'(u+ �w)− '(u)

�
≥ 1

�
(v/u+ �w − u) = (v/w),

from where it follows that

Dw'(u) ≥ (v/w) ∀w ∈ H.

Moreover, taking w = −w, we have

−D−w'(u) ≤ (v/w) ≤ Dw'(u).

Therefore, since ' is Gâteaux differentiable at u, we get

('′(u)/w) = −('′(u)/− w) ≤ (v/w) ≤ ('′(u)/w) ∀w ∈ H,

and consequently, v = '′(u).

Remark 3 In the case ' is continuous at u, also the reciprocal is true (see [11]). That
is, in this case we have

' is Gateaux differentiable at u⇔ ∂'(u) = {v},
and in this case v = '′(u).

Example 1 It is easy to see that if ' : IRN → IR is defined by '(x) := ∥x∥ =√
x2

1 + ⋅ ⋅ ⋅+ x2
n, x = (x1, . . . , xn) ∈ IRN , then

∂'(x) =

⎧⎨⎩
x
∥x∥ if x ∕= 0

B1(0) if x = 0.
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Example 2 Let Ω ⊂ IRN an open bounded set with smooth boundary. Consider the
function ' : L2(Ω)→]−∞,+∞] defined by

'(u) :=

⎧⎨⎩
1

2

∫
Ω
∣∇u∣2 if u ∈ W 1,2

0 (Ω)

+∞ u ∈ L2(Ω) ∖W 1,2
0 (Ω).

Then, it is well known (see for instance [8]) that

D(∂') = W 1,2
0 (Ω) ∩W 2,2(Ω)

and
v ∈ ∂'(u)⇔ v = −Δu.

Hence, the following are equivalent:

(i) u is a solution of the variational problem

'(u) = min
w∈L2(Ω)

'(w).

(ii) u is a weak solution of the Dirichlet problem⎧⎨⎩
−Δu = 0 in Ω

u = 0 on ∂Ω

Theorem 18 Let ' : H →] − ∞,+∞] be convex, proper and lower semi-continuous.
Then, for each w ∈ H and � > 0, the problem

u+ �∂'(u) ∋ w

has a unique solution u ∈ D(∂').

Proof. Given w ∈ H and � > 0, consider the functional J : H →]−∞,+∞] defined by

J(u) :=
1

2
∥u∥2 + �'(u)− (u/w). (26)

We intend to show that J attains its minimum over H. Let us first claim that J is
weakly lower semi-continuous, that is,

un ⇀ u weakly in H ⇒ J(u) ≤ lim inf
n→∞

J(un). (27)
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Obviously, it is enough to show (27) for '. Let unk such that

l = lim inf
n→∞

'(un) = lim
k→∞

'(unk).

For each � > 0 the set K� := {w ∈ H : '(w) ≤ l + �} is closed and convex, and
consequently is weakly closed. Since all but finitely many points {unk} lie in K�, u ∈ K�,
and consequently

'(u) ≤ l + � = lim inf
n→∞

'(un) + �.

Since the above inequality is true for all � > 0, (27) follows.

Next we assert that
'(u) ≥ −C − C∥u∥ ∀u ∈ H (28)

for some constant C > 0. To verify this claim we suppose to the contrary that for each
n ∈ IN there exists un ∈ H such that

'(un) ≤ −n− n∥un∥ ∀n ∈ IN. (29)

If the sequence {un} is bounded in H, there exists a weakly convergent subsequence
unk ⇀ u. But then, (27) and (29) imply the contradiction '(u) = −∞. Thus we may
assume, passing if necessary to a subsequence, that ∥un∥ → ∞. Select u0 ∈ H so that
'(u0) <∞. Set

vn :=
un
∥un∥

+

(
1− 1

∥un∥

)
u0.

Then, by the convexity of ', we have

'(vn) ≤ 1

∥un∥
'(un) +

(
1− 1

∥un∥

)
'(u0)

≤ 1

∥un∥
(−n− n∥un∥) + ∣'(u0)∣ ≤ −n+ ∣'(u0)∣.

As {vn} is bounded, we can extract a weakly convergent subsequence vnk ⇀ v, and again
derive the contradiction '(v) = −∞. Therefore, we establish the claim (28).

Choose a minimizing sequence {un} so that

lim
n→∞

J(un) = inf
v∈H

J(v) = m.

By (28), it is not difficult to see that m ∈ IR. Then, having in mind (28), there exists
M > 0, such that

M ≥ J(un) ≥ 1

2
∥un∥2 − (�C + ∥w∥)∥un∥ − �C
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=
1

2
(∥un∥ − (�C + ∥w∥))2 − �C − 1

2
(�C + ∥w∥)2.

Thus, we have {un} is bounded. We may then extract a weakly convergent subsequence
unk ⇀ u. Then, by (27) J has a minimum at u. Therefore, 0 ∈ ∂J . Now, it is easy to
see that ∂J(u) = u− w + �∂'(u), and so

u+ �∂'(u) ∋ w.

Finally, to see the uniqueness, suppose as well

u+ �∂'(u) ∋ w.

Then, u+�v = w, u+�v = w for v ∈ ∂'(u), v ∈ ∂'(u). Hence, by the monotony of ∂',
we have

0 ≤ (u− u/v − v) =
(
u− u/u

�
− u

�

)
= −1

�
∥u− u∥2.

Since � > 0, u = u.

Definition 6 Let ' : H →]−∞,+∞] be convex, proper and lower semi-continuous. For
each � > 0 define the resolvent J'� of ∂' as the operator J'� : H → D(∂') defined by
J'� (w) := u, where u is the unique solution of

u+ �∂'(u) ∋ w.

The Yosida approximation is the operator A'� : H → H defined by

A'�(w) :=
1

�
(w − J'� (w)).

In the next result we collect some of the properties of the resolvent operator and the
Yosida approximation.

Theorem 19 Let ' : H →]−∞,+∞] be convex, proper and lower semi-continuous. For
� > 0, let J� = J'� and A� = A'� . The following statements hold

(i) ∥J�(w)− J�(w)∥ ≤ ∥w − w∥ for all w,w ∈ H.

(ii) ∥A�(w)− A�(w)∥ ≤ 2
�
∥w − w∥ for all w,w ∈ H.

(iii) 0 ≤ (w − w/A�(w)− A�), i.e., A� is a monotone operator.

(iv) A�(w) ∈ ∂'(J�(w)) for all w ∈ H.

(v) If w ∈ D(∂'), then

sup
�>0
∥A�(w)∥ ≤ ∣(∂')0(w)∣ := min{∥u∥ : u ∈ ∂'(w)}.
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(vi) For each w ∈ D(∂'),
lim
�↓0

J�(w) = w.

Proof. (i) Let u = J�(w), u = J�(w). Then u+�v = w, u+�v = w for some v ∈ ∂'(u),
v ∈ ∂'(u). Therefore

∥w − w∥2 = ∥u− u+ �(v − v)∥2

= ∥u− u∥2 + 2�(u− u/v − v) + �2∥v − v∥2 ≥ ∥u− u∥2.

This prove assertion (i). Assertion (ii) follows from (i) and the definition of Yosida
approximation.

(iii) We have

(w − w/A�(w)− A�) =
1

�
(w − w/w − w − (J�(w)− J�(w))

=
1

�

(
∥w − w∥2 − (w − w/− (J�(w)− J�(w))

)
≥ 1

�

(
∥w − w∥2 − ∥w − w∥∥J�(w)− J�(w∥

)
≥ 0,

according to (i).

(iv) Note that u = J�(w) if and only if u+ �v = w for some v ∈ ∂'(u) = ∂'(J�(w)).
But

v =
1

�
(w − u) =

1

�
(w − J�(w)) = A�(w).

(v) Assume w ∈ D(∂'), u ∈ ∂'(w). Let z = J�(w), so that z + �v = w, where
v ∈ ∂'(z). The, by monotonicity, we have

0 ≤ (w − z/u− v) =
(
w − J�(w)/u− 1

�
(w − J�(w))

)
= (�A�(w)/u− A�(w)).

Consequently
�∥A�(w)∥2 ≤ (�A�(w)/u) ≤ �∥A�(w)∥ ∥u∥,

and so
∥A�(w)∥ ≤ ∥u∥.

Since this estimate is valid for all � > 0 and u ∈ ∂'(w), assertion (v) follows.

(vi) If w ∈ D(∂'), by (v), we have

∥J�(w)− w∥ = �∥A�(w)∥ ≤ �∣(∂')0(w)∣,

and hence
lim
�↓0

J�(w) = w.
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Let w ∈ D(∂'). Given � > 0 there exists w ∈ D(∂') such that ∥w−w∥ ≤ �
4
. Now, since

w ∈ D(∂'), there exists �0 > such that ∥J�(w)− w∥ ≤ �
2
. Then,

∥J�(w)− w∥ ≤ ∥J�(w)− J�(w)∥+ ∥J�(w)− w∥+ ∥w − w∥

≤ 2∥w − w∥+ ∥J�(w)− w∥ ≤ �

2
+
�

2
= �.

4.2 Gradient Flows in Hilbert spaces

Many problems in Physic and Mechanics can be written as a gradient system, that is a
system of ordinary differential equation of the form⎧⎨⎩

u′(t) = −∇V (u(t)) 0 < t < T

u(0) = u0 ∈ IRN ,

where V : IRN → IR is a potential. In this section we are going to consider the general-
ization infinite dimensional (in the context of Hilbert spaces) of the gradient system. We
propose now to study differential equation of the form⎧⎨⎩

u′(t) + ∂'(u(t)) ∋ 0 t ≥ 0

u(0) = u0 ∈ H,
(30)

where ' : H →] −∞,+∞] is a convex, proper and lower semi-continuous function. A
problem of the form (63) is called a gradient flow. Many partial differential equation can
be rewritten as a gradient flow in an appropriate Hilbert space of functions. For example,
as we see in the Example 2, if Ω ⊂ IRN is an open bounded set with smooth boundary,
and we consider the function ' : L2(Ω)→]−∞,+∞] defined by

'(u) :=

⎧⎨⎩
1

2

∫
Ω
∣∇u∣2 if u ∈ W 1,2

0 (Ω)

+∞ u ∈ L2(Ω) ∖W 1,2
0 (Ω).

Then,
D(∂') = W 1,2

0 (Ω) ∩W 2,2(Ω)

and
v ∈ ∂'(u)⇔ v = −Δu.
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Therefore, the initial valued problem for the heat equation⎧⎨⎩

ut = Δu in (0,∞)× Ω

u = 0 on (0,∞)× ∂Ω

u(0, x) = u0(x) x ∈ Ω

can be rewritten as a gradient flow in L2(Ω).

We have the following existence and uniqueness result for solutions of the gradient
flows.

Theorem 20 Let ' : H →]−∞,+∞] be convex, proper and lower semi-continuous. For
each u0 ∈ D(∂') there exists a unique function u ∈ C([0,∞[, H), with u′ ∈ L∞(0,∞;H)
such that u(0) = u0, u(t) ∈ D(∂') for each t > 0 and

u′(t) + ∂'(u(t)) ∋ 0, for a.e. t ≥ 0.

Proof. For � > 0, let J� = J'� the resolvent of ∂' and A� = A'� its Yosida approximation.
By Theorem 19, A� : H → H is Lipschitz continuous mapping, and thus, by the classical
Picard-Lindelöf Theorem there exists a unique solution u� ∈ C1([0,∞[;H) of the problem⎧⎨⎩

u′�(t) + A�(u�(t)) = 0 t ≥ 0

u�(0) = u0.
(31)

Our plan is to show that as � → 0+ the functions u� converge to a solutions of our
problem. We divide the proof in several steps.

Step 1. Given v ∈ H, let v� the solution of the problem⎧⎨⎩
v′�(t) + A�(v�(t)) = 0 t ≥ 0

v�(0) = v.
(32)

Then, by the monotony of A�, we have

1

2

d

dt
∥u�(t)− v�(t)∥2

= (u′�(t)− v′�(t)/u�(t)− v�)(t) = (−A�(u�(t)) + A�(v�(t))/u�(t)− v�(t)) ≤ 0.

Hence, integrating we get

∥u�(t)− v�(t)∥ ≤ ∥u0 − v∥ ∀ t ≥ 0. (33)
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In particular, if ℎ > 0 and v = u�(ℎ), then by uniqueness v�(t) = u�(t+ℎ). Consequently,
(33) implies

∥u�(t+ ℎ)− u�(t)∥ ≤ ∥u�(ℎ)− u0∥.

Dividing by ℎ, letting ℎ→ 0, and having in mind Theorem 19 (v), we obtain that

∥u′�(t)∥ ≤ ∥u′�(0)∥ = ∥A�(u0)∥ ≤ ∣(∂')0(u0)∣. (34)

Step 2. We next take �, � > 0 and compute

1
2
d
dt
∥u�(t)− u�(t)∥2 = (u′�(t)− u′�(t)/u�(t)− u�(t))

= (−A�(u�(t)) + A�(u�(t))/u�(t)− u�(t)).
(35)

Now

u�(t)− u�(t) = (u�(t)− J�(u�(t))) + (J�(u�(t))− J�(u�(t))) + (J�(u�(t))− u�(t))

= �A�(u�(t)) + J�(u�(t))− J�(u�(t))− �A�(u�(t)).

Consequently

(A�(u�(t))− A�(u�(t))/u�(t)− u�(t))

= (A�(u�(t))− A�(u�(t))/J�(u�(t))− J�(u�(t)))

+(A�(u�(t))− A�(u�(t))/�A�(u�(t)))− �A�(u�(t))).

(36)

Since A�(u�(t)) ∈ ∂'(J�(u�(t))) and A�(u�(t)) ∈ ∂'(J�(u�(t))), the monotonicity of ∂'
implies that the first term of the right hand side of (36) is nonnegative. Thus

(A�(u�(t))− A�(u�(t))/u�(t)− u�(t)) ≥

�∥A�(u�(t))∥2 + �∥A�(u�(t))∥2 − (�+ �)∥A�(u�(t))∥ ∥A�(u�(t))∥.

Since
(�+ �)∥A�(u�(t))∥ ∥A�(u�(t))∥ ≤

�
(
∥A�(u�(t))∥2 +

1

4
∥A�(u�(t))∥2

)
+ �

(
∥A�(u�(t))∥2 +

1

4
∥A�(u�(t))∥2

)
we deduce

(A�(u�(t))− A�(u�(t))/u�(t)− u�(t)) ≥ −�
4
∥A�(u�(t))∥2 − �

4
∥A�(u�(t))∥2.
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Then, by (34), we get

(A�(u�(t))− A�(u�(t))/u�(t)− u�(t)) ≥ −�+ �

4
∣(∂')0(u0)∣.

Therefore, by (35) and (36), we obtain the inequality

d

dt
∥u�(t)− u�(t)∥2 ≤ �+ �

2
∣(∂')0(u0)∣

and hence

∥u�(t)− u�(t)∥2 ≤ �+ �

2
t∣(∂')0(u0)∣ ∀ t ≥ 0. (37)

In view of the estimate (37) there exists a function u ∈ C([0,∞[, H) such that

u� → u uniformly in C([0, T ], H)

as � ↓ 0, for each time T > 0. Furthermore estimate (34) implies

u′� ⇀ u′ weakly in L2(0, T ;H) (38)

for each T > 0, and
∥u′(t)∥ ≤ ∣(∂')0(u0)∣ a.e. t. (39)

Step 3. We must show u(t) ∈ D(∂') for each t ≥ 0 and

u′(t) + ∂'(u(t)) ∋ 0, for a.e. t ≥ 0.

Now, by (34)

∥J�(u�(t))− u�(t)∥ = �∥A�u�(t)∥ = �∥u′�(t)∥ ≤ �∣(∂')0(u0)∣.

Hence
J�(u�)→ u uniformly in C([0, T ], H) (40)

for each T > 0.

On the other hand, for each t ≥ 0,

−u′�(t) = A�(u�(t)) ∈ ∂'(J�(u�(t))).

Thus, given w ∈ H, we have

'(w) ≥ '(J�(u�(t)))− (u′�(t)/w − J�(u�(t))).
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Consequently if 0 ≤ s ≤ t,

(t− s)'(w) ≥
∫ t

s
'(J�(u�(�))) d� −

∫ t

s
(u′�(�)/w − J�(u�(�))) d�.

In view of (40), the lower semi-continuity of ', and Fatou’s Lemma, we conclude upon
sending � ↓ 0 that

(t− s)'(w) ≥
∫ t

s
'(u(�)) d� −

∫ t

s
(u′(�)/w − u(�)) d�.

Therefore
'(w) ≥ '(u(t))− (u′(t)/w − u(t))

if t is a Lebesgue point of u′, '(u). Hence, for almost all t ≥ 0

'(w) ≥ '(u(t))− (u′(t)/w − u(t))

for all w ∈ H. Thus u(t) ∈ D(∂'), with

u′(t) + ∂'(u(t)) ∋ 0, for a.e. t ≥ 0.

Finally, we prove that u(t) ∈ D(∂') for each t ≥ 0. To see this, fix t ≥ 0 and choose
tn → t such that u(tn) ∈ D(∂'), −u′(tn) ∈ ∂'(u(tn)). In view of (39) we may assume ,
upon passing to a subsequence, that

u′(tn) ⇀ v weakly in H.

Fix w ∈ H. Then
'(w) ≥ '(u(tn))− (u′(tn)/w − u(tn)).

Let tn → t and recall that u ∈ C([0,∞[, H) and ' is lower semi-continuous. We obtain
that

'(w) ≥ '(u(t))− (v/w − u(t)).

Hence u(t) ∈ D(∂') and −v ∈ ∂'(u(t)).

Step 4. To prove uniqueness assume u is another solution and compute

1

2

d

dt
∥u(t)− u(t)∥2 = (u′(t)− u′(t)/u(t)− u(t)) ≤ 0 for a.e. t ≥ 0,

since −u′(t) ∈ ∂'(u(t)) and −u′(t) ∈ ∂'(u(t)). Then, integrating we obtain that

∥u(t)− u(t)∥2 ≤ ∥u(0)− u(0)∥2.
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Under the assumptions of the above theorem if for each u0 ∈ D(∂') we define

S(t)u0 := u(t) ∀ t ≥ 0,

u(t) being the unique solution of problem⎧⎨⎩
u′(t) + ∂'(u(t)) ∋ 0, for a.e. t ≥ 0

u(0) = u0,
(41)

we have the family of operator (S(t))t≥0 satisfying

(i) S(0) = I,

(ii) S(t+ s) = S(t)S(s) for all s, t ≥ 0,

(iii) the mapping t 7→ S(t)u0 is continuous from [0,∞[ into H.

A family of operators (S(t))t≥0 satisfying the conditions (i)-(iii) is called a nonlinear
semigroup of operators.

Observe that as a consequence of the above theorem we have

∥S(t)u0 − S(t)u0∥ ≤ ∥u0 − u0∥, ∀ t ≥ 0, and u0, u0 ∈ D(∂'). (42)

Using this inequality the semigroup of nonlinear operators (S(t))t≥0 can be extended to
D(∂'). In the case D(∂') is dense in H, which happens in many applications, we have
(S(t))t≥0 is a nonlinear semigroup in H.

Theorem 20 is a particular case of the following general situation. Let A ⊂ H×H an
operator (possible multivaluate) in the real Hilbert space H. We say that A is monotone
if

(u− u/v − v) ≥ 0 ∀ (u, u), (v, v) ∈ A.
Recall we have showed that ∂' is a monotone operator. Now, if ' is convex, lower

semi-continuous and proper, it can be proved that ∂' is maximal monotone (see, [9],
[8]), i.e., every monotone extension of ∂' coincides with ∂'. The following theorem is a
classical result due to G. Minty [20].

Theorem 21 (Minty Theorem) Let A a monotone operator in the real Hilbert space
H. Then, A is maximal monotone if and only if Ran(I + �A) = H for all � > 0.

Given an operator A ⊂ H ×H, consider the abstract Cauchy problem⎧⎨⎩
u′(t) + A(u(t)) ∋ 0, for a.e. t ∈ (0, T )

u(0) = u0.
(43)
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We say that a function u ∈ C([0, T ];H) is a strong solution of problem (43) if u(0) =
u0, u is derivable a.e. t ∈ (0, T ), u(t) ∈ D(A) and satisfies (43) for almost all t ∈ (0, T ).

Theorem 20 states that for every u0 ∈ D(∂'), u(t) = S(t)u0 is a strong solution of
the abstract Cauchy problem associated with ∂'. Now, this result is also true in the
general case in which A is a maximal monotone operator (see [9], [8]). Moreover, in the
case A = ∂', with ' : H →]−∞,+∞] a convex, proper and lower semi-continuous, we
also have (see [9]) that for all u0 ∈ D(∂'), u(t) = S(t)u0 is a strong solution.

5 The Neumann Problem for the Total Variation

Flow

This section is devoted to prove existence and uniqueness of solutions for the Minimizing
Total Variation Flow with Neumann boundary conditions, namely⎧⎨⎩

∂u

∂t
= div

(
Du

∣Du∣

)
in Q = (0,∞)× Ω

∂u

∂�
= 0 on S = (0,∞)× ∂Ω

u(0, x) = u0(x) in x ∈ Ω,

(44)

where Ω is a bounded set in IRN with Lipschitz continuous boundary ∂Ω and u0 ∈ L1(Ω).
As we saw in the previous section, this partial differential equation appears when one uses
the steepest descent method to minimize the Total Variation, a method introduced by L.
Rudin, S. Osher and E. Fatemi ([23]) in the context of image denoising and reconstruction.
Then solving (44) amounts to regularize or, in other words, to filter the initial datum
u0. This filtering process has less destructive effect on the edges than filtering with a
Gaussian, i.e., than solving the heat equation with initial condition u0. In this context
the given image u0 is a function defined on a bounded, smooth or piecewise smooth
open subset Ω of IRN , typically, Ω will be a rectangle in IR2. As argued in [1], the
choice of Neumann boundary conditions is a natural choice in image processing. It
corresponds to the reflection of the picture across the boundary and has the advantage
of not imposing any value on the boundary and not creating edges on it. When dealing
with the deconvolution or reconstruction problem one minimizes the Total Variation
Functional, i.e., the functional ∫

Ω
∣Du∣ (45)

under some constraints which model the process of image acquisition, including blur and
noise.
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5.1 Strong Solutions in L2(Ω)

Consider the energy functional Φ : L2(Ω)→ (−∞,+∞] defined by

Φ(u) =

⎧⎨⎩
∫

Ω
∥Du∥ if u ∈ BV (Ω) ∩ L2(Ω)

+∞ if u ∈ L2(Ω) ∖BV (Ω).

(46)

Since the functional Φ is convex, lower semi-continuous and proper, then ∂Φ is a maximal
monotone operator with dense domain, generating a contraction semigroup in L2(Ω) (see
subsection 4.2 or [9]). Therefore, we have the following result.

Theorem 22 Let u0 ∈ L2(Ω). Then there exists a unique strong solution in the semi-
group sense u of (44) in [0, T ] for every T > 0, i.e., u ∈ C([0, T ];L2(IRN))∩W 1,2

loc (0, T ;L2(Ω)),
u(t) ∈ D(∂Φ) a.e. in t ∈ [0, T ] and

−u′(t) ∈ ∂Φ(u(t)) a.e. in t ∈ [0, T ]. (47)

Moreover, if u and v are the strong solutions of (44) corresponding to the initial conditions
u0, v0 ∈ L2(Ω), then

∥u(t)− v(t)∥2 ≤ ∥u0 − v0∥2 for any t > 0. (48)

Our task will be to give a sense to (47) as a partial differential equation, describing
the subdifferential of Φ in a distributional sense. To be precise we should not say distri-
butional sense since the test functions will be functions in BV (Ω). To do that we need
to recall first some results inspired in the duality theory of the Convex Analysis.

Let H be a real Hilbert space, with inner product ( / ). Let Ψ : H → [0,∞] be any
function. Let us define Ψ̃ : H → [0,∞] by

Ψ̃(x) = sup

{
(x/y)

Ψ(y)
: y ∈ H

}
(49)

with the convention that 0
0

= 0, 0
∞ = 0. Note that Ψ̃(x) ≥ 0, for any x ∈ H. Note also

that the supremum is attained on the set of y ∈ H such that (x/y) ≥ 0. Note also that
we have the following Cauchy-Schwartz inequality

(x/y) ≤ Ψ̃(x)Ψ(y) if Ψ(y) > 0.

The following Lemma is a simple consequence of the above definition.

Lemma 3 Let Ψ1,Ψ2 : H → [0,∞]. If Ψ1 ≤ Ψ2, then Ψ̃2 ≤ Ψ̃1.
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Proposition 5 If Ψ is convex, lower semi-continuous and positive homogeneous of degree

1, then ˜̃Ψ = Ψ.

Proof. Since (y/x)
Ψ(x)

≤ Ψ̃(y) for any x, y ∈ H, we also have that (y/x)

Ψ̃(y)
≤ Ψ(x) for any

x, y ∈ H. This implies that ˜̃Ψ(x) ≤ Ψ(x) for any x ∈ H. Assume that there is some

x ∈ H and � > 0 such that ˜̃Ψ(x) + � < Ψ(x), hence, in particular, Ψ(x) > 0 and
˜̃Ψ(x) < ∞. Using Hahn-Banach’s Theorem there is y ∈ H separating x from the closed

convex set C := {z ∈ H : Ψ(z) ≤ ˜̃Ψ(x) + �}. Since 0 ∈ C we may even assume that

(y/x) = 1 and (y/z) ≤ � < 1 for any z ∈ C. Note that, from the definition of ˜̃Ψ, we have

˜̃Ψ(x) ≥ 1

Ψ̃(y)
. (50)

Let us prove that Ψ̃(y) ≤ 1
˜̃Ψ(x)+�

. For that it will be sufficient to prove that

(y/z)

Ψ(z)
≤ 1

˜̃Ψ(x) + �
(51)

for any z ∈ H such that (y/z) ≥ 0. Let z ∈ H, (y/z) ≥ 0. If Ψ(z) =∞, then (51) holds.
If Ψ(z) = 0, then also Ψ(tz) = 0 for any t ≥ 0. Hence tz ∈ C for all t ≥ 0, and we have
that 0 ≤ (y/tz) ≤ 1 for all t ≥ 0. Thus (y/z) = 0, and, therefore, (51) holds. Finally,

assume that 0 < Ψ(z) <∞. Let t > 0 be such that Ψ(tz) = ˜̃Ψ(x)+ �. Using that tz ∈ C,
we have

(y/z)

Ψ(z)
=

(y/tz)

Ψ(tz)
≤ 1

˜̃Ψ(x) + �
.

Both (50) and (51) give a contradiction. We conclude that ˜̃Ψ(x) = Ψ(x) for any x ∈ H.

Lemma 4 Assume that Ψ is convex, lower semi-continuous and positive homogeneous
of degree 1. If u ∈ D(∂Ψ) and v ∈ ∂Ψ(u), then (v/u) = Ψ(u).

Proof. Indeed, if v ∈ ∂Ψ(u), then

(v/w − u) ≤ Ψ(w)−Ψ(u), for all w ∈ H.

To obtain the result it suffices to take w = 0 and w = 2u in the above inequality.

Theorem 23 Assume that Ψ is convex, lower semi-continuous and positive homogeneous
of degree 1. Then v ∈ ∂Ψ(u) if and only if Ψ̃(v) ≤ 1 and (v/u) = Ψ(u) (hence, Ψ̃(v) = 1
if Ψ(u) > 0).

Proof. When (v/u) = Ψ(u), condition v ∈ ∂Ψ(u) may be written as (v/x) ≤ Ψ(x) for
all x ∈ H, which is equivalent to Ψ̃(v) ≤ 1.
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Let Ω be a bounded domain in IRN with Lipschitz boundary. Let us consider the
space (see Section 3)

X(Ω)2 :=
{
z ∈ L∞(Ω, IRN) : div(z) ∈ L2(Ω)

}
.

Let us define for v ∈ L2(Ω)

Ψ(v) = inf {∥ z ∥∞ : z ∈ X(Ω)2, v = −div(z) in D′(Ω), [z, �] = 0} , (52)

where � denotes the outward unit normal to ∂Ω and [z, �] is the trace of the normal
component of z (see Section 3). We define Ψ(v) = +∞ if does not exists z ∈ X(Ω)2

satisfying v = −div(z) in D′(Ω), [z, �] = 0.

Observe that Ψ is convex, lower semi-continuous and positive homogeneous of degree
1. Moreover, it is easy to see that, if Ψ(v) < ∞, the infimum in (52) is attained, i.e.,
there is some z ∈ X(Ω)2 such that v = −div(z) in D′(Ω), [z, �] = 0 and Ψ(v) = ∥z∥∞.

Proposition 6 We have that Ψ = Φ̃.

Proof. Let v ∈ L2(Ω). If Ψ(v) =∞, then we have Φ̃(v) ≤ Ψ(v). Thus, we may assume
that Ψ(v) <∞. Let z ∈ X(Ω)2 be such that v = −div(z) and [z, �] = 0. Then∫

Ω
vu dx =

∫
Ω

(z,Du) ≤∥ z ∥∞ Φ(u) for all u ∈ BV (Ω) ∩ L2(Ω).

Taking supremums in u we obtain Φ̃(v) ≤∥ z ∥∞. Now, taking infimums in z, we obtain
Φ̃(v) ≤ Ψ(v).

To prove the opposite inequality, let us denote

D =
{

div(z) : z ∈ C∞0 (Ω, IRN)
}
.

Then

sup
v∈L2

∫
Ω
uv dx

Ψ(v)
≥ sup

v∈D

∫
Ω
uv dx

Ψ(v)
≥ sup

v∈D,Ψ(v)<∞

∫
Ω
uv dx

Ψ(v)

≥ sup
z∈C∞0 (Ω,IRN )

−
∫

Ω
udiv(z) dx

∥ z ∥∞
= Φ(u).

Thus, Φ ≤ Ψ̃. This implies that ˜̃Ψ ≤ Φ̃, and, using Proposition 5, we obtain that
Ψ ≤ Φ̃.

－194－



We have the following characterization of the subdifferential ∂Φ.

Theorem 24 The following assertions are equivalent:

(a) v ∈ ∂Φ(u);

(b)
u ∈ L2(Ω) ∩BV (Ω), v ∈ L2(Ω), (53)

∃z ∈ X(Ω)2, ∥z∥∞ ≤ 1, such that v = −div(z) in D′(Ω), (54)

and ∫
Ω

(z,Du) =
∫

Ω
∥Du∥, (55)

[z, �] = 0 on ∂Ω; (56)

(c) (53) and (54) hold, and∫
Ω

(w − u)v dx ≤
∫

Ω
z ⋅ ∇w dx−

∫
Ω
∥Du∥, ∀w ∈ W 1,1(Ω) ∩ L2(Ω); (57)

(d) (53) and (54) hold, and∫
Ω

(w − u)v dx ≤
∫

Ω
(z,Dw)−

∫
Ω
∥Du∥ ∀w ∈ L2(Ω) ∩BV (Ω); (58)

(e) (53) and (54) hold, and (58) holds with the equality instead of the inequality.

Proof. By Theorem 23, we have that v ∈ ∂Φ(u) if and only if Φ̃(v) ≤ 1 and
∫

Ω vu dx =
Φ(u). Since Φ̃ = Ψ, from the definition of Ψ and the observation following it, it follows
that there is some z ∈ X(Ω)2 such that v = −div(z) inD′(Ω), [z, �] = 0 and Φ̃(v) = ∥z∥∞.
Hence, we have v ∈ ∂Φ(u) if and only if there is some z ∈ X(Ω)2, with ∥z∥∞ ≤ 1, such
that v = −div(z) in D′(Ω), [z, �] = 0 and

∫
Ω vu dx = Φ(u). Then, applying Green’s

formula (23) the equivalence of (a) and (b) follows.

To obtain (e) from (b) it suffices to multiply both terms of the equation v = −div(z)
by w − u, for w ∈ L2(Ω) ∩BV (Ω) and to integrate by parts using Green’s formula (23).
It is clear that (e) implies (d), and (d) implies (c). To prove that (b) follows from (d) we
choose w = u in (58) and we obtain that∫

Ω
∥Du∥ ≤

∫
Ω

(z,Du) ≤ ∥z∥∞
∫

Ω
∥Du∥ ≤

∫
Ω
∥Du∥.

To obtain (56) we choose w = u± ' in (58) with ' ∈ C∞(Ω) and we obtain

±
∫

Ω
v' dx ≤ ±

∫
Ω
z ⋅D' = −±

∫
Ω

div(z)'dx+±
∫
∂Ω

[z, �]'dℋN−1,
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which implies (56). In order to prove that (c) implies (d), let w ∈ BV (Ω)∩L2(Ω). Using
Theorem 2 we know that there exists a sequence wn ∈ C∞(Ω)∩BV (Ω)∩L2(Ω) such that

wn → w in L2(Ω) and
∫

Ω
∣∇wn∣ dx→

∫
Ω
∥Dw∥.

Then ∫
Ω
z ⋅ ∇wn dx = −

∫
Ω

div(z)wn dx+
∫
∂Ω

[z, �]wn dℋN−1

→ −
∫

Ω
div(z)w dx+

∫
∂Ω

[z, �]w dℋN−1 =
∫

Ω
(z,Dw).

Now, we use wn as test function in (57) and let n→∞ to obtain (58).

Definition 7 We say that u ∈ C([0, T ];L2(Ω)) is a strong solution of (44) if

u ∈ W 1,2
loc (0, T ;L2(Ω)) ∩ L1

w(]0, T [;BV (Ω)),

u(0) = u0, and there exists z ∈ L∞
(
]0, T [×Ω; IRN

)
such that ∥z∥∞ ≤ 1,

[z(t), �] = 0 in ∂Ω, a.e. t ∈ [0, T ]

satisfying
ut = div(z) in D′ (]0, T [×Ω)

and ∫
Ω

(u(t)− w)ut(t) dx =
∫

Ω
(z(t), Dw)−

∫
Ω
∥Du(t)∥

∀w ∈ L2(Ω) ∩BV (Ω), a.e. t ∈ [0, T ].

(59)

Obviously, using Theorem 24, a strong solution of (44) is a strong solution in the
sense of semigroups. The converse implication follows along the same lines, except for
the measurability of z(t, x). To ensure the joint measurability of z one takes into account
that, by Theorem 20, semigroup solutions can be approximated by implicit in time dis-
cretizations of (47), and one constructs a function z(t, x) ∈ L∞((0, T )×Ω) satisfying the
requirements contained in Definition 7. We do not give the details of this proof here. We
have obtained the following result.

Theorem 25 Let u0 ∈ L2(Ω). Then there exists a unique strong solution u of (44)
in [0, T ] × Ω for every T > 0. Moreover, if u and v are the strong solutions of (44)
corresponding to the initial conditions u0, v0 ∈ L2(Ω), then

∥u(t)− v(t)∥2 ≤ ∥u0 − v0∥2 for any t > 0. (60)
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Remark 4 It is possible to obtain existence and uniqueness of solutions for any initial
datum in L1(Ω). In this case we need to use truncation functions of type Tk: Tk(r) =
[k − (k − ∣r∣)+]sign0(r), k ≥ 0, r ∈ IR, and the concept of solution is the following

Definition 8 A measurable function u : (0, T ) × Ω → IR is a weak solution of (44) in
(0, T ) × Ω if u ∈ C([0, T ], L1(Ω)) ∩W 1,1

loc (0, T ;L1(Ω)), Tk(u) ∈ L1
w(0, T ;BV (Ω)) for all

k > 0 and there exists z ∈ L∞((0, T )× Ω) with ∥z∥∞ ≤ 1, ut = div(z) in D′((0, T )× Ω)
such that ∫

Ω
(Tk(u(t))− w)ut(t) dx ≤

∫
Ω
z(t) ⋅ ∇w dx−

∫
Ω
∥DTk(u(t))∥ (61)

for every w ∈ W 1,1(Ω) ∩ L∞(Ω) and a.e. on [0, T ].

In [3] (see also [5]) we prove the following existence and uniqueness result.

Theorem 26 Let u0 ∈ L1(Ω). Then there exists a unique weak solution of (44) in
(0, T )×Ω for every T > 0 such that u(0) = u0. Moreover, if u(t), û(t) are weak solutions
corresponding to initial data u0, û0, respectively, then

∥(u(t)− û(t))+∥1 ≤ ∥(u0 − û0)+∥1 and ∥u(t)− û(t)∥1 ≤ ∥u0 − û0∥1, (62)

for all t ≥ 0.

To prove Theorem 26 we shall use the techniques of completely accretive operators
and the Crandall-Liggett’s semigroup generation Theorem ([12]). For that, we shall as-
sociate a completely accretive operator A to the formal differential expression −div( Du

∣Du∣)
together with Neumann boundary conditions. Then, using Crandall-Liggett’s semigroup
generation Theorem we conclude that the abstract Cauchy problem in L1(Ω)⎧⎨⎩

du

dt
+Au ∋ 0,

u(0) = u0

(63)

has a unique strong solution u ∈ C([0, T ], L1(Ω))∩W 1,1
loc (0, T ;L1(Ω)) (∀T > 0) with initial

datum u(0) = u0, and we shall prove that strong solutions of (63) coincide with weak
solutions of (44).

5.2 Asymptotic Behaviour of Solutions

To see that our concept of solution is useful we are going to compute explicitly the
evolution of the characteristic function of a ball.
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Theorem 27 Let Ω = B(0, R) be the ball in IRN centered at 0 with radius R, and
u0(x) = k�B(0,r), where 0 < r < R and k > 0. Then, the strong solution of (44) for the
initial datum u0 is given by

u(t) =

⎧⎨⎩
(
k − N

r
t
)
�B(0,r) + NrN−1

RN−rN t
�B(0,R)∖B(0,r) if 0 ≤ t ≤ T

(k − N
r
T )�B(0,R) = NrN−1

RN−rN T
�B(0,R) if t ≥ T,

(64)

where T is given by

T

(
N

r
+N

rN−1

RN − rN

)
= k. (65)

Proof. We look for a solution of (44) of the form u(t) = �(t)�B(0,r) + �(t)�B(0,R)∖B(0,r)

on some time interval (0, T ) defined by the inequalities �(t) > �(t) for all t ∈ (0, T ),
and �(0) = k, �(0) = 0. Then, we shall look for some z ∈ L∞((0, T ) × B(0, R)) with
∥z∥∞ ≤ 1, such that

�′(t) = div(z(t)) in (0, T )×B(0, r)

z(t, x) = − x

∣x∣
on (0, T )× ∂B(0, r),

(66)

�′(t) = div(z(t)) in (0, T )× (B(0, R) ∖B(0, r))

z(t, x) = − x

∣x∣
on (0, T )× ∂B(0, r)

z(t) ⋅ n = 0 on (0, T )× ∂B(0, R)

(67)

and ∫
B(0,R)

z(t) ⋅Du(t) =
∫
B(0,R)

∣Du(t)∣ for all t ∈ (0, T ). (68)

Integrating equation (66) in B(0, r) we obtain

�′(t)∣B(0, r)∣ =
∫
B(0,r)

div(z(t))dx =
∫
∂B(0,r)

z(t) ⋅ n = −ℋN−1(∂B(0, r)).

Thus

�′(t) = −N
r
.

and, therefore,

�(t) = k − N

r
t.
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In this case we take z = −x
r

and (66) holds. Similarly, we deduce that

�′(t) = � := N
rN−1

RN − rN
,

hence,

�(t) = N
rN−1

RN − rN
t.

Our first observation is that T is given by

T

(
N

r
+N

rN−1

RN − rN

)
= k. (69)

To construct z in (0, T ) × (B(0, R) ∖ B(0, r)) we shall look for z of the form z(t, x) =
�(∣x∣) x

∣x∣ such that div(z(t)) = �′(t), �(r) = −1, �(R) = 0. Since

div(z(t)) = ∇�(∣x∣) ⋅ x
∣x∣

+ �(∣x∣)div(
x

∣x∣
) = �′(∣x∣) + �(∣x∣)N − 1

∣x∣
,

we must have

�′(s) + �(s)
N − 1

s
= N

rN−1

RN − rN
s ∈ (r, R). (70)

The solution of (89) such that �(R) = 0 is

�(s) =
�s

N
− �RN

NsN−1

which also satisfies �(r) = −1. Thus, in B(0, R) ∖B(0, r),

z(t, x) =
�x

N
− �RNx

N ∣x∣N
.

It is easy to check that (68) holds. Thus

u(t) = (k − N

r
t)�B(0,r) +

NrN−1

RN − rN
t�B(0,R)∖B(0,r).

in (0, T )×B(0, R) where T is given by (69). On the other hand, we take

u(t) = (k − N

r
T )�B(0,R) =

NrN−1

RN − rN
T�B(0,R),

and z(t, x) = 0 in (T,∞) × B(0, R). It is easy to check that u(t) is the solution of (44)
in (0,∞)×B(0, R) with initial datum u0(x).
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Remark 5 The above result show that there is no spatial smoothing effect, for t > 0,
similar to the linear heat equation and many other quasi-linear parabolic equations. In
our case, the solution is discontinuous and has the minimal required spatial regularity:
u(t) ∈ BV (Ω) ∖W 1,1(Ω).

Respect to the asymptotic behaviour of solutions obtained in Theorem 26, using
Lyapunov functional methods we have proved in [3] (see also [5]) the following result.

Theorem 28 Let u0 ∈ L2(Ω) and u(t) the unique weak solution of (44) such that u(0) =
u0. Then

∥u(t)− (u0)Ω∥1 → 0 as t→∞,

where

(u0)Ω =
1

ℒN(Ω)

∫
Ω
u0(x) dx.

Moreover, if u0 ∈ L∞(Ω) there exists a constant C, independent of u0, such that

∥u(t)− (u0)Ω∥p ≤
C∥u0∥2

2

t
for all t > 0, and 1 ≤ p ≤ N

N − 1
.

Now, we are going to prove, by energy methods that in the two dimensional case, in
fact, this asymptotic state is reached in finite time.

Theorem 29 Suppose N = 2. Let u0 ∈ L2(Ω) and u(t, x) the unique strong solution of
problem (44). Then there exists a finite time T0 such that

u(t) = (u0)Ω =
1

ℒN(Ω)

∫
Ω
u0(x) dx ∀ t ≥ T0.

Proof: Since u is a strong solution of problem (44), there exists z ∈ L∞(Q) with
∥z∥∞ ≤ 1, ut = div(z) in D′(Q) such that∫

Ω
(u(t)− w)ut(t) dx =

∫
Ω

(z(t), Dw)−
∫

Ω
∥Du(t)∥ (71)

for all w ∈ BV (Ω) ∩ L∞(Ω). Hence, taking w = (u0)Ω as test function in (71), it yields∫
Ω

(u(t)− (u0)Ω)ut(t) dx = −
∫

Ω
∥Du(t)∥.

Now, by Sobolev-Poincaré inequality for BV functions (13) and having in mind that we
have conservation of mass, we obtain

∥u(t)− (u0)Ω∥2 ≤ C
∫

Ω
∥Du(t)∥.
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Thus, we get
1

2

d

dt

∫
Ω

(u(t)− (u0)Ω)2 dx+
1

C
∥u(t)− (u0)Ω∥2 ≤ 0. (72)

Therefore, the function

y(t) :=
∫

Ω
(u(t)− (u0)Ω)2 dx

satisfies the inequality
y′(t) +My(t)1/2 ≤ 0,

from where it follows that there exists T0 > 0 such that y(t) = 0 for all t ≥ T0.

By Theorem 29, given u0 ∈ L2(Ω), if u(t, x) is the unique strong solution of problem
(44), then

T ∗(u0) := inf{t > 0 : u(t) = (u0)Ω} <∞.

In [4] (see also [5]) we study of the behaviour of u(t) near T ∗(u0) establishing the
following result.

Theorem 30 Suppose N = 2. Let u0 ∈ L2(Ω) and let u(t, x) be the unique strong
solution of problem (44). Let

w(t, x) :=

⎧⎨⎩
u(t, x)− (u0)Ω

T ∗(u0)− t
if 0 ≤ t < T ∗(u0),

0 if t ≥ T ∗(u0).

Then, there exists an increasing sequence tn → T ∗(u0), and a solution v∗ ∕= 0 of the
stationary problem

(SN)

⎧⎨⎩
−div

(
Dv

∣Dv∣

)
= v in Ω

∂v

∂�
= 0 on ∂Ω

such that
lim
n→∞

w(tn) = v∗ in Lp(Ω)

for all 1 ≤ p <∞.
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6 The Cauchy Problem for the Total Variation Flow

6.1 Initial Conditions in L2(IRN)

The purpose of this Subsection is to prove existence and uniqueness of the Minimizing
Total Variation Flow in IRN

∂u

∂t
= div

(
Du

∣Du∣

)
in ]0,∞[×IRN , (73)

coupled with the initial condition

u(0, x) = u0(x) x ∈ IRN , (74)

when u0 ∈ L2(IRN).

Definition 9 A function u ∈ C([0, T ];L2(IRN)) is called a strong solution of (73) if

u ∈ W 1,2
loc (0, T ;L2(IRN)) ∩ L1

w(0, T ;BV (IRN))

and there exists z ∈ L∞
(
]0, T [×IRN ; IRN

)
with ∥z∥∞ ≤ 1 such that

ut = div(z) in D′(]0, T [×IRN)

and ∫
IRN

(u(t)− w)ut(t) dx =
∫
IRN

(z(t), Dw)−
∫
IRN
∥Du(t)∥ (75)

for all w ∈ L2(IRN) ∩BV (IRN), a.e. t ∈ [0, T ].

The main result of this subsection is the following existence and uniqueness theorem.

Theorem 31 Let u0 ∈ L2(IRN). Then there exists a unique strong solution u of (73),
(74) in [0, T ] × IRN for every T > 0. Moreover, if u and v are the strong solutions of
(73) corresponding to the initial conditions u0, v0 ∈ L2(IRN), then

∥u(t)− v(t)∥2 ≤ ∥u0 − v0∥2 for any t > 0. (76)

Proof. Let us introduce the following multivalued operator ℬ in L2(IRN): a pair of
functions (u, v) belongs to the graph of ℬ if and only if

u ∈ L2(IRN) ∩BV (IRN), v ∈ L2(IRN), (77)

there exists z ∈ X(IRN)2 with ∥z∥∞ ≤ 1, such that v = −div(z) (78)
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and∫
IRN

(w − u)v dx ≤
∫
IRN

z ⋅ ∇w dx−
∫
IRN
∥Du∥, ∀w ∈ L2(IRN) ∩W 1,1(IRN).

Let also Ψ : L2(IRN)→ ]−∞,+∞] be the functional defined by

Ψ(u) :=

⎧⎨⎩
∫
IRN
∥Du∥ if u ∈ L2(IRN) ∩BV (IRN)

+∞ if u ∈ L2(IRN) ∖BV (IRN).

(79)

Since Ψ is convex and lower semi-continuous in L2(IRN), its subdifferential ∂Ψ is a
maximal monotone operator in L2(IRN).

We divide the proof of the theorem into two steps.

Step 1. The following assertions are equivalent:

(a) (u, v) ∈ ℬ;

(b) (77) and (78) hold,

and ∫
IRN

(w − u)v dx ≤
∫
IRN

(z,Dw)−
∫
IRN
∥Du∥ (80)

for all w ∈ L2(IRN) ∩BV (IRN);

(c) (77) and (78) hold, and (80) holds with the equality instead of the inequality;

(d) (77) and (78) hold, and ∫
IRN

(z,Du) =
∫
IRN
∥Du∥. (81)

It is clear that (c) implies (b), and (b) implies (a), while (d) follows from (b) taking
w = u in (80) and using (21). In order to prove that (a) implies (b) it is enough to use
Theorem 2 and Lemma 2 as in the proof of Theorem 24. To obtain (c) from (d) it suffices
to multiply both terms of the equation v = −div(z) by w−u, for w ∈ L2(IRN)∩BV (IRN),
and to integrate by parts using (24).

Step 2. We also have ℬ = ∂Ψ. The proof is similar to the one given in Section 5.1 for
the Neumann problem and we omit the details.

As a consequence, the semigroup generated by ℬ coincides with the semigroup gen-
erated by ∂Ψ and therefore u(t, x) = e−tℬu0(x) is a strong solution of

ut + ℬu ∋ 0,

－203－



i.e., u ∈ W 1,2
loc (]0, T [;L2(IRN)) and −ut(t) ∈ ℬu(t) for almost all t ∈ ]0, T [. Then,

according to the equivalence proved in Step 1, we have that∫
IRN

(u(t)− w)ut(t) dx =
∫
IRN

(z(t), Dw)−
∫
IRN
∥Du(t)∥ (82)

for all w ∈ L2(IRN) ∩ BV (IRN) and for almost all t ∈ ]0, T [. Now, choosing w = u− ',
' ∈ C∞0 (IRN), we see that ut(t) = div(z(t)) in D′(IRN) for almost every t ∈ ]0, T [. We
deduce that ut = div(z) in D′(]0, T [×IRN). We have proved that u is a strong solution
of (73) in the sense of Definition 9.

The contractivity estimate (76) of Theorem 31 follows as in Theorem 26. This con-
cludes the proof of the theorem.

Given a function g ∈ L2(IRN) ∩ LN(IRN), we define

∥g∥∗ := sup
{∣∣∣∣∫

IRN
g(x)u(x) dx

∣∣∣∣ : u ∈ L2(IRN) ∩BV (IRN),
∫
IRN
∥Du∥ ≤ 1

}
.

Part (b) of the next Lemma gives a characterization of ℬ(0). This was proved by Y.
Meyer in [19] in the context of the analysis of the Rudin-Osher-Fatemi model for image
denoising.

Lemma 5 Let f ∈ L2(IRN) ∩ LN(IRN) and � > 0. The following assertions hold.

(a) The function u is the solution of

min
w∈L2(IRN )∩BV (IRN )

D(w), D(w) :=
∫
IRN
∥Dw∥+

1

2�

∫
IRN

(w − f)2 dx (83)

if and only if there exists z ∈ X(IRN)2 satisfying (81) with ∥z∥∞ ≤ 1 and −� div(z) =
f − u.

(b) The function u ≡ 0 is the solution of (83) if and only if ∥f∥∗ ≤ �.

(c) If N = 2, ℬ(0) = {f ∈ L2(IR2) : ∥f∥∗ ≤ 1}.

Proof. (a). Thanks to the strict convexity of D, u is the solution of (83) if and only if
0 ∈ ∂D(u) = ∂Ψ(u) + 1

�
(u − f) = ℬ(u) + 1

�
(u − f), where Ψ is defined in (79) and the

last equality follows from Step 2 in the proof of Theorem 31. This means, recalling the
definition of ℬ in the proof of Theorem 31, that there exists z ∈ X(IRN)2 satisfying (81)
with ∥z∥∞ ≤ 1 and −� div(z) = f − u.

(b). The function u ≡ 0 is the solution of (83) if and only if∫
IRN
∥Dv∥+

1

2�

∫
IRN

(v − f)2 dx ≥ 1

2�

∫
IRN

f 2 dx ∀v ∈ L2(IRN) ∩BV (IRN). (84)
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Replacing v by �v (where � > 0), expanding the L2-norm, dividing by � > 0, and letting
�→ 0+ we have∣∣∣∣∫

IRN
f(x)v(x) dx

∣∣∣∣ ≤ �
∫
IRN
∥Dv∥ ∀v ∈ L2(IRN) ∩BV (IRN). (85)

Since (85) implies (84), we have that (84) and (85) are equivalent. The assertion follows
by observing that (85) is equivalent to ∥f∥∗ ≤ �.

(c) Let N = 2. We have

ℬ(0) =
{
f ∈ L2(IR2) : ∃z ∈ X(IR2)2, ∥z∥∞ ≤ 1,−div(z) = f

}
.

On the other hand, from (a) and (b) it follows that ∥f∥∗ ≤ 1 if and only if there exists
z ∈ X(IR2)2 with ∥z∥∞ ≤ 1 and such that f = −div(z). Then the assertion follows.

Let us give a heuristic explanation of what the vector field z represents. Condition
(81) essentially means that z has unit norm and is orthogonal to the level sets of u. In
some sense, z is invariant under local contrast changes. To be more precise, we observe
that if u =

∑p
i=1 ci�Bi where Bi are sets of finite perimeter such that ℋN−1((Bi∪∂∗Bi)∩

(Bj ∪ ∂∗Bj)) = 0 for i ∕= j, ci ∈ IR, and

−div

(
Du

∣Du∣

)
= f ∈ L2(IRN), (86)

then also −div ( Dv
∣Dv∣) = f for any v =

∑p
i=1 di�Bi where di ∈ IR and sign(di) = sign(ci).

Indeed, there is a vector field z ∈ L∞(IRN ; IRN) such that ∥z∥∞ ≤ 1, −div(z) = f and
(81) holds. Then one can check that

∥D�Bi∥ = sign(ci)(z,D�Bi)

as measures in IRN and, as a consequence, (z,Dv) = ∥Dv∥ as measures in IRN .

Let us also observe that the solutions of (86) are not unique. Indeed, if u ∈ L2(IRN)∩
BV (IRN) is a solution of (86) and g ∈ C1(IR) with g′(r) > 0 for all r ∈ IR, then w = g(u)
is also a solution of (86). In other words, a global contrast change of u produces a new
solution of (86). In an informal way, the previous remark can be rephrased by saying
that also local contrast changes of a given solution of (86) produce new solutions of it. To
express this non-uniqueness in a more general way we suppose that (u1, v), (u2, v) ∈ ℬ,
i.e., there are vector fields zi ∈ X(IRN)2 with ∥zi∥∞ ≤ 1, such that

−div(zi) = v,
∫
IRN

(zi, Dui) =
∫
IRN
∥Dui∥, i = 1, 2.

Then

0 = −
∫
IRN

(div(z1)− div(z2))(u1 − u2) dx =
∫
IRN

(z1 − z2, Du1 −Du2)

=
∫
IRN
∥Du1∥ − (z2, Du1) +

∫
IRN
∥Du2∥ − (z1, Du2).
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Hence ∫
IRN
∥Du1∥ =

∫
IRN

(z2, Du1) and
∫
IRN
∥Du2∥ =

∫
IRN

(z1, Du2).

In other words, z1 is in some sense a unit vector field of normals to the level sets of u2

and a similar thing can be said of z2 with respect to u1. Any two solutions of (86) should
be related in this way.

6.2 Explicit Solutions

We are going to compute explicitly the evolution of the characteristic function of a ball
and an annulus.

Lemma 6 Let u0 = k�Br(0). Then the unique solution u(t, x) of problem (73) with initial
datum u0 is given by

u(t, x) = sign(k)
N

r

(
∣k∣r
N
− t

)+

�Br(0)(x).

Observe that we may write

u(t, x) = sign(k)

(
∣k∣ − ℋ

N−1(∂Br(0))

ℒN(Br(0))
t

)+

�Br(0)(x).

Proof. Suppose that k > 0, the solution for k < 0 being constructed in a similar way.
We look for a solution of (73) of the form u(t, x) = �(t)�Br(0)(x) on some time interval
(0, T ). Then, we shall look for some z(t) ∈ X(IRN)2 with ∥z∥∞ ≤ 1, such that

u′(t) = div(z(t)) in D′(IRN), (87)∫
IRN

(z(t), Du(t)) =
∫
IRN
∥Du(t)∥. (88)

If we take z(t)(x) = −x
r

for x ∈ ∂Br(0), integrating equation (87) in Br(0) we obtain

�′(t)ℒN(Br(0))

=
∫
Br(0)

div(z(t)) dx =
∫
∂Br(0)

z(t) ⋅ � dℋN−1 = −ℋN−1(∂Br(0)).

Thus

�′(t) = −N
r
,

and, therefore,

�(t) = k − N

r
t.
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In that case, T must be given by T =
kr

N
.

To construct z in (0, T )× (IRN ∖Br(0)) we shall look for z of the form z = �(∥x∥) x

∥x∥
such that div(z(t)) = 0, �(r) = −1. Since

div(z(t)) = ∇�(∥x∥) ⋅ x

∥x∥
+ �(∥x∥)div

(
x

∥x∥

)
= �′(∥x∥) + �(∥x∥)N − 1

∥x∥
,

we must have

�′(s) + �(s)
N − 1

s
= 0 for s > r. (89)

The solution of (89) such that �(r) = −1 is

�(s) = −rN−1s1−N .

Thus, in IRN ∖Br(0),

z(t) = −rN−1 x

∥x∥N
.

Consequently, the candidate for z(t) is the vector field

z(t, x) :=

⎧⎨⎩

−x
r

if x ∈ Br(0) and 0 ≤ t ≤ T

−rN−1 x

∥x∥N
if x ∈ IRN ∖Br(0), and 0 ≤ t ≤ T

0 if x ∈ IRN and t > T,

and the corresponding function u(t, x) is

u(t, x) =
(
k − N

r
t
)
�Br(0)(x)�[0,T ](t),

where T =
kr

N
. Let us check that u(t, x) satisfies (87), (88). If ' ∈ D(IRN) and 0 ≤ t ≤ T ,

we have ∫
IRN

∂zi(t)

∂xi
' dx = −1

r

∫
Br(0)

' dx+
∫
∂Br(0)

xi
r

xi
r
' dℋN−1

−
∫
IRN∖Br(0)

∂

∂xi

(
rN−1xi
∥x∥N

)
' dx−

∫
∂Br(0)

rN−1

rN
xi
xi
r
' dℋN−1.

Hence ∫
IRN

div(z(t))' dx = −N
r

∫
Br(0)

' dx,
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and consequently, (87) holds. Finally, if 0 ≤ t ≤ T , by Green’s formula , we have∫
IRN

(z(t), Du(t)) = −
∫
IRN

div(z(t))u(t) dx =

−
∫
Br(0)

(
k − N

r
t
)

div(z(t)) dx =
∫
Br(0)

(
k − N

r
t
)
N

r
dx =(

k − N

r
t
)
N

r
ℒN(Br(0)) =

(
k − N

r
t
)
ℋN−1 (∂Br(0)) =

∫
IRN
∥Du(t)∥.

Therefore (88) holds, and consequently u(t, x) is the solution of (73) with initial datum
u0 = k�Br(0).

Lemma 7 Let Ω = BR(0) ∖ Br(0), 0 < r < R and u0 = k�Ω. Then the unique solution
u(t, x) of problem (73) with initial datum u0 is

u(t, x) = sign(k)

(
∣k∣ − Per(Ω)

ℒN(Ω)
t

)
�Ω(x) +

Per(Br(0))

ℒN(Br(0))
t�Br(0)(x) (90)

t ∈ [0, T1], x ∈ IRN , where T1 is such that

T1 ⋅
(
Per(Ω)

ℒN(Ω)
+
Per(Br(0))

ℒN(Br(0))

)
= ∣k∣

and u(t, x) evolves as the solution given in Lemma 6 until its extinction.

Proof. Let � : IRN → IRN be the vector field defined as

�(x) :=

⎧⎨⎩

x

r
for x ∈ Br(0),

(
(Rr)N−1R + r

∥x∥N
− (RN−1 + rN−1)

)
x

RN − rN
, x ∈ BR(0) ∖Br(0),

−R
N−1

∥x∥N
x for x ∈ IRN ∖BR(0).

Then ∥�∥∞ ≤ 1, div(�) = N
r

= Per(Br(0)
ℒN (Br(0))

on Br(0), div(�) = −Per(Ω)
ℒN (Ω)

on BR(0) ∖ Br(0),

div(�) = 0 on IRN ∖ BR(0), and � ⋅ �Br(0) = 1 on ∂Br(0), � ⋅ �BR(0) = −1 on ∂BR(0).
Therefore, one can check that the solution u of (73) with initial condition u0 = �Ω in
[0, T1] is given by (90). At t = T1, the two evolving sets reach the same height and
u(T1, x) = ��BR(0) for some � > 0. For t > T1 the solution u is equal to the solution
starting from ��BR(0) (at time T1) as it is described in Lemma 6.

Remark 6 The above results show that there is no spatial smoothing effect, for t > 0,
similar to the case of the linear heat equation and many other quasilinear parabolic
equations. In our case, the solution is discontinuous and has the minimal required spatial
regularity: u(t, .) ∈ BV (IRN) ∖W 1,1(IRN).
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PROBABILISTIC MODELS OF INTERFACES AND THEIR SCALING LIMIT

TAKAO NISHIKAWA

1. INTRODUCTION

We discuss the large scale hydrodynamic behavior of interfaces separating two distinct phases.
The problem of the phase separation was first investigated from microscopic aspect in mathe-
matically rigorous way by [2] for the Ising model in the low temperature regime. An interface
at macroscopic level called the Wulff shape was derived from ˙ spin systems described by the
finite volume canonical Gibbs measure with � spins’ boundary condition given the number of
sites occupied by C spins inside the domain. The Wulff shape is characterized by a variational
problem minimizing the total surface tension. The results of [2] have been generalized into
several directions afterward. However, there exist very few dynamic results, for instance, for
the Glauber or the Kawasaki dynamics in the low temperature regime, because of serious ana-
lytical difficulties. In order to explain microscopic motions of interfaces, [8] introduced several
simplified models including the Ginzburg-Landau r� interface model which is main object in
this talk.

2. GINZBURG-LANDAU r� INTERFACE MODEL

The Ginzburg-Landau r� interface model determines the stochastic dynamics of a dis-
cretized hypersurface separating two phases. The position of the hypersurface is described by
height variables � D f�.x/I x 2 � g measured from a fixed d -dimensional discrete hyperplane
� . We then admit an energy (Hamiltonian) to the interface � by:

(2.1) H.�/ D 1

2

X
x;y2�;

jx�yjD1

V.�.x/ � �.y//:

The potential V in the HamiltonianH is assumed to satisfy the conditions as follows:

(i) V 2 C 2.Rd /.
(ii) V is symmetric, i.e. V.�/ D V.��/ for all � 2 R.
(iii) There exist constants cC; c� > 0 such that

c� � V 00.�/ � cC; � 2 R
holds.

Once the energy H is introduced, the dynamics of the interfaces can be determined by means
of the Langevin equation

(2.2) d�t.x/ D � @H

@�.x/
.�t/ dt C p

2dwt.x/; x 2 �;

where fwt.x/I x 2 � g is a family of independent one dimensional Brownian motions. Here,
we take � D .Z=N Z/d or take � D ND \Zd with a bounded domainD � Rd with a smooth
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boundary. For the former, we consider (2.2) under the periodic boundary condition. For the
latter, we consider (2.2) under the Dirichlet boundary condition.
We regard the time evolution (2.2) as the motion of the microscopic interface. Let us consider

the macroscopic interface by changing the scale for time and space. We adopt the diffusive
scaling, that is, the scaling N 2 for time while N for space. More precisely, we consider we
consider the macroscopic interface hN defined by

hN .t; x=N / D �N 2t.x/; x 2 �

and with suitable interpolation. We then have the following:

Theorem 2.1 ([4] for periodic b.c., [7] for Dirichlet b.c.). We assume that hN .0/ converges to
some function h0 in L2-space. We then have that hN .t/ converges to h in L2-space for every
t � 0, where h is the unique weak solution for the nonlinear partial differential equation

(2.3)
@h

@t
D div Œ.r�/.rh/� :

with initial data h0, where � W Rd ! R is a function called “surface tension.”

Theorem 2.1 can be regarded as the law of the large numbers. The “central limit theorem” is
also established by [5], and the “large deviation principle” is established by [3]. Note that the
rate functional appearing at the latter has the representation

I.h/ D
Z t

0

����@h

@t
� div Œ.r�/.rh/�

����
2

L2

dt

if h W Œ0; T � � Rd ! R is smooth enough. Roughly saying, the relationship
P.hN ; h/ ; exp.�N d I.h//

holds asymptotically as N ! 1.
The function �.u/ appearing in (2.3) describes the energy of the macroscopic interface with

tilt u 2 Rd . We note that the equation (2.3) is the gradient flow with respect to the energy
functional

(2.4) ˙.h/ D
Z

�.rh.�// d�

in L2-space. The functional ˙ is called ”total surface tension,” which gives the total energy of
the interface h. These quantities are highly related to the equilibrium states for (2.2). Let us
consider the Gibbs measure on R� defined by

�� .d�/ D 1

Z�

exp.�H.�//
Y
x2�

d�.x/;

where d�.x/ is the Lebesgue measure on R and Z� is the normalizing constant. We note that
�� is the reversible measure for the stochastic dynamics (2.2). The surface tension � appearing
in (2.3) is defined via the limit of Gibbs measures as � " Zd . The total surface tension ˙

also appears in the static situation, the large deviation principle for the Gibbs measure. Taking
� D DN defined above and scaling only for space, the large deviation principle with the speed
N d and the rate functional ˙ of (2.4) is established in [1]. Roughly speaking, the relationship

�DN
.hN ; h/ ; exp.�N d ˙.h//
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holds asymptotically as N ! 1.

3. GINZBURG-LANDAU r� INTERFACE MODEL WITH A CONSERVATION LAW

Another dynamics can be associated with the HamiltonianH by considering the equation

(3.1) d�t.x/ D 	
@H

@�.x/
.�t/ dt C p�2	dwt.x/; x 2 �;

where 	 is the discrete Laplacian on � . The time evolution (3.1) can be regarded as the
Langevin equation on the space with different spatial structures, that is, the H �1 metric. We
emphasize that the dynamics (3.1) has a conservation law, that is, we haveX

x2�

�t.x/ �
X
x2�

�0.x/

by using Itô’s formula. In this sense, we can regard the time evolution (2.2) as the dynamics
corresponding to Glauber dynamics of the particle system (with no conservation law) or the
dynamics of type A in [6], and regard the time evolution (3.1) as the dynamics corresponding
to Kawasaki dynamics of the particle system (the total number of particle is conserved) or the
dynamics of type B in [6].
Let us consider the macroscopic interface via scaling. We remark that the suitable scaling for

the time evolution (3.1) is different from the diffusive one, that is, the scalingN 4 for time while
N for space. More precisely, we consider the macroscopic interface hN defined by

hN .t; x=N / D �N 4t.x/; x 2 �

and suitable interpolation. We then have the following:

Theorem 3.1 ([7] for periodic b.c.). We assume that hN .0/ converges to some h0 inH �1-space.
We then have that hN .t/ converges to h in H �1-space, where h is the unique weak solution for
the nonlinear partial differential equation

(3.2)
@h

@t
D �	div Œ.r�/.rh/� :

with initial data h0.

We note that the equation (3.2) is also the gradient flow with respect to the total surface
tension defined by (2.4) on theH �1-space.
The corresponding “large deviation” also holds, though some additional assumption is re-

quired.

Theorem 3.2. We assume that hN .0/ converges to some h0 in H �1-space. We also assume
that the spatial dimension is smaller or equal to 3. We then have that hN .t/ satisfies the large
deviation principle with the speed N d . Its rate functional has the representation

I.h/ D
Z t

0

����@h

@t
C 	div Œ.r�/.rh/�

����
2

H �1

dt

if h W Œ0; T � � Rd ! R is smooth enough.
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Remark 3.1. To describe the asymptotics like Theorems 3.1, 3.2, we need the information for the
equilibrium states for the stochastic dynamics (3.1) on the infinite lattice Zd . The information
which we already have is not sufficient to derive the result corresponding to Theorem 3.1 with
Dirichlet boundary condition, and the result corresponding to Theorem 3.2 with the arbitrary
spatial dimension. At present, they remain still open.

REFERENCES

1. J.-D. Deuschel, G. Giacomin, and D. Ioffe, Large deviations and concentration properties for r' interface
models, Probab. Theory Relat. Fields 117 (2000), 49–111.

2. R.L. Dobrushin, S.B. Kotecký, and S. Shlosman, Wulff construction: a global shape from local interaction,
AMS translation series 104 (1992), 115–137.

3. T. Funaki and T. Nishikawa, Large deviations for the Ginzburg-Landau r� interface model, Probab. Theory
Relat. Fields 120 (2001), 535–568.

4. T. Funaki and H. Spohn, Motion by mean curvature from the Ginzburg-Landau r� interface model, Com-
mun. Math. Phys. 185 (1997), 1–36.

5. G. Giacomin, S. Olla, and H. Spohn, Equilibrium fluctuations for r' interface model, Ann. Probab. 29 (2001),
1138–1172.

6. P.C. Hohenberg and B.I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys. 49 (1977), 435–475.
7. T. Nishikawa, Hydrodynamic limit for the Ginzburg-Landau r� interface model with boundary conditions,
Probab. Theory Relat. Fields 127 (2003), 205–227.

8. H. Spohn, Interface motion in models with stochastic dynamics, J. Stat. Phys. 71 (1993), 1081–1132.

－214－



Mathematical Analysis of Grain Boundary Motion

Models of Kobayashi-Warren-Carter Type

Noriaki Yamazaki

Department of Mathematics, Faculty of Engineering
Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, 221-8686, Japan

E-mail: noriaki@kanagawa-u.ac.jp

1 Introduction

This is a joint work with Akio Ito1 and Nobuyuki Kenmochi2.
In this talk we consider the following phase-field model of grain boundaries with con-

straint, denoted by (P):

(P)





ηt − κ∆η + g(η) + α′(η)|∇θ| = 0 a.e. in QT := Ω× (0, T ),

α0(η)θt − ν∆θ − div

(
α(η)

∇θ
|∇θ|

)
+ ∂I[−θ∗,θ∗](θ) 3 0 a.e. in QT ,

∂η

∂n
= 0, θ = 0 a.e. on ΣT := Γ× (0, T ),

η(x, 0) = η0(x), θ(x, 0) = θ0(x) for a.e. x ∈ Ω,

where Ω is a bounded domain in RN (N ≥ 1) with regular boundary Γ := ∂Ω, T > 0 is
a fixed finite time, κ > 0 and ν > 0 are given small constants, g(·), α(·) and α0(·) are
given functions on R, ∂I[−θ∗,θ∗](·) is the subdifferential of the indicator function I[−θ∗,θ∗](·)
on the closed interval [−θ∗, θ∗] with some constant θ∗ > 0, ∂/∂n is the outward normal
derivative on Γ, and η0(x), θ0(x) are given initial data.

The system (P) is called a grain boundary motion model of Kobayashi-Warren-Carter
type [12, 13]. In the dynamics of grain structure in various materials, the variable θ is an
indicator of the mean orientation of crystallines and the variable η is an order parameter
for the degree of crystalline orientational order; η = 1 implies the completely oriented
state and η = 0 is the state where no meaningful value of orientation exists. There are
many mathematical models of grain boundary formation. For some related works, we
refer to [3, 4, 15, 16].

In connection with this subject, the singular diffusion equations,

ut = div

( ∇u
|∇u|

)
, more generally, ut =

1

b(x)
div

(
a(x)

∇u
|∇u|

)
,

kindred to the second equation of (P), have been studied by a lot of mathematicians from
various view-points (cf. [1, 2, 5, 11, 14, 17]).

1Department of Electronic Engineering and Computer Science, School of Engineering,
Kinki University, Japan. E-mail: aito@hiro.kindai.ac.jp

2School of Education, Department of Education, Bukkyo University, Japan.
E-mail: kenmochi@bukkyo-u.ac.jp

－215－



Kobayashi et al. [12] considered η and θ as a polar coordinate system (η, θ) in two
dimensional space, and they proposed a grain boundary motion model (P) without con-
straint ∂I[−θ∗,θ∗](·). Moreover, in [12, 13], some numerical experiments were obtained
when ĝ(η) := 1

2
(1− η)2, α0(η) = α(η) = η2 and Ω is a bounded domain in R2.

Recently assuming that {η0, θ0} is a pair of good initial data in H1(Ω)×H1
0 (Ω), system

(P) without constraint ∂I[−θ∗,θ∗](·) was studied in [6, 7, 8] from the theoretical point of
view. In the case when α0 ≥ δ(> 0) on R for a positive constant δ, Ito et al. [6]
showed the existence-uniqueness of solutions to the one-dimensional model (P) without
∂I[−θ∗,θ∗](·) and with −κ∆η replaced by −(σηt + κη)xx, 0 < σ <∞, in the first equation.
Also in the case when α0 ≥ δ(> 0) on R, the authors [7] showed the existence of a global
solution to (P) without ∂I[−θ∗,θ∗](·) in higher dimensional spaces and the uniqueness in
one dimensional space. Furthermore the authors [8] constructed global weak solutions to
(P) without ∂I[−θ∗,θ∗](·) in the case when α0 ≥ 0 on R (namely, α0 is possibly degenerate)
and Ω is a bounded domain in RN (1 ≤ N ≤ 3).

In this talk we consider the problem (P) in the physical situation that the whole
region is already solidified and filled with some grains, so that we may assume that the
orientation angle θ has two threshold values −θ∗ and θ∗, where θ∗ is a prescribed positive
constant. Hence we take account of ∂I[−θ∗,θ∗](·) in the second equation of (P).

The main object of this talk is to show the global existence of a weak solution to (P)
in the case when [η0, θ0] is the initial data in L2(Ω) × L2(Ω). Moreover we establish a
result on the large-time behavior of solutions to (P), which was suggested by numerical
experiments in [12, 13].

2 Existence-uniqueness of solutions for (P)

Here we assume the following conditions:

(A1) α0 is a function in C2(R) such that α0 ≥ δ0 on R for a positive constant δ0.

(A2) α is a non-negative function in C1(R), whose derivative α′ is non-decreasing and
bounded on R such that α′(0) = 0.

(A3) g is a Lipschitz continuous function on R. Suppose that g ≤ 0 on (−∞, 0] and g ≥ 0
on [1,∞). Also we denote by ĝ a primitive of g, and assume that ĝ is non-negative
on R.

(A4) κ, ν and θ∗ are real positive constants.

(A5) η0 ∈ L2(Ω) with 0 ≤ η0 ≤ 1 a.e. on Ω, and θ0 ∈ L2(Ω) with |θ0| ≤ θ∗ a.e. on Ω.

Next we give a weak formulation for (P) in the variational sense.

Definition 2.1. Let 0 < T < ∞. Then, given initial data {η0, θ0} ∈ L2(Ω) × L2(Ω), a
pair {η, θ} of functions η : [0, T ] → L2(Ω) and θ : [0, T ] → L2(Ω) is called a solution of
(P) on [0, T ], if the following conditions are satisfied:

(i) η ∈ C([0, T ];L2(Ω))∩W 1,2
loc ((0, T ];L2(Ω))∩L∞loc((0, T ];H1(Ω))∩L2

loc((0, T ];H2(Ω)).
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(ii) θ ∈ C([0, T ];L2(Ω)) ∩W 1,2
loc ((0, T ];L2(Ω)) ∩ L∞loc((0, T ];H1

0 (Ω)), and |θ| ≤ θ∗ a.e. on
QT .

(iii) The following parabolic equation holds:

η′(t)− κ∆Nη(t) + g(η(t)) + α′(η(t))|∇θ(t)| = 0 in L2(Ω) for a.e. t ∈ (0, T ),

where η′ := dη
dt

and ∆N : D(∆N) := {z ∈ H2(Ω); ∂z
∂n

= 0 a.e. on Γ} −→ L2(Ω) is
the Laplacian with homogeneous Neumann boundary condition.

(iv) For a.e. t ∈ (0, T ) the following variational inequality holds:

(α0(η(t))θ′(t), θ(t)− z) + ν (∇θ(t),∇θ(t)−∇z)

+

∫

Ω

α(η(x, t))|∇θ(x, t)|dx ≤
∫

Ω

α(η(x, t))|∇z(x)|dx,
∀z ∈ H1

0 (Ω) with |z| ≤ θ∗ a.e. in Ω,

where θ′ := ∂θ
∂t

and (·, ·) is the standard inner product in L2(Ω).

(v) η(0) = η0 and θ(0) = θ0 in L2(Ω).

A pair {η, θ} of functions η : [0,∞) → L2(Ω) and θ : [0,∞) → L2(Ω) is called a
solution of (P) on [0,∞) or a global (in time) solution of (P), if it is a solution of (P) on
[0, T ] for every finite T > 0.

The first main result of this talk is concerned with an existence of solutions for (P).

Theorem 2.2 (cf. [9]). Assume (A1)–(A5) hold, and let T be any finite positive real
number. Then there is at least one solution {η, θ} of (P) on [0, T ] in the sense of Definition
2.1, and η satisfies 0 ≤ η ≤ 1 a.e on QT .

Also the next main result is concerned with a uniqueness of solutions for (P).

Theorem 2.3 (cf. [9]). Assume (A1)–(A4), η0 ∈ H1(Ω) with 0 ≤ η0 ≤ 1 a.e. on
Ω, θ0 ∈ H1

0 (Ω) with |θ0| ≤ θ∗ a.e. on Ω, and the space dimension of Ω is one, i.e.,
Ω = (−L,L) for a positive number L. Then the solution {η, θ} obtained by Theorem 2.2
is unique.

3 Large-time behavior of solutions to (P)

In this section we discuss the large-time behavior of solutions to (P) as t→∞.
Now we consider the steady-state system for (P), which is of the form:

(S)





−κ∆η + g(η) + α′(η)|∇θ| = 0 in Ω

−ν∆θ − div

(
α(η)

∇θ
|∇θ|

)
+ ∂[−θ∗,θ∗](θ) 3 0 in Ω

∂η

∂n
= 0, θ = 0 on Γ
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A pair of functions {η, θ} is a solution of (S), called a steady-state solution of (P), if and
only if θ = 0 in L2(Ω) and −κ∆Nη+ g(η) = 0 in L2(Ω). In fact, let {η, θ} be any solution
of (S). Then it follows from the second equation of (S) that

ν

2
‖∇θ‖2

L2(Ω) +

∫

Ω

α(η)|∇θ|dx = min
z∈H1

0

{
ν

2
‖∇z‖2

L2(Ω) +

∫

Ω

α(η)|∇z|dx+

∫

Ω

I[−θ∗,θ∗](z)dx
}
,

where ‖ · ‖L2(Ω) is the inner product in L2(Ω). The above minimum is 0 and is taken at
z = 0. Hence θ = 0 and the first equation of (S) is −κ∆Nη + g(η) = 0 in L2(Ω). Also it
is clear that any pair of functions θ = 0 and η satisfying −κ∆Nη + g(η) = 0 in L2(Ω) is
a solution of (S).

Here, for simplicity, we denote by S0 the set of all solutions of (S), namely

S0 := {{η, 0}; η ∈ D(∆N),−κ∆Nη + g(η) = 0 in L2(Ω)}.

Then we have the following third main result of this talk, which is concerned with the
large-time behavior of solutions to (P) as t→∞.

Theorem 3.1 (cf. [10]). Assume (A1)–(A5) hold, and let {η, θ} be a solution of (P) on
[0,∞). Denote by ω(η, θ) the ω-limit set of {η(t), θ(t)} as t→∞, namely

ω(η, θ) :=

{
{ξ, z} ∈ L2(Ω)× L2(Ω)

∣∣∣∣
η(tn)→ ξ in L2(Ω), θ(tn)→ z in L2(Ω)

for some tn with tn ↑ ∞
}
.

Then ω(η, θ) ⊂ S0.

Note that the solution of (S) is not unique, namely, the set S0 is not a singleton in
general, because of the term g(η). So, we assume the additional condition for g. Then we
have the following main result, which is concerned with the asymptotic convergence of all
solutions of (P) as t→∞ in a special case of g.

Theorem 3.2 (cf. [10]). In addition to (A1)–(A5), suppose that g < 0 on [0, 1) and
g(1) = ĝ(1) = 0. Let {η, θ} be any solution of (P) on [0,∞). Then

η(t) −→ 1 in H1(Ω) and θ(t) −→ 0 in H1
0 (Ω) as t→∞, (3.1)

and the convergence (3.1) is uniform with respect to all the initial data {η0, θ0}, and {1, 0}
is a unique steady–state solution of (P).
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MOTION BY CURVATURE OF PLANAR CURVES WITH TWO
FREE END POINTS

JONG-SHENQ GUO

In this talk, we shall present a recent joint work with Xinfu Chen on the following

problem on the evolution of planar curves.

Problem (P): Given an initial curve Γ(0), find a family of curves {Γ(t)}0<t<T that

lie on the upper-half plane, have end points on the x-axis with contact angle ψ− on

the left and ψ+ on the right, and evolve according to the motion by curvature; see

Figure 1 (a).

Ψ+Ψ-

W+ HtL

WHtL

GHtL
Π-Ψ+Π-Ψ-

W+HtL

WHtLPHtL QHtL

W-HtL

(a) (b)

Figure 1. Figure (b) is a schematic snap shot of a diminishing grain

domain Ω(t) surrounded by two other grain domains Ω+(t) and Ω−(t);

the dots P (t) and Q(t) are the so-called triple junctions of three grain

domains. When Ω(t) is symmetric about the x-axis, figure (a), modelled

by problem (P), is the upper-half part of figure (b)

One motivation of our investigation of problem (P) originates from the study of

evolution of grain domains in polycrystals. Here by a grain it refers to a periodic

lattice structure of composite particles of a crystal; see Angenent and Gurtin [7, 27],

Herring [28, 29], Mullins [38, 39, 40], Sutton and Baluffi [45], Woodruff [46], as

well as Kobayashi, Warren, and Carter [34, 35, 36] for more physical background.

In such a sense, all grains are physically and chemically identical, except their

orientations. A grain boundary is the intersection of two grain domains at which

orientations of different lattices do not match. Similarly, a triple junction is the

meeting place of three grain domains. It is commonly believed that at a triple

Keywords: Motion by curvature, contact angle, triple junction, self-similar solution.
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junction, the intersection angles are fixed, a principal quite often called the Herring

condition [28, 29] (under such a principal, we indeed should have ψ+ = ψ−). Grain

boundaries are often modelled by the (mean) curvature flows; see the theoretical

and laboratorial studies of the group of Adams, Ta’asan, Kinderlehrer, Livshits,

Manolache, Mason, Wu, Mullins, Rother, Rollett and Saylor [2, 3, 32], and also

mathematical oriented studies of Bronsard and Retich [11], Kinderleherer and Liu

[31], Mantegazza, Novaga and Tortorelli [37].

It is observed that the evolution of grain boundaries makes a network of grains

topologically simpler and simpler. This is achieved by diminishing of grains; cre-

ation of grains is very rare, except at very early stage of the formation of polycrys-

tals. Here in this paper we consider a mostly observed scenario depicted in Figure

1 (b). Due to the mathematical challenge, here we shall focus only on a situation

where Ω(t) is symmetric about the x-axis. Then the evolution of the grain boundary

between Ω(t) and Ω+(t) is described in the Problem (P).

When no triple junctions are involved, mathematically one studies the curvature

flow of a simple closed curve (the boundary of a bounded smooth domain). A

fundamental result in this direction is that of Grayson [25] who proved that the

curvature evolution of a simple smooth curve remains simple and smooth until it

shrinks to a single point; in addition, in its final stage the curve, after an appropriate

magnification, becomes closer and closer to a circle. Here we shall prove a similar

result: Ω(t) shrinks to a single point in an asymptotically self-similar manner.

In the literature, there have been many studies on the (mean) curvature flow of

non-simple curves (or hypersurfaces in higher spatial dimension), notably the work

of Brakke [9], Evans and Spruck [18, 19, 20, 21], Chen, Giga and Goto [15]. In these

studies, either there is non-uniqueness, such as the varifold solution [9, 30], or there

is uniqueness, such as the viscosity solution [18, 15], but the uniqueness is obtained

in a sense by taking the union of all Brakke’s varifold solutions [30]. There is also

an approach by regarding the curvature flow as the limit of a scalar Allen-Cahn

equation [4, 10, 13, 16, 23, 22, 30, 41, 42]; however, the scalar Allen-Cahn equation

[4] can model only two grains.

Thus, in the study of (mean) curvature flow, the existence theory established in

[9, 18, 15, 30, 44] on the one hand are beautiful and complete in modelling two

phase problems such as the phase transition between liquid and solid; on the other

hand, the uniqueness for multiple (> 3) phase problems has to be reconsidered.

For evolution of grains in polycrystals, for example, one has to take into account

conditions at triple junctions [11, 37, 31, 42]. Indeed, this is another motivation

of this work. In addition to an earlier work [14], we intend to address relevant

problems in resolving non-uniqueness in the classical curvature flow.
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In this talk, we shall first review some background of problem (P) and some

known results related to problem (P). Then, we establish, using an elementary

scalar PDE approach, local in time existence of a unique solution for any C1+α

(α > 0) initial curve Γ(0); such a result is indeed established earlier in [12] using a

sophisticated semi-group theory and in [11, 37] using a system of parabolic equa-

tions. Next, we show that there exists a unique self-similar solution, following the

discussion of our earlier paper [14] and also Abresch and Langer [1]; as a byproduct

we supply an analytic proof for the monotonicity of a period function originally

proven by Abresch and Langer [1] with the help of numerical verifications of certain

quantities. Finally, we show that Γ(t) shrinks to a point in a self-similar manner.

Due to technical difficulties, we assume that ψ± ∈ (0, π/2) and initially Γ(0) is a

graph y = u0(x). We expect the same conclusion holds for a generic simple initial

curve and positive ψ± satisfying ψ+ + ψ− < π. We leave this important extension

as an open problem.

References

[1] U. Abresch, J. Langer, The normalized curve shortening flow and homothetic solutions, J.

Diff. Geometry 23 (1986), 175–196.

[2] B.L. Adams, S. Ta’asan, D. Kinderlehrer, I. Livshits, D.E. Mason, C.-T. Wu, W.W. Mullins,

G.S. Rother, A.D.Rollett & D.M. Saylor, Extracting grain boundary and surface energy

measurement of triple junction geometry, Interface Science 7 (1999), 321–338.

[3] B.L. Adams, D. Kinderlehrer, W.W. Mullins, A.D.Rollett & S. Ta’asan, Extracting the rela-

tive grain boundary free energy and mobility function from the geometry of microstructures,

Scripta Materialia 38 (1998), 531–536.

[4] S. Allen and J.W. Cahn, A microscopic theory for antiphase boundary motion and its appli-

cation to antiphase domain coarsening, Acta. Metall. 27 (1979), pp. 1084-1095.

[5] S.J. Altschuler, Singularities of the curve shrinking flow for space curves, J. Diff. Geometry

34 (1991), 491-514.

[6] S. Angenent, On the formation of sinularities in the curve shortening flow, J. Diff. Geometry

33 (1991), 601-633.

[7] S. Angenent & M.E.Gurtin, Multiphase thermomechanics with interfacial structure. 2. Evo-

lution of an isothermal interface, Arch. Rat. Mech. Anal. 108 (1989), 323–391.

[8] G. Bellettini & M. Novoga, Curvature evolution of nonconvex lens-shaped domains, J. Reine

Angew. Math. (to appear).

[9] K.A. Brakke, The Motion of A Surface by Its Mean Curvature, Princeton Univ.

Press, Princeton, 1978.

[10] L. Bronsard & R. Kohn,Motion by mean curvature as the singular limit of Ginzburgh-Landau

dynamics, J. Diff. Equations 90 (1991), 211-237.

[11] L. Bronsard & F. Reitich, On three-phase boundary motion and the singular limit of a vector

valued Ginzburg-Landau equation, Arch. Rat. Mech. Anal. 124 (1993), 355–379.

－222－



JONG-SHENQ GUO

[12] Y.-L. Chang, J.-S. Guo & Y. Kohsaka, On a two-point free boundary problem for a quasilinear

parabolic equation, Asymptotic Anal. 34 (2003), 333–358.

[13] Xinfu Chen, Generation and Propagation of interface in reaction–diffusion equations, J.

Diff. Eqns. 96 (1992), 116–141.

[14] Xinfu Chen & J.-S. Guo, Self-similar solutions of a 2-D multiple phase curvature flow,

preprint.

[15] Y.G. Chen, Y. Giga & S. Goto, Uniqueness and existence of viscosity solution of generalized

mean curvature flow equations, J. Diff. Geom. 33 (1991), 749–786.

[16] P. De Mottoni and M. Schatzman, Development of interfaces in RN , Proc. Roy. Soc. Edin-

burgh Sect. A 116 (1990), pp. 207-220.

[17] E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.

[18] L.C. Evans & J. Spruck, Motion of level sets by mean curvature I, J. Diff. Geom., 33 (1991),

635–681.

[19] L.C. Evans & J. Spruck, Motion of level sets by mean curvature II, Trans. Amer. Math. Soc.

330 (1992), 321–332.

[20] L.C. Evans & J. Spruck, Motion of level sets by mean curvature III, J. Geom. Anal. 2 (1992),

121-150.

[21] L.C. Evans & J. Spruck, Motion of level sets by mean curvature IV, J. Geom. Anal. 5 (1995),

77-114.

[22] L. C. Evans, H.M. Soner & P.E. Souganidis, The Allen–Cahn equation and the generalized

motion by mean curvature, Commun. Pure & Appl. Math. XLV (1992), 1097–1123.

[23] P.C. Fife, Dynamics of Internal Layers and Diffusive Interfaces, CBMS-NSF

Regional Conf. Ser. in Appl. Math., SIAM, Philadelphia, PA, 1988.

[24] A. Friedman & B. McLeod, Blow-up of solutions of nonlinear degenerate parabolic equations,

Arch. Rational Mech. Anal. 96 (1986), 55-80.

[25] M.A. Grayson, The heat equation shrinks embedded plane curves to round points, J. Diff.

Geom. 26 (1987), 285–314.

[26] J.-S. Guo and B. Hu, On a two-point free boundary problem, Quarterly Appl. Math. (in

press).

[27] M. Gurtin, Thermomechanics of evolving phase boundaries in the plane, Oxford

Science Publication, London, 1993.

[28] C. Herring, Surface tension as motivation for sintering, The Physica of Powder Met-

allury, (W. Kingston ed.), McGraw-Hill, New York, 1951.

[29] C. Herring, The use of classical macroscopic concepts in surface-energy problems, Struc-

ture and Properties of Solid Surfaces, (R. Gomer & S. Smith eds), U. Chicago Press,

Chicago, 1952.

[30] T. Ilmanen, Elliptic Regularization and Partial Regularity for Motion by

Mean Curvature, Mem. Amer. Math. Soc. vol 108 (520), AMS, 1994.

[31] D. Kinderlehrer & C. Liu, Evolution of grain boundaries, Math. Models Methods Appl. Sci.

11 (2001), 713–729.

[32] D. Kinderlehrer, I. Livshits, F. Manolache, A.D. Rollett & S. Ta’asan, An approach to the

mesoscale simulation of grain growth, in Influences of interface and dislocation

behavior on microstructure evolution (Aindow, M. et al., eds), Mat. Res. Soc. Symp.

Proc. 652, 2001.

－223－



MOTION BY CURVATURE

[33] O.A. Ladyzenskaya, V.A. Solonnikov & N.N. Uraĺtzeva, Linear and quasilinear equa-
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The equation which is the topic of my talk

ut −
d

dx
(sgn (ux)) = 0, u(a) = A, u(b) = B. (1)

is a one -dimensional example of the total-variation flow. The motivations to study this problem
is twofold: a) image analysis; b) crystal growth problems. There are different physically relevant
models where, a similar to ours surface energy appears, but the corresponding evolutionary problem
is not necessarily set up, see e.g. [ABCM, AMM, BL].

The mentioned above formal interpretation of (1) as a steepest descent of the total variation permits
to write equation (1) as a gradient flow ut ∈ −∂E(u) for a functional E. This is why we can apply
the abstract nonlinear semigroup theory of Komura to obtain existence of solutions. However, the
generality of this tool does not permit to study fine points of solutions to (1).

Solutions to (1) enjoy interesting properties, Fukui and Giga, [FG], have noticed that facets, i.e.
flat parts of the solution, persist provided that they have zero slope. Zero is exactly the point of
singularity of function | · |. This is why the problem of facet evolution is not only nonlocal but highly
anisotropic. Our equation (1) is at least formally parabolic of the second order. The above behavior
of solutions we call the sudden directional diffusion.

As we have already mentioned some properties of facets were established in [FG], e.g. their finite
speed of propagation was calculated. What is missing is the description of the process how they merge
and how they are created. In [MR1] we studied a problem similar to (1). There we worked with a
simplification of the flow of a closed curve by mean weighted curvature. The main difference is that
here we deal with Dirichlet boundary conditions which lead to a very big set of stationary solutions,
more exactly every sufficiently smooth monotone function satisfying the boundary condition is an
equilibrium. In [MR1] we had one attracting equilibrium.

In [MR1] we have shown existence of a global in time solution to a related problem. We also
studied their asymptotics. More precisely we have shown existence of so-called almost classical
solutions, i.e. there is a finite number of time instances when the time derivative does not exist,
however, the right time derivative is always well-defined. In addition, for all except those special time
instances the solution at t is differentiable in space except for a finite number of points. Furthermore,
in [MR1] we studied a discretization of the flow, we used the implicit Euler scheme in time. As a
result we had a sequence of elliptic problems. We also showed that facets naturally arise in the elliptic
problem, we also suggested that this leads to appearance of facets in the dynamics problem, but we
did not present a rigorous proof. We do this here for a slightly different problem. Our approach is as
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follows. We notice that the implicit discretization leads to a series of Yosida approximations to the
operation on the RHS of (1). We can study them quite precisely, because we can consider variable
time steps. As a result we can capture the moment when two facets merge. We do not perform any
further special considerations.

We want to see how the regularity is transported from the semidiscretized problem to the solution
of the evolution equation. We exploit the close relationship of the semi-discretization and Yosida
approximation.

Our main goal is monitoring the evolution of the facets and a precise description of the regu-
larity of solutions to (1), which we construct here. For this purpose we apply methods, which are
distinctively different from those in the literature. We develop ideas which appeared in our earlier
works.

Our approach applies the implicit Euler scheme to (1), which results in the problem

un+1 = un + h
d

dx

(
sgn (un+1

x )
)
. (2)

This process resembles looking for a good notion of a weak solutions to a PDE. Since we came up
with an integral equation we will call its solutions mild ones. We are able to show that the mild
solutions are unique.

Secondly, (2) may be interpreted as an Euler-Lagrange equation for a non-standard variational
functional. Namely we set

J (u) =
{ ∫ b

a |Du| if u ∈ D(J ) ≡ {u ∈ BV (a, b), u(a) = A, u(b) = B},
+∞ L2(a, b) \D(J ),

where
∫ b
a |Du| is the total variation of measure Du. Then, (2) may be seen as

un ∈ un+1 + h∂J (un+1), (3)

where ∂J is the subdifferential of J . It is not difficult to see that the well-established convex analysis
will yield existence of a unique solution to inclusion (3). This solution will be called variational.
Since variational solutions are stronger (we shall see this), thus both solutions coincide.

Thus, no matter which point of view we adopted, un+1 is given as the action of the nonlinear
resolvent operator R(1/h, A) on un, i.e.

un+1 = R(1/h, A)(un) ≡ (Id + hA)−1(un),

where A = − ∂
∂xsgn ∂

∂x . However, the notion of a mild solution does not permits us to interpret (2)
easily. On the other hand, by convex analysis we can see (2) as an inclusion.

The definition of the nonlinear resolvent operator leads to a detailed study of J . One of our results
is a characterization of solutions to (2). The advantage of (2) is that it permits to monitor closely the
behavior of the facets. It says that the regularity propagates. That is, if un is such that un

x belongs to the
BV space and the number of connected components of the properly understood set {x : un

x(x) = 0}
is finite, then un+1

x has the same property.
It is well-know that the nonlinear resolvent leads to Yosida approximation, which is the key object

in the construction of the nonlinear semigroup in the Komura theory. Namely, we set

Aku = k(u−R(k, A)u). (4)
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Our observation is that a maximal monotone multivalued operator like sgn taking values in [0, 1] may
be composed with a multifunction properly generalizing a function of bounded total variation. We
shall describe here this composition denoted by ◦̄. We introduced such an operation in [MR1], see
also [MR2]. We also point to an essential difficulty here, which is the problem of composition of
two multidimensional operator. Even if both of them are maximal monotone the result need not be
monotone nor single valued. If the outer on the two operators we compose is a subdifferential, then
we expect that the result is closely related to the minimal section of the subdifferential.

One of our main results says that Aku defined by (4) indeed converges to − ∂
∂xsgn ◦̄ux. In this

way we justify correctness of the new notion. Due to the “explicit” nature of ◦̄ we may describe better
the regularity of solutions to (2).

Once we constructed the Yosida approximation we show existence on short time intervals of solu-
tion to the approximating problem un

t = Ak(un), where un(t0) is given. In fact, the methods is close
in spirit to the construction of the nonlinear semigroup.

Next, we show convergence of the approximate solutions. Here, we use the full power of the
Yosida approximation to capture the finite number of time instances when the solution u(t) is just
right differentiable with respect to time, otherwise the derivative exists. The point is that we can
control the discretization parameter h in (2), so that we can monitor the time instances when facets
merge.

Finally, we present numerical simulations. They are based upon the semidiscretization. Since they
present a series of time snapshots, these pictures contain only the round-off error. At each time step
there is no discretization error.

The talk is based on joint results [KMR] with Karolina Kielak and Piotr Rybka.
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Variational problems using total variation defined by noneuclidean norms.

William K. Allard

Abstract

Let Φ be a norm on Rn. It is clear that one can extend the classical notion of a function of bounded
variation on an open subset Ω of Rn, defined using the euclidean norm, by replacing this euclidean norm
with Φ. There are a number of reasons for doing this; for example, if one uses graph cut methods to compute
classical total variation regularization one must replace the euclidean norm by a polygonal approximation.
In this talk I will describe recent work with Kevin Vixie wherein we prove natural analogues of most of
the results of the my papers Total variation regularization for image denoising: I, II, III, which recently
appeared in SIAM Journal on Mathematical Analysis and SIAM Journal on Imaging Sciences,
at least when n = 2, in the case where the euclidean norm is replaced by Φ. Our methods break down when
n > 2. It is would be interesting to know what happens when n > 2.
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p-HARMONIOUS FUNCTIONS, ASYMPTOTIC MEAN
VALUE PROPERTIES,

AND TUG-OF-WAR GAMES WITH NOISE

TUTORIAL LECTURES AND INTERNATIONAL WORKSHOP “SINGULAR
DIFFUSION AND EVOLVING INTERFACES”

HOKKAIDO UNIVERSITY
BY

JUAN J. MANFREDI

The fundamental works of Kolmogorov, Ito, Kakutani, Doob, Hunt, Lévy,
and many others have shown the profound and powerful connection between
classical linear potential theory and the corresponding probability theory.
The idea behind the classical interplay is that harmonic functions and mar-
tingales share a common thread in mean value properties. In these two
lectures, we will see how this approach tuns out to very useful in the non-
linear theory as well.

In this notes we present extended abstract or the lectures and a bibliog-
raphy of relevant papers. These notes are based on the joint papers [MPR],
[MPR2], [MPR3], and [MPR4] with Mikko Parviainen (Helsinki) and Julio
Rossi (Buenos Aires), and on the 2010 doctoral thesis of Alexander Sviridov
[S].

Part 1. T

his is the first draft of these notes. All errors are the exclusive responsi-
bility of the author.

Lecture 1: A survey of p-harmonious functions in trees and in
Euclidean space

1. The p-Laplacian Gambling House. Start with a set X endowed with
a σ-algebra B. Decompose

X = X ∪ Y

as a disjoint union of two non-empty sets X and Y . We shall call X the
interior and Y the boundary. For each point x ∈ X we have a nonempty
set S(x) ⊂ X of successors of x. For points y ∈ Y we require that S(y) =
{y}. Moreover, the set S(x) comes equipped with a probability measure
supported in S(x) denoted by μ(x). For points y ∈ Y on the boundary we
have that μ(y) = δy.
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We are given non-negative numbers α and β so that α + β = 1 and a
pay-off function F : Y �→ R.

At every point x ∈ X we have a family of probability measures Γ(x) in
(X,B) given by

(1.1) Γ(x) =
{α

2
(δxI + δxII ) + β μ(x) : xI , xII ∈ S(x)

}
To play a Tug-of-War game with noise starting at a point x0 ∈ X, choose
a probability γ0[x0] ∈ Γ(x0). The next position x1 ∈ S(x0) is is selected
according to γ0[x0]. Once x0 and x1 are chosen, we pick a probability
γ1[x0, x1] ∈ Γ(x1) to determine the next game position x2 ∈ S(x1). In
this manner we determine a particular history

x = (x0, x1, x2, . . . ) ∈ X × X × · · · × X × · · · = X∞.

The game ends when we reach the boundary Y since once xj ∈ Y we have
xj+1 ∈ S(xj) = {xj}. We write

τ(x) = inf{k : xk ∈ Y }
for the first time we hit the boundary with the understanding that τ(x) = ∞
if the boundary is never reached. If the game ends at a point y ∈ Y the
pay-off value is F (y).

Let us denote by Bj the product σ-algebra in Xj and by B∞ the σ-algebra
in X∞ generated by the cylinder sets

A0 × A1 × · · · × Aj × X × X × · · · ,

where Ak ∈ Bk for k = 0, 1, . . . , j.

Applying the Kolmogorov-Tulcea construction, it follows that there exists
a unique probability measure Px0

σ in (X∞,B∞) with transition probabilities

(1.2) Px0
σ ({xj+1 ∈ A} | Bj+1) = γj [x0, x1, . . . , xj ]

We call the collection of probability measures

σ = (γ0[x0], γ1[x0, x1] . . . , γk[x0, x1 . . . xk], . . .)

a strategy.

This formalism, coming from [MS], is equivalent to the presentation in
[PSSW]. In this paper a strategy S is a collection of mappings σj : Xj+1 �→ X
indicating the next move xj+1 = σj(x0, x1, . . . , xj) given the partial history
(x0, x1, . . . , xj). A pair of strategies SI and SII and a starting point deter-
mine a family of measures

{Px0
SI ,SII

}x0∈X

that describe the game played under this pair of strategies. That is, the
players choose either xI or xII to move there in case they win the coin
toss. Their choices determine the probability measures γ[x0, x1, . . . , xk]
given (x0, x1, . . . , xk−1) and vice versa. Player I will try to choose points
xI to maximize the pay-off while player II will try to choose points xII to
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minimize the pay-off. Each pair of strategies (SI , SII), SI for player I and
SII for player II as in [PSSW], determine a strategy in this sense and vice
versa. We write

σ = (SI , SII)

Having fixed a strategy σ and assuming, as we do from now on, that the
game ends a. s.

(1.3) Px0
σ (τ(x) < ∞) = 1,

we average with respect to Px0
σ to obtain the expected pay-off for the Tug-

of-War game starting at x0

(1.4) uσ(x0) = Ex0
σ [F (xτ )].

To write down the mean value property satisfied by uσ we condition on the
first move using (1.2) with j = 0.

Lemma 1. ( [MS], Chapter 2) The value function uσ(x) satisfies the mean
value property

(1.5) uσ(x) =
α

2
(
uσ[xI ](xI) + uσ[xII ](xII)

)
+ β

∫
S(x0)

uσ[y](y) dμ(y)

Here the conditional strategy σ[y0] is defined as follows for y0 ∈ S(x0)

σ[y0] = (γ1[x0, y0], γ2[x0, y0, y1] . . . , γk[x0, y0, y1 . . . yk], . . .)

so that Py0

σ[y0] is the conditional distribution of (x2, x3, . . . ) given that x1 =
y0.

Let us stop and consider the particular case when α = 0 and β = 1. In
this case –the linear case– the strategies are irrelevant since Γ(x) is always
μ(x) so that there is only one family of measures {Px0}x0∈X. We recover the
classical mean value formula

u(x) =
∫

S(x)
u(y) dμ(y).

But the case of interest to us is when we have α �= 0. In this case the value
function for player I is

uI(x) = sup
SI

inf
SII

Ex
σ[F (xτ )]

and for player II
uII(x) = sup

SII

inf
SI

Ex
σ[F (xτ )].

Player I lets Player II choose a strategy, presumably to decrease Ex0
σ [F (xτ )],

and then do as best a possible. Notice that we always have

uI(x) ≤ uII(x) for all x ∈ X.

It turns out that in many cases the game has a value; that is

(1.6) uI(x) = uII(x) for all x ∈ X,
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and that this function satisfies a version of the Mean Value Property (1)
given by

(1.7) u(x) =
α

2

(
sup

y∈S(x)
u(y) + inf

y∈S(x)
u(y)

)
+ β

∫
S(x)

u(y) dμ(y).

Equation (1.7) is the Dynamic Programming Principle or DPP for short.
Next, we will present two scenarios in which all the details above have been
worked out.

2. p-harmonious functions. Consider a bounded Lipschitz domain Ω ⊂
Rn and fix ε > 0. To prescribe boundary values, let us denote the compact
boundary strip of width ε by

Γε = {x ∈ Rn \ Ω : dist(x, ∂Ω) ≤ ε}.
Let X = Ω with the Borel σ-algebra, X = Ω\Γε and Y = Γε. The successors
of x are S(x) = Bε(x) = {y ∈ Rn : |y − x| ≤ ε} and the measure μ(x)
is just the Lebesgue measure restricted to S(x) and normalized so that
μ(x)(S(x)) = 1. As it will be clear later on, we take α and β to be

(1.8) α =
p − 2
p + n

, and β =
2 + n

p + n
.

Notice that since α ≥ 0 we necessarily have p ≥ 2.

We are given a bounded Borel pay-off function F : Γε → R and play the
Tug-of-War game with parameters α and β and obtain value functions uε

I
and uε

II , where we have chosen to emphasize the dependence on the step
size ε. The following results are from [MPR2]:

Theorem 2. The value functions uε
I and uε

II are p-harmonious in Ω with
boundary values F : Γε → R; that is, they both satisfy

uε(x) =
α

2

{
sup

Bε(x)

uε + inf
Bε(x)

uε

}
+ β

∫
Bε(x)

uε dy for every x ∈ Ω,

(1.9)

and

uε(x) = F (x), for every x ∈ Γε.

The existence of p-harmonious functions with given boundary values is
obtained by playing the Tug-of-War games with noise. Uniqueness follows
by using martingales, although the equation is not linear. This was first
proved to the best of my knowledge in [PSSW] for p = ∞.

For finite p whether the original Tug-of-War game with noise described in
[PS] has a value is an open problem. For our modified version of the p-game
we do have a value. The key is to judiciously choose strategies so that
we can bring martingales into play.
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Lemma 3. Let vε be p-harmonious such that F ≤ vε on Γε. Player I
chooses an arbitrary strategy SI and player II chooses a strategy S0

II that
almost minimizes vε,

vε(xk) ≤ inf
y∈Bε(xk−1)

vε(y) + η2−k.

Then Mk = vε(xk) + η2−k is a supermartingale for any η > 0 and uε
I ≤ vε.

We can now see how the inequality at the boundary literally walks into
the interior by using Doob’s optional stopping theorem for martingales

uε
I(x0) = sup

SI

inf
SII

Ex
SI ,SII

[F (xτ )]

≤ sup
SI

Ex0

SI ,S0
II

[vε(xτ ) + η2−τ ]

≤ sup
SI

Ex0

SI ,S0
II

[Mτ ]

≤ sup
SI

M0 = vε(x0) + η

An extension of the above technique gives the uniqueness of the value func-
tion.

Theorem 4. [MPR2] The game has a value. That is uε
I = uε

II .

Most importantly for our purposes is the fact the p-harmonious functions
satisfy the Srong Comparison Principle:

Theorem 5. [MPR2] Let Ω ⊂ Rn be a bounded domain. and let uε and vε

be p-harmonious with boundary data Fu ≥ Fv in Γε. Then if there exists a
point x0 ∈ Ω such that uε(x0) = vε(x0), it follows that uε = vε in Ω, and,
moreover, the boundary values satisfy Fu = Fv in Γε.

To prove that p-harmonious functions converge to the unique solution
of the Dirichlet problem for the p-Laplacian in Ω with fixed continuous
boundary values, we assume that Ω is bounded and satisfies the exterior
cone condition.

Theorem 6. [MPR2] Consider the unique viscosity solution u to

(1.10)

{
div(|∇u|p−2∇u)(x) = 0, x ∈ Ω

u(x) = F (x), x ∈ ∂Ω,

and let uε be the unique p-harmonious function with boundary values F .
Then

uε → u uniformly in Ω as ε → 0.

The above limit only depends on the values of F on ∂Ω, and therefore
any continuous extension of F |∂Ω to Γε0 gives the same limit.
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The key to prove this theorem is to pass from the discrete setting of p-
harmonious functions to the continuous case of p-harmonic functions. This
is done by means of a characterization of p-harmonic functions in terms of
asymptotic mean value properties.

Theorem 7. [MPR] Let u ∈ C(Ω) such that for all x ∈ Ω we have

α

2

(
sup
Bε(x)

u + inf
Bε(x)

u

)
+ β −

∫
Bε(x)

u = u(x) + o(ε2), as ε → 0.

Then u is p-harmonic in Ω. Here α and β are chosen as in (1.8).

The converse of this theorem holds if we weaken the asymptotic expansion
to held only in the viscosity sense. See [MPR] for details. Antoher approach
to pass from the discrete to the continuous for fully-nonlinear equations has
been given by Kohn and Serfaty [KS] by using a deterministic control theory
approach.

3. Directed Trees. Consider the simplest case of ternary trees. We fol-
low the formalism developed in [KLW]. A directed tree T with regular
3-branching consists of the empty set ∅ as the top vertex, 3 sequences of
length 1 with terms chosen from the set {0, 1, 2}, 9 sequences of length 2
with terms chosen from the set {0, 1, 2},. . . , 3r sequences of length r with
terms chosen from the et {0, 1, 2} and so on. The elements of T are the
vertices. Each vertex v al level r has three successors

S(v) = {v0, v1, v2}.
Let u : T �→ R be a real valued function. The gradient of u at the vertex v
is the vector in R3

∇u(v) = (u(v0) − u(v), u(v1) − u(v), u(v2) − u(v)).

The divergence of a vector X = (x, y, z) ∈ R3 is

div(X) = x + y + z.

A function u is harmonic if it satisfies the Laplace equation

(1.11) div(∇u) = 0.

Observe that a function u is harmonic if and only if it satisfies the mean
value property

u(v) =
1
3
(u(v0) + u(v1) + u(v2))

A branch of T is an infinite sequence of vertices, each followed by one of
its immediate successors. We denote a branch b starting at the vertex b1

as follows b = (b1, b2, . . . , br, . . .). The collection of all branches forms the
boundary of the tree T is denoted by ∂T . By using an expansion in base
three we see that we can identify ∂T with the interval [0, 1]. Note that the
classical Cantor set C is the subset of ∂T formed by branches that don’t go
through any vertex labeled 1.
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Set X = T ∪∂T , X = T and Y = ∂T . The measure μ(v) is the normalized
counting measure in S(v)

μ(v) =
1
3

(δv0 + δv1 + δv2) .

The pay-off function F : ∂T �→ R is defined on the unit interval [0, 1]. We
are ready to play games in T .

Think of a random walk started at the top vertex ∅ and move downward
by choosing successors at random with uniform probability. When you get
at ∂T at the branch point b determined by the random walk, you get paid
f(b) dollars. Every time we run the game we get a sequence of vertices
v1, v2, . . . , vk, . . . that determine a point on b the boundary ∂T . The set of
all boundary points that start at a give vertex v is is a ternary interval of
length 3−r if v is at level r that we denote by Iv. Averaging out over all
possible plays that start at v1 we obtain the value function

(1.12) Ev1 [f(t)] = u(v1) =
1

|Iv1 |
∫

Iv1

f(b) db,

which is indeed harmonic in T . Therefore we have the well-known

Lemma 8. Dirichlet Problem in Trees (p = 2): Given a continuous (indeed
in L1([0, 1])) function f : [0, 1] �→ R the unique harmonic function u : T �→ R
such that

lim
r→∞u(br) = f(b)

for every branch b = (br) ∈ ∂T is given by (1.12).

Let us now play a Tug-of-War game with noise. Choose α ≥ 0, β ≥ 0
such that α+β = 1. Start at ∅. With probability α the players play Tug-of-
War. With probability β move downward by choosing successors at random.
When you get at ∂T at the point b player II pays f(b) dollars to player I.
The value function u verifies the dynamic programming principle or
mean value property

(1.13) u(v)=
α

2

(
max

i
{u(vi)}+ min

i
{u(vi)}

)
+β

(
u(v0)+ u(v1)+ u(v2)

3

)
that we can interpret as a PDE on the tree by using the following formula
for a generalized divergence depending on the parameters α and β.

Definition 9. Let X = (x, y, z) be a vector in R3. The (α, β)-divergence of
X is given by

divα,β(X) =
α

2
(max{x, y, z} + min{x, y, z}) + β

(
x + y + z

3

)
.

Theorem 10. [S] We have the equivalence

DPP ≈ MVP ≈ PDE
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in the sense that the function u satisfies the equation (1.13) in the tree T if
and only if

(1.14) divα,β (∇u) = 0

Some particular cases are:

(i) The Linear Case: α = 0, β = 1 that corresponds to the linear case
p = 2 of harmonic functions (1.11).

(ii) The Discrete ∞-Laplacian: α = 1, β = 0 that corresponds to the
case p = ∞. In this case the divergence is

div∞(X) = div1,0(X) =
1
2

(max{x, y, z} + min{x, y, z})
and the equation is the the discrete ∞-Laplacian div∞ (∇u) = 0.

(iii) The Discrete p-Laplacian: For α �= 0 and β �= 0 we can select p as in
(1.8), but the role of n is not intrinsically defined, to obtain the discrete p-
Laplacian We remark that this is the non-divergence form of the p-Laplacian
(1.14). A discrete version of the p-Laplacian in divergence form can be found
in [KLW].

While the formula (1.12) for the solution to the Dirichlet problem for
p = 2 is explicit, there are not such formulas to my knowledge for the case
p �= 2. However, the game theoretic interpretation allows us to find explicit
formulas in some special, but interesting cases.

Suppose that f is monotonically increasing. In this case the best strategy
S�

I for player I is always to move right and the best strategy S�
II for player

II always to move left. Starting at the vertex v at level k

v = 0.b1b2 . . . bk, bj ∈ {0, 1, 2}
we always move either left (adding a 0) or right (adding a 1). In this case
Iv is a Cantor-like set Iv = {0.b1b2 . . . bkd1d2 . . .}, dj ∈ {0, 2}.
Theorem 11. [S] The (α, β)-harmonic function with boundary values f in
the tree T is given by

u(v) =
∫

Iv

f(b)dPα,β
v db,

where dPα,β
v is a probability in [0, 1].

Moreover in the case α = 0, β = 1, which corresponds to p = 2 the
measure dP0,1

v is just the Lebesgue measure, and in the case α = 1, β = 0,
which corresponds to the case p = ∞, the measure dP1,0

v is a Cantor measure
supported in Iv.

To see why this theorem might be true observe that

u(v) = sup
SI

inf
SII

Ev
SI ,SII

[f(b)] = Ev
S�

I ,S�
II

[f(b)].
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Since the strategies used are always the same, we are indeed in a linear
situation. All we need to do is to compute the probability Pv

S�
I ,S�

II
.

Lecture 2: Random Tug-of-War games for the parabolic
p-Laplacian.

Consider the heat equation. By using Taylor expansions, we observe that
a function u solves

ut(x, t) = Δu(x, t)

if and only if

u(x, t) =
∫ t

t−ε2/(n+2)

∫
Bε(x)

u(y, s) dy ds + o(ε2), as ε → 0.

In the case p �= 2 our results are easier to state if we rescale the time
variable so that we consider viscosity solutions u to the equation,

(2.15) (n + p)ut(x, t) = |∇u|2−p Δpu(x, t).

These are characterized by the asymptotic mean value formula

u(x, t) =
α

2

∫ t

t−ε2

{
max

y∈Bε(x)
u(y, s) + min

y∈Bε(x)
u(y, s)

}
ds

+ β

∫ t

t−ε2

∫
Bε(x)

u(y, s) dy ds + o(ε2), as ε → 0,

that should hold in the viscosity sense.

These mean value formulas are related to the Dynamic Programming
Principle (DPP) satisfied by the value functions of parabolic tug-of-war
games with noise. The DPP is precisely the mean value formula without
the correction term o(ε2). We call functions that satisfy the DPP (p, ε)-
parabolic. For elliptic counterparts see [LG], [LGA], and [MPR2]. It turns
out that (p, ε)-parabolic equations have interesting properties making them
interesting on their own, but in addition, they approximate solutions to the
corresponding parabolic equation.

Le Gruyer and Archer [LGA, LG] used a mean value approach to solve the
infinity Laplace equation and related problems. Oberman [O] implemented
various convergent difference schemes for infinity harmonic functions using
mean values. Kohn and Serfaty [KS] studied a deterministic game theo-
retic approach to general parabolic equations. They consider a large class
of fully nonlinear parabolic equations including the mean curvature flow.
Barron, Evans, and Jensen [BEJ] considered various generalizations of L∞-
variational problems. In particular, they obtained a version of our results
in the case p = ∞, see Theorem 30 below.
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4. An asymptotic mean value characterization for parabolic equa-
tions. Recall that for 1 < p < ∞ we have

|∇u|2−p Δpu = (p − 2)Δ∞u + Δu,(2.16)

where

Δpu = div(|∇u|p−2∇u)

denotes the p-Laplacian and

Δ∞u = |∇u|−2 〈D2u∇u,∇u〉 = |∇u|−2
n∑

i,j=1

∂2u

∂xi∂xj

∂u

∂xi

∂u

∂xj

the 1-homogeneous infinity Laplacian. Observe that in equation (2.15) we
get

ut = Δ∞u

when p → ∞, and
(n + 2)ut = Δu

when p = 2.

Let T > 0, and Ω ⊂ Rn be an open set, and let ΩT = Ω × (0, T ) be a
space-time cylinder with the parabolic boundary

∂pΩT = {∂Ω × [0, T ]} ∪ {Ω × {0}}.
We denote the mean value integral with the usual notation∫

B
f(y) dy =

1
|B|

∫
B

f(y) dy.

The parabolic equation (2.15) is singular when the gradient vanishes. We
recall the definition of viscosity solution based on semicontinuous extensions
of the operator, and refer the reader to Chen-Giga-Goto [CGG], Evans-
Spruck [ES], and Giga’s monograph [G]. Below we denote by λmax((p −
2)D2φ(x, t)), and λmin((p − 2)D2φ(x, t)) the largest, and the smallest of
the eigenvalues to the symmetric matrix (p − 2)D2φ(x, t) ∈ Rn×n for a
smooth test function φ. We write λmax((p − 2)D2φ(x, t)) instead of (p −
2)λmax(D2φ(x, t)) to give a unified treatment for the cases p ≥ 2 and 1 <
p < 2.

Definition 12. A function u : ΩT → R is a viscosity solution to (2.15) if u
is continuous and whenever (x0, t0) ∈ ΩT and φ ∈ C2(ΩT ) is such that

i) u(x0, t0) = φ(x0, t0),
ii) u(x, t) > φ(x, t) for (x, t) ∈ ΩT , (x, t) �= (x0, t0),

then we have at the point (x0, t0){
(n + p)φt ≥ (p − 2)Δ∞φ + Δφ, if ∇φ(x0, t0) �= 0,

(n + p)φt ≥ λmin((p − 2)D2φ) + Δφ, if ∇φ(x0, t0) = 0.
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Moreover, we require that when touching u with a test function from above
all the inequalities are reversed and λmin((p−2)D2φ) is replaced by λmax((p−
2)D2φ).

It will become useful to observe that we can further reduce the number
of test functions in the definition of a viscosity solution. Indeed, if the
gradient of a test function vanishes we may assume that D2φ = 0, and thus
λmax = λmin = 0. Nothing is required if ∇φ = 0 and D2φ �= 0. The proof
follows the ideas in [ES], see also [CGG] and Lemma 3.2. in [JK] for p = ∞.
For the convenience of the reader we provide the details.

Lemma 13. A function u : ΩT → R is a viscosity solution to (2.15) if u is
continuous and whenever (x0, t0) ∈ ΩT and φ ∈ C2(ΩT ) is such that

i) u(x0, t0) = φ(x0, t0),
ii) u(x, t) > φ(x, t) for (x, t) ∈ ΩT , (x, t) �= (x0, t0),

then at the point (x0, t0) we have{
(n + p)φt ≥ (p − 2)Δ∞φ + Δφ, if ∇φ(x0, t0) �= 0,

φt(x0, t0) ≥ 0, if ∇φ(x0, t0) = 0, andD2φ(x0, t0) = 0.

Moreover, we require that when testing from above all the inequalities are
reversed.

Similarly to in the elliptic case in [MPR], the asymptotic mean value
formulas hold in a viscosity sense. We test the mean value formulas for u
with a test function touching u from above or below.

Definition 14. A continuous function u satisfies the asymptotic mean value
formula

u(x, t) =
α

2

∫ t

t−ε2

{
max

y∈Bε(x)
u(y, s) + min

y∈Bε(x)
u(y, s)

}
ds

+ β

∫ t

t−ε2

∫
Bε(x)

u(y, s) dy ds + o(ε2), as ε → 0,

(2.17)

in the viscosity sense at (x, t) ∈ ΩT if for every φ as in Lemma 13, we have

φ(x, t) ≥ α

2

∫ t

t−ε2

{
max

y∈Bε(x)
φ(y, s) + min

y∈Bε(x)
φ(y, s)

}
ds

+ β

∫ t

t−ε2

∫
Bε(x)

φ(y, s) dy ds + o(ε2), as ε → 0,

(2.18)

and analogously when testing from above.

Observe that the asymptotic mean value formula is free of gradients, and,
in particular, that the case ∇φ(x, t) = 0, D2φ(x, t) = 0 is included. Next
we characterize viscosity solutions to (n + p)ut = |∇u|2−p Δpu.
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Theorem 15. Let 1 < p ≤ ∞ and let u be a continuous function in ΩT .
The asymptotic mean value formula

u(x, t) =
α

2

∫ t

t−ε2

{
max

y∈Bε(x)
u(y, s) + min

y∈Bε(x)
u(y, s)

}
ds

+ β

∫ t

t−ε2

∫
Bε(x)

u(y, s) dy ds + o(ε2), as ε → 0,

holds for every (x, t) ∈ ΩT in the viscosity sense if and only if u is a viscosity
solution to

(n + p)ut(x, t) = |∇u|2−p Δpu(x, t).

Above

α =
p − 2
p + n

, β =
2 + n

p + n
.

Observe that α ≥ 0, β ≥ 0, α + β = 1, and that if p = 2, then α = 0,
and β = 1 and if p = ∞, then α = 1 and β = 0. Thus, as a special
case of the above theorem, we obtain an asymptotic mean value formula for
the parabolic infinity Laplacian. This equation was recently studied in [JK]
and [J].

Theorem 16. Let u be a continuous function in ΩT . The asymptotic mean
value formula

u(x, t) =
1
2

∫ t

t−ε2

{
max

y∈Bε(x)
u(y, s) + min

y∈Bε(x)
u(y, s)

}
ds + o(ε2), as ε → 0,

holds for every (x, t) ∈ ΩT in the viscosity sense if and only if u is a viscosity
solution to

ut(x, t) = Δ∞u(x, t).

5. Proof of Theorem 15. We divide the proof in three parts: First, we
consider the cases p = 2 and p = ∞ separately, and then combine the results
to obtain Theorem 15 for any 1 < p ≤ +∞.

The heat equation: Let us first consider the smooth case.

Proposition 17. Let u be a smooth function in ΩT . The asymptotic mean
value formula

u(x, t) =
∫ t

t−ε2/(n+2)

∫
Bε(x)

u(y, s) dy ds + o(ε2), as ε → 0,

holds for all (x, t) ∈ ΩT if and only if

ut(x, t) = Δu(x, t)

in ΩT .
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Proof. Let (x, t) ∈ ΩT and let u be a smooth function. We use the Taylor
expansion

u(y, s) = u(x, t) + ∇u(x, t) · (y − x) +
1
2
〈D2u(x, t)(y − x), (y − x)〉

+ ut(x, t)(s − t) + o(|y − x|2 + |s − t|)

= u(x, t) +
n∑

i=1

∂u

∂xi
(y − x)i

+
1
2

n∑
i,j=1

∂2u

∂xi∂xj
(y − x)i(y − x)j

+ ut(x, t)(s − t) + o(|y − s|2 + |s − t|).

(2.19)

Averaging both sides, we get∫ t

t−ε2/(n+2)

∫
Bε(x)

u(y, s) dy ds

= u(x, t) +
∫

Bε(x)
∇u(x, t) · (y − x) dy

+
1
2

∫
Bε(x)

〈D2u(x, t)(y − x), (y − x)〉 dy

+ ut(x, t)
∫ t

t−ε2/(n+2)
(s − t) ds + o(ε2).

(2.20)

Because of symmetry, the first integral on the right hand side vanishes and
the second can be simplified as in [MPR] to get

1
2

∫
Bε(x)

〈D2u(x, t)(y − x), (y − x)〉 dy =
ε2

2(n + 2)
Δu(x, t).

Finally, ∫ t

t−ε2/(n+2)
(s − t) ds = − ε2

2(n + 2)
,

and thus (2.20) implies∫ t

t−ε2/(n+2)

∫
Bε(x)

u(y, s) dy ds

= u(x, t) +
ε2

2(n + 2)
(Δu(x, t) − ut(x, t)) + o(ε2).

(2.21)

This holds for any smooth function.

If u is a solution to the heat equation, then (2.21) immediately implies
that u satisfies the asymptotic mean value property. According to classical
results, a solution to the heat equation is smooth and thus smoothness
assumption is not restrictive here.
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Next we assume that a smooth u satisfies the asymptotic mean value
formula and show that then u is a solution to the heat equation. According
to the assumption and (2.21), we have

u(x, t) =
∫ t

t−ε2/(n+2)

∫
Bε(x)

u(y, s) dy ds + o(ε2)

= u(x, t) +
ε2

2(n + 2)
(Δu(x, t) − ut(x, t)) + o(ε2).

Dividing by ε and passing to the limit ε → 0 implies

0 = Δu(x, t) − ut(x, t).

This finishes the proof. �

In the space-time cylinders Bε(x)× (t− ε2, t), the asymptotic mean value
formula characterizes solutions to the rescaled heat equation

(n + 2)ut(x, t) = Δu(x, t).

In this case, (2.21) takes the form∫ t

t−ε2

∫
Bε(x)

u(y, s) dy ds

= u(x, t) +
ε2

2(n + 2)
(Δu(x, t) − (n + 2)ut(x, t)) + o(ε2).

(2.22)

Alternatively, the same argument shows that solutions to the heat equa-
tion are also characterized by asymptotic mean value formula

u(x, t) =
∫

Bε(x)
u

(
y, t − ε2

2(n + 2)

)
dy + o(ε2), as ε → 0.

The parabolic infinity Laplacian: Next we turn our attention to the
homogeneous parabolic infinity Laplacian. We show that the asymptotic
mean value formula

u(x, t) =
1
2

∫ t

t−ε2

{
max

y∈Bε(x)
u(y, s) + min

y∈Bε(x)
u(y, s)

}
ds + o(ε2), as ε → 0,

characterizes the viscosity solutions to

ut = Δ∞u.

The proof employs the Taylor expansion (2.19) and uses the fact that the
minimum and maximum of the test function φ over the ball Bε(x) at a fixed
time is approximately obtained at the points

x − ε
∇φ

|∇φ| and x + ε
∇φ

|∇φ| .
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The integration over a time interval takes care of the term that involves time
derivatives.

Proof of Theorem 16. To begin with, choose a point (x, t) ∈ ΩT , ε > 0,
s ∈ (t − ε2, t) and any smooth φ. Denote by xε,s

1 a point in which φ attains
its minimum over a ball Bε(x) at time s, that is,

φ(xε,s
1 , s) = min

y∈Bε(x)
φ(y, s).

Evaluating the Taylor expansion (2.19) for φ at y = xε,s
1 , we get

φ(xε,s
1 , s) = φ(x, t) + ∇φ(x, t) · (xε,s

1 − x)

+
1
2
〈D2φ(x, t)(xε,s

1 − x), (xε,s
1 − x)〉

+φt(x, t)(s − t) + o(ε2 + |s − t|),
as ε → 0. Evaluating the Taylor expansion at y = x̃ε,s

1 , where x̃ε,s
1 is the

symmetric point of xε,s
1 with respect to x, given by

x̃ε,s
1 = 2x − xε,s

1 ,

we obtain
φ(x̃ε,s

1 , s) = φ(x, t) −∇φ(x, t) · (xε,s
1 − x)

+
1
2
〈D2φ(x, t)(xε,s

1 − x), (xε,s
1 − x)〉

+φt(x, t)(s − t) + o(ε2 + |s − t|).
Adding the expressions, we get

φ(x̃ε,s
1 , s) + φ(xε,s

1 , s) − 2φ(x, t) = 〈D2φ(x, t)(xε,s
1 − x), (xε,s

1 − x)〉
+ 2φt(x, t)(s − t) + o(ε2 + |s − t|).

As xε,s
1 is the point where the minimum of φ(·, s) on Bε(x) is attained, it

follows that

φ(x̃ε,s
1 , s) + φ(xε,s

1 , s) − 2φ(x, t) ≤ max
y∈Bε(x)

φ(y, s) + min
y∈Bε(x)

φ(y, s) − 2φ(x, t),

and thus
max

y∈Bε(x)
φ(y, s) + min

y∈Bε(x)
φ(y, s) − 2φ(x, t)

≥ 〈D2φ(x, t)(xε,s
1 − x), (xε,s

1 − x)〉 + 2φt(x, t)(s − t) + o(ε2 + |s − t|).
Integration over the time interval implies

1
2

∫ t

t−ε2

{
max

y∈Bε(x)
φ(y, s) + min

y∈Bε(x)
φ(y, s)

}
ds − φ(x, t)

≥ ε2

2

(∫ t

t−ε2

〈
D2φ(x, t)

xε,s
1 − x

ε
,
xε,s

1 − x

ε

〉
ds − φt(x, t)

)
+ o(ε2).

(2.23)
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This inequality holds for any smooth function. By considering a point where
φ attains its maximum, we could derive a reverse inequality.

Because φ is smooth, if ∇φ(x, t) �= 0, so is ∇φ(x, s) for t− ε2 ≤ s ≤ t and
for small enough ε > 0 and thus xε,s

1 ∈ ∂Bε(x) for small ε. We deduce

lim
ε→0

xε,s
1 − x

ε
= − ∇φ

|∇φ|(x, t).

Moreover, we get the limit

lim
ε→0

∫ t

t−ε2

〈
D2φ(x, t)

xε,s
1 − x

ε
,
xε,s

1 − x

ε

〉
ds

=
〈

D2φ(x, t)
∇φ

|∇φ|(x, t),
∇φ

|∇φ|(x, t)
〉

= Δ∞φ(x, t).
(2.24)

Next we assume that u satisfies the asymptotic mean value formula in the
viscosity sense and show that then u satisfies the definition of a viscosity
solution whenever ∇φ �= 0. In particular, we have

0 ≥ −φ(x, t) +
1
2

∫ t

t−ε2

{
max

y∈Bε(x)
φ(y, s) + min

y∈Bε(x)
φ(y, s)

}
ds + o(ε2),

for any smooth φ touching u at (x, t) ∈ ΩT from below. By the previous
inequality, the left hand side of (2.23) is bounded above by o(ε2). It follows
from this fact dividing (2.23) by ε2, passing to a limit, and using (2.24) that

0 ≥ Δ∞φ(x, t) − φt(x, t).

To prove a reverse inequality, we first derive a reverse inequality to (2.23)
by considering the maximum point of φ, and then choose a function φ that
touches u from above.

To prove the reverse implication, assume that u is a viscosity solution. Let
φ, ∇φ �= 0, be a smooth test function touching u from above at (x, t) ∈ ΩT .
We have

(2.25) Δ∞φ(x, t) − φt(x, t) ≥ 0.

It suffices to prove

lim inf
ε→0

1
ε2

(
−φ(x, t) +

1
2

∫ t

t−ε2

{
max

y∈Bε(x)
φ(y, s) + min

y∈Bε(x)
φ(y, s)

}
ds

)
≥ 0.

This again follows from (2.23). Indeed, divide (2.23) by ε2, use (2.24), and
deduce from (2.25) that the limit on the right hand side is bounded from
below by zero. The argument for the reverse inequality is analogous.

Finally, let ∇φ(x, t) = 0, and suppose that φ touches u at (x, t) from
below. According to Lemma 13, we may also assume that D2φ(x, t) = 0,
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and thus the Taylor expansion implies

φ(y, s) − φ(x, t) = φt(x, t)(s − t) + o(ε2)

in the space-time cylinder. Thus supposing that the asymptotic mean value
formula holds at (x, t), we deduce

0 ≥ 1
2

∫ t

t−ε2

{
max

y∈Bε(x)

(
φ(y, s) − φ(x, t)

)
+ min

y∈Bε(x)

(
φ(y, s) − φ(x, t)

)}
ds

+ o(ε2)

=
∫ t

t−ε2

φt(x, t)(s − t) ds + o(ε2)

= −ε2

2
φt(x, t) + o(ε2).

Dividing by ε2, and passing to a limit, we get 0 ≤ φt(x, t). Lemma 13 and
an analogous calculation when testing from above shows that u is a viscosity
solution.

Suppose then that u is a viscosity solution and φ is a test function with
∇φ(x, t) = 0, D2φ(x, t) = 0 that touches u at (x, t) from below. Then a
similar calculation as above implies∫ t

t−ε2

{
max

y∈Bε(x)
φ(y, s) + min

y∈Bε(x)
φ(y, s)

}
ds − 2φ(x, t)

= −ε2φt(x, t) + o(ε2).

By Lemma 13, φt(x, t) ≥ 0. Thus, dividing the above equality by ε2 and
passing to the limit shows that the asymptotic expansion holds. �

A similar proof also shows that u is a viscosity solution to

ut(x, t) = Δ∞u(x, t)

if and only if

u(x, t) =
1
2

{
max

y∈Bε(x)
u

(
y, t − ε2

2

)
+ min

y∈Bε(x)
u

(
y, t − ε2

2

)}
+o(ε2) as ε → 0

in the viscosity sense.

The p-Laplacian: Next we combine the asymptotic mean value formulas
from the previous sections. The main point is that, formally, adding the
equations

(n + 2)ut = Δ, u

and
(p − 2)ut = (p − 2)Δ∞u
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we obtain
(n + p)ut = Δu + (p − 2)Δ∞u;

that is,
(n + p)ut = |∇u|2−p Δpu.

Proof of Theorem 15. Assume first that p ≥ 2 so that α ≥ 0. Multiplying
(2.22) by β and (2.23) by α, and adding, we obtain

α

2

∫ t

t−ε2

{
max

y∈Bε(x)
φ(y, s) + min

y∈Bε(x)
φ(y, s)

}
ds

+ β

∫ t

t−ε2

∫
Bε(x)

φ(y, s) dy ds − φ(x, t)

≥ αε2

2

(∫ t

t−ε2

〈
D2φ(x, t)

xε,s
1 − x

ε
,
xε,s

1 − x

ε

〉
ds − φt(x, t)

)
+

βε2

2(n + 2)
(Δφ(x, t) − (n + 2)φt(x, t)) + o(ε2)

=
βε2

2(n + 2)

(
(p − 2)

∫ t

t−ε2

〈
D2φ(x, t)

xε,s
1 − x

ε
,
xε,s

1 − x

ε

〉
ds

+ Δφ(x, t) − (n + p)φt(x, t)

)
+ o(ε2).

(2.26)

Notice that this again holds for any smooth function, and (2.24) still holds
whenever ∇φ �= 0. The rest of the proof follows closely the proof of Theo-
rem 16. Further, by considering the maximum point instead of the minimum
point xε,s

1 , we can derive a reverse inequality to (2.26).

If p < 2, it follows that α < 0 and the inequality (2.26) is reversed. On the
other hand, so is the reverse inequality that can be obtained by considering
the maximum point instead of the minimum point xε,s

1 . Thus we still have
the both inequalities, and we can repeat the same argument. �

An analogous proof also shows that u is a solution to

(n + p)ut(x, t) = |∇u|2−p Δpu(x, t)

in the viscosity sense if and only if

u(x, t) =
α

2

{
max

y∈Bε(x)
u
(
y, t − ε2

2

)
+ min

y∈Bε(x)
u
(
y, t − ε2

2

)}

+ β

∫
Bε(x)

u
(
y, t − ε2

2

)
dy + o(ε2), as ε → 0.

(2.27)

We will take this formulation as a starting point when studying the tug-of-
war games with limited number of rounds in the next section.
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6. (p, ε)-parabolic functions and Tug-of-war games. Motivated by the
asymptotic mean value theorems, we next study the functions satisfying the
mean value property (2.27) without the correction term o(ε2) for p ≥ 2.
We call these functions (p, ε)-parabolic. It turns out that (p, ε)-parabolic
functions have interesting properties to be studied in their own right, but in
addition they approximate solutions to (2.15), and are value functions of a
tug-war-game with noise when the number of rounds is limited.

Recall that ΩT ⊂ Rn+1 is an open set. To prescribe boundary values, we
denote the boundary strip of width ε by

Γε =
(
Sε × (−ε2

2
, T ]

)
∪

(
Ω × (−ε2

2
, 0]

)
,

where

Sε = {x ∈ Rn \ Ω : dist(x, ∂Ω) ≤ ε}.
Below F : Γε → R denotes a bounded Borel function.

Definition 18. The function uε is (p, ε)-parabolic, 2 ≤ p ≤ ∞, in ΩT with
boundary values F if

uε(x, t) =
α

2

{
sup

y∈Bε(x)

uε

(
y, t − ε2

2

)
+ inf

y∈Bε(x)
uε

(
y, t − ε2

2

)}

+ β

∫
Bε(x)

uε

(
y, t − ε2

2

)
dy for every (x, t) ∈ ΩT

uε(x, t) = F (x, t), for every (x, t) ∈ Γε,

where

α =
p − 2
p + n

, β =
n + 2
p + n

.

The reason for using the boundary strip Γε instead of simply using the
parabolic boundary ∂pΩT is the fact that Bε(x)×{t− ε2

2 } is not necessarily
contained in ΩT .

Next we study the tug-of-war game with noise studied in [MPR2], and in
a different form in Peres-Sheffield [PS]. See also Peres-Schramm-Sheffield-
Wilson [PSSW]. It is a zero-sum-game between two players, Player I and
Player II. In this paper, there are two key differences: the game has a preset
maximum number of rounds and boundary values may change with time.

To be more precise, at the beginning we fix the maximum number of
rounds to be N and place a token at a point x0 ∈ Ω. The players toss a biased
coin with probabilities α and β, α + β = 1. If they get heads (probability
α), they play a tug-of-war game, that is, a fair coin is tossed and the winner
of the toss decides a new game position x1 ∈ Bε(x0). On the other hand,
if they get tails (probability β), the game state moves according to the
uniform probability density to a random point in the ball Bε(x0). They
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continue playing the game until either the token hits the boundary strip Sε

or the number of rounds reaches N . We denote by τN ∈ {0, 1, . . . , N} the
hitting time of Sε or N , whichever comes first, and by xτN ∈ Ω∪Sε the end
point of the game. When no confusion arises, we simply write τ . At the end
of the game Player I earns F(xτN , τN ) while Player II earns −F(xτN , τN ).
Here

F : (Sε × {0, . . . , N}) ∪ (Ω × {N}) → R

is a given payoff function.

Denote by H = Ω ∪ Sε. A run of the game is a sequence

ω = (ω0, ω1, . . . , ωN ) ∈ HN+1.

We define random variables

xk(ω) = ωk, xk : HN+1 → Rn, k = 0, 1, . . . , N,

and

τN (ω) = min{N, inf{k : xk(ω) ∈ Sε, k = 0, 1, . . . , N}}.

A strategy SI for Player I is a function which gives the next game position

SI(x0, x1, . . . , xk) = xk+1 ∈ Bε(xk)

if Player I wins the coin toss. Similarly, Player II plays according to a
strategy SII.

The fixed starting point x0, the number of rounds N , the domain Ω and
the strategies SI and SII determine a unique probability measure Px0,N

SI ,SII
in

HN+1. This measure is built by using the initial distribution δx0(A), and
the family of transition probabilities

πSI,SII
(x0(ω), . . . , xk(ω), A) = πSI,SII

(ω0, . . . , ωk, A)

= β
|A ∩ Bε(ωk)|
|Bε(ωk)| +

α

2
δSI(ω0,...,ωk)(A) +

α

2
δSII(ω0,...,ωk)(A).

For more details, we refer to [MPR2, MPR3, PSSW].

The expected payoff, when starting from x0 with the maximum number
of rounds N , and using the strategies SI, SII, is

Ex0,N
SI,SII

[F(xτN , τN )] =
∫

HN+1

F(xτN (ω), τN (ω)) dPx0,N
SI,SII

(ω).

The value of the game for Player I when starting at x0 with the maximum
number of rounds N is given by

uε,N
I (x0, 0) = sup

SI

inf
SII

Ex0,N
SI,SII

[F(xτN , τN )]
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while the value of the game for Player II is given by

uε,N
II (x0, 0) = inf

SII

sup
SI

Ex0,N
SI,SII

[F(xτN , τN )].

More generally, we define the value of the game when starting at x and
playing for h = N − k rounds to be

uε,N
I (x, k) = sup

SI

inf
SII

Ex,h
SI,SII

[F(xτh
, k + τh)]

while the value of the game for Player II is given by

uε,N
II (x, k) = inf

SII

sup
SI

Ex,h
SI,SII

[F(xτh
, k + τh)].

Here τh ∈ {0, 1, . . . , h} is the hitting time of the boundary (Sε × {0, . . . , N})∪
(Ω × {N}). In order to accommodate for time dependent boundary val-
ues, we need to keep track of the number k of rounds played. The values
uε,N

I (x, k) and uε,N
II (x, k) are the expected outcomes the each player can

guarantee when the game starts at x with maximum number of rounds
N − k.

The next lemma states the Dynamic Programming Principle (DPP) for
the tug-of-war game with a maximum number of rounds. For a detailed
proof in the elliptic case see [MPR3]. The parabolic case turns out to be
easier since backtracking can be directly implemented. See Chapter 3 in
[MS2] and [MS].

Lemma 19 (DPP). The value function for Player I satisfies

uε,N
I (x, k) =

α

2

{
sup

Bε(x)

uε,N
I (y, k + 1) + inf

Bε(x)
uε,N

I (y, k + 1)

}

+ β

∫
Bε(x)

uε,N
I (y, k + 1) dy, if x ∈ Ω and k < N,

uε,N
I (x, k) = F(x, k), if x ∈ Sε or k = N.

The value function for Player II, uε,N
II , satisfies the same equation.

The expectation is obtained by summing up the expectations of three pos-
sible outcomes for the next step with the corresponding probabilities, Player
I chooses the next position (probability α/2), Player II chooses (probability
α/2) and the next position is random (probability β). This is the heuristic
background for the DPP.

Next we describe the change of time scale that relates values of the tug-of-
war games with noise and (p, ε)-parabolic functions. The definition of (p, ε)-
parabolic function uε, Definition 18, refers to a forward-in-time parabolic
equation. The values uε(·, t) at time t are determined by the values uε(·, t−
ε2

2 ). In contrast, in Lemma 19 above, the values at step k are determined
by the values at step k + 1.
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For 0 < t < T let N(t) be the integer defined by
2t

ε2
≤ N(t) <

2t

ε2
+ 1.

We use the shorthand notation N(t) = �2t/ε2�. Set t0 = t and tk+1 =
tk − ε2/2 for k = 0, 1, . . . , N(t) − 1; that is,

tk = ε2 N(t) − k

2
+ tN(t).

Observe that tN(t) ∈ (− ε2

2 , 0]. When no confusion arises, we simply write
N for N(t).

Given F : Γε → R a boundary value function, define a payoff function
Ft : {Sε × {0, . . . , N}} ∪ {Ω × {N}} → R by

Ft(xτ , τ) = F (xτ , ε
2(N − τ)/2 + tN ) = F (xτ , tτ ).(2.28)

It might be instructive to think of a parabolic cylinder Ω× (0, t) when t and
ε are given determining N and tN . The game begins at k = 0 corresponding
to t0 = t in the time scale. When we play one round k → k + 1, the clock
steps ε2/2 backwards, tk+1 = tk −ε2/2, and we play until we get outside the
cylinder when k = τ corresponding to tτ in the time scale.

Next we define

uε
I (x, t) = u

ε,N(t)
I (x, 0).(2.29)

This defines values for every instant.

For these functions, the DPP takes the form

uε
I (x, t) =

α

2

{
sup

y∈Bε(x)

uε
I

(
y, t − ε2

2

)
+ inf

y∈Bε(x)
uε

I

(
y, t − ε2

2

)}

+ β

∫
Bε(x)

uε
I

(
y, t − ε2

2

)
dy for every (x, t) ∈ ΩT

uε
I (x, t) = F (x, t), for every (x, t) ∈ Γε,

which agrees with Definition 18.

Comparison and convergence: The (p, ε)-parabolic functions satisfy
comparison principle and are unique. The proofs are based on martingale
arguments similar to those in [MPR2] recalling (2.29) and the fact that the
relevant stopping time is now bounded.

We start with a comparison principle for the value functions. The con-
nection of boundary values in different formulations is given in (2.28) and
to simplify the notation we will use F in both formulations.

Theorem 20. If vε is a (p, ε)-parabolic function in ΩT with boundary values
Fvε in Γε such that Fvε ≥ Fuε

I
, then vε ≥ uε

I .
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Proof. Player I follows any strategy and Player II follows a strategy S0
II

such that at xk−1 ∈ Ω he chooses to step to a point that almost minimizes
vε(·, tk), that is, to a point xk ∈ Bε(xk−1) such that

vε(xk, tk) ≤ inf
y∈Bε(xk−1)

vε(y, tk) + η2−k

for some fixed η > 0.

Choose (x0, t0) ∈ ΩT , and set N = �2t0/ε2�. It follows that

Ex0,N
SI,S

0
II
[vε(xk, tk) + η2−k |x0, . . . , xk−1]

≤ α

2

{
inf

y∈Bε(xk−1)
vε(y, tk) + η2−k + sup

y∈Bε(xk−1)

vε(y, tk)

}

+ β

∫
Bε(xk−1)

vε(y, tk) dy + η2−k

≤ vε(xk−1, tk−1) + η2−(k−1),

where we have estimated the strategy of Player I by sup and used the fact
that vε is (p, ε)-parabolic. Thus

Mk = vε(xk, tk) + η2−k

is a supermartingale. Since Fvε ≥ Fuε
I

at Γε, we deduce

uε
I (x0, t0) = sup

SI

inf
SII

Ex0,N
SI,SII

[Fuε
I
(xτ , tτ )] ≤ sup

SI

Ex0,N
SI,S

0
II
[Fvε(xτ , tτ ) + η2−τ ]

= sup
SI

Ex0,N
SI,S

0
II
[vε(xτ , tτ ) + η2−τ ]

≤ sup
SI

Ex0,N
SI,S

0
II
[M0] = vε(x0, t0) + η,

where the fact that τ is a bounded stopping time allowed us to use the
optional stopping theorem for Mk. Since η was arbitrary this proves the
claim. �

Similarly, we can prove that uε
II is the largest (p, ε)-parabolic function:

Player II follows any strategy and Player I always chooses to step to the
point where vε is almost maximized. This implies that vε(xk) − η2−k is a
submartingale.

Next we show that the game has a value. This together with the previous
comparison principle proves the uniqueness of (p, ε)-parabolic functions with
given boundary values.

Theorem 21. With a given payoff function, the game has a value; that is,
we have the equality

uε
I = uε

II.
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Proof. It always holds that uε
I ≤ uε

II so it remains to show uε
II ≤ uε

I . To see
this we use the same argument as in the previous theorem: Player II follows
a strategy S0

II such that at xk−1 ∈ Ω, he always chooses to step to a point
that almost minimizes uε

I , that is, to a point xk such that

uε
I (xk, tk) ≤ inf

y∈Bε(xk−1)
uε

I (y, tk) + η2−k,

for a fixed η > 0. We start from the point (x0, t0) so that N = �2t0/ε2�.
It follows that from the choice of strategies and the dynamic programming
principle for uε

I that

Ex0,N
SI,S

0
II
[uε

I (xk, tk) + η2−k |x0, . . . , xk−1]

≤ α

2

{
inf

y∈Bε(xk−1)
uε

I (y, tk) + η2−k + sup
y∈Bε(xk−1)

uε
I (y, tk)

}

+ β

∫
Bε(xk−1)

uε
I (y, tk) dy + η2−k

≤ uε
I (xk−1, tk−1) + η2−(k−1).

Thus
Mk = uε

I (xk, tk) + η2−k

is a supermartingale. According to the optional stopping theorem

uε
II(x0, t0) = inf

SII

sup
SI

Ex0,N
SI,SII

[F (xτ , tτ )] ≤ sup
SI

Ex0,N
SI,S

0
II
[F (xτ , tτ ) + η2−τ ]

= sup
SI

Ex0,N
SI,S

0
II
[uε

I (xτ , tτ ) + η2−τ ]

≤ sup
SI

Ex0,N
SI,S

0
II
[uε

I (x0, t0) + η] = uε
I (x0, t0) + η.

�

Theorems 20 and 21 imply uniqueness for (p, ε)-parabolic functions.

Theorem 22. There exists a unique (p, ε)-parabolic function with given
boundary values F , and it coincides with the value of the game by virtue of
(2.29).

Proof. Due to the dynamic programming principle, the values of the games
are (p, ε)-parabolic functions. This proves the existence part of the theorem.
Theorems 20 and 21 together with the remark after Theorem 20 imply the
uniqueness. �

This theorem together with Theorem 20 gives the comparison principle
for (p, ε)-parabolic functions.

Theorem 23. If vε and uε are (p, ε)-parabolic functions with boundary val-
ues Fvε ≥ Fuε, then vε ≥ uε in ΩT .
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Next, we show that (p, ε)-parabolic functions approximate solutions to

(n + p)ut(x, t) = |∇u|2−p Δpu(x, t).

To prove the convergence, we use the Arzela-Ascoli type compactness lemma.
Note that (p, ε)-parabolic functions are, in general, discontinuous. Never-
theless, their oscillation is controlled at scale ε. Therefore, the Arzela-Ascoli
lemma has to be modified accordingly. For the proof of the lemma below,
the reader can consult for example [MPR2].

Lemma 24. Let {uε : ΩT → R, ε > 0} be a set of functions such that

(1) there exists C > 0 so that |uε(x, t)| < C for every ε > 0 and every
(x, t) ∈ ΩT ,

(2) given η > 0 there are constants r0 and ε0 such that for every ε < ε0

and any (x, t), (y, s) ∈ Ω with |x − y| + |t − s| < r0 it holds

|uε(x, t) − uε(y, s)| < η.

Then, there exists a uniformly continuous function u : ΩT → R and a
subsequence still denoted by {uε} such that

uε → u uniformly in ΩT ,

as ε → 0.

First we recall the estimate for the stopping time of a random walk from
[MPR2]. In this lemma, there is no bound for the maximum number of
rounds.

Lemma 25. Let us consider an annular domain BR(z)\Bδ(z) and a random
walk such that when at xk−1, the next point xk is chosen according to a
uniform probability distribution at Bε(xk−1) ∩ BR(z). Let

τ∗ = inf{k : xk ∈ Bδ(z)}.
Then

Ex0(τ∗) ≤ C(R/δ) dist(∂Bδ(z), x0) + o(1)
ε2

,

for x0 ∈ BR(z) \ Bδ(z). Above o(1) → 0 as ε → 0.

Next we derive an estimate for the asymptotic uniform continuity of a
family {uε} of (p, ε)-parabolic functions with fixed boundary values.

We assume that Ω satisfies an exterior sphere condition: For each y ∈ ∂Ω,
there exists Bδ(z) ⊂ Rn \ Ω with δ > 0 such that y ∈ ∂Bδ(z). Below δ is
always chosen small enough according to this condition.

We also assume that F satisfies

|F (x, tx) − F (y, ty)| ≤ L
(
|x − y| + |tx − ty|1/2

)
(2.30)
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in Γε. First, we consider the case where (y, ty) is a point at the lateral
boundary strip.

Lemma 26. Let F and Ω be as above. The (p, ε)-parabolic function uε with
the boundary data F satisfies

|uε(x, tx) − uε(y, ty)|
≤ C min

{
|x − y|1/2 + o(1), t1/2

x + ε
}

+ L |tx − ty|1/2 + 2Lδ
(2.31)

for every (x, tx) ∈ Ω, and y ∈ Sε. The constant C depends on δ, n, L and
the diameter of Ω. In the above inequality o(1) is taken relative to ε.

Proof. Suppose for the moment that tx = ty, denote t0 = tx = ty, and set
x0 = x as well as N = �2tx/ε2�. By the exterior sphere condition, there
exists Bδ(z) ⊂ Rn \ Ω such that y ∈ ∂Bδ(z). Player I chooses a strategy of
pulling towards z, denoted by Sz

I . Then the calculation

Ex0,N
Sz

I ,SII
[|xk − z| |x0, . . . , xk−1]

≤ α

2
{|xk−1 − z| + ε + |xk−1 − z| − ε} + β

∫
Bε(xk−1)

|x − z| dx

≤ |xk−1 − z| + Cε2

(2.32)

implies that
Mk = |xk − z| − Cε2k

is a supermartingale for some C independent of ε. The first inequality follows
from the choice of the strategy, and the second from the estimate∫

Bε(xk−1)
|x − z| dx ≤ |xk−1 − z| + Cε2.

The optional stopping theorem and Jensen’s inequality then gives

Ex0,N
Sz

I ,SII
[|xτ − z| + |tτ − t0|1/2] = Ex0,N

Sz
I ,SII

[
|xτ − z| + ε

(τ

2

)1/2
]

≤ |x0 − z| + Cε
(
Ex0,N

Sz
I ,SII

[τ ]
)1/2

.

(2.33)

In formula (2.32), the expected distance of the pure tug-of-war is bounded
by |xk−1 − z| whereas the expected distance of the pure random walk is
slightly larger. Therefore, we can bound from above the stopping time of our
process by a stopping time of the random walk in the setting of Lemma 25
by choosing R > 0 such that Ω ⊂ BR(z). Thus, we obtain

Ex0,N
Sz

I ,SII
[τ ] ≤ min

{
Ex0,N

Sz
I ,SII

[τ∗], N
}

≤ min
{
C(R/δ)(dist(∂Bδ(z), x0) + o(1))/ε2, N

}
.

Since y ∈ ∂Bδ(z), we have

dist(∂Bδ(z), x0) ≤ |y − x0| ,
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and together with (2.33) this gives

Ex0,N
Sz

I ,SII
[|xτ − z| + |tτ − t0|1/2] ≤min

{
C(R/δ)(|x0 − y| + o(1)), Cε2N

}1/2

+ |x0 − z| .
Thus, we end up with

F (z, t0) − L
(
min

{
C(R/δ)(|x0 − y| + o(1)), Cε2N

}1/2 + |x0 − z|
)

≤ Ex0,N
Sz

I ,SII
[F (xτ , tτ )]

≤ F (z, t0) + L
(
min

{
C(R/δ)(|x0 − y| + o(1)), Cε2N

}1/2 + |x0 − z|
)

,

which implies

sup
SI

inf
SII

Ex0,N
SI,SII

[F (xτ , tτ )]

≥ inf
SII

Ex0,N
Sz

I ,SII
[F (xτ , tτ )]

≥ F (z, t0) − L
(
min

{
C(R/δ)(|x0 − y| + o(1)), Cε2N

}1/2 + |x0 − z|
)

≥ F (y, t0) − 2Lδ − Lmin
{
C(R/δ)(|x0 − y| + o(1)), Cε2N

}1/2
.

The upper bound can be obtained by choosing for Player II a strategy where
he points to z, and thus (2.31) follows.

Finally, if tx �= ty, then we utilize the above estimate and obtain

|uε(x, tx) − uε(y, ty)| ≤ |uε(x, tx) − uε(y, tx)| + |uε(y, tx) − uε(y, ty)|
≤ 2Lδ + min

{
C(R/δ)(|x − y| + o(1)), Cε2N

}1/2 + L |tx − ty|1/2 ,

and the proof is completed by recalling that N = �2tx/ε2�. �

Next we consider the case when the boundary point (y, ty) lies at the
initial boundary strip.

Lemma 27. Let F and Ω be as in Lemma 26. The (p, ε)-parabolic function
uε with the boundary data F satisfies

(2.34) |uε(x, tx) − uε(y, ty)| ≤ C
(
|x − y| + t1/2

x + ε
)

,

and for every (x, tx) ∈ ΩT and (y, ty) ∈ Ω × (−ε2/2, 0].

Proof. Set x0 = x, and N = �2tx/ε2�. Player I pulls to y. Then

Mk = |xk − y|2 − Ckε2

 

－256－



MANFREDI

is a supermartingale. Indeed,

Ex0,N
Sy

I ,SII
[|xk − y|2 |x0, . . . , xk−1]

≤ α

2
{
(|xk−1 − y| + ε)2 + (|xk−1 − y| − ε)2

}
+ β

∫
Bε(xk−1)

|x − y|2 dx

≤ α
{|xk−1 − y|2 + ε2

}
+ β

(|xk−1 − y|2 + Cε2
) ≤ |xk−1 − y|2 + Cε2.

According to optional stopping theorem,

Ex0,N
Sy

I ,SII
[|xτ − y|2] ≤ |x0 − y|2 + Cε2Ex0,N

Sy
I ,SII

[τ ],

and since the stopping time is bounded by �2tx/ε2�, this implies

Ex0,N
Sy

I ,SII
[|xτ − y|2] ≤ |x0 − y|2 + C(tx + ε2).

Finally, Jensen’s inequality gives

Ex0,N
Sy

I ,SII
[|xτ − y| ] ≤ (|x0 − y|2 + C(tx + ε2)

)1/2

≤ |x0 − y| + C(t1/2
x + ε).

The rest of the argument is similar to the one used in the previous proof. In
particular, we obtain the upper bound by choosing for Player II a strategy
where he points to y. We end up with

|uε(x, tx) − uε(y, ty)| ≤ C
(
|x − y| + t1/2

x + ε
)

. �

Next we will show that (p, ε)-parabolic functions are asymptotically uni-
formly continuous.

Lemma 28. Let F and Ω be as in Lemma 26. Let {uε} be a family of (p, ε)-
parabolic functions. Then this family satisfies the conditions in Lemma 24.

Proof. It follows from the definition of (p, ε)-parabolic function that

|uε| ≤ sup
Γε

F

and we can thus concentrate on the second condition of Lemma 24. Observe
that the case x, y ∈ Γε readily follows from the uniform continuity of F , and
thus we can concentrate on the cases x ∈ Ω, y ∈ Sε, and x, y ∈ Ω.

Choose any η > 0. By (2.31) and (2.34), there exists ε0 > 0, δ > 0, and
r0 > 0 so that

|uε(x, tx) − uε(y, ty)| < η

for all ε < ε0 and for any (x, tx) ∈ ΩT , (y, ty) ∈ Γε such that |x − y|1/2 +
|tx − ty|1/2 ≤ r0.

Next we consider a slightly smaller domain

Ω̃T = {(z, t) ∈ ΩT : d((z, t), ∂pΩT ) > r0/3}
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with

d((z, t), ∂pΩT ) = inf{|z − y|1/2 + |t − s|1/2 : (y, s) ∈ ∂pΩ},
and the boundary strip

Γ̃ = {(z, t) ∈ ΩT : d((z, t), ∂pΩT ) ≤ r0/3}.

Suppose then that x, y ∈ ΩT with |x − y|1/2 + |tx − ty|1/2 < r0/3. First,
if x, y ∈ Γ̃, then we can estimate

|uε(x, tx) − uε(y, ty)| ≤ 3η

for ε < ε0 by comparing the values at x and y to the nearby boundary
values and using the previous step. Finally, a translation argument finishes
the proof. Let (x, tx), (y, ty) ∈ Ω̃T . Without loss of generality we may
assume that tx > ty. Define

F̃ (z, tz) = uε(z − x + y, tz + ty − tx) + 3η for (z, tz) ∈ Γ̃.

We have
F̃ (z, tz) ≥ uε(z, tz) in Γ̃

by the reasoning above. Solve the (p, ε)-parabolic function ũε in Ω̃T with
the boundary values F̃ in Γ̃. By the comparison principle Theorem 23, and
the uniqueness Theorem 22, we deduce

uε(x, tx) ≤ ũε(x, tx) = uε(x−x+y, tx−tx+ty)+3η = uε(y, ty)+3η in Ω̃T .

The lower bound follows by a similar argument. �

Corollary 29. Let F satisfy the continuity condition (2.30) and Ω satisfy
the exterior sphere condition. Let {uε} be a family of (p, ε)-parabolic func-
tions with boundary values F . Then there exists a uniformly continuous u
and a subsequence still denoted by {uε} such that

uε → u uniformly in Ω

as ε → 0.

Theorem 30. Let F satisfy the continuity condition (2.30) and Ω satisfy
the exterior sphere condition. Then, the uniform limit

u = lim
ε→0

uε

of (p, ε)-parabolic functions obtained in Corollary 29 is a viscosity solution
to the equation

(n + p)ut(x, t) = |∇u|2−p Δpu(x, t)

with boundary values F .
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Proof. First, clearly u = F on ∂Ω, and we can focus attention on showing
that u is a viscosity solution. Similarly as in (2.26), we can derive for any
φ ∈ C2 an estimate

α

2

{
max

y∈Bε(x)
φ
(
y, t − ε2

2

)
+ min

y∈Bε(x)
φ
(
y, t − ε2

2

)}

+ β

∫
Bε(x)

φ
(
y, t − ε2

2

)
dy − φ(x, t)

≥ βε2

2(n + 2)

(
(p − 2)

〈
D2φ(x, t)

x
ε,t−ε2/2
1 − x

ε
,
x

ε,t−ε2/2
1 − x

ε

〉

+ Δφ(x, t) − (n + p)φt(x, t)

)
+ o(ε2),

(2.35)

where

φ
(
x

ε,t−ε2/2
1 , t − ε2

2

)
= min

y∈Bε(x)
φ
(
y, t − ε2

2

)
.

Suppose then that φ touches u at (x, t) from below. By the uniform
convergence, there exists sequence {(xε, tε)} converging to (x, t) such that
uε − φ has an approximate minimum at (xε, tε), that is, for ηε > 0, there
exists (xε, tε) such that

uε(y, s) − φ(y, s) ≥ uε(xε, tε) − φ(xε, tε) − ηε,

in the neighborhood of (xε, tε). Further, set φ̃ = φ + uε(xε, tε) − φ(xε, tε),
so that

uε(xε, tε) = φ̃(xε, tε) and uε(y, s) ≥ φ̃(y, s) − ηε.

Thus, by recalling the fact that uε is (p, ε)-parabolic, we obtain

ηε ≥− φ̃(xε, tε) + β

∫
Bε(xε)

φ̃
(
y, tε − ε2

2

)
dy

+
α

2

{
sup

y∈Bε(xε)

φ̃
(
y, tε − ε2

2

)
+ inf

y∈Bε(xε)
φ̃
(
y, tε − ε2

2

)}
.

(2.36)

According to (2.35), choosing ηε = o(ε2), and observing ∇φ = ∇φ̃, D2φ̃ =
D2φ, we have

0 ≥ βε2

2(n + 2)

(
(p − 2)

〈
D2φ(xε, tε)

x
ε,t−ε2/2
1 − xε

ε
,
x

ε,t−ε2/2
1 − xε

ε

〉

+ Δφ(xε, tε) − (n + p)φt(xε, tε)

)
+ o(ε2).
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Suppose that ∇φ(x, t) �= 0. Dividing by ε2 and letting ε → 0, we get

0 ≥ β

2(n + 2)
(
(p − 2)Δ∞φ(x) + Δφ(x) − (n + p)φt(x, t)

)
.

To verify the other half of the definition of a viscosity solution, we derive a
reverse inequality to (2.35) by considering the maximum point of the test
function and choose a function φ which touches u from above. The rest of
the argument is analogous.

Now we consider the case ∇φ(x, t) = 0. By Lemma 13, we can also assume
that D2φ(x, t) = 0 and it suffices to show that

φt(x, t) ≥ 0.

In this case, (2.35) takes the form

α

2

{
max

y∈Bε(x)
φ
(
y, t − ε2

2

)
+ min

y∈Bε(x)
φ
(
y, t − ε2

2

)}

+ β

∫
Bε(x)

φ
(
y, t − ε2

2

)
dy − φ(x, t)

≥ −βε2(n + p)
2(n + 2)

φt(x, t) + o(ε2).

Since (2.36) still holds, we can repeat the argument above.

Finally, we conclude that also the original sequence converges to a unique
viscosity solution. To this end, observe that by above any sequence {uε}
contains a subsequence that converges uniformly to some viscosity solution
u. By [CGG] (see also [ES] and [GGIS]), viscosity solutions to (2.15) are
uniquely determined by their boundary values. Hence we conclude that the
whole original sequence converges. �

Observe that the above theorem also gives a proof of the existence of
viscosity solutions to (2.15) using probabilistic arguments.
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LARGE SOLUTIONS FOR SOME PARABOLIC EQUATIONS

WITHOUT ABSORPTION

SALVADOR MOLL

In this talk I will present some new results obtained in a joint work with F.
Petitta about existence and uniqueness of entropy/renormalized large solutions for
the parabolic p-laplacian problem without absorption for the case 1 < p < 2; i.e.

(P )p

⎧⎨⎩ ut = div(|∇u|p−2∇u) in Ω × [0, T )

u = +∞ in ∂Ω × [0, T )

as well as existence and uniqueness of entropy solutions of large solutions for the
total variation flow:

(P )1

⎧⎪⎪⎨⎪⎪⎩
ut = div

(
Du

|Du|

)
in Ω × [0, T )

u = +∞ in ∂Ω × [0, T )

Dep. Anàlisi Matemàtica. Universitat de València
E-mail address: j.salvador.moll@uv.es
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Scale-invariant extinction time estimates for some
singular diffusion equations

Yoshikazu GIGA
Graduate School of Mathematical Sciences

Univeresity of Tokyo
Komaba 3-8-1, Meguro-ku, Tokyo 153-8914, Japan

A total variation flow is a gradient flow of the total variation and is often used
in image analysis for denoising and restoring image. It is often used in materials
science to describe evolution of a crystal surface.

We consider two models. One is an L2-gradient flow of the total variation, i.e.,

ut = div (∇u/|∇u|) (1)

and the other is an H−1-gradient flow, i.e.,

ut = −Δ div (∇u/|∇u|). (2)

Both equations have a strong diffusivity effect for the surface with slope zero and
the solution becomes flat in finite time. For (1) it is known but for (2) it was not
yet proved rigrously. We are interested in estimating extinction time both for (1)
and (2). To fix idea we impose for example a periodic boundary condition with zero
average condition. In this talk for a given initial data u0 we derive on upper bound
for the extinction time T ∗(u0), the first time when the solution u vanishes indetically
zero. Such a time is important since it is the time that all pattern disappears.

Our goal is to derive a scale-independent estimate for T ∗(u0) from above both
(1) and (2). The estimate for (1) is more or less known. The extinction time is
estimated by

T ∗(u0) ≤ Sn||u0||Ln ,

where Sn is the best Sobolev constant when the space dimension is n. For (2) the
estimate is more involved and we are only successful for lower dimensions 1 ≤ n ≤ 4.
Even T ∗(u0) < ∞ is a new result. Our estimate for n = 4 is

T ∗(u0) ≤ C||u0||Ḣ−1

while for 1 ≤ n ≤ 3
T ∗(u0) ≤ C||u0||1/θ−1

Ẇ−3,p||u0||2−1/θ

Ḣ−1
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with (4 − n + n/p)θ = 2 − n/2 + n/p, 1/2 < θ ≤ 1, 1 ≤ p < ∞. Here the norm
|| · ||Ẇ−m,p denotes the dual norm of homogeneous Wm,p′ space with 1/p+1/p′ = 1 so
that Ḣ−1 = Ẇ−1,2. The constant C is of course independent of u0 and moreover, it
is dilation invariant. The constant C depends only on θ (and blows up as θ ↓ 1/2).
The exponents θ and p are chosen so that the estimate is invariant under all scaling
transformations which makes the equation (2) invariant.

A key observation is a new interpolation inequality

||u||Ḣ−1 ≤ C∗||(−Δ)−1u||1−θ
Ẇ−1,p

(∫
|∇u|

)θ

and the growth estimate of the solution

d

dt
||(−Δ)−1u||Ẇ−1,p ≤ (volume of periodic cell)1/p

together with an energy estimate

1

2

d

dt
||u||2

Ḣ−1 = −
∫

|∇u|,

where
∫
|∇u| denotes the total variation of the measure ∇u.

This is a joint work with Robert V. Kohn of Courant Institute.
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NUMERICAL METHODS FOR SMOOTH AND CRYSTALLINE 
CURVATURE FLOW

Yen-Hsi Richard Tsai

Abstract. 
We present two numerical methods for planar anisotropic mean curvature flow. The 
methods are based on the variational approach of Alm- gren, Taylor and Wang, and 
Chambolle. Our approach uses the Split-Bregman method for total variation 
minimization. In the crystalline anisotropy case, we derive an algorithm for a
corresponding crystalline shrink- age (or soft thresholding) problem. In the smooth 
anisotropy case, we show that the Split-Bregman method yields an algorithm related to 
the inverse scale space flow of Burger, et al.
This is a joint work with A. Oberman, S. Osheer, and R. Takei. 
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Phase transition models based on
linear-growth interfacial energies

Shirakawa, Ken (Kobe Univ., Japan)

1 Introduction.

Let Ω ⊂ R2 be a two-dimensional bounded domain with a smooth boundary Γ := ∂Ω,
and let Q := (0, +∞) × Ω be the product space of the time-interval (0, +∞) and the
spatial domain Ω. Also, for any open set D ⊂ Ω, let Dex be the external part Ω \D of D.

In this talk, we take an origin-symmetric compact and convex set W ⊂ R2, to consider
a coupled system of a PDE and a constrained total variation flow, denoted by (S)W .

System (S)W . Find a pair [θ, w] of functions θ ∈ W 1,2
loc ([0, +∞); H2(Ω) ∩ H1

0 (Ω)) and

w ∈ W 1,2
loc ([0, +∞); L2(Ω)) ∩ L∞(0, +∞; BV (Ω)), such that:{

(θ + w)t − Δ(θ + μθt) = 0, in Q,

subject to the initial-boundary conditions;
(1)

{
wt − κ div (∂f ◦

W (Dw)) + ∂I[−1,1](w) � w + θ, in Q,

subject to the initial-boundary conditions.
(2)

System (S)W is a mathematical model to represent the dynamics of a solid-liquid phase
transition. In the context, θ = θ(t, x) is the relative temperature, assuming the critical
temperature to be 0, and w = w(t, x) is the order parameter that indicates the physical
state (phase) of material by the value on [−1, 1].

The PDE as in (1) is the heat equation, including an additional relaxation term μθt

with a small and positive constant μ, and this equation is treated under the homogeneous
Dirichlet boundary condition.

The evolution inclusion as in (2) is the kinetic equation of the phase dynamics, and
the boundary condition is provided in the form of the homogeneous Neumann type. This
inclusion is derived as a L2-gradient flow of a modified version of the free-energy, proposed
by Visintin [16, Chapter VI]):

w ∈ L2(Ω) �→ FW (w; θ) := κ

∫
Ω

f ◦
W (Dw) +

∫
Ω

{
I[−1,1](w) − 1

2
w2 − θw

}
dx,

prescribed with a function (temperature) θ ∈ L2(Ω).
(3)

Here, κ is a positive and small constant. f◦
W as in (3) is the dual norm (polar function) of

a two-dimensional norm fW ∈ C(R2), having the compact convex set W as its closed unit
ball, and ∂f ◦

W as in (2) denotes the subdifferential of the norm f ◦
W . Besides, the notation∫

Ω
f ◦

W (Dw) denotes the so-called anisotropic total variation with respect to fW , that is
defined as follows:

w ∈ L1(Ω) �→
∫

Ω

f ◦
W (Dw) := sup

{ ∫
Ω

w div ϕdx
ϕ ∈ C1

c (Ω; R2),
fW (ϕ) ≤ 1 on Ω

}
. (4)

In view of this, the inclusion (2) can be regarded as a generalized version of the total
variation flow. Then, the compact convex set W is called “Wulff shape”, and its shape
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is supposed to correspond to the structural unit of crystal. Additionally, I[−1,1] as in
(3) is the indicator function on the compact interval [−1, 1], and ∂I[−1,1] as in (2) is its
subdifferential.

In (3), the indicator function I[−1,1] is built in to constrain the range of the parameter w
onto the supposed one [−1, 1]. However, this indicator function also makes the integrand:

ω ∈ R �→ I[−1,1](ω) − 1

2
ω2 − ϑω (ϑ ∈ R);

be the so-called double-well type function that characterizes the phase bi-stability in the
observing solid-liquid phase transition.

As a mathematical model, the system (S)W is described in a simplified form, and
hence it is not so difficult to check the basic properties, such as the well-posedness and
the large-time behavior. In fact, referring to [11], it will be seen that the ω-limit points for
the orbits of (S)W are expressed as a pair [0, w∞] of the constant equilibrium temperature
0 (the critical value), and the solution w∞ of the following inclusion, denoted by (S∞)W .

Inclusion (S∞)W . Find a function w∞ ∈ BV (Ω) ∩ L∞(Ω), such that:{ −κ div (∂f ◦
W (Dw∞)) + ∂I[−1,1](w∞) � w∞, in Ω,

subject to the boundary condition (inherited from (2)).

In this sense, the inclusion (S∞)W can be said as the steady-state problem for (S)W , and
each pair [0, w∞] of the ω-limit point can be said as the steady-state solution of (S)W .

In this talk, we will focus on special steady-state solutions, to see some geometric
association between represented interfaces and Wulff shapes. To this end, the Wulff
shape W ⊂ R2 will be supposed to belong to one of the following two cases.

(Case 0) (Isotropic case) the case when W = D2 := conv(S1).

(Case 1) (Anisotropic case of crystalline type) the case when:

W ∈ P :=

{
P ⊂ R2 P is a origin-symmetric compact convex polygon,

such that ∂P is circumscribed to S1

}
.

On that basis, let us set the following three items, as the discussion points in this talk:

(a) to see the geometric structure of the interfacial patterns in steady-state (steady-state
patterns), in (Case 0) and (Case 1);

(b) to study the stability for the steady-state patterns, in (Case 0) and (Case 1);

(c) to see some continuous dependence of stable steady-state patterns with respect to
Wulff shapes, when (Case 0) is regarded as a limiting situation of (Case 1).

2 Main Theorems

In this talk, four theorems are presented as the main conclusions, and they are respec-
tively stated as follows.

Main Theorem 1. (Structural observation in (Case 0), cf. [12, 15]) Let us denote by X0

the solution class of the steady-state problem (S∞)D2 in (Case 0). Then, the class S(D2),
defined blow, is a subclass of X0.

S(D2) :=

{
wD := χD − χDex

D ⊂ Ω is a domain satisfying the marginated
conditions, labeled as (A1)0-(A4)0 (see Fig. 1
to get the general idea).

}
.
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Fig. 1 Fig. 2

(A1)0 ΓD := ∂D ∩ Ω is a Jordan curve.

(A2)0 ∃r > 2κ, s.t.

D =
⋃

x∈D,W0(x;r)⊂D

W0(x; r) and Dex =
⋃

x∈Dex,W0(x;r)⊂Dex

W0(x; r), (5)

where W0(y; ρ) denotes the interior of (y + ρD2) ∩ Ω, ∀y ∈ R2, ∀ρ > 0.

(A3)0 The tubular domain
{

x ∈ Ω inf
y∈ΓD

|y − x| < r
}

is C2-diffeomorphic with the

rectangle [0, 1] × (−1, 1).

(A4)0 ΓD has at most a finite number of inflection points.

Main Theorem 2. (Structural observation in (Case 1), cf. [13, 14]) Let us fix any
P ∈ P, and let us denote by XP the solution class of the steady-state problem (S∞)P in
(Case 1) when W = P . Then, the class S(P ), defined blow, is a subclass of XP .

S(P ) :=

{
wD := χD − χDex

D ⊂ Ω is a domain satisfying the marginated
conditions, labeled as (A1)P -(A3)P (see
Fig. 2 to get the general idea).

}
.

(A1)P ΓD := ∂D ∩ Ω is a polygonal (piecewise linear) Jordan curve, such that its any
edge (the part of segment) is parallel to one of those of the Wulff shape P .

(A2)P ∃r > 2κ, s.t. D =
⋃

x∈D,WP (x;r)⊂D

WP (x; r) and Dex =
⋃

x∈Dex,WP (x;r)⊂Dex

WP (x; r),

where WP (y; ρ) denotes the interior of (y + ρP ) ∩ Ω, ∀y ∈ R2, ∀ρ > 0.

(A3)P 0 < ∀ρ < r, two compact sets:{
x ∈ D inf

y∈ΓD

fP (y − x) = ρ
}

and
{

x ∈ Dex inf
y∈ΓD

fP (y − x) = ρ
}
;

are both Jordan curves, included in Ω.
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Main Theorem 3. (Stability analysis, cf. [14]) Let us fix any Wulff shape W belonging to
one of (Case 0)-(Case 1), and let us take any wD ∈ S(W ) with the characteristic domain
D = w−1

D (1). Here, let us set:

ΓD(ρ)W :=
{

x ∈ Ω inf
y∈ΓD

fW (y − x) ≤ ρ
}

, 0 < ∀ρ < 2κ.

Also, for the steady-state solution [0, wD], let us set:

UW

([
0

wD

]
; δ, ρ

)
:=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[
θ̃
w̃

]
∈

H2(Ω) ∩ H1
0 (Ω)

×
BV (Ω) ∩ L∞(Ω)

|θ̃|H2(Ω) ≤ 1, |θ̃|H1
0 (Ω) ≤ δ,

|w̃ − wD|L∞(Ω\ΓD(ρ)W ) ≤ δ,∫
Ω

f ◦
W (Dw̃) ≤

∫
Ω

f ◦
W (DwD)+δ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ;

for any δ, ρ > 0. Then, we find positive and small constants δ∗, ρ∗, which characterize the
stability of the steady-state solution [0, wD], as follows.

(∗) If 0 < δ < δ∗, 0 < ρ < ρ∗, and if a solution [θ, w] of the system (S)W satisfies»
θ(0)
w(0)

–
∈ UW

„»
0

wD

–
; δ, ρ

«
, then there exists a finite time t∗(δ, ρ), depending on δ

and ρ, such that :

w(t) = wD a.e. in Ω \ ΓD(ρ)W , for any t ≥ t∗(δ, ρ).

Namely, the oscillation, given in the range of UW

„»
0

wD

–
; δ, ρ

«
, is recovered at a finite

time t∗(δ, ρ), except on the ρ-neighborhood ΓD(ρ)W of the interface ΓD.

Main Theorem 4. (Continuous dependence from (Case 1) to (Case 0)) Let us define:

ω-S(P) :=

⎧⎪⎨⎪⎩ w̄ ∈ BV (Ω)

∃ {Pn} ⊂ P, ∃ {w̄n | w̄n ∈ SPn , n ∈ N}, s.t.

• distR2(∂Pn, S1) → 0
• w̄n → w̄ in L2(Ω)

}
as n → +∞

⎫⎪⎬⎪⎭ .

where distR2(·, ·) is the Hausdorff distance between subsets in R2. Then, the following
three statements hold.

(I) (Upper-bound) ω-S(P) ⊂ X0, and furthermore:

ω-S(P) ⊂ S∗ :=

{
wD := χD − χDex

D ⊂ Ω is a domain which satisfies the
condition (A1)0, and satisfies (5), as in
(A2)0, for some r ≥ 2κ.

}
.

(II) (Lower bound)

ω-S(P) ⊃ S∗ :=

{
wD := χD − χDex

D ⊂ Ω is a domain, which satisfies just
two conditions (A1)0 and (A2)0

}
.

Namely, S∗ is also a subclass of X0, which is strictly wider than S(D2), as in Main
Theorem 1.

(III) (Stability) For any wD ∈ S∗, the steady-state solution [0, wD] shows the stability,
just mentioned in (∗) of Main Theorem 3. To conclude, the conditions (A3)0-(A4)0

are eventually unnecessary for the stability analysis in the isotropic case.

The above Main Theorems will be proved, with helps from a lot of mathematical
theories, obtained by Amar-Bellettini [1], Ambrosio-Fusco-Pallara [2], Andreu-Caselles-
Mazón [3], Attouch [4], Bellettini-Caselles-Chambolle-Novaga [5], Caselles-Chambolle-
Moll-Novaga [6], Giga-Giga [7], Kenmochi [8], Moll [9], Mosco [10], and so on.
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－271－



The Dirichlet problem for a singular
elliptic equation arising in the level
set formulation of the inverse mean

curvature flow

José M. Mazón∗

In this lecture we consider the Dirichlet problem associated with a nonlin-
ear singular elliptic equation arising in the level set formulation of the inverse
mean curvature flow; namely,

−div

(
Du

∣Du∣

)
+ ∣Du∣ = f .

We introduce a suitable concept of weak solution, for which we prove exis-
tence and uniqueness of the homogeneous Dirichlet problem in a bounded
open set of ℝN , in the case 0 ≤ f ∈ Lq(Ω), q > N . Moreover, examples of
explicit solutions are shown.

∗Departamento de Análisis Matemático, Universitat de Valencia, 46100 Burjassot (Va-
lencia), Spain, mazon@uv.es
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