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Abstract

We study three singular parabolic evolutions: the second-order total variation flow, the
fourth-order total variation flow, and a fourth-order surface diffusion law. Each has the property
that the solution becomes identically zero in finite time. We prove scale-invariant estimates for
the extinction time, using a simple argument which combines an energy estimate with a suitable
Sobolev-type inequality.
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1 Introduction

We shall discuss three singular parabolic PDEs: the second-order total variation flow

ut = div
(
∇u
|∇u|

)
, (1.1)

the fourth-order total variation flow

ut = −∆
[
div

(
∇u
|∇u|

)]
, (1.2)

and the fourth-order surface diffusion law

ut = −∆
[
div

(
∇u
|∇u|

+ µ|∇u|q−2∇u
)]

(1.3)

(with µ > 0 and q > 1). Our goal is to prove finite-time extinction, i.e. to show that the solution
becomes identically zero in finite time, and to give scale-invariant estimates for the extinction time.
We focus on the spatially periodic setting, but we also consider other boundary conditions. In the
periodic setting the initial data u0 should have mean value 0; since ut is a divergence, the mean
value is independent of time.

Equations (1.1)–(1.3) should not be taken literally, since right hand sides are undefined when
∇u = 0. The rigorous definition of the total variation flow is familiar: it is the L2 steepest-descent
associated with the BV seminorm

∫
|∇u|. The definition of the fourth-order total variation flow is

similar: it is the H−1 steepest-descent for the BV seminorm. The surface diffusion law is the H−1

steepest-descent for ∫
|∇u|+ µ

q
|∇u|q. (1.4)

These definitions will be discussed in Sections 2 and 3.
The finite-time extinction of solutions to (1.3) has been noticed in the materials science litera-

ture, where this equation (with q = 3) has been proposed as a continuum model for the evolution
of a crystal surface below the roughening temperature in the “diffusion-limited” regime, see e.g.
[CRSC, HS, M, RV, SRF, SRRTCC]. The adequacy of this model is somewhat controversial, since
this PDE approach to facetting has yet to be derived as the continuum limit of a more microscopic
model. Numerical simulation has been the main technique for assessing the implications of (1.3).
Simulation has “shown” that u becomes constant at a finite time T ∗, and that ‖u‖ decreases linearly
as t ↑ T ∗. However, to our knowledge there has been no mathematical analysis of finite-time ex-
tinction for either of the 4th-order equations (1.2) or (1.3), and it is difficult to see from simulations
how the extinction time depends on the details of the initial data.

There is a substantial body of work on finite-time extinction for solutions of the second-order
total variation flow (1.1); see Remark 2.7 for a brief summary. But that work relies on intrinsically
second-order techniques (comparison and maximum principles). Our approach is quite different: the
main tools are “energy estimates” and Sobolev inequalities. While our approach has not previously
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been applied to the second-order total variation flow, similar arguments have been used for other
second-order problems; see Remark 2.8 for specific references.

Our focus is mainly on “scale-invariant estimates.” To explain what this means, let us focus
on the fourth-order total variation flow. It has two scale invariances, t → λt, u → λu, x → x and
t → λ4t, u → λu, x → λx. The first invariance shows that the extinction time T ∗(u0) is positively
homogeneous of degree one, i.e. T ∗(λu0) = λT ∗(u0) where u0 is the initial condition. This suggests
an extinction time estimate of the form

T ∗ ≤ C‖u0‖X .

If the constant C is unchanged when we scale the domain, then the second invariance restricts
the character of the norm on the right hand side. Scale invariance is especially important for
the analysis of surface diffusion, because we often use periodic boundary conditions to minimize
finite-size effects. In this setting the period is arbitrary; therefore a physically meaningful estimate
should not depend on it.

To capture the main idea of our analysis, let us sketch how it works for the second-order total
variation flow with periodic boundary conditions in space dimension 2. The key observation is that

‖u‖L2(T2)(t) ≤ ‖u0‖L2(T2) − Ct for t < T ∗(u0), (1.5)

where T2 is the period cell, u0 is the initial condition (assumed to have mean value 0), and the
constant C is scale-invariant. This clearly implies the extinction time estimate T ∗ ≤ C−1‖u0‖L2(T2).
(For the rigorous version of the argument that follows, see Theorem 2.4.) Multiplying (1.1) by u,
integrating over the period cell, then integrating by parts gives (in any dimension)

1
2
d

dt

∫
T2

|u|2dx = −
∫
T2

|∇u|.

The scale-invariant Sobolev inequality
(∫

Tn |u|n/(n−1) dx
)(n−1)/n ≤ Sn

∫
Tn |∇u| becomes, when n =

2, (∫
T2

|u|2 dx
)1/2

≤ S2

∫
T2

|∇u|.

These inequalities combine to give (1.5) with C = S−1
2 .

Our analysis of the fourth-order equations (1.2) and (1.3) uses a similar technique, starting with
the estimate (in any dimension n)

1
2
d

dt

∫
Tn

u(−∆−1u) dx ≤ −
∫
Tn

|∇u|.

where Tn is the period cell. In space dimension 4 the argument is almost parallel to the one just
given, and the scale-invariant estimate is

T ∗ ≤ C‖u0‖H−1(T4)
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(see Theorem 3.3). In dimensions n < 4 we must work a bit more, and the scale-invariant estimate
of T ∗ involves interpolation between two negative norms of u0 (see Theorems 3.8 and 4.3). We do
not prove finite-time extinction for the fourth-order problems in dimension n ≥ 5.

Our surface diffusion law (1.3) is a special case of the more general equation

ut = −div
[
M(∇u)∇div

(
∇u
|∇u|

+ µ|∇u|q−2∇u
)]

. (1.6)

Equations of this type (with specific formulas for the “mobility” M(∇u)) have been “derived” as
continuum limits of step motion laws away from the vicinity of a facet, see e.g. [CRSC, MK, OZ].
It is natural to expect that the solution of (1.6) should have finite-time extinction. However our
method seems to work only when M is constant.

The paper is organized as follows. Section 2 presents our results on the second-order total
variation flow. In space dimension n > 2, the analogue of (1.5) is ‖u‖Ln(t) ≤ ‖u0‖Ln − S−1

n t (see
Theorem 2.4). The one-dimensional case is special, because the solution can be made more or
less explicit. Using this, we show in Section 2.5 that finite-time extinction can fail for the Cauchy
problem if the initial data decays slowly enough at infinity.

Section 3 presents our results on the fourth-order total variation flow. The main results are
Theorems 3.3 and 3.8, which give scale-invariant estimates for the extinction time in the periodic
setting, for space dimensions n = 4 and n < 4 respectively. We also discuss some non-scale-invariant
estimates (Theorem 3.11), and we briefly discuss the situation for Dirichlet or Neumann boundary
conditions (Section 3.6).

Section 4 presents our results on the fourth-order surface diffusion law. As noted earlier, that
equation represents the H−1 steepest-descent for

∫
|∇u| + µ

q |∇u|
q, whereas the fourth-order total

variation flow is H−1 steepest descent for
∫
|∇u|. The presence of |∇u|q in the energy has a big

effect on the qualitative properties of solutions, since it prevents the formation of discontinuities
(which can indeed form when µ = 0 [GG10]). However the presence of |∇u|q seems to have little
effect on the extinction time: our analysis and the resulting estimates are only slightly different
from those in Section 3.

2 Warming up: the second-order total variation flow

In this section we prove scale-invariant extinction time estimates for the second-order total variation
flow. We begin by reviewing the sense in which this evolution is the L2 gradient flow of the BV
seminorm. This interpretation is well-known, see e.g. [ACM] and [GGK]. An informal discussion
of gradient flow in more or less the present setting can be found in the review article [KG].

2.1 Abstract framework

Let H be a real Hilbert space equipped with an inner problem 〈, 〉, and let Φ be a convex, lower
semicontinuous function on H with nonempty domain D(Φ). It is well-known (see e.g. [Ko], [Br],
[Ba]) that the initial value problem

du
dt (t) ∈ −∂Φ(u(t)) for a.e. t > 0, with u|t=0 = u0 ∈ H (2.1)
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admits a unique solution u ∈ C([0,∞), H) which is absolutely continuous with values in H in any
compact subset of (0,∞). Here ∂Φ(v) denotes the subdifferential at v, in other words f ∈ ∂Φ(v) ⊂
D(Φ) if and only if

Φ(v + h)− Φ(v) ≥ 〈h, f〉

holds for all h ∈ H.
If Φ is homogeneous of degree d, one can show that it satisfies the “Euler equation” 〈u, ∂Φ(u)〉 =

dΦ(u); the proof is parallel to the familiar argument for homogeneous functions on Rn. For later
convenience we now prove a similar property for a sum of homogeneous functionals. Note that
when Φ = Φ1 + Φ2, we only know in general that ∂(Φ1 + Φ2) ⊃ ∂Φ1 + ∂Φ2 (see e.g. [ET]), so the
following Lemma cannot be proved by adding the results for each Φj .

Lemma 2.1. Suppose that for 1 ≤ j ≤ m, Φj is positively homogeneous of degree dj in H (in other
words, Φj(λv) = λdj Φj(v) for all λ > 0 and v ∈ D(Φj)). Then Φ =

∑m
j=1 Φj satisfies

〈u, f〉 =
m∑
j=1

djΦj(u)

for all f ∈ ∂Φ(u).

Proof. We take v = u, h = (λ− 1)u in the definition of the subdifferential to get

Φ(λu)− Φ(u) ≥ (λ− 1)〈u, f〉.

By homogeneity we have
m∑
j=1

(λdj − 1)Φj(u) ≥ (λ− 1) 〈u, f〉.

Assuming that λ > 1, we divide both sides by λ− 1 and send λ to 1 to get

m∑
j=1

djΦj(u) ≥ 〈u, f〉.

The opposite inequality is obtained by assuming λ < 1 and repeating the same procedure.

As an application we obtain a fundamental energy identity. Let ||u|| be the norm of u in H, in
other words ||u||2 = 〈u, u〉.

Lemma 2.2. Suppose Φ is a convex, lower semicontinuous function with non-empty domain D(Φ).
Assume moreover that Φ =

∑m
j=1 Φj where Φj is positively homogeneous of degree dj for j =

1, 2, . . . ,m. Then the solution of (2.1) satisfies

1
2
d

dt
||u||2(t) = −

m∑
j=1

djΦj(u), a.e. t > 0.
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Proof. Take the inner product of (2.1) with u and apply Lemma 2.1.

It is not always easy to characterize the subdifferential of a non-smooth convex function. But
when Φ is nonnegative and positively homogeneous of degree 1, we can characterize ∂Φ by consid-
ering an appropriate “dual problem.” We recall how this works (see e.g. Theorem 1.8 of [ACM],
where the result is stated for convex functions on a Banach space). For any nonnegative function
Ψ on H with nonempty domain, let Ψ̃ be the nonnegative function defined by

Ψ̃(v) = sup
{
〈v, w〉
Ψ(w)

: w ∈ H
}

with the conventions that 0/0 = 0 and 0/∞ = 0. Note that Ψ̃ is always convex, lower semicontinu-
ous, and positively homogeneous of degree one in H. If Ψ is positively homogeneous of degree one,
Ψ̃ is nothing but the support function of the one-sublevel-set of Ψ (the set {w ∈ H : Ψ(w) ≤ 1}).

Lemma 2.3 ([ACM], Theorem 1.8). Suppose Φ is convex, lower semicontinuous, nonnegative, and
positively homogeneous of degree one. Then

f ∈ ∂Φ(v) if and only if Φ̃(f) ≤ 1 and 〈v, f〉 = Φ(v).

Proof. From Lemma 2.2 we know that 〈v, f〉 = Φ(v) whenever f ∈ ∂Φ(v). Under the condition
〈v, f〉 = Φ(v), the assertion f ∈ ∂Φ(v) is by definition equivalent to the statement that

Φ(v + h) ≥ 〈v + h, f〉

for all h ∈ H. In other words Φ(w) ≥ 〈w, f〉 for all w ∈ H. This is equivalent to saying that
Φ̃(f) ≤ 1.

2.2 The total variation flow

As noted in the Introduction, the second-order total variation flow can be formally written as

ut = div
(
∇u
|∇u|

)
. (2.2)

We now discuss its rigorous definition for various boundary conditions. This requires defining a
convex, lower semicontinuous functional Φ such that ∂Φ is formally of the form −div (∇u/|∇u|).

Periodic Boundary Condition. This is the easiest case. We consider the problem in L2(Tn),
where

Tn =
n∏
i=1

(R/ωiZ)

with ωi > 0. In other words v ∈ L2(Tn) if v is a locally square integrable function defined for
x ∈ Rn which is periodic in each xi with period ωi. This is of course a Hilbert space with inner
product

〈v, w〉 =
∫ ω1

0
· · ·
∫ ωn

0
v(x)w(x) dx =

∫
Tn

vw dx.
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Let BV (Tn) ⊂ L2(Tn) be the space of periodic functions with bounded variation, and consider
the function Φπ on H defined by

Φπ(v) =

{∫
Tn |∇v| if v ∈ BV (Tn)
∞ otherwise.

Here
∫
Tn |∇v| denotes the total variation of the vector-valued measure ∇v in Tn, i.e.,∫

Tn

|∇v| = sup
{∫

Tn

v divϕdx : sup
x
|ϕ(x)| ≤ 1, ϕ ∈ C1(Tn,Rn)

}
.

It is easy to see that Φπ is convex and lower semicontinuous, see e.g. [Gi]. It is convenient to
consider the closed subspace L2

av(Tn) of L2(Tn) consisting of functions with mean value zero:

L2
av(Tn) =

{
v ∈ L2(Tn) :

∫
Tn

v dx = 0
}
.

The rigorous interpretation of the second-order total variation flow (1.1) with a periodic boundary
condition is equation (2.1) with Φ = Φπ and H = L2

av(Tn). It has a unique solution, for any initial
data u0 ∈ H.

Neumann Boundary Condition. Let Ω be a domain in Rn. We set H = L2(Ω) and define a
function on H of the form

ΦN (v) =

{∫
Ω |∇v| if v ∈ BV (Ω) ∩ L2(Ω)
∞ otherwise.

Here BV (Ω) denotes the space of functions with bounded variation in Ω. It is easy to see that ΦN

is convex and lower semicontinuous. The rigorous interpretation of the second-order total variation
flow (1.1) with a homogeneous Neumann boundary condition ∂u/∂ν = 0 is equation (2.1) with this
choice of H and Φ = ΦN . If Ω = Rn, the solution just defined solves the Cauchy problem. If Ω
has bounded Lebesgue measure, we may alternatively take H = L2

av(Ω), the space of L2 functions
with mean value zero.

Dirichlet Boundary Condition. To impose a Dirichlet condition at ∂Ω, it is tempting to suggest
that Φ(v) =∞ unless v ∈ BV (Ω) vanishes at ∂Ω. But this does not work – the resulting Φ would
not be lower semicontinuous. We must therefore proceed a little differently. Let Ω be a bounded
domain in Rn. For any u ∈ L2(Ω), let ũ denote its extension by 0 to all Rn. Then we define

ΦD(u) =

{∫
Rn |∇ũ| if ũ ∈ BV (Rn)
∞ otherwise.

This ΦD is convex and lower semicontinuous function as a function on H = L2(Ω). The rigorous
interpretation of the second-order total variation flow with a boundary condition u = 0 at ∂Ω is
(2.1) with this choice of H and Φ = ΦD. (See [GGK] for for a more general discussion, with a
nonconstant weight in the definition of Φ and inhomogeneous Dirichlet data.)
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2.3 A scale-invariant Sobolev inequality

Our bound for the extinction time will make use of the scale-invariant Sobolev (isoperimetric)
inequality (∫

Ω
|u|

n
n−1dx

)n−1
n

≤ Sn
∫

Ω
|∇u|. (2.3)

Such an estimate holds

(a) when Ω = Rn, for any u ∈ BV (Ω);

(b) when Ω ⊂ Rn has finite Lebesgue measure, for any u with mean value 0; and

(c) when Ω = Tn, for any periodic u with mean value 0.

It also holds with u replaced by ũ (the extension by 0 off Ω), when Ω is a bounded domain with
Lipschitz boundary and u ∈ BV (Ω). These familiar facts can be found, for example, in the appendix
of [ACM].

We call (2.3) a scale-invariant estimate, because in cases (b) and (c) it holds for Ω if and only if
it holds for the dilated domain λΩ, with a constant independent of λ. The estimate still depends,
however, on the shape of the domain. To explain, let us focus on the periodic setting (c) in space
dimension 2. Let CL be the best constant for (2.3) when u is periodic with mean value 0 and the
period cell is [0, L)× [0, 1/L). Restricting attention to u(x) = f(x1), we have(∫ L

0
|f(x1)|2 dx1

)1/2

L−1/2 ≤ CLL−1

∫ L

0
|f ′(x1)|

for any f with mean value 0. Changing variables by x1 = Lz gives(∫ 1

0
|g(z)|2 dz

)1/2

≤ CLL−1

∫ 1

0
|g′(z)|

for any g with mean value 0. It follows that CL/L stays bounded away from 0 as L→∞. Thus, in
the periodic setting the best constant in (2.3) tends to infinity when the period cell becomes highly
eccentric.

The situation when u has a Dirichlet boundary condition is different. The constant Sn can be
taken independent of Ω in that setting, since (2.3) holds with u replaced by ũ and Sn = Sn(Rn).
(In fact, one can show that for any bounded domain Ω, the best constant for (2.3) with a Dirichlet
boundary condition is Sn(Ω) = Sn(Rn).)

2.4 An upper bound for the extinction time

We are interested in the extinction time T ∗(u0) of the second-order total variation flow with one of
the boundary conditions discussed in Section 2.2. It is defined by

T ∗(u0) = inf{t ∈ (0,∞) : u(x, τ) = 0 for τ ≥ t},

where u is the solution with initial data u0. Our main result is
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Theorem 2.4. For the periodic problem in dimension n ≥ 2 with initial data u0 ∈ L2
av(Tn), the

extinction time satisfies
T ∗(u0) ≤ Sn||u0||Ln .

For the Neumann problem in a bounded domain (defined using Φ = ΦN and H = L2
av(Ω)) the same

estimate holds with no further hypothesis when n = 2, and provided ∂Ω is smooth if n ≥ 3. For
the Cauchy problem (defined using Φ = ΦN and H = L2(Rn)) the same estimate holds for n ≥ 2.
Finally, for the Dirichlet problem in a bounded domain (defined using Φ = ΦD and H = L2(Ω)) the
same conclusion holds for n = 2. (We do not assert the estimate for the Dirichlet problem when
n ≥ 3.)

Proof. What is clear is the case n = 2. In this case by Lemma 2.2 we have

1
2
d

dt

∫
Ω
|u|2dx = −

∫
Ω
|∇u| (2.4)

since Φπ, ΦD and ΦN are positively homogeneous of degree one (in the periodic setting Ω = Tn).
By the scale-invariant Sobolev inequality (2.3) we have

1
2
d

dt

∫
Ω
|u|2dx ≤ − 1

S2

(∫
Ω
|u|2dx

)1/2

,

from which it follows that

d

dt
||u||L2(t) ≤ −S−1

2 provided ||u||L2(t) 6= 0.

This argument applies also to the Dirichlet boundary problem, provided we replace u by ũ. Thus
in all the various settings we have

||u||L2(t) ≤ ||u0||L2 − S−1
2 t for t < T ∗(u0).

Since the left hand side is nonnegative, we conclude that T ∗(u0) ≤ S2||u0||L2 .
For n ≥ 3 the proof is more involved. We begin with a formal calculation. If n ≥ 2 is even, we

multiply the PDE (2.2) by un−1 to get

1
n

d

dt

∫
Ω
un dx =

∫
Ω
un−1ut dx =

∫
Ω
un−1 div (∇u/|∇u|) dx.

Integrating by parts, we find that the right hand side equals

− (n− 1)
∫

Ω
un−2∇u · ∇u/|∇u| dx+

∫
∂Ω
un−1(∂u/∂ν)/|∇u| dS =

− (n− 1)
∫

Ω
un−2|∇u| dx = −

∫
Ω
|∇un−1| dx.
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Here we used the Dirichlet or Neumann boundary condition to conclude that the boundary integral
was zero. (If Ω = Rn or Tn, there is no boundary integral.) Applying the scale-invariant Sobolev
estimate (2.3) we get

1
n

d

dt

∫
Ω
undx ≤ −S−1

n

(∫
Ω
undx

)n−1
n

.

We thus obtain (formally) that

1
n

d

dt
||u||nLn ≤ −S−1

n ||u||n−1
Ln . (2.5)

If n ≥ 3 is odd, we obtain the same inequality (formally) by multiplying the PDE by |u|n−2u instead
of un−1. It is easy to see that (2.5) implies our extinction time estimate.

There are at least two ways to make this argument rigorous for the Cauchy problem, the
periodic problem, and the Neumann boundary condition. One way is to use a characterization
of the subdifferential we’ll discuss later (see Lemmas 3.5 and 3.12) combined with integration by
parts. This approach uses the truncation of u defined by

uk =


u if −k ≤ u ≤ k
k if u > k

−k if u < −k.

One argues essentially as in the formal argument, but using uk instead of u; for example, when the
boundary condition is periodic one gets∫

Tn

|uk|n−2ukut = −
∫
Tn

|∇|uk|n−1|

However, this argument is not very straightforward: it requires a characterization of the subdiffer-
ential that’s more specific than Lemma 3.5, and the treatment of the term |∇|uk|n−1| is difficult.

Our second approach, which uses an approximation argument, is easier. We shall focus on the
case of ΦN with a bounded domain Ω (the argument is similar but easier in the periodic setting and
for the Cauchy problem). We approximate the original energy by a smooth one, whose gradient
flow is uniformly parabolic:

Φε
N (u) =

∫
Ω

√
|∇u|2 + ε2 dx+

ε2

2

∫
Ω
|∇u|2.

Its gradient flow is formally equivalent to

∂u

∂t
= div

(
∇u√

|∇u|2 + ε2

)
+ ε2∆u (2.6)

with ∂u/∂ν = 0 at ∂Ω. There is a unique, smooth, global-in-time solution for any L2 initial
data uε0. Since Φε

N → ΦN in the Mosco sense, we know that the solutions converge (uε → u in
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C([0, T ), L2(Ω)), where u is the solution of (2.1) with Φ = ΦN and H = L2
av(Ω)) provided uε0 → u0

in L2(Ω). This convergence follows from a general theorem due to J. Watanabe [W] and H. Brezis
and A. Pazy [BP]. (Note that without the ∆u term our perturbed problem is essentially the one
studied by [LT].)

We first assume that u0 is Lipschitz and bounded. Multiplying (2.6) by |u|n−2u for odd n ≥ 3
and integrating by parts gives

1
n

d

dt

∫
Ω
|u|n dx = −(n− 1)

∫
Ω
|u|n−2 |∇u|2√

|∇u|2 + ε2
dx− (n− 1)ε2

∫
Ω
|u|n−2|∇u|2 dx. (2.7)

Since X2/(X2 + ε2)1/2 ≥ X − δ for all X ≥ δ provided that δ ≥ ε/2, this inequality yields

1
n

d

dt

∫
Ω
|u|n dx ≤− (n− 1)

∫
Ω
|u|n−2(|∇u| − δ)+ dx

=−
∫

Ω
|∇un−1|+ δ(n− 1)

∫
Ω∩{|∇u|>δ}

|u|n−2dx

+ (n− 1)
∫

Ω∩{|∇u|≤δ}
|u|n−2|∇u| (2.8)

for δ ≥ ε/2.
The function u depends on ε, and we are interested in the limit ε→ 0, so we henceforth write

uε rather than u. Since we have assumed that u0 is Lipschitz and bounded we may take uε0 such
that ||∇uε0||L∞ ≤ L uniformly in 0 < ε < 1 and uε0 → u0 in Lp (1 ≤ p ≤ ∞). Then by the weak
maximum principle for |∇uε|2 there is an α > 0 independent of ε such that

||∇uε||∞(t) ≤ eαtL

for all t ≥ 0 independent of ε. The constant α > 0 depends on the curvature of ∂Ω (see [GOS]
and [AG]). If Ω is convex, then one can take α = 0; in general, however, one cannot take α = 0
(see [GOS], which examines the Neumann problem for the level set formulation of mean curvature
flow).

Now choose T such that T < T ∗(u0). Since uε → u in C([0, T ], L2), by interpolation with our
uniform estimate of the gradient we conclude that uε → u in C([0, T ], Lp). Applying the Sobolev
inequality, we obtain from (2.8) that

||uε||n−1
Ln

d

dt
||uε||Ln(t) ≤ −S−1

n ||uε||n−1
Ln (t) + δ(n− 1)||uε||n−2

Ln−2(t). (2.9)

Here we invoke the assumption that u0 ∈ L2
av(Ω) so that uε ∈ L2

av(Ω). Since ||uε||Ln(t) is decreasing
in t by (2.7) and since T < T ∗(u0), ||uε||Ln is bounded from below by a positive constant η. Thus
(2.9) yields

d

dt
||uε||Ln(t) ≤ −S−1

n + δ(n− 1)||uε||n−2
Ln−2(t)η−(n−1)

or

||uε||Ln(t) ≤ ||uε0||Ln − S−1
n t+ δ(n− 1)η−(n−1)

∫ t

0
||uε||n−2

Ln−2(τ) dτ. (2.10)

11



Since Ω is bounded, the integral on the RHS is bounded for ε ∈ (0, 1). Sending ε to zero and then
δ to zero we obtain the desired estimate

||u||Ln(t) ≤ ||u0||Ln − S−1
n t for t ∈ [0, T ∗(u0)) (2.11)

when Ω is bounded.
The preceding discussion addresses the Neumann problem in dimension n, when n ≥ 3 is odd.

The argument for the Neumann problem with n ≥ 2 even is similar. So is the argument for the
periodic problem. For the Cauchy problem, i.e. when Ω = Rn, the boundedness of ||uε||Ln−2 does
not follow from the boundedness of ||uε||L2 and ||uε||Ln when n = 3. However, multiplying an
approximation of sgnu with (2.6) and integrating by parts yields d||u||L1(t)/dt ≤ 0 (we shall do
something similar in the next subsection). So (2.10) yields the desired estimate (2.11).

We have now shown (2.11) in all the cases covered by the theorem, for initial data satisfying
u0 ∈ L1 ∩ L∞ with ∇u0 ∈ L∞. But the estimate then follows for all u0 ∈ L2 ∩ Ln, by an
approximation argument.

Theorem 2.4 addresses the Dirichlet problem only in dimension n = 2 because the justification of
our formal estimate (2.5) is more difficult for the Dirichlet problem. For example, for the Dirichlet
problem we do not have a uniform-in-ε Lipschitz bound for general domains (though we have it in
some cases, for example if Ω is mean-convex). We prefer not to pursue this issue, since it would
take us too far afield.

2.5 The 1D problem and some explicit solutions

This section considers the one dimensional problem

ut = ∂x(sgnux), u|t=0 = u0. (2.12)

We focus first on the periodic setting, turning afterward to the Cauchy problem. (There is no
need to consider the Dirichlet or Neumann settings separately, since in 1D the evolution with a
homogeneous Dirichlet or Neumann boundary condition can be reduced to the periodic problem,
see e.g. [GG98].)

By the 1D periodic setting, we mean steepest descent for
∫
|ux| using H = L2

av(T1). As in
Section 2.4 we approximate u by solving

uεt = ∂x

(
uεx√

(uεx)2 + ε2

)
+ ε2uεxx, u

ε|t=0 = uε0 (2.13)

in T1 × (0,∞) where T1 = R/ωZ. The convergence uε → u is uniform in T1 × [0, T ] as proved
in [GG98]. We multiply (2.13) by f ′(u), where f(u) is a convex approximation of |u| such as
f(u) =

√
u2 + σ2. Integrating by parts gives

d

dt

∫ ω

0
f(uε) dx ≤−

∫ ω

0

f ′′(uε) (uεx)2√
(uεx)2 + ε2

dx

≤−
∫ ω

0
f ′′(uε) (|uεx| − δ)+ dx

12



if δ ≥ ε/2. (In the last inequality we used that X2/(X2 + ε2)1/2 ≥ X − δ for X ≥ δ with δ ≥ ε/2.)
Integrating over (0, t), we get∫ ω

0
f(uε(x, t)) dx

≤
∫ ω

0
f(uε0(x)) dx−

∫ t

0

∫ ω

0
|(f ′(uε))x| dx ds+ δ

∫ t

0

∫ ω

0
f ′′(uε(x, s)) dx ds

≤
∫ ω

0
f(uε0) dx−

∫ t

0
||f ′(uε)||L∞(s) ds+ δ

∫ t

0

∫ ω

0
f ′′(uε(x, s)) dx ds.

Sending ε→ 0 then δ → 0, we conclude that∫ ω

0
f(u(x, t)) dx+

∫ t

0
||f ′(u)||L∞(s) ds ≤

∫ ω

0
f(u0) dx

since f ′′(uε(x, s)) is bounded. Now sending σ (the parameter in the definition of f) to zero we get

||u||L1(t) ≤ ||u0||L1 − t for t ∈ [0, T ∗(u0)).

This argument also works for the Cauchy problem, since we may approximate an L2 initial condition
by one satisfying u0 ∈ L1 ∩ L∞ and u0x ∈ L∞, so that ||uεx||L∞(t) ≤ ||uε0x||L∞ ≤ ||u0x||L∞ and
||uε||Lp(t) ≤ ||u0||Lp for any 1 ≤ p ≤ ∞, t ≥ 0. Altogether, we have proved:

Theorem 2.5. In the 1D periodic setting, let u be the solution of the second order total variation
flow (2.12) with initial condition u0 ∈ L2

av(T1). Then ||u||L1(t) ≤ ||u0||L1− t for t ∈ (0, T ∗(u0)). In
particular, T ∗(u0) ≤ ||u0||L1. The same estimate also holds for the Dirichlet problem and for the
Neumann problem. In addition, the estimate holds for the Cauchy problem for any u0 ∈ L2(R).

The preceding theorem suggests that for the Cauchy problem, T ∗ could be infinite if u0 /∈ L1(R).
We shall prove that this is the case; in fact, for broad class of initial data (to be specified in a
moment), we’ll show that finite-time extinction occurs if and only if u0 ∈ L1.

Suppose u0 ∈ C1(R) is a positive, even function of x, with u0x ≤ 0 for x > 0. Suppose further
that u0(x) ≡ A > 0 for x ∈ (−r0, r0) and u0 < A, |u0x| > 0 outside (−r0, r0), and let U(x, t) be
the solution of (2.12) with this initial condition. This solution is explicitly computable (see e.g.
[GG98], or Section 4.1 of [ACM], which addresses the radial setting in any space dimension):

U(x, t) =

{
A−

∫ t
0 λ(s) ds for |x| ≤ r(t)

u0(x) for |x| ≥ r(t),

where λ = 1/r(t) is the “crystalline curvature” of the facet (−r(t), r(t)) (the flat part of the graph
of U(x, t)) and r(t) is determined by the condition that U be continuous:

u0(r(t)) = A−
∫ t

0
λ(s) ds. (2.14)

13



The function U satisfies (2.1), because

σ(x) =

{
−λx for |x| ≤ r(t)
ux/|ux| for |x| > r(t)

is such that Ut = σx ∈ −∂Φ when Φ =
∫
R |ux| and H = L2(R).

Let us explore the properties of this solution. Differentiation of (2.14) gives an ODE for r(t):

u′0(r)
dr

dt
= −r−1,

from which it follows that ∫ r(t)

r0

−su′0(s) ds = t.

Integration by parts yields

−[su0(s)]r(t)r0 +
∫ r(t)

r0

u0(s) ds = t.

The left hand side equals∫ r

r0

[u0(s)− u0(r)] ds+ r0[u0(r0)− u0(r)] with r = r(t).

Using the inverse function u−1
0 , we observe that∫ r

r0

[u0(s)− u0(r)] ds =
∫ u0(r0)

u0(r)
u−1

0 (t) dt.

Sending r to infinity yields

lim
r→∞

∫ r

r0

[u0(s)− u0(r)] ds =
∫ u0(r0)

0
u−1

0 (t) dt = ||u0||L1(r0,∞).

In particular, r(t) reaches infinity at a finite time t = T ∗ if and only if u0 ∈ L1(R). We have proved

Theorem 2.6. Suppose u0 ∈ C1(R) is a positive, even function of x, with u0x ≤ 0 for x > 0.
Suppose further that u0(x) ≡ A > 0 for x ∈ (−r0, r0) and u0 < A, |u0x| > 0 outside (−r0, r0).
Then the solution of (2.12) becomes identically zero in finite time if and only if u0 ∈ L1(R).

We conclude this section with some remarks on related work.

Remark 2.7. To the best of our knowledge, the first proof of finite-time extinction for the second-
order total variation flow (2.1) was given by Andreu, Caselles, Diaz, and Mazón in [ACDM]. That
paper proves

T ∗(u0) ≤ d(Ω)
n
||u0||∞
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in space dimension n, for the Dirichlet and the Neumann problems in a bounded domain Ω with
Lipschitz boundary. Here d(Ω) denotes the radius of the smallest ball containing Ω, in other words
half the diameter of Ω. Their argument uses a comparison principle, and the fact that the PDE has
explicit solutions of the form λ(t)χB when B is a ball. Our estimates of T ∗ in Theorems 2.4 and
2.5 are quite different in character, since they are scale-invariant (i.e. the constants are invariant
as one changes Ω by dilation). Our proofs are also very different, since (at least at the formal level)
they rely on energy and Sobolev-type inequalities rather than comparison.

Remark 2.8. While our energy-based approach has not been applied to the total variation flow,
similar arguments have been used to study finite-time extinction for other nonlinear parabolic equa-
tions. The example closest to what we have presented here is the analysis of finite-time extinction
for diffusion equation associated with the p-Laplacian

ut − div (|∇u|p−2∇u) = 0 when 1 < p < 2.

This topic is discussed at length by DiBenedetto in [D] for the Cauchy problem in Rn and the
Dirichlet problem in a bounded domain. He proves

T ∗(u0) ≤ C||u0||2−pLs with s = n(2−p)
p , when n ≥ 2 and 1 < p < 2n

n+2 (2.15)

for both the Cauchy and Dirichlet problems, with C depending only on p and n (see Propositions
2.1 and 3.1 in Chapter VII of [D]). For the Dirichlet problem, he also proves

T ∗(u0) ≤ C||u0||2−pL2 |Ω|(n(p−2)+2p)/2n when p > 1 and 2n
n+2 < p < 2.

While DiBenedetto did not consider p = 1, his estimate (2.15) reduces to our result T ∗(u0) ≤
C||u0||Ln when p = 1; moreover his proof is a lot like ours. The same type of argument was used
earlier by Benilan and Crandall to study the finite-time extinction of solutions to ut = ∆(|u|msgnu)
with 0 < m < (n− 2)/n in space dimension n ≥ 3 (see Proposition 10 of [BC]). They proved that
if u0 ∈ Lβ+1(Rn) ∩ L1(Rn) with β = (2− 2∗m)/(2∗ − 2) (here 1/2∗ = 1/2− 1/n, and one verifies
that β > 0⇔ m < (n− 2)/n) then

T ∗(u0) ≤ C
(∫

Rn

uβ+1
0 dx

)2/n

.

The heuristic version of their proof is similar to our heuristic argument for Theorem 2.4: it starts
by multiplying the PDE by uβ then integrating by parts. Their approach to making the argument
rigorous is somewhat different from ours (they use implicit-in-time discretization rather than regu-
larization). The paper [BC] also proves that finite time extinction never occurs for m ≥ (n− 2)/n
and (nonzero) initial data u0 ∈ L1(Rn).

Remark 2.9. Another steepest-descent law with finite-time extinction is the mean curvature flow.
Evans and Spruck showed in [ES3] that

T ∗(Σ) ≤ C
(
Hn−1(Σ)

)2/(n−1)
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for the mean curvature flow of a closed hypersurface Σ in Rn. A lower bound for the extinction
time was given by Giga and Yama-uchi in [GY], namely

T ∗ ≥ 2|D|2
(
Hn−1(Σ)

)−2
,

where D is the bounded open set surrounded by Σ and |D| is its volume. In dimension n = 2 the
extinction time is known exactly: T ∗(Σ) = 1

2π |D|, since for the curve-shortening flow in the plane

d

dt
|D(t)| = −

∫
Σ(t)

inward normal velocity ds = −
∫

Σ(t)
curvature ds = −2π.

3 The fourth-order total variation flow

In this section we prove scale-invariant extinction time estimates for the fourth-order total variation
flow in space dimension 1 ≤ n ≤ 4. Recall that the formal PDE is

ut = −∆
[
div

(
∇u
|∇u|

)]
. (3.1)

We will discuss the rigorous definition of this evolution (as an H−1 gradient flow) in Section 3.2.

3.1 Some Hilbert spaces

As usual, the Sobolev space H1(Ω) is equipped with the inner product

(f, g)H1 = ((f, g))1 +
∫

Ω
fg dx, ((f, g))1 =

∫
Ω
∇f · ∇g dx. (3.2)

In the periodic setting, Ω is the period cell Tn.
We want to work in a subspace on which ((f, g))1 is an equivalent inner product. For the

Dirichlet problem on a bounded domain the convenient choice is

H1
0 (Ω) =

{
f ∈ H1(Ω) : f = 0 at ∂Ω

}
,

since by Poincaré’s inequality we have ‖f‖L2(Ω) ≤ C‖∇f‖L2(Ω) when f = 0 at ∂Ω. In the periodic
setting or for the Neumann problem on a bounded domain the convenient choice is the space of
mean-value-zero functions:

H1
av(Ω) =

{
f ∈ H1(Ω) :

∫
Ω
f dx = 0

}
,

since when f has mean value zero we have ‖f‖L2(Ω) ≤ C‖∇f‖L2(Ω).
When Ω is a bounded domain, we take H−1(Ω) to be the dual of H1

0 (Ω). It can be viewed as a
subspace of the space D′(Ω) of distributions.
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In the periodic setting, we take H−1
av (Tn) to be the dual of H1

av(Tn). It is the closure of the
space of smooth mean-value-zero periodic functions under the H−1

av (Tn) norm. Its inner product
can be expressed as

((f, g))−1 =
∫
Tn

(−∆)−1f · g dx, (3.3)

where −∆ denotes the isometry from H1
av(Tn) to H−1

av (Tn) defined by f 7→ ((f, ·))1.
In connection with the Neumann problem, we will use H−1

av (Ω), defined to be the dual H1
av(Ω).

It is not a subspace of the space D′(Ω) of distributions on Ω. As in the periodic setting, its inner
product can be expressed by (3.3), where −∆ is the isometry from H1

av(Ω) to H−1
av (Ω) defined by

f 7→ ((f, ·))1.

3.2 H−1 steepest descent

We now discuss the rigorous definition of the fourth-order total variation flow with various boundary
conditions.

Periodic Boundary Condition. The rigorous meaning of (3.1) with a periodic boundary condi-
tion is steepest descent for

Φπ(v) =

{∫
Tn |∇v| if v ∈ BV (Tn) ∩H−1

av (Tn)
∞ otherwise.

in the Hilbert space H = H−1
av (Tn). (We use the same notation Φπ as in Section 2.2 because this

is essentially the same function – only the choice of H has changed. Note, however, that in the
present context

∫
Tn v dx = 0 whenever Φπ(v) <∞.) The evolution is thus characterized by

du
dt (t) ∈ −∂H−1Φπ(u(t)) for a.e. t > 0, with u|t=0 = u0 ∈ H−1

av (Tn), (3.4)

where ∂H−1 denotes the subdifferential in H−1
av (Tn).

The subdifferential ∂H−1Φπ is formally equal to −∆∂Φπ, where ∂ denotes the subdifferential in
L2 sense. We now state and prove a rigorous version of this assertion. As in Lemma 2.3 we consider
an associated function Φ̃; in fact we consider two such functions, one using the Hilbert space H−1

av

and the other using L2
av: let

Φ̃πH−1(v) = sup
{

((v, w))−1/Φπ(w) : w ∈ H−1
av (Tn)

}
Φ̃πL2(v) = sup

{∫
Tn

vw dx/Φπ(w) : w ∈ L2
av(Tn)

}
.

Lemma 3.1. The condition f ∈ ∂H−1Φπ(v) is equivalent to conditions that Φ̃πL2((−∆)−1f) ≤ 1
and

∫
Tn(−∆)−1f · v dx = Φπ(v). In particular, f ∈ ∂H−1Φπ(v) if and only if (−∆)−1f ∈ ∂Φπ(v)

provided that v ∈ L2
av(Tn).
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Proof. It is easy to see that

Φ̃πH−1(v) = Φ̃πL2((−∆)−1v) for v ∈ H−1
av (Tn)

since ((v, w))−1 =
∫
Tn(−∆)−1vw dx and L2

av is dense in H−1
av (Tn). By Lemma 2.3 the condition

f ∈ ∂H−1Φ(v), v ∈ H−1
av (Tn) is equivalent to the assertion that

Φ̃πL2((−∆)−1f) ≤ 1 and ((v, f))−1 = Φπ(v),

or in other words that

Φ̃πL2((−∆)−1f) ≤ 1 and
∫
Tn

(−∆)−1f · v dx = Φπ(v).

By Lemma 2.3 this is equivalent to the statement that (−∆)−1f ∈ ∂Φπ(v), if v ∈ L2(Tn).

Comment. The requirement that v be in L2(Tn) arises because otherwise the L2 subdifferential
∂Φπ(v) is not well-defined. But when v ∈ H−1

av (Tn) is not in L2, it is natural to define the L2-
subdifferential ∂Φπ(v) as the set of all g ∈ H1

av(Tn) such that

Φπ(v + h)− Φπ(v) ≥
∫
Tn

hg dx

for all h ∈ H−1
av (Tn). With this definition we can extend Lemma 2.3 to assert that g ∈ ∂Φπ(v)

if and only if g ∈ H1
av(Tn) satisfies Φ̃L2(g) ≤ 1 and

∫
Tn gv dx = Φ(v). Since (−∆)−1f is always

in H1
av(Tn), we may delete the restriction “v ∈ L2

av(Tn)” in Lemma 3.1 by using this extended
interpretation of the subdifferential.

Dirichlet or Neumann boundary conditions. The treatment is parallel to the periodic setting,
so we shall be brief. For the Dirichlet problem, the solution is steepest descent for ΦD using the
Hilbert space H−1(Ω), in other words

du
dt (t) ∈ −∂H−1ΦD(u(t)) for a.e. t > 0, with u|t=0 = u0 ∈ H−1(Ω), (3.5)

where ∂H−1 denotes the subdifferential in H−1(Ω). This evolution is formally equivalent to (3.1)
with the boundary condition

div
(
∇u
|∇u|

)
= 0 and u = 0 at ∂Ω.

By the Dirichlet analog of Lemma 3.1, it is natural to write (3.5) formally as

∂tu = −∆D div (∇u/|∇u|) in Ω× (0,∞)

with u = 0 on ∂Ω, where ∆D denotes the Laplacian with the Dirichlet boundary condition.
Similarly, for the Neumann problem, the solution is steepest descent for ΦN using the Hilbert

space H−1
av (Ω). It is described by the analogue of (3.5) with ΦD replaced by ΦN . The associated

boundary condition is formally

∂

∂ν
div

(
∇u
|∇u|

)
= 0 and

∂u

∂ν
= 0 at ∂Ω.
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3.3 Upper bounds on the extinction time in the periodic context

Here and in Sections 3.4 and 3.5 we shall focus for simplicity on the spatially periodic setting.
Some of our results extend, however, to the case of a homogeneous Dirichlet or Neumann boundary
condition. This is discussed in Section 3.6.

Our basic tool is the abstract energy identity Lemma 2.2. Specialized to the present context,
it becomes:

Lemma 3.2. Let u be the solution of (3.4) with initial data u0 ∈ H−1
av (Tn). Then

1
2
d

dt
||u||2H−1(t) = −

∫
Tn

|∇u(·, t)| for a.e. t > 0 (3.6)

where ||u||H−1 denotes the norm of u in H−1
av (Tn), i.e., ||u||2H−1 = ((u, u))1. (The left hand side

makes sense, since the solution of (3.4) is absolutely continuous as a function of t taking values in
H−1

av (Tn).)

Note that (3.6) is the estimate obtained formally by multiplying the equation by (−∆)−1u:

1
2
d

dt
||u||2H−1(t) =

∫
Tn

(−∆)−1u ut dx =
∫
Tn

u div
(
∇u
|∇u|

)
dx = −

∫
Tn

|∇u|.

To use this estimate, we need a scale-invariant inequality relating the H−1 and BV norms.
Combining a standard Sobolev estimate with the Calderón-Zygmund inequality, we have

||u||H−1 = ||(−∆)−1/2u||L2 ≤ A′||∇(−∆)−1/2u||Lp ≤ Ap||u||Lp (3.7)

when 1/2 = 1/p−1/n. Here A′ and Ap are scale-invariant estimates (i.e. they depend on the shape
of the period cell, but not on its size). When n = 4 we may take p = 4/3 to get

||u||H−1 ≤ A4/3||u||L4/3 ≤ A4/3S4

∫
Tn

|∇u| for any u ∈ BV (Tn). (3.8)

Thus (3.6) implies

1
2
d

dt
||u||2H−1(t) ≤ −(A4/3S4)−1||u||H−1(t) for a.e. t > 0

whence
d

dt
||u||H−1(t) ≤ −(A4/3S4)−1 for t < T ∗(u0).

We have proved the following extinction time estimate for n = 4:

Theorem 3.3. Let u be the solution of (3.4) with initial data u0 ∈ H−1
av (Tn). If n = 4, then

||u||H−1(t) ≤ ||u0||H−1 − (A4/3S4)−1t for all t < T ∗(u0). In particular,

T ∗(u0) ≤ A4/3S4||u0||H−1 .
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The fourth-order total variation flow in dimension 4 is like the second-order total variation flow
in dimension 2: for these special dimensions, a scale-invariant extinction time estimate emerges
directly from the basic “energy identity” through the use of scale-invariant Sobolev-type estimates.
In the second-order setting our result for n > 2 was obtained by multiplying the equation by un−1

and integrating by parts. A similar argument seems unavailable in the fourth-order setting; as a
result, we have no results on finite-time extinction in dimensions n > 4.

We can, however, estimate the extinction time of the fourth-order total variation flow in dimen-
sions n = 1, 2, 3. The basic idea is to replace (3.8) by a scale-invariant interpolation estimate of
the form

||u||H−1 ≤ C||u||1−θX

(∫
Tn

|∇u|
)θ

where X is a suitable (negative) norm. We will choose X such that d
dt‖u‖X can be estimated using

the PDE – so that while ‖u‖X is not constant it is controlled by the initial data. Then an argument
parallel to that of Theorem 3.3 will give an upper bound on the extinction time.

The rest of this section is devoted to carrying out this program. We begin with the interpolation
inequality. For any 1 ≤ p ≤ ∞, define the Ẇ−1,p norm of a periodic function w by

||w||Ẇ−1,p = sup
{∫

Tn

ϕw dx : ϕ ∈ C1
0 (Tn), ||∇ϕ||Lp′ ≤ 1

}
where 1

p + 1
p′ = 1.

Lemma 3.4. Suppose 1 ≤ n ≤ 4, 1 ≤ p ≤ ∞, and 1/2 ≤ θ ≤ 1 are related by 1 + n
2 =

θ(n− 1) + (1− θ) (3 + n
p ). Then there is a constant C∗ such that

||u||H−1 ≤ C∗||(−∆)−1u||1−θ
Ẇ−1,p

(∫
Tn

|∇u|
)θ

for all u ∈ H−1
av (Tn)∩BV (Tn). The constant is scale-invariant, i.e. C∗ depends on the eccentricity

of the periodic cell but not on its size. In addition, C∗ is independent of p.

The proof of Lemma 3.4 will be given in Section 3.5. We turn now to question of how the PDE
can be used to bound d

dt ||(−∆)−1u||Ẇ−1,p . Formally, the idea is clear: (−∆)−1ut = div (∇u/|∇u|)
is the divergence of an L∞ vector field with magnitude 1, so we expect the Ẇ−1,p norm of (−∆)−1u
to grow at most linearly with rate ||div (∇u/|∇u|)||Ẇ−1,p ∼ ||∇u/|∇u|||Lp ∼ |Tn|1/p. To give a
rigorous version of this calculation, we need some information about the L2 and H−1 subdifferentials
of Φπ. Starting with the former:

Lemma 3.5 (Characterization of ∂Φπ). Suppose v ∈ D(Φπ) ⊂ L2
av(Tn). If f ∈ ∂Φπ(v), then there

exists a periodic z ∈ L∞(Tn, Rn) such that f = −div z, ||z||L∞ ≤ 1 and∫
Tn

fv dx = Φπ(v).

The converse is also true.
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Proof. The analogous statement for ΦN is Lemma 1.10 of [ACM], and the proof given there applies
equally to Φπ. The heart of the proof is the demonstration that

Φ̃πL2(v) = inf
{
||z||L∞ : z ∈ L∞(Tn, Rn), div z ∈ L2(Tn), v = −div z

}
from which the result follows easily, using our Lemma 2.3.

Turning now to ∂H−1Φπ(v), the subdifferential of Φπ defined using the H−1
av (Tn)) inner product:

Lemma 3.6 (Characterization of ∂H−1Φπ(v)). Suppose v ∈ D(Φπ) ⊂ H−1
av (Tn). If f ∈ H−1

av (Tn)
belongs to ∂H−1Φπ(v) then there exists a periodic z ∈ L∞(Tn, Rn) such that (−∆)−1f = div z,
||z||L∞ ≤ 1, and ∫

Tn

(−∆)−1f · v dx = Φπ(v).

The converse is also true.

Proof. This follows immediately from Lemma 3.5, using Lemma 3.1.

We now use Lemma 3.6 to control the growth of ||(−∆)−1u||Ẇ−1,p , for the solution of the
fourth-order total variation flow.

Lemma 3.7. Let u be the solution of (3.4) with initial data u0 ∈ H−1
av (Tn). Then for any 1 ≤ p ≤

∞ we have
||(−∆)−1u||Ẇ−1,p(t) ≤ |Tn|1/pt+ ||(−∆)−1u0||Ẇ−1,p

for all t > 0. Here |Tn| denotes the volume of the period cell, i.e. |Tn| = ω1 · · ·ωn.

Proof. Since || · ||Ẇ−1,p is a norm, we have

d

dt
||(−∆)−1u||Ẇ−1,p(t) ≤ ||(−∆)−1ut||Ẇ−1,p(t).

By the characterization of ∂H−1Φπ in Lemma 3.6, we know that

||(−∆)−1ut||Ẇ−1,p(t) = ||div z||Ẇ−1,p(t)

for some z ∈ L∞(Tn, Rn) such that ||z||L∞ ≤ 1. The right hand side is, by definition,

||div z||Ẇ−1,p = sup
{∫

Tn

(−∇ϕ) · z dx : ϕ ∈ C∞0 (Tn), ||∇ϕ||Lp′ ≤ 1
}

≤ ||z||Lp ≤ |Tn|1/p.

We thus conclude that
d

dt
||(−∆)−1u||Ẇ−1,p(t) ≤ |Tn|1/p,

which yields the desired result.
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We are ready to state and prove our main extinction time estimate. The following result includes
Theorem 3.3 (it is the special case n = 4, θ = 1).

Theorem 3.8. Suppose 1 ≤ n ≤ 4, 1 ≤ p ≤ ∞, and 1/2 < θ ≤ 1 are related by 1 + n
2 =

θ(n− 1) + (1− θ) (3 + n
p ). Let u be the solution of (3.4) with initial data u0 ∈ H−1

av (Tn). Then

||u||H−1(t)2−(1/θ) ≤ ||u0||2−(1/θ)
H−1 −

(
2− 1

θ

)
C
−1/θ
∗

∫ t

0
A(s)1−(1/θ) ds

for all t < T ∗(u0), with A(t) = |Tn|1/pt+ ||(−∆)−1u0||Ẇ−1,p. As a consequence we have

T ∗(u0) ≤ 1
2− (1/θ)

C
1/θ
∗ ||(−∆)−1u0||(1/θ)−1

Ẇ−1,p
||u0||2−(1/θ)

H−1 .

The constant C∗ comes from the interpolation inequality of Lemma 3.4; in particular it is scale-
invariant.

Proof. Let y(t) = ||u||H−1(t). Combining the energy inequality (3.6) and the interpolation inequal-
ity (Lemma 3.4) we have

y
dy

dt
≤ −

∫
Tn

|∇u| ≤ −My1/θ||(−∆)−1u||(θ−1)/θ

Ẇ−1,p
, M = C

−1/θ
∗ .

By Lemma 3.7 we have

||(−∆)−1u||Ẇ−1,p(t) ≤ A(t), A(t) = |Tn|1/pt+ ||(−∆)−1u0||Ẇ−1,p .

Thus for t < T ∗(u0) we have

y1−(1/θ)dy

dt
≤ −MA(t)(θ−1)/θ.

Integrating over (0, t) gives

1
2− (1/θ)

(
y(t)2−1/θ − y2−1/θ

0

)
≤ −M

∫ t

0
A(s)1−1/θ ds

= −M
a

1
2− (1/θ)

{
(at+A0)2−1/θ −A2−1/θ

0

}
with A0 = A(0), a = |Tn|1/p, y0 = y(0). We have thus proved the desired estimate for ||u||H−1(t).
This implies the extinction time estimate

y
2−(1/θ)
0 ≥M

[
(aT ∗ +A0)2−(1/θ) −A2−(1/θ)

0

]
/a

= MA
2−(1/θ)
0

[
(1 + aT ∗A−1

0 )2−(1/θ) − 1
]
/a

≥MA
2−(1/θ)
0 c T ∗A−1

0 = cC
−1/θ
∗ A

1−(1/θ)
0 T ∗

with c = 2− (1/θ). The proof is now complete.
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The restriction 1 + n
2 = θ(n − 1) + (1 − θ) (3 + n

p ) permits θ = 1 only when n = 4. Thus
while Theorem 3.8 permits some freedom in the selection of θ and p, for n < 4 its estimate of the
extinction time always involves interpolation. It is natural to ask whether T ∗(u0) ≤ C‖u0‖X where
X is a suitably-defined Besov space. While we are unable to prove this, we can get something
similar as follows.

Proposition 3.9. Suppose n, p, and θ are as in Theorem 3.8, with n < 4, θ < 1, and p <∞. Let
S : H−1

av (Tn)→ R be the convexification of the extinction time T ∗. Then

S(u0) ≤ C‖u0‖X

with a scale-invariant constant C, when X is the real interpolation space (W−3,p
av , H−1

av )µ,1 with
µ = 2− θ−1.

Comment. Since n < 4, the space W−3,p
av is bigger than H−1

av by the Sobolev embedding. The
real interpolation space X defined above is a kind of Besov space; for example, if p = 2 then X is
the Besov space B2µ−3

2,1 av (see e.g. Theorem 6.2.4 of [BL]). By the way the reason Proposition 3.9
requires p <∞ is that the norm ||(−∆)−1u||Ẇ−1,∞ is not equivalent to the W−3,∞ norm.

Proof of Proposition 3.9. Since the fourth-order total variation flow is invariant under the scaling
u → λu, t → λt, x → x, the extinction time T ∗ is homogeneous of degree one; moreover T ∗ is
clearly symmetric (T ∗(−u0) = −T ∗(u0)), and T ∗(u0) = 0 only when u0 = 0. But we do not know
that T ∗ is a norm, because we do not know it is convex. Therefore we consider its convexification
S. One verifies easily that S is a seminorm, and clearly S ≤ T ∗. Therefore the Proposition is a
consequence of our extinction time estimate (Theorem 3.8) combined with the general result stated
below as Lemma 3.10.

Lemma 3.10. Suppose a pair of Banach spaces E and F are continuously embedded in a linear
Hausdorff space so that E + F and E ∩ F are well-defined. Let S(a) be a seminorm defined on
E ∩ F . If

S(a) ≤ C||a||1−µE ||a||µF
for all a ∈ E ∩ F , then

S(a) ≤ C||a||X with X = (E,F )µ,1.

Proof. This well-known result can be found for example as Theorem 3.9.1 of [BL]. The proof is
easy. First, observe that the interpolation inequality implies

S(a) ≤ C2−jµJ(2j , a, E, F )

for all j ∈ Z, where
J(t, a, E, F ) = max{||a||E , t||a||F }.

If a =
∑
uj , we obtain

S(a) ≤
∑

S(uj) ≤ C
∑

2−jµJ(2j , uj , E, F ).

The infimum of the right hand sum over all decompositions a =
∑
uj is, by definition, the norm

||a||X .
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3.4 Proof of the interpolation estimate

This section presents the proof of Lemma 3.4. The case p =∞ is quite easy, so we address it first.
Since

||u||2H−1 = ((u, u))−1 =
∫
Tn

(−∆)−1u · u dx,

we use the definition of the Ẇ−1,∞-norm to get

||u||2H−1 ≤
(∫

Tn

|∇u|
)
||(−∆)−1u||Ẇ−1,∞ ;

this is the estimate for θ = 1/2, p = ∞ with C∗ = 1. When n < 3 and p = ∞ the relation
1 + n

2 = θ(n − 1) + (1 − θ) (3 + n
p ) forces θ = 1/2, so those cases are complete. When n = 4 and

p = ∞ the relation permits 1/2 ≤ θ ≤ 1. But the estimate for θ = 1/2 has just been proved, and
the estimate for θ = 1 is equation (3.8); the estimate follows for 1/2 ≤ θ ≤ 1 by interpolation.

There is nothing further to prove when n = 4, since the relation linking n, p, and θ requires
p =∞ or θ = 1 when n = 4, and the inequality has already been proved in those cases.

For the remaining cases, when n ≤ 3 and 1 ≤ p < ∞, we proceed differently. Our overall
strategy is to write u = ur + us as the sum of a regular part ur and a singular part us. This well-
known approach to interpolation inequalities is especially convenient for negative norms. A recent
application in [KoOt] defined ur via convolution with a mollifier. Here we shall take ur = et∆u,
where et∆u is the solution of the heat equation with initial data u. This choice has been used
by many authors; for example, the Nash-type inequality ||u||2L2 ≤ C||u||4/(n+2)

L1 ||∇u||2−4/(n+2)
L2 is

proved using such a method in [VCC] (see Remark II, 3.3(a)). Another example is the proof of the
Gagliardo-Nirenberg inequality in Chapter 6 of [GGS].

Writing u as

u = ur + us = et∆u−
∫ t

0

d

ds
es∆u ds = et∆u−

∫ t

0
∆es∆u ds

we have

||u||2H−1 =
∫

(−∆)−1u · u dx

≤
∣∣∣∣∫ (−∆)−1u · ur dx

∣∣∣∣+
∣∣∣∣∫ (−∆)−1u · us dx

∣∣∣∣ = I1 + I2.

Here and for the rest of the proof we suppress the domain of integration Tn to simplify the notation.
By the definition of the Ẇ−1,p norm the term involving ur can be estimated by

I1 ≤ ||∇et∆u||Lp′ ||(−∆)−1u||Ẇ−1,p .

By a well-known Lp − Lq estimate for the heat semigroup (see e.g. [GGS] when Ω = Rn) we have

||∇et∆u||Lp′ = ||et∆∇u||Lp′ ≤M1t
−n/2p

∫
|∇u| (3.9)
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with a scale-invariant constant M1 (depending on n and the eccentricity of the periodic cell) that’s
independent of p. We thus obtain

I1 ≤M1t
−n/2p

(∫
|∇u|

)
||(−∆)−1u||Ẇ−1,p . (3.10)

Now we estimate the term associated with the singular part us. We have

I2 =
∣∣∣∣∫ t

0

(∫
es∆u · u dx

)
ds

∣∣∣∣ ≤ ||u||H−1

∫ t

0
||∇es∆u||L2 ds.

By (3.9) with p = 2,

||∇es∆u||L2 ≤M2s
−n/4

∫
|∇u|.

Since 1 ≤ n ≤ 3, s−n/4 is integrable in (0, t), and we get

I2 ≤M3t
1−n/4||u||H−1

∫
|∇u|. (3.11)

Estimates (3.10) and (3.11) combine to give

||u||2H−1 ≤
(
M1t

−n/2p||(−∆)−1u||Ẇ−1,p +M3t
1−n/4||u||H−1

)∫
|∇u|

for all t > 0. Taking t so that

M1t
−n/2p||(−∆)−1u||Ẇ−1,p = M3t

1−n/4||u||H−1

we conclude that

||u||H−1 ≤ 2M3

(
M1||(−∆)−1u||Ẇ−1,p/M3||u||H−1

)(1−n/4)/β
∫
|∇u|

with β = 1− n/4 + n/2p. This yields the desired estimate.

3.5 Non-scale-invariant estimates

It was our desire for a scale-invariant estimate that made us work so hard in Section 3.3 when
n ≤ 3. Non-scale-invariant estimates are easier. The crucial tool is the inequality

||u||H−1 ≤ Kn|Tn|α
∫
Tn

|∇u| with α = 2
n −

1
2 , for n = 1, 2, 3, (3.12)

for any spatially periodic u with mean value 0. Here |Tn| is the volume of the period cell, and
constant Kn is scale-invariant but (for n > 1) it depends on the eccentricity of the unit cell. To
justify (3.12) it suffices, by scaling, to consider the case when |Tn| = 1. For n = 3 we use (3.7),
Hölder’s inequality, and (2.3) to get

||u||H−1 ≤ A6/5||u||L6/5 ≤ A6/5||u||3/2 ≤ S3A6/5

∫
|∇u|
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when |T3| = 1. For n = 2 we combine the Poincaré-type inequality ||u||H−1 ≤ B|Tn|1/n||u||L2 with
(2.3) to get

||u||H−1 ≤ B||u||L2 ≤ BS2

∫
|∇u|

when |T2| = 1. For n = 1 we argue similarly, combining the Poincaré-type inequality with Hölder’s
inequality and the fact that ||u||L∞ ≤

∫
|ux| to get

||u||H−1 ≤ B||u||L2 ≤ B||u||L∞ ≤ B
∫
|ux|

when |T1| = 1.

Theorem 3.11. Suppose 1 ≤ n ≤ 3, and let u be the solution of (3.4) with initial data u0 ∈
H−1

av (Tn). Then
||u||H−1(t) ≤ ||u0||H−1 − (Kn|Tn|α)−1t for t < T ∗(u0),

where Kn is the constant in (3.12) and α = 2
n −

1
2 . In particular,

T ∗(u0) ≤ Kn|Tn|α||u0||H−1 .

Proof. This is an immediate consequence of Lemma 3.2 and equation (3.12).

3.6 Dirichlet or Neumann boundary condition

Recall that the fourth-order total variation flow with a Dirichlet boundary condition is defined by
(3.5), and the evolution with a Neumann boundary condition is defined by the analogue of (3.5)
with ΦD replaced by ΦN and H−1(Ω) replaced by H−1

av (Ω).
Our 4-dimensional result Theorem 3.3 extends straightforwardly to the Dirichlet and Neumann

settings. In fact, the argument used for the proof applies equally well to ΦD and ΦN .
It is natural ask whether our more general Theorem 3.8 also extends to the Dirichlet and

Neumann settings. We suppose the answer should be yes, but we have not worked out a complete
proof. The main obstacle is the analogue of our interpolation inequality (Lemma 3.4). In the
Dirichlet setting, for example, the argument we used for Theorem 3.8 would require the estimate

||u||H−1(Ω) ≤ C||(−∆D)−1u||1−θ
Ẇ−1,p(Ω)

(∫
Ω
|∇u|+

∫
∂Ω
|u|
)θ

for all u ∈ H−1(Ω) ∩ BV (Ω). A proof directly parallel to that of Lemma 3.4 (using the heat
semigroup with a Dirichlet or Neumann boundary condition) is not straightforward, because the
argument involves BV norms, and because ∇et∆u 6= et∆∇u in the Dirichlet and Neumann settings
(such a commutation relation was used in (3.9)).

The interpolation estimate is the only obstacle. Indeed, the other main ingredient in our proof
of Theorem 3.8 was a bound on the growth of ||(−∆)−1u||Ẇ−1,p . In the periodic setting we relied
on the characterization of ∂Φπ given by Lemma 3.5. There are in fact analogous characterizations
of ΦN and ΦD:
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Lemma 3.12 (Characterization of ∂ΦN ). Let Ω be a bounded domain with Lipschitz boundary, or
else Ω = Rn. Suppose v ∈ D(ΦN ) ⊂ L2(Ω). Then f ∈ L2(Ω) belongs to ∂ΦN (v) if and only if there
exists z ∈ L∞(Ω,Rn) such that f = −div z in Ω, ||z||L∞ ≤ 1, z ·ν = 0 on ∂Ω and

∫
Ω fv dx = ΦN (v).

Lemma 3.13 (Characterization of ∂ΦD). Let Ω be a bounded domain with Lipschitz boundary,
and suppose v ∈ D(ΦD) ⊂ L2(Ω). Then f ∈ L2(Ω) belongs to ∂ΦD(v) if and only if there exists
z ∈ L∞(Ω,Rn) such that f = −div z in Ω, ||z||L∞ ≤ 1, and

∫
Ω fv dx = ΦD(v).

Lemma 3.12 is essentially Proposition 1.10 of [ACM], and Lemma 3.13 follows from Lemma 5.13
of [ACM]. Using these results in place of Lemma 3.5, one can obtain the analogue of Lemma 3.6
with Φπ replaced by ΦN or ΦD, and one can estimate the growth rate of ||(−∆N )−1u||Ẇ−1,p or
||(−∆D)−1u||Ẇ−1,p by arguing as for Lemma 3.7.

4 The fourth-order surface diffusion law

We turn now to the fourth-order surface diffusion law

ut = −∆
[
div

(
∇u
|∇u|

+ µ|∇u|q−2∇u
)]

(4.1)

with q > 1 and µ > 0, focusing for simplicity on the periodic setting. As noted in the Introduction,
it represents H−1 steepest descent for∫

Tn

|∇u|+ µ

q

∫
Tn

|∇u|q dx.

To define the solution rigorously, we observe that

Φq
π(u) =

{
Φπ(u) + µ

q

∫
Tn |∇u|q dx, ∇u ∈ Lq(Tn) ∩H−1

av (Tn)

∞, otherwise.
(4.2)

is a convex, lower semicontinuous function on H−1
av (Tn). (The function Φq

π also depends on µ; we
suppress this dependence, for notational simplicity.) Therefore

du
dt (t) ∈ −∂H−1Φq

π(u(t)) for a.e. t > 0, with u|t=0 = u0 ∈ H−1
av (Tn) (4.3)

has a unique solution. This is the meaning of (4.1).
Our analysis of finite-time extinction will be entirely parallel to that of Section 3; the “extra

term” µ
q |∇u|

q doesn’t get in the way, but it doesn’t help much either. The analogue of Lemma 3.2
is

Lemma 4.1. Let u be the solution of (4.3) with initial data u0 ∈ H−1
av (Tn). Then

1
2
d

dt
||u||2H−1(t) = −

∫
Tn

|∇u(·, t)| − µ
∫
Tn

|∇u( , t)|q dx for a.e t > 0. (4.4)
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Proof. This is an immediate consequence of Lemma 2.2.

For 1 ≤ n ≤ 4 we get the same extinction time estimates as in Theorem 3.3 and Theorem 3.11,
since (4.4) implies an inequality similar to (3.6).

To obtain an estimate similar to that of Theorem 3.8 we need a growth estimate for ||(−∆)−1u||Ẇ−1,p

analogous to the one in Lemma 3.7. We will show

Lemma 4.2. Let u be the solution of (4.3) with initial data u0 ∈ H−1
av (Tn). Assume that 1 ≤ p ≤

q/(q − 1). Then
||(−∆)−1u||Ẇ−1,p(t) ≤ at+ ||(−∆)−1u0||Ẇ−1,p

for all t > 0, where

a = |Tn|1/p + µ1/q|Tn|1/r(qΦq
π(u0))1−1/q, with 1/p+ 1/q − 1 = 1/r. (4.5)

Given this result, the argument used to prove Theorem 3.8 works just as well in the present
setting. The outcome is:

Theorem 4.3. Suppose 1 ≤ n ≤ 4, 1 ≤ p ≤ q/(q − 1), and 1/2 < θ ≤ 1 are related by 1 + n
2 =

θ(n− 1) + (1− θ) (3 + n
p ). Let u be the solution of (4.3) with initial data u0 ∈ H−1

av (Tn). Then

||u||H−1(t)2−(1/θ) ≤ ||u0||2−(1/θ)
H−1 −

(
2− 1

θ

)
C
−1/θ
∗

∫ t

0
Aq(s)1−(1/θ) ds (4.6)

for t < T ∗(u0), with
Aq(t) = at+ ||(−∆)−1u0||Ẇ−1,p ,

where a is given by (4.5). As a consequence, we have

T ∗(u0) ≤ 1
2− (1/θ)

C
1/θ
∗ ||(−∆)−1u0||(1/θ)−1

Ẇ−1,p
||u0||2−(1/θ)

H−1 . (4.7)

The constant C∗ comes from the interpolation inequality of Lemma 3.4; in particular it is scale-
invariant.

Comment. Unlike the analogous results in Section 3, the right hand side our estimate (4.6) can
be infinite if u0 ∈ H−1

av (Tn) has Φq
π(u0) = ∞. But our bound on the extinction time (4.7) does

not depend on the initial value of Φq
π; therefore it holds even when Φq

π(u0) = ∞. To see this,
observe that if Φq

π(u0) =∞, we can approximate u0 in the H−1
av (T) norm by perturbed initial data

uε0 ∈ D(Φq
π). The associated solutions remain close:

||u− uε||H−1(t) ≤ ||u0 − uε0||H−1 ,

since the semigroup generated by ∂H−1Φq
π is a contraction semigroup. Our extinction time estimates

for the solutions starting from uε0 are uniform as ε→ 0. Passing to the limit, the solution starting
from u0 must satisfy the same extinction time estimate.

The rest of this section is devoted to proving Lemma 4.2. As in Section 3.6, the main issue is an
adequate understanding of the subdifferential ∂Φq

π. This is nontrivial, because the subdifferential
of a sum is not always equal to the sum of the subdifferentials.
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Lemma 4.4 (Characterization of ∂H−1Φq
π(v)).). Suppose 1 ≤ n ≤ 4, and assume that v ∈ D(Φq

π) ⊂
H−1

av (Tn). Then f ∈ H−1
av (Tn) belongs to ∂H−1Φq

π(v) if and only if

(−∆)−1f = div (z + µ|∇v|q−2∇v)

for some z ∈ L∞(Tn,Rn) satisfying ||z||L∞ ≤ 1, div z ∈ L2
av(Tn) and z(x) = ∇v(x)/|∇v(x)| for

a.e. x such that |∇v(x)| 6= 0.

Proof. This was essentially proved by Kashima in Corollary 3.12 of [Ka]. In fact, he characterized
∂Φq

D (with a Dirichlet condition) in H−1(Ω) when Ω is a bounded domain with piecewise smooth
boundary in Rn for 1 ≤ n ≤ 4, but his arguments also work in the periodic setting.

When 1/2 + 1/n > 1/q we can also offer the following alternative argument. Recall that
f ∈ ∂H−1Φq

π(v) implies (−∆)−1f ∈ ∂L2Φq
π(v) provided that v ∈ L2

av(Tn). If 1/2 + 1/n > 1/q
then D(Φq

π) ⊂ L2
av(Tn), so the condition that v ∈ L2

av is redundant. Now, the L2 subdifferential
was characterized by Attouch and Damlamian in [AD] (they used Dirichlet boundary condition,
but their argument works just as well in the periodic setting.) Their result gives the desired
conclusion.

Proof of Lemma 4.2. We may assume that ∇u0 ∈ Lq(T). The basic idea is the same as the proof
of Lemma 3.7. By the characterization of ∂H−1Φq

π in Lemma 4.2 we have

d

dt
||(−∆)−1u||Ẇ−1,p(t) ≤ || div (z + µ|∇u|q−2∇u)||Ẇ−1,p(t)

for some z ∈ L∞(Tn,Rn) satisfying ||z||L∞ ≤ 1. By definition of the norm we have

||div (z + µ|∇u|q−1∇u)||Ẇ−1,p ≤ ||(z + µ|∇u|q−2∇u||Lp .

Applying Hölder’s inequality, we conclude that

||(z + µ|∇u|q−2∇u)||Lp ≤ |Tn|1/p + µ|Tn|1/r||∇u||q−1
q .

Since u is the solution of the gradient flow associated with Φq
π, the value of Φq

π(u(t)) is nonincreasing,
so

µ||∇u(t)||qq ≤ qΦq
π(u(t)) ≤ qΦq

π(u0),

or in other words
µ||∇u(t)||q−1

q ≤ µ1/q(qΦq
π(u0))1−1/q.

Combining these estimates, we conclude that

d

dt
||(−∆)−1u||Ẇ−1,p(t) ≤ |Tn|1/p + |Tn|1/rµ1/q(qΦq

π(u0))1−1/q,

which yields Lemma 4.2.
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[Br] H. Brezis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions Dans les Es-
paces de Hilbert, North-Holland, Amsterdam (1973).

[BP] H. Brezis and A. Pazy, Convergence and approximation of semigroups of nonlinear operators
in Banach spaces, J. Funct. Anal. 9 (1972), 63-74.

[CRSC] W.-L. Chan, A. Ramasubramaniam, V.B. Shenoy, and E. Chason, Relaxation kinetics of
nano-ripples on Cu(001) surfaces, Phys. Rev. B 70 (2004), 245403.

[D] E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York (1993).

[ET] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North Holland, Am-
sterdam (1976).

[ES3] L. C. Evans and J. Spruck, Motion of level sets by mean curvature III, J. Geom. Anal. 2
(1992), 121-150.

[GG98] M.-H. Giga and Y. Giga, Evolving graphs by singular weighted curvature, Arch Rational
Mech. Anal. 141 (1998), 117-198.

[GG10] M.-H. Giga and Y. Giga, Very singular diffusion equations – second and fourth order
problems, preprint (2010).

[GGK] M.-H. Giga, Y. Giga and R. Kobayashi, Very singular diffusion equations, Advanced Studies
Pure Math., 31 (2001), Taniguchi Conference on Mathematics Nara ’98, 93-125.

30



[GGS] M.-H. Giga, Y. Giga and J. Saal, Nonlinear Partial Differential Equations – Asymptotic
Behavior of Solutions and Self-Similar Solutions, Progress in Nonlinear Differential Equations
and Their Applications 79, Birkhauser, New York (2010).

[GOS] Y. Giga, M. Ohnnuma and M.-H. Sato, On the strong maximum principle and the large
time behavior of generalized mean curvature flow with the Neumann boundary condition, J.
Differential Equations, 154 (1999), 107-131.

[GY] Y. Giga and K. Yama-uchi, On a lower bound for the extinction time of surfaces moved by
mean curvature, Calc. Var. Partial Differential Equations, 1 (1993), 417-428.

[Gi] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathemat-
ics 80, Birkhauser, Boston (1984).

[HS] J. Hager and H. Spohn, Self-similar morphology and dynamics of periodic surface profiles
below the roughening transition, Surf. Sci. 324 (1995), 365–372

[Ka] Y. Kashima, A subdifferential formulation of fourth order singular diffusion equations, Adv.
Math. Sci. Appl., 14 (2004), 49-74.

[KG] R. Kobayashi and Y. Giga, Equations with singular diffusivity, J. Stat. Phys., 95 (1999),
1187-1220.

[KoOt] R.V. Kohn and F. Otto, Upper bounds on coarsening rates, Comm. Math. Phys. 229
(2002), 375-395.

[Ko] Y. Komura, Nonlinear semi-groups in Hilbert space, J. Math. Soc. Japan, 19 (1967), 493-507.

[LT] A. Lichnewsky and R. Temam, Pseudosolutions of the time-dependent minimal surface prob-
lem, J. Differential Equations, 30 (1978), 340-364.

[MK] D. Margetis and R.V. Kohn, Continuum theory of interacting steps on crystal surfaces in
2 + 1 dimensions, Multiscale Modeling and Simulation 5 (2006), 729–758.

[M] M.V. Ramana Murty, Morphological stability of nanostructures, Phys. Rev. B 62 (2000),
17004–17011.

[OZ] M. Ozdemir and A. Zangwill, Morphological equilibration of a corrugated crystalline surface,
Phys. Rev. B 42 (1990), 5013–5024.

[RV] A. Rettori and J. Villain, Flattening of grooves on a crystal surface: a method of investigation
of surface roughness, J. Phys. France 49 (1988), 257–267.

[SRF] V.B. Shenoy, A. Ramasubramaniam, and L.B. Freund, A variational approach to nonlinear
dynamics of nanoscale surface modulations, Surf. Sci. 529 (2003), 365–383.

[SRRTCC] V.B. Shenoy, A. Ramasubramaniam, H. Ramanarayan, D.T. Tambe, W.-L. Chan, and
E. Chason, Influence of step-edge barriers on the morphological relaxation of nanoscale ripples
on crystal surfaces, Phys. Rev. Lett. 92 (2004) 256101.

31



[VCC] N. Th. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and geometry on groups,
Cambridge Tracts in Mathematics 100, Cambridge University Press (1992)

[W] J. Watanabe, Approximation of nonlinear problems of a certain type, In Numerical Analysis
of Evolution Equations (H. Fujita and M. Yamaguti, eds), Lecture Notes Numer. Appl. Anal.
1, Kinokuniya, Tokyo (1979), 147-163.

32


