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Abstract

We study 2D surface quasi-geostrophic (SQG) equation numerically and theoretically. After

reviewing recent results, we consider a generalised class of equations of ideal fluid, where

the active scalar is a fractional power α of Laplacian applied to the stream function. This

includes 2D SQG and 2D Euler equations as special cases. We present some numerical

results of the generalised system and compare them for some different values of α. In an

attempt to unify the whole family systematically, a successive approximation is introduced

to treat the SQG equation.

I. INTRODUCTION

Mathematical study on the SQG equation was initiated in [1, 2]. Since then many papers

have been published regarding the analyses of this equation, which are too numerous to cite

here. Numerical studies have been done, e.g. in [1–6]. Mathematically, the following is

the best result known for its regularity. We consider the SQG equation with hypo-viscous

dissipativity either in R
2 or in T

2

∂θ

∂t
+ (u · ∇)θ = −ν(−4)γθ (0 ≤ γ ≤ 1),

with an initial datum θ(x, 0) = θ0(x). The velocity u = −∇⊥(−4)−1/2θ is a skewed Riesz

transform of θ, where ∇⊥ = (∂y,−∂x). It has been proved that when γ ≥ 1
2

we have no

blow-up [7, 8]. The hypo-viscous equation has been studied numerically in [9]. See also [10]

for more related works.

II. GENERALISED SQG EQUATION FOR INVISCID FLUIDS

We consider a generalised version of SQG equation [3, 11] for inviscid fluids

∂θ

∂t
+ (u · ∇)θ = 0, (1)
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with θ(x, 0) = θ0(x). Here the velocity u is given by

u = ∇⊥ψ, Λαψ = θ (0 ≤ α ≤ 2).

Here Λ ≡ (−4)1/2 is Zygmund operator defined by Fourier transform Λ̃ = |k|. The system

reduces to the 2D Euler equations if α = 2, to the 2D SQG equation if α = 1, and to a

trivially steady state if α = 0.

III. PERTURBATION THEORY: ODE ANALOGY

We recall a perturbation theory à la Poincaré of an ordinary differential equation (ODE)

which depends upon a parameter µ, see e.g. [12, 13]. (We note that notations used in this

section are independent from those in the rest of the extended abstract.)

Consider an ODE

dy

dx
= f(x, y, µ), with an initial datum y(x0, µ) = y0,

which is assumed to be solvable for µ = µ0. If we consider a variation

z(x, µ) =
∂y(x, µ)

∂µ
, with an initial datum z(x0, µ) = 0,

it satisfies
dz

dx
=
∂f(x, Y, µ)

∂Y

∣

∣

∣

∣

Y =y(x,µ)

z +
∂f(x, Y, µ)

∂µ

∣

∣

∣

∣

Y =y(x,µ)

,

which is called an equation of variation.

An approximation for y(x, µ) for small |µ− µ0| may be written

y(x, µ) − y(x, µ0) =
∞

∑

n=1

(µ− µ0)
nCn(x),

where Cn(x) are suitable coefficients, e.g.

z(x, µ0) = lim
µ→µ0

y(x, µ) − y(x, µ0)

µ− µ0

= C1(x).

IV. SUCCESSIVE APPROXIMATIONS

We apply the above idea to the generalised SQG equation. We illustrate how this is done

for the first variation. If we take the variation of (1) with respect to α, we find

D

Dt

∂θ

∂α
≡

∂

∂t

∂θ

∂α
+ u · ∇

∂θ

∂α
= −

∂u

∂α
· ∇θ.
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In R
2, we find more explicitly after straightforward manipulations [14]

D

Dt

∂θ

∂α
=

1

2π

∫

R2

(x − y)⊥

|x − y|2
∂θ(y)

∂α
dy · ∇θ(x) +

1

4π

∫

R2

(log |x − y|)2 ∇⊥θ(y)dy · ∇θ(x).

In principle, the equations for higher-order variations may be obtained by successive

differentiations. Given these, we may write, for example, near the 2D Euler limit α = 2

θ(x, t, α) = θ(x, t, 2) +

∞
∑

n=1

(α− 2)nθn(x, t),

where θn(x, t) ≡ ∂nθ
∂αn

(x, t).

V. CONCLUSION

In fact, under periodic boundary conditions we can carry out the analyses more system-

atically. A formal analysis in this case indicates that all the members in the family behave

similarly with respect to a ’new time variable’ ξ = αt. We discuss the implications of this

scaling, in connection with numerical simulations. These are to be reported in detail in [14].
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