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1 Introduction

The aim of these notes is to give an elementary introduction to embedded anisotropic mean
curvature flow in codimension one, with some attention to crystalline mean curvature flow.
We will also discuss very briefly the generalization to a multiphase problem in the plane,
namely to crystalline evolutions of planar partitions. For a better understanding of the
arguments of the notes, some knowledge on motion by mean curvature in the euclidean
setting would be recommended. We refer the reader to the introductory parts of the following
references: [53], [117], [85], [86], [118], [17], [18], [89], [90], [91], [92], [119], [72], [106], [8], [84],
[100], [123], [29].
We will mostly concentrate on the derivation of the evolution laws, rather than on detailed
proofs: one reason for this is to keep the exposition whithin a limited number of pages.
Another reason is that the proofs can be found in the original papers.
Apart from the initial section, where we often try to minimize the assumptions on the function
φo, and from the final section on partitions, the view point that we will adopt here is mostly
based on the use of the anisotropic signed distance function dφ. As a consequence, we will not
consider the evolution problem looking at the maps parametrizing the manifolds (see [132]
and references therein for this parametric approach), but instead we will look only at the
images of the maps. This approach is closely related to various derivations of mean curvature
flow that can be found in the literature on phase transitions [81], [82], [83], [24], [71]. In this
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respect, a very quick presentation of the reaction-diffusion approximation to crystalline mean
curvature flow is also presented.
Mathematical and physical motivations for anisotropic mean curvature flow(1) can be found
in the large number of papers present in the literature devoted to this subject, as well as
detailed reference lists. We apologyze with the reader, since the bibliography in these notes
is largely incomplete. We sometimes quote references weakly related to the treated argument,
but that we believe to be useful for a more general point of view on that subject.

2 Notation

Since we will consider Finsler norms [146], [22], [135], [134], on R
n and their duals, we believe

that it is more clear to use a notation which distinguishes the base manifold from its tangent
space, and as most as possible vectors from covectors.
Therefore we set M = R

n and V = TxM = R
n the tangent space to M at any x ∈ M , and

TM = M × V (resp. T ⋆M = M × V ⋆, V ⋆ the dual of V ) the tangent (resp. cotangent)
bundle to M . We denote by · and | · | the scalar product and the norm in V , respectively,
and by d(·) the euclidean distance in M . Recall that V can be identifed with V ⋆(2).
Ln is the Lebesgue measure [50] and Hk the k-dimensional euclidean Hausdorff measure [94]
in M for k ∈ {0, . . . , n}. Recall that Hn = Ln [14]. If B ⊂ M is measurable, we often write
Ln(B) = |B|. We will use the words orthogonal, unit vector etc. in the euclidean sense. If F
is a set, we let P(F ) be the class of all subsets of F .
We denote by Λ1V (resp. Λ1V ) the space of one-covectors (resp. one-vectors) of V . On
these two vector spaces, we have the norm | · | induced by the euclidean norm [94], [99]. We
sometimes use the symbol Λ1V and sometimes V ⋆ (which are thought of as row vectors);
similarly for Λ1V and V (column vectors). We usually omit the symbol T of transpositon
when we write a column vector in components. The duality between Λ1V and Λ1V is denoted
by 〈·, ·〉.
Recall that any covector ξ⋆ ∈ Λ1V is a linear map V → R. If |ξ⋆| = 1 (where |ξ⋆| :=
max{〈ξ⋆, ξ〉 : ξ ∈ Λ1V, |ξ| = 1}) we can uniquely associate with ±ξ⋆ its kernel, which is an
hyperplane in V . Therefore there is a bijection(3) between the set of unit covectors and the
set of all oriented hyperplanes of V passing through the origin. We denote by G⋆ (resp. G)
the set of all oriented (resp. unoriented) hyperplanes of V passing through the origin; using
the euclidean scalar product, with such a hyperplane we can uniquely associate a unit vector
(resp. unit vector up to its sign), orthogonal to the hyperplane. Sometimes we will identify

1The theory that we present here is far from being realistic: for instance, it cannot explain at all the
growth of a crystal. For this, much more refined models would be necessary, such as the Stefan problem and
modifications of it [129], [147]. Some results described here can be generalized to crystalline mean curvature
flow with a forcing term: see for instance [41], [42], [36], [39], [104].

2There is an isometric isomorphism T : V → V ⋆ defined as 〈ξ⋆, ξ〉 = T (ξ) ·ξ⋆ for any ξ⋆ ∈ V ⋆, and similarly,
there is an isometric isomorphism T ⋆ : V ⋆ → V defined as 〈ξ⋆, ξ〉 = T ⋆(ξ⋆) · ξ for any ξ ∈ V . Since V can be
identified with V ∗∗, we have TT ⋆ = IdV ∗ , T ⋆T = IdV .

3Sometimes it is useful to use another identification: a hyperplane H of V can be identified with the linear
map πH : V → V which is the orthogonal projection of V onto H . If ξ is a unit vector which is orthogonal
to H , we have πV = Id − ξ ⊗ ξ, where the symbol ξ ⊗ ξ stands for the (0, 2)-tensor that is represented by the
(n × n) matrix having ξiξj as its ij-th entry.
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G⋆ with S
n−1 := {v ∈ V : |v| = 1}. We refer the reader to [94], [99] for more details on the

Grassmann algebra.
Covector fields on M have lower indices

ω : x ∈M → ω(x) = (ω1(x), . . . , ωn(x)) ∈ Λ1V.

Given a function f : M → R of class C1, we denote by dfx ∈ Λ1V the differential of f at
x ∈M .
Vector fields (or contravariant vector fields) on M have upper indices,

X : x ∈M → X(x) = (X1(x), . . . ,Xn(x)) ∈ V. (2.1)

If X is of class C1, the divergence of X is defined as divX :=
∑n

i=1
∂Xi

∂xi .

Given a function f : M → R of class C1, gradf = ( ∂f∂x1 , . . . ,
∂f
∂xn )T is the vector field gradient

of f . To simplify the notation, we write ∇f in place of gradf . If necessary, dfx will be
identified with ∇f(x), using the euclidean scalar product. If f is of class C2, the Laplacian
of f is defined as ∆f := div ∇f .
Given open sets Ω ⊆ M , Ω′ ⊆ R

m, m ≥ 1, and a map ψ : M → Ω′ of class C1, ψ =
(ψ1, . . . , ψm), we denote by dψx ∈ L(V,W ) the differential of f at x, where W is the tangent
space to Ω′ at any of its points. The Jacobian (m× n) matrix representing dψx is indicated

by Jψ(x). If i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, the ij-entry (Jψ(x))ij of Jψ(x) is ∂ψi

∂xj (x).

Hence the i-th column of the transposed matrix (Jψ(x))T is ∇ψi(x).
Given a smooth vector fieldX = (X1, . . . ,Xn), we denote by ∇X the matrix (∇X)ij = ∇iX

j .
If v = (v1, . . . , vn) is a column vector in Λ1V and A, B are (n × n)-matrices, we use the
notation Av, vTA to denote respectively the vectors of components (Av)i = Aijv

j , and
(vA)i = Ajiv

j .

The symbol E (resp. E(t) for t belonging to some real interval, Ei for i ∈ N) will denote a
closed subset of M with compact boundary such that E = int(E) (resp. E(t) = int(E(t)),
Ei = int(Ei)).

Definition 2.1 (Lipschitz boundaries). We say that E is Lipschitz if the boundary ∂E
of E can be written, locally, as the graph of a Lipschitz function with respect to a suitable
(n− 1)-dimensional orthogonal coordinate system. We will write ∂E ∈ Lip(M).

Recall that if ∂E ∈ Lip(M), then [14] for Hn−1-almost every x ∈ ∂E it is well defined the
tangent plane Tx(∂E), which is identified with ±νE(x), where

νE(x) = ν(x) ∈ S
n−1

is the unit covector normal to ∂E at x and points toward the complement M \E of E. Lips-
chitz and polyhedral boundaries (with a finite number of facets) will be useful in connection
with crystalline anisotropies. In this context, if F is a facet of a polyhedral ∂E, we denote
by ∂F (resp. int(F )) the relative boundary (resp. the relative interior) of F . We define

ν̃F (2.2)

to be the Hn−2-almost everywhere defined unit normal to the relative boundary ∂F of F ,
lying in the hyperplane ΠF containing F , and pointing outside of F .

4



3 Anisotropic functionals on boundaries

LetM×G⋆ be the unit cotangent bundle ofM [22]. Let σ : M×G⋆ → [0,+∞] be a measurable
function. We shall assume that σ(x, ·) is even(4), namely σ(x, ξ⋆) = σ(x,−ξ⋆), so that we can
consider σ as defined on M×G. The domain of σ is the set {(x, ξ⋆) ∈M×G : σ(x, ξ⋆) < +∞},
which coincides with M × G in case that σ is continuous. Let a : M → [0,+∞] be a given
function(5) defined everywhere on M . Associated with σ and a, we can consider the following
anisotropic functional [94], [52], [10], [11] defined on boundaries:

F(E) :=

∫

∂E
σ(x, ν(x))a(x) dHn−1(x) =

∫

∂E
σ(x, ν)a dHn−1, ∂E ∈ Lip(M). (3.1)

The functional F can be extended to the class of finite perimeter sets (where now the unit
normal ν must be intended in a proper measure theoretic sense [14]): we will not need such
an extension in these notes. Useful lower semicontinuity properties of this extension(6) can
be found in [14].
The boundary ∂E, also called interface, divides the two sets E and M \E, sometimes called
phases. In case σ is independent of x and a ≡ 1, the quantity σ(v) can be considered as a
surface tension v [1] associated with the hyperplane passing through the origin, orthogonal
to the unit covector v.

3.1 The function φo

Define the function φo : T ⋆M → [0,+∞] to be the one-homogeneous extension of σ(x, ·) on
the whole space of one-covectors, i.e.,

φo(x, ξ⋆) := |ξ⋆|σ
(
x,

ξ⋆

|ξ⋆|

)
, (x, ξ⋆) ∈ T ⋆M. (3.2)

Then φo(x, ·) is one-homogeneous, i.e.,

φo(x, λξ⋆) = |λ|φo(x, ξ⋆), (x, ξ⋆) ∈ T ⋆M, λ ∈ R, (3.3)

The function φo(x, ·) is even, since we supposed σ(x, ·) to be even(7). We consider the function
φo(x, ·) as acting on differentials dfx of functions f : M → R at x ∈M .
We have(8)

Fφo(E) :=

∫

∂E
φo(x, ν)a(x) dHn−1(x) = F(E). (3.4)

For computational convenience, from now on we will consider the functional Fφo in place
of F . The gradient flow of the functional Fφo will lead to anisotropic mean curvature flow:

4Various results that we will present could be extended without assuming that σ(x, ·) is even, but we prefer
to keep this assumption in order to make simpler the presentation.

5We shall see that if σ does not depend on x, from a geometric point of view it is natural to take a to be a
positive constant. For simplicity, the reader can assume a ≡ 1. We notice that, by redefining σ, one can also
include the function a into the new σ. We prefer however to keep σ and a separate.

6Strictly related to the convexity of the function φo(x, ·) defined in (3.2) below.
7If σ(x, ·) were not even, we should drop the absolute value on the right hand side of (3.3) and take λ > 0.
8We prefer to skip the dependence on a of the functional.
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we will mostly be concerned with the case of a function φo which is independent of x and
a ≡ 1(9).
For all x ∈ ∂E for which ν(x) is defined, we introduce [48], [47] the normalized covariant
vector field(10)

νEφo(x) :=
νE(x)

φo(νE(x))
= νφo(x). (3.5)

In components νφo = (νφo
1, . . . , νφo

n).
If F ⊂ ∂E is a facet of a polyhedral set ∂E, we set(11)

νφo(F ) :=
ν(F )

φo(ν(F ))
, (3.6)

where ν(F ) is the unit normal to int(F ) pointing toward M \ E.
We define(12)

Bφo(x) :=
{
ξ⋆ ∈ Λ1V : φo(x, ξ⋆) ≤ 1

}
, x ∈M. (3.7)

The set Bφo(x) uniquely identifies φo(x, ·), in view of the homogeneity property (3.3).
Notice that if φo ∈ C1

(
M × (Λ1V \ {0})

)
, (3.3) yields

φo(x, ξ⋆) = ξ⋆ · φoξ⋆(x, ξ⋆), (x, ξ∗) ∈M × (Λ1V \ {0}), (3.8)

where φoξ⋆ denotes the gradient of φo(x, ·) with respect to ξ⋆.

Definition 3.1 (Spatial homogeneity). We say that σ (resp. φo) is spatially homogeneous
if it is independent of x.

In this case we write φo : Λ1V → [0,+∞], and the right hand side of formula (3.7) is denoted
by Bφo (13).

9However it is useful to keep in mind that other cases may be of interest. For instance, a ≡ 1, φo(x, ξ⋆) =

b(x)|ξ⋆|, where b(x) = e±
Pn

i=1
αix2

i , where α1, . . . , αn are positive real numbers [79], [15].
10In the quoted references this vector field is denoted by νφ.
11Do not confuse this notation with the notation in (2.2).
12The set Bφo(x) is sometimes called Frank diagram, at least under some further assumptions on φo.
13The set {v : v = ρν, ν ∈ S

n−1, ρ = 1
σ(ν)

} = ∂Bφo is sometimes called polar plot of σ.
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Example 3.2 (Dual norms). The first examples of spatially homogeneous φo are the fol-
lowing:

- φo(ξ⋆) = |ξ⋆| (euclidean norm, isotropic case).

- φo(ξ⋆) =
√∑n

i,j=1 g
ijξ⋆i ξ

⋆
j , where (gij) is a positive definite symmetric matrix (Rie-

mannian norm). In this case Bφo is an ellipsoid centered at the origin(14). See Figure
2.

- Let p ∈ (1,+∞) and φo(ξ⋆) := (
∑n

i=1 |ξ⋆i |p)1/p (lp norms). If p > 2 then ∂Bφo is of class
C2 but there are some points of ∂Bφ where its second fundamental form vanishes. If
p ∈ (1, 2) then ∂Bφ is not of class C2.

- A relevant case in these notes is when Bφo is a (convex) n-dimensional polyhedron
centered at the origin, and centrally symmetric [139], [140], [142]. See Figure 1.

- Another interesting case is when Bφo = C × [−1, 1], where C is an (n− 1)-dimensional
centrally symmetric convex body [110], [112], [51], [30].

Remark 3.3 (Degenerate cases). Let σ be spatially homogeneous: if there exists v ∈ S
n−1

such that σ(v) = 0, then the whole line Rv is contained in Bφo . In particular, Bφo is
unbounded. On the other hand, if there exists v ∈ S

n−1 such that σ(v) = +∞, then Rv \ {0}
is not contained in Bφo (hence the origin is not an interior point of Bφo). For example
[21], [25], setting I := {(ξ⋆0 , ξ⋆) ∈ R × Λ1V ≃ Λ1

R
1+n : −ξ20 + |ξ⋆|2 ≤ 1}, we can take

φo(ξ⋆0 , ξ
⋆) := inf{λ > 0 : (ξ⋆0 , ξ

⋆) ∈ λI} for any (ξ⋆0 , ξ
⋆) ∈ Λ1

R
n+1. Note that I is star-shaped

with respect to the origin, the origin is not in the interior of I, and φo takes also the value
+∞. Examples of unbounded Bφo have been considered in [97], see also [37].

Definition 3.4 (Convexity). We say that φo : T ⋆M → [0,+∞) is convex if φo(x, ·) is
convex for any x ∈M .

Remark 3.5. All functions φo in Example 3.2 are convex. In addition they satisfy(15)

λ|ξ⋆| ≤ φo(x, ξ⋆), (x, ξ⋆) ∈ T ⋆M, (3.9)

for a suitable constant λ > 0 (depending on φo).

Definition 3.6 (Metrics on T ⋆M). The symbol M(T ⋆M) denotes the class of metrics on
T ⋆M , namely of all continuous functions φo : T ⋆M → [0,+∞) which are convex, and satisfy
(3.3) and (3.9).

Among convex φo we are mainly interested in the crystalline ones [139].

Definition 3.7 (Crystalline metrics). If φo ∈ M(T ⋆M) is spatially homogeneous and Bφo

is a polyhedron we say that φo is crystalline.

14If gij would depend on x, then the ellipsoid would depend on x, and M would become the simplest example
of Riemannian manifold.

15If we assume continuity of φo, in view of (3.3) inequality (3.9) becomes equivalent to the inequalities

λ|ξ⋆| ≤ φo(x, ξ⋆) ≤ Λ|ξ⋆|, (x, ξ⋆) ∈ T ⋆M,

for two constants 0 < λ ≤ Λ < +∞. Relevant consequences are that Bφo(x) contains the origin in its interior,
and it is star-shaped (with respect to the origin).
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3.1.1 The map Tφo

For a fixed x, we now define a map that will play a major role in the analysis of anisotropic
mean curvature flow. In order to give the definition, we assume the validity of one of the two
following hypotheses: either

(φo)2 ∈ C1 (T ⋆M) (3.10)

or
φo is convex. (3.11)

Notation. If φo satisfies (3.10) the symbol ∇ξ⋆((φo)2) denotes the gradient vector field of
(φo(x, ·))2 with respect to ξ⋆. Assumption (3.11) is equivalent to the convexity of (φo(x, ·))2,
and in this case the same symbol ∇ξ⋆(φo)2 denotes the subdifferential(16) of (φo(x, ·))2 with
respect to ξ⋆ [133]. Moreover, if (3.11) holds, then φoξ⋆ denotes the subdifferential of φo(x, ·)
with respect to ξ⋆.

Definition 3.8 (The map Tφo). Let x ∈M . We define Tφo(x, ·) : Λ1V → P(Λ1V ) as

Tφo(x, ξ⋆) :=
1

2
(∇ξ⋆((φo)2))(x, ξ⋆). (3.12)

Under assumption (3.11), Tφo(x, ·) is sometimes called duality map [55], and it is a possibly
multivalued maximal monotone(17) operator [54]. It is multivalued when φo is crystalline.
Note that Tφo(x, ·) is one-homogeneous, namely

Tφo(x, λξ⋆) = |λ|Tφo(x, ξ⋆), (x, ξ⋆) ∈ T ⋆M, λ ∈ R.

Example 3.9 (Riemannian case). If φo(x, ξ) = (
∑n

i,j=1 g
ij(x)ξ⋆i ξ

⋆
j )

1/2 is a Riemannian

metric, then(18) (Tφo(x, ξ⋆))i =
∑n

j=1 g
ij(x)ξ⋆j .

In the case considered in Remark 3.3, where (φo(ξ⋆))2 = −(ξ⋆0)2+(ξ⋆1)2+· · · (ξ⋆n)2, the map Tφo

takes ξ⋆ = (ξ⋆0 , ξ
⋆
1 , . . . , ξ

⋆
n) into (−ξ⋆0 , ξ⋆1 , . . . , ξ⋆n), exchanging the sign of the zeroth component.

Remark 3.10. If φo is spatially homogeneous and ξ⋆ ∈ ∂Bφo , then Tφo(ξ⋆) is a suitable
normalization(19) of the exterior normal cone orthogonal to ∂Bφo at ξ⋆.

Definition 3.11. Let ∂E be Lipschitz and let x ∈ ∂E be a point where ν(x) is defined. If
(3.10) holds we define [48], [47] the contravariant vector field nEφ = nφ at x as

nφ(x) := Tφo(x, νφo(x)) = φoξ⋆(x, νφo(x)).

In components(20) nφ = (n1
φ, . . . , n

n
φ). If φo is convex, nφ is sometimes called the Cahn-

Hoffman vector field.
Notice that, using (3.3), it follows that

〈νφo(x), nφ(x)〉 = 1. (3.13)

16The subdifferential of a convex function u : M → R at x ∈ M is defined as {ξ∗ ∈ Λ1V : u(y) ≥
u(x) + 〈ξ∗, y − x〉 ∀y ∈ M}.

17Monotone means: ξi ∈ Tφo(x, ξ⋆
i ) for i = 1, 2 ⇒ 〈ξ⋆

1 − ξ⋆
2 , ξ1 − ξ2〉 ≥ 0. Maximal monotone means that

Tφo(x, ·) is monotone and its graph is not properly included in the graph of any other monotone operator.
18The map Tφo is used to exchange the indices from lower to upper.
19See the fifth item of Remark 3.18 below.
20Pay attention to the notation: n is the dimension of V , nφ is the vector field.
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Remark 3.12 (Cahn-Hoffman selections). Under the sole assumption (3.11), and sup-
posing also for simplicity that φo is spatially homogeneous, there are several possible choices
of vector fields η : ∂E → V which satisfy η(x) ∈ Tφo(νφo(x)) for Hn−1-almost every x ∈ ∂E,
since in this case Tφo(νφo(x)) is a (compact) convex set. In Section 4 we will impose further
regularity on η in order to define what we will call φ-regular sets.

If F ⊂ ∂E is a facet of a polyhedral ∂E and φo is crystalline, we set

B̃F
φ := Tφo(νφo(F )), (3.14)

see Figure 5. Note the presence of the symbol φ (that we are going to define in the next
section) on the left hand side of (3.14).

3.2 The convex function φ

Under one of the two assumptions (3.10), (3.11), given x ∈ M we can consider the image
Σ(x) of the boundary of the star-shaped set Bφo(x) via the map Tφo(x, ·),

Σ(x) := Tφo(x, ∂Bφo(x)).

If Bφo(x) is not convex then it may happen, for instance in n = 2 dimensions and if ∂Bφo

is a smooth simple closed curve having the origin in its interior, that Σ(x) is a curve with
cusps and self-intersections [97]. These kind of singularities cannot occur if φo is convex(21),
and in this case it is possible to define a function φ : TM → [0,+∞] as follows:

φ(x, ξ) := inf {λ > 0 : (x, ξ) ∈ λTφo(x,Bφo(x))} , (x, ξ) ∈ TM.

Then φ(x, ·) is one-homogeneous, namely

φ(x, λξ) = |λ|φ(x, ξ), (x, ξ) ∈ TM, λ ∈ R. (3.15)

Moreover Σ(x) = ∂Tφo(x,Bφo(x)). Finally, if we define

Bφ(x) := Tφo(x,Bφo(x)),

then
Bφ(x) = {(x, ξ) ∈ TM : φ(x, ξ) ≤ 1},

and φ is convex (i.e., φ(x, ·) is convex for any x ∈M).

Remark 3.13. As it follows from the above presentation, when writing the symbol φ we
assume that φo is convex (and, as a consequence, so is φ).

Definition 3.14 (Metrics on TM). The symbol M(TM) denotes the class of metrics on
TM , namely of all continuous functions φ which are convex and satisfy (3.15) and

φ(x, ξ) ≥ µ|ξ|, (x, ξ) ∈ TM,

for a suitable constant µ > 0 (depending on φ).

21It is not the aim of these notes to investigate the interesting case of a nonconvex Bφo .
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Definition 3.15 (Regular metrics on TM). Let φ ∈ M(TM). We say that φ is regular
if for any x ∈ M the set Bφ(x) has boundary of class C∞ and each principal curvature of
∂Bφ(x) is strictly positive at each point of ∂Bφ(x). We denote by Mreg(TM) the class of all
regular metrics in TM .

It is possible to prove that if φ ∈ Mreg(TM), then Bφo(x) has boundary of class C∞ and
each principal curvature of ∂Bφo(x) is strictly positive at each point of ∂Bφo(x). Namely,
φo ∈ Mreg(T

⋆M). See also [132] for a list of related propertied.

Example 3.16 (Minkowski space). If a metric φ on TM is spatially homogeneous, it is
a norm on Λ1V , called a Minkowski norm (or Minkowski metric). The normed vector space
(Λ1V, φ) is called Minkowski space [146] and is the simplest example of a Finsler manifold
[22].

The symbol ∇ξ(φ
2) (resp. φξ) denotes the subdifferential of (φ(x, ·))2 (resp. of φ(x, ·)) with

respect to ξ.

Definition 3.17 (The map Tφ). Let x ∈M . We define Tφ(x, ·) : Λ1V → P(Λ1V ) as

Tφ(x, ξ) :=
1

2
(∇ξ(φ

2))(x, ξ), (x, ξ) ∈ TM. (3.16)

Tφ(x, ·) is a one-homogeneous maximal monotone map.

Remark 3.18 (Duality). Assume φo ∈ M(T ⋆M) and φ ∈ M(TM). The following proper-
ties hold [134], [146].

- φ(x, ξ) = sup
{
〈ξ⋆, ξ〉 : ξ⋆ ∈ Λ1V, φo(x, ξ⋆) ≤ 1

}
for any (x, ξ⋆) ∈ TM(22);

- φoo = φ (the dual of Λ1V can be identified with Λ1V );

- if φo is crystalline then φ is crystalline;

- if Tφo(x, ·) and Tφ(x, ·) are single valued, then [47]

- for any x ∈ M , ξ ∈ Λ1V \ {0} and ξ⋆ ∈ Λ1V \ {0} we have φo(x, φξ(x, ξ)) =
φ(x, φo(x, ξ⋆)) = 1, and φo(x, ξ⋆)φξ(x, φ

o
ξ⋆(x, ξ⋆)) = ξ⋆, φ(x, ξ)φoξ⋆(x, φξ(x, ξ)) = ξ;

- Tφ(x, ·)Tφo(x, ·) = IdΛ1V , Tφo(x, ·)Tφ(x, ·) = IdΛ1V .

- Assume for simplicity that φo is spatial homogeneous. Then Tφ (resp. Tφo) takes ∂Bφ
(resp. ∂Bφo) onto ∂Bφo (resp. onto ∂Bφ). If ξ ∈ ∂Bφ, Tφ(ξ) is the intersection of the
closed outward normal cone to ∂Bφ with ∂Bφo .

Remark 3.19. Assuming φ to be convex, it is equivalent(23) to develop the theory starting
with φ and then defining φo by duality (replace φ by φo and Λ1V with Λ1V in the first item
of Remark 3.18).
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Figure 1: two convex polyhedral bodies one dual of the other. Compare Figure 5 and (3.14): F , L

and Q are facets of E in Figure 5, and B̃F
φ , B̃L

φ and B̃Q
φ are the corresponding facets of Bφ.

∗

ξ
ξ

ξ

Bφο

Tφ
Bφ

∗

Figure 2: Pick ξ ∈ ∂Bφ. The covector Tφ(ξ) ∈ ∂Bφo is orthogonal to ∂Bφ, and |Tφ(ξ)| =
〈νBφ(ξ), ξ〉−1.

Example 3.20 (Polyhedral dual bodies). In Figure 1 for a crystalline φo, we show Bφo

and its dual body Bφ. If ξ ∈ ∂Bφ is a point in the relative interior of a facet, then the normal
cone Tφ(ξ) to ∂Bφ at ξ is a vertex in ∂Bφo ; if ξ ∈ ∂Bφ is a point in the relative interior of an
edge, then Tφ(ξ) is a closed edge in ∂Bφo ; if ξ ∈ ∂Bφ is a vertex, then Tφ(ξ) is a closed facet
in ∂Bφo .

When φ (resp. φo) is regular and spatially homogeneous, sometimes we simply write φ ∈
M(Λ1V ) (resp. φo ∈ M(Λ1V )).
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Remark 3.21. Let φ ∈ M(Λ1V ) be spatially homogeneous. We give here a recipe to
construct the dual bodyBφo of Bφ, see Figure 2. Assume for simplicity that φ ∈ C1(Λ1V \{0}).
Take a point ξ ∈ ∂Bφ. Then

Tφ(ξ)
|Tφ(ξ)| is orthogonal to ∂Bφ at ξ, and points out of Bφ. Moreover

|Tφ(ξ)| = (dist(Tξ(∂Bφ), 0))
−1,

where Tξ(∂Bφ) is the the tangent space to ∂Bφ at ξ. Indeed, setting ξ⋆ := Tφ(ξ), we have
that ξ⋆ realizes the supremum in the first item of Remark 3.18, so that 1 = φ(ξ) = 〈ξ⋆, ξ〉.
Therefore 1 = φ(ξ) = |ξ⋆|〈νBφ(ξ), ξ〉, and hence |ξ⋆| = 〈νBφ(ξ), ξ〉−1. It is then enough to
observe that the euclidean distance dist(Tξ(∂Bφ), 0) between Tξ(∂Bφ) and the origin equals
〈νBφ(ξ), ξ〉. In this way we construct Bφo, starting from Bφ, since ∂Bφo consists of all points
of the form Tφ(ξ), with ξ ∈ ∂Bφ.

Remark 3.22 (The Legendre transform). Some of the above concepts, as it can be
seen from formula (3.17) below, can be given in terms of the Legendre transform, that for
completeness we recall here. Let f : TM → [0,+∞) be a continuous function, such that for
any x ∈M the map ξ → f(x, ξ) is convex and(24) of class C1. Define f⋆ : T ⋆M → (−∞,+∞]
as

f⋆(x, ξ⋆) := sup
{
〈ξ⋆, ξ〉 − f(x, ξ) : ξ ∈ Λ1V

}
.

Let E = E(x) := {(ξ, τ) ∈ Λ1V × R : τ > f(x, ξ)} be the epigraph of f(x, ·), which is a
convex set. Given ξ⋆ ∈ Λ1V \ {0}, consider in V × R the set Pξ⋆

of all parallel hyperplanes
orthogonal to (ξ⋆,−1). If there is does not exist any point in ∂E for which the tangent space
to ∂E belongs to Pξ⋆

, then f⋆(x, ξ⋆) = +∞. Otherwise, if there exists one point z ∈ ∂E
having tangent space belonging to Pξ⋆

, we take the unique πξ
⋆ ∈ Pξ⋆

containing z. Then
we consider the intersection of πξ

⋆
with the vertical axis {0} × R, and we define f⋆(x, ξ⋆) as

minus the vertical component of such an intersection, namely

f⋆(x, ξ⋆) = −t, (0, t) = πξ
⋆ ∩
{
(ξ, τ) ∈ Λ1V × R : ξ = 0

}
.

For example,

ν ∈ Λ1V, c ∈ R, f(x, ξ) = 〈ξ, ν〉 + c⇒ f⋆(ξ⋆) =

{
−c if ξ⋆ = ν,

+∞ if ξ⋆ 6= ν,

α ∈ R, f(x, ξ) = α|ξ|2 ⇒ f⋆(ξ⋆) =
1

4α
|ξ⋆|2,

and for a non everwywhere differentiable function a similar construction gives

f(x, ξ) = φ(ξ) ⇒ f⋆(ξ⋆) =

{
0 if φo(ξ⋆) ≤ 1,

+∞ if φo(ξ⋆) > 1.
(3.17)

22The function φ(x, ·) is sometimes called the support function of Bφo(x), and Bφo(x) is called the polar
reciprocal of Bφ(x), [146, pag. 50]. Bφo(x) is called the dual body of Bφ(x). Once we assume φo to be convex,
then the right hand side of the first item in Remark 3.18 can be taken as the definition of φ.

23There could be, however, geometrical or physical reasons to prefer Bφ instead of Bφo as the starting point
of the theory.

24Even if f(x, ·) is C1 and not convex (or convex but not of class C1), still f⋆(x, ·) is defined and it is convex.
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3.3 The distance function distφ

We shall assume from now on that φ : TM → [0,+∞) is continuous(25).

Definition 3.23. Given x, y ∈M we set

distφ(x, y) := inf

{∫ 1

0
φ(γ, γ̇) dt : γ ∈ AC([0, 1];M), γ(0) = x, γ(1) = y

}
, (3.18)

where AC([0, 1];M) denotes the class of all absolutely continuous [14] curves γ : [0, 1] →M .
Notice that if φ is spatially homogeneous and convex, then distφ(x, y) = φ(y − x). Recall
that if φ(x, ξ) = |ξ|, we set distφ = d.
For any F ⊆M we denote

distφ(x, F ) := inf
y∈F

distφ(x, y), x ∈M.

The next definition will be applied only to rather regular sets.

Definition 3.24 (Signed φ-distance). Assume that ∂E ∈ Lip(M). We define the signed
φ-distance function from ∂E negative in E and positive in M \E as

dEφ (x) = dφ(x) := distφ(x,E) − distφ(x,M \ E), x ∈M. (3.19)

3.3.1 φ-Volume

Once we have the distance distφ at our disposal, we can define the n-dimensional Hausdorff
measure Hn

φ with respect to the distance distφ [94], i.e., for S ⊆ R
n

Hn
φ(S) :=

ωn
2n

lim
ρ→0+

inf

{
+∞∑

i=1

(diamdistφ
(Si))

n : S ⊆
+∞⋃

i=1

Si, diamdistφ
(Si) < ρ

}
, (3.20)

where, if F ⊆ R
n, diamdistφ

(F ) := sup{dφ(x, y) : x, y ∈ F}, and ωn := Ln({ξ ∈M : |ξ| < 1}).
Notice that if φ is spatially homogeneous, then Hn

φ(Bφ) = ωn, since diamdistφ
(Bφ) = 2.

Example 3.25. Assume that φ is spatially homogeneous and riemannian, i.e., φ(ξ) = |√gξ|
for any ξ ∈ V , where g = (gij) is a symmetric positive definite (n× n)-matrix, and we write

g =
√
gT

√
g. Then

Ln(Bφ) =
ωn

det
√
g

Hn
φ(S) = det

√
g Ln(S) =

ωn
Ln(Bφ)

Ln(S) = Hn(Tφ(S)).

We recall the following representation result for the Hausdorff measure [56].
Define

volφ(x) :=
ωn

Ln
(
Bφ(x)

) , x ∈M. (3.21)

25Discontinuous φ(·, ξ) have been considered for instance in [74], [6], [7], see also the references in these
papers.
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Theorem 3.26 (Representation of φ-volume). If B ⊆ Ω is a Borel set, then

Hn
φ(B) =

∫

B
volφ dx. (3.22)

The distance function dφ is useful for various reasons; one of them is that it gives a natural
extension of νφo out of ∂E.

3.4 Eikonal equation and extensions

Let φ ∈ Mreg(TM) and ∂E be compact and of class C∞ (resp. of class C2). It is possible
to prove that there exists a tubular neighbourhood of ∂E where the signed φ-distance dφ in
(3.19) is of class C∞ (resp. C2), see also [105].
The proof of the following theorem can be found for instance in [48]. See [23], [62] for related
results.

Theorem 3.27 (Eikonal equation). Let ∂E be compact and let U ⊂ M be a tubular
neighbourhood of ∂E such that dφ ∈ C∞(U). Then dφ satisfies the eikonal equation in U :

(φo(x,∇dφ(x)))2 = 1, x ∈ U, (3.23)

so that in particular
∇dφ = νφo on ∂E.

Definition 3.28 (Extension of nφ). Under the assumptions at the beginning of the section,
we can extend the Cahn-Hoffman vector field nφ on the whole of U as follows:

Nφ(x) := Tφo(x,∇dφ(x)), x ∈ U. (3.24)

Note that
φo(x,Nφ(x)) = 1, 〈∇dφ(x), Nφ(x)〉 = 1, x ∈ U.

3.5 Appendix: definitions of ∇φ, divφ, ∆φ. φ-Distributional perimeter

Assume that φo ∈ Mreg(T
⋆M). For completeness, we define here various operators(26)

naturally related to φo. If u ∈ C2(M) we define the vector field

∇φu(x) := Tφo(x,∇u(x)), x ∈M. (3.25)

Note that if φ(x, ξ) = (
∑n

i,j=1 gij(x)ξ
iξj)1/2 is a riemannian metric in M , then the i-th

component of ∇φu(x) equals
∑n

j=1 g
ij(x)∇ju(x) where (gij) is the inverse of (gij).

If η ∈ C1(M ;V ) we set
divφ η := divη + ∇ (log(volφ)) · η,

∆φu := divφ∇φu.
(3.26)

With the above definitions we have the following Gauss-Green type formula.

26We give the definitions assuming the validity of (3.29) below, for the sake of simplicity. See also [35].
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Proposition 3.29 (Divergence Theorem). If Ω ⊂ M is a bounded open set of class C1,
u ∈ C1(Ω) and g ∈ C1(Ω;Λ1V ) ∩ C(Ω;Λ1V ), then

∫

Ω
udivφg dHn

φ +

∫

Ω
∇u · g dHn

φ = −
∫

∂Ω
u νΩ

φo · g φo(x, νΩ)volφ dHn−1. (3.27)

Proof. Definition (3.26) of divφ implies

u divφg volφ = u divg volφ + u ∇(log(volφ)) · g volφ

= div(u g volφ) −∇u · g volφ.

Hence, using the Gauss-Green theorem and recalling (3.22), we get

∫

Ω
u divφg dHn

φ =

∫

∂Ω
u νΩ · g ωn

Ln(Bφ)
dHn−1 −

∫

Ω
∇u · g dHn

φ

=

∫

∂Ω
u νφo

Ω · g φo(x, νΩ)volφ dHn−1 −
∫

Ω
∇u · g dHn

φ.

In view of (3.27) it is natural to introduce the surface measure

dPφ(B) :=

∫

B∩∂E
φo(x, ν(x))volφ(x) dHn−1(x), B ⊆M. (3.28)

We will make this choice in the next chapters.

Remark 3.30. A rather natural choice of the function a in (3.1) and (3.4) is

a = volφ. (3.29)

With this choice we have that Fφo equals the functional in (3.28) when B = M . This
functional turns out to be the φ-perimeter, defined in the distributional sense [6], [48], and
also the φ-Minkowski content [94], [14], [48], [27], defined as

Mn−1
φ (∂E) := lim

ρ→0+

Hn
φ({x ∈M : distφ(x, ∂E) < ρ})

2ρ
, (3.30)

but not(27) the (n − 1)-dimensional Hausdorff measure Hn−1
φ with respect to distφ, defined

as

Hn−1
φ (S) :=

ωn−1

2n−1
lim
ρ→0+

inf

{
+∞∑

i=1

(diamdistφ
(Si))

k : S ⊆
+∞⋃

i=1

Si, diamdistφ
(Si) < ρ

}
, (3.31)

where ωn−1 := Ln−1(ξ ∈ R
n−1 : |ξ| < 1}). It is interesting to observe that, adopting

(3.28) as the definition of (n − 1)-dimensional φ-measure, it turns out that Bφ satisfies the

27Even for a spatially homogeneous φ [48].
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isoperimetric property [48]. Eventually, other geometric measures could be considered [146],
[13], for instance the Benson area [49], [13].(28)

When φo is spatially homogeneous, the choice in (3.29) gives

a =
ωn

Ln(Bφ)
=: cn. (3.32)

28If ξ⋆ ∈ Λ1V , it is possible to prove that |ξ⋆| = sup {det[ξ⋆, ν1, . . . , νn−1]}, where the supremum is taken
over all unit covectors ν1, . . . , νn−1 ∈ Λ1V , and [ξ⋆, ν1, . . . , νn] denotes the matrix having ξ⋆, ν1, . . . , νn as

columns. Such an inequality can be checked using the Hadamard inequality |det A| ≤
Qn

j=1

`
Pn

i=1 a2
ij

´1/2
,

where A = (aij) is an (n × n) matrix. The Benson area of ∂E is then defined as
R

∂E
b(x, ν) dHn−1, where

b(x, ·) : ξ⋆ ∈ Λ1V → max
˘

det[ξ⋆, ν1, . . . , νn−1] : νi ∈ Λ1V, φo(x, νi) ≤ 1
¯

. This surface measure is strictly
related to the De Giorgi mass [80], [13], which turns out to be, for instance for a spatially homogeneous φo,
the quantity

R

∂E
λ(T ) dHn−1, where λ(T ) := sup{Hn−1(η(Bφ ∩T )) : η = (η1, . . . , ηn−1) ∈ GL(T, T ), φo(ηi) ≤

1 ∀i ∈ {1, . . . , n − 1}} for any T ∈ G.
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4 φ-regular sets

Assume in this section that φo is convex and spatially homogeneous(29). The next definitions
become interesting when Tφo is multivalued hence, roughly speaking, when Bφo has corners,
edges, etc. In these notes, we will apply these definitions in the crystalline case.
Let ∂E be Lipschitz. In order to look for a solution of an anisotropic (and in particular
crystalline) mean curvature flow starting from ∂E, it is necessary to devise a certain class of
regularity for the flowing hypersurfaces.
We will give different definitions, depending on whether we want to consider a whole neigh-
bourhood of ∂E or not. All definitions have advantages and disadvantages. One motivation
for considering the neighbourhoods comes from phase transitions (in particular the reaction-
diffusion approximation considered in Section 9), where the interface is diffuse.
Let us begin with the definitions using the neighbourhoods, and with the most stringent one.
Recall that ∇dφ naturally extends the covector field νφo out of ∂E, and Nφ extends the vector
field nφ.

Definition 4.1 (Neighbourhood-Lipschitz φ-regular sets). We say that E is neighbourhood-
Lipschitz φ-regular if there exists a tubular neighbourhood U of ∂E and a bounded vector field
η ∈ Lip(U ; Λ1V ) such that η(x) ∈ Tφo(∇dφ(x)) for almost every x ∈ U .

If Tφo is single-valued then Tφo(∇dφ(x)) is a singleton and it reduces to the vector field Nφ.
Neirghbourhood-Lipschitz φ-regularity seems to be the strongest regularity one can require(30).
Nevertheless, a difficulty related to Definition 4.1 is that the divergence(31) of η belongs just
to L∞(U), hence has not, a priori, a well defined trace on ∂E(32). This difficulty remains in
the following definition (33).

Definition 4.2 (Neighbourhood-L∞ φ-regular sets). We say that E is neighbourhood-
L∞ φ-regular if there exists a tubular neighbourhood U of ∂E and a bounded vector field η
such that divη ∈ L∞(U) and η(x) ∈ Tφo(∇dφ(x)) for almost every x ∈ U .

Let us now pass to a (rather intrinsic) definition. Define

Norφ(∂E;M) := {N : ∂E →M : N(x) ∈ Tφo(νEφ (x)) for Hn−1 a.e. x ∈ ∂E}.

Definition 4.3 (Lipschitz φ-regular sets). We say that E is Lipschitz φ-regular if there
exists a vector field η ∈ Norφ(∂E;M) ∩ Lip(∂E;M). We say that E is polyhedral Lipschitz
φ-regular if E is Lipschitz φ-regular and it is polyhedral(34).

29Various definitions could be generalized for φo depending on x, at least when φo ∈ Mreg(TM).
30In the euclidean case φ(·) = | · | we have that E is neighbourhood-Lipschitz φ-regular if and only if ∂E is

of class C1,1.
31One advantage: this divergence is taken in the ambient space M .
32See however [32, Remark (d3)].
33Definition 4.2 could be in turn relaxed by requiring divη ∈ L2(U). Also in view of the L∞-regularity

result stated in Theorem 5.17, we will not use this relaxed definition in these notes.
34All polyhedral sets considered in these notes are assumed to have a finite number of facets. Facets of ∂E

are defined as the closure of a connected component of the relative interior of ∂E ∩ Tx∂E for some x ∈ ∂E
such that the tangent plane Tx∂E to ∂E at x exists.
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BB φφο

Τ φο

E

Figure 3: A Lipschitz φ-regular set E when Bφ is the square [−1, 1]2. Curved portions of ∂E may
be present: we will see that there the crystalline curvature must vanish.

The difficulties related to constructing a vector field with Lipschitz regularity on ∂E in explicit
examples are essentially the same as the ones in Definition 4.1; in addition, when talking about
the divergence of η, we are forced now to speak about a tangential divergence. On facets, the
tangential divergence we will consider will be the euclidean tangential divergence [136] divτ .
Again, one could relax the regularity of η in Definition 4.3, for instance by requiring η to be
bounded with tangential divergence in L2(∂E) or in L∞(∂E).

Definition 4.4 (L∞-φ-regular sets). We say that a polyhedral set E is L∞-φ-regular if
there exists a vector field η ∈ Norφ(∂E;M) having tangential divergence divτη in L∞(∂E).

Finally, we point out another notion that has been considered in [33].

Definition 4.5 (rBφ-condition). Let r > 0. We say that E satisfies the rBφ-condition if,
for any x ∈ ∂E, there exists y ∈M such that

rBφ + y ⊆ E and x ∈ ∂ (rBφ + y) .

It turns out that if E is neighbourhood-Lipschitz φ-regular then there exists r > 0 such that E
and M \ E satisfy the rBφ-condition. Moreover, if E is convex then E is neighbourhood-L∞

φ-regular if and only if E and M \E satisfy the rBφ-condition for some r > 0.

4.1 Examples

If n = 2, the structure of a Lipschitz φ-regular set E is, roughly speaking, the following:
∂E is a closed simple Lipschitz curve which is a sequence (with a precise order) of segments
parallel to some edge of ∂Bφ and of segments or arcs corresponding to vertices of ∂Bφ.
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Figure 4: E is not L∞-φ-regular. Any Cahn-Hoffman selection is forced to jump at the points p, q, s, w
of ∂E.

Example 4.6 (A Lipschitz φ-regular curve). Let φ(ξ) := max{|ξ1|, |ξ2|}, so that Bφ =
[−1, 1]2, and let E be as in Figure 3. At the vertices of ∂E the vector νEφ is not defined.
However, let v be a vertex of ∂E, and let F1 and F2 be the two arcs or segments of ∂E having
v as a vertex. For any x in the relative interior of Fi, the closed convex set Tφo(νEφ (x)) is
either a segment or a singleton, independent of x and depending only on Fi. Let us denote
it by Ki. What makes E Lipschitz φ-regular is the fact that K1 ∩ K2 is a singleton. This
produces a unique vector at each vertex of ∂E; then we can construct infinitely many vector
fields η ∈ Norφ(∂E; R2) ∩ Lip(∂E; R2) lying inside the dotted triangles with the assigned
values at the vertices.

On the other hand, for the same φ as in Example 4.6, the euclidean unit ball is not Lipschitz
φ-regular, and not even L∞-φ-regular. Its regularity is analogous to the regularity of the
square in the euclidean geometry.

Example 4.7 (The circle is not L∞-φ-regular). Let n = 2 and φ be as in Example 4.6.
Let E := {z ∈ R2 : |z| ≤ 1}, see Figure 4. Then E is not Lipschitz φ-regular. Indeed,
Tφo(νEφ (p)) is the upper horizontal segment [a, b] of ∂Bφ (we depict a corresponding dotted

triangle at p). Similarly, Tφo(νEφ (q)) is the right vertical segment [b, c] of ∂Bφ. On the other
hand, any point x on ∂E lying in the (relatively) open arc A between p and q is such that
Tφo(νEφ (x)) = b. We deduce that any vector field η ∈ Norφ(∂E; R2) must fulfill η ≡ b on A,
and η ≡ c on the open arc on ∂E between q and ω. Hence, any vector we choose inside the
dotted triangles (for instance, the triangle at q) will produce a discontinuity in the vector
field η (at q). We conclude that E is not L∞-φ-regular.

Example 4.8 (A Lipschitz φ-regular polyhedral surface). Let Bφ be as in Figure 1,
and E as in Figure 5. If x ∈ int(Q) then νEφ (x) coincides with the top vertex of ∂Bφo , and

Tφo(νEφ (x)) is the top facet B̃Q
φ of ∂Bφ. We depict Tφo(νEφ (x)) as a pyramid. Therefore η(x)

is constrained to lie in B̃Q
φ . If x ∈ ∂E is in the interior of an edge (say the edge l) of ∂Q,

then νEφ is not defined at x. However the intersection T lφ of B̃Q
φ with B̃F

φ is defined, and it is
the top edge of the frontal facet of ∂Bφ. We have depicted this set as a triangle. Therefore
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Figure 5: The set E. Here Bφ is as in Figure 1.

E

Figure 6: cF is independent of the choice of η among all vector fields making E Lipschitz φ-regular.

η(x) is constrained to lie in T lφ. If x ∈ ∂E is a vertex (say the vertex p) of ∂Q, then νEφ
is not defined at p. What is defined is the intersection w of B̃Q

φ ∩ B̃F
φ ∩ B̃L

φ , and we have
depicted this point at p as a segment. Therefore η(p) must coincide with w, see also Figure
1. A choice of a vector field η ∈ Norφ(∂E; R3) ∩ Lip(∂E; R3) can be made by hand.

4.2 Normal traces

We give here some notions that will be useful in the definition of the crystalline mean curva-
ture. Recall the definition of ν̃F given in (2.2).

Definition 4.9 (The normal traces cF ). Let E be a Lipschitz φ-regular set, let η ∈
Norφ(∂E;M) ∩ Lip(∂E;M), and let F ⊂ ∂E be a facet of ∂E. We define the normal trace
function cF ∈ L∞(∂F ) as

cF := ν̃F · η. (4.1)
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B φ

E

Figure 7: on the edges of ∂E the vector η must lye in the dotted regions

Example 4.10. Let n = 2, Bφ and E be as in Figure 3. In Figure 6 we depict a vector field η
which makes ∂E Lipschitz φ-regular. The functions cF do not depend on the particular choice
of η. The dotted vectors at the vertices indicate the unit normals (in the line containing the
facet F ) pointing outward F (i.e., ν̃F ).

Example 4.11. Let n = 3, Bφ = [−1, 1]3, and E be the set of Figure 8. E is a polyhedral
Lipschitz φ-regular set, since it is possible to construct a vector field η ∈ Norφ(∂E; R3) ∩
Lip(∂E; R3). Indeed, first we identify η on the vertices of ∂E. If v is a vertex of ∂E, the
intersection of B̃Q

φ over all facets Q of ∂E containing v is a singleton: we define this singleton
to be the value of η at v (see the bold vectors in Figure 7). Next, on a facet Q ⊂ ∂E, it is
enough to take suitable convex combinations of the values of η at the vertices of Q (possibly
first subdividing Q into two or more rectangles if Q itself is not a rectangle) to obtain the
required properties on η.
The bold vectors at the vertices of ∂E are the unique possible values for η. The vector field
ν̃F points outside of F , and on ]p, q[ points toward E. The pyramids with vertex on the
relative interior of the two facets having [p, q] in common represent the corresponding facets
of ∂Bφ (for instance, Tφo(νφo(F )) for the facet F ), i.e. the range of admissibility of η. It
follows that cF is negative on ]p, q[, while cF is positive on the remaining relatively open
edges of ∂F .

Given a Lipschitz φ-regular set E, in general it is possible to prove (see for instance [41],
[42]) that cF does not depend on the choice of η in Norφ(∂E;M) ∩ Lip(∂E;M), and for
Hn−2-almost every x ∈ ∂F

cF (x) =





max{〈ν̃F (x), ξ〉 : ξ ∈ Tφo(νφo(F ))} if ν̃F (x) points outside E,

min{〈ν̃F (x), ξ〉 : ξ ∈ Tφo(νφo(F ))} if ν̃F (x) points inside E.

(4.2)

Remark 4.12. For a polyhedral Lipschitz φ-regular set, it is possible to extend the notion of
normal trace also to vector fields N ∈ Norφ(∂E;M) with divτN ∈ L∞(∂E): such a normal
trace turns out to coincide with the right hand side of (4.2).
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Figure 8: A Lipschitz φ-regular set E when Bφ is the cube. On the relative interior of [p, q] the
function cF is negative (and constant).

5 First variations: functionals on boundaries

In this section we discuss the first variation of the functional Fφo , in order to devise a possible
notion of φ-mean curvature. In the computations of this section it appears to be useful to
have at our disposal quantities (such as the Cahn-Hoffman vector field) defined on a tubular
neighbourhood of the interface ∂E.

5.1 Spatially homogeneous smooth φo

Let us assume that φo is spatially homogeneous and of class C1(Λ1V \ {0}). Let us also
assume that ∂E is of class C2, and that there are no x ∈ ∂E where φo(νE(x)) = 0 (this is in
particular satisfied if φo is a metric on Λ1V , in view of (3.9)).
Let us introduce a class of admissible variations. Let Ψ ∈ C∞

c (M × R;M), and set Ψλ(x) :=
Ψ(x, λ) for any x ∈ M and λ ∈ R. Assume that Ψ0 = Id, and Ψλ − Id has compact support
in M for any λ ∈ R. We can write

Ψλ(x) := x+ λX(x) + o(λ), (5.1)

where X := ∂Ψλ
∂λ |λ=0

. The vector field X = (X1, . . . ,Xn) can be considered as the initial

velocity field of the deformation.
A direct computation shows that

det(∇Ψλ) = 1 + λtr(∇X) + o(λ). (5.2)

In particular
d

dλ
|det(∇Ψλ)|λ=0 = divX. (5.3)

Set
Eλ := Ψλ(E).
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The next result was proved essentially in [47] (see also [37]), in the case of a convex regular
metric φo. The proof that we present here does not require the convexity of φo, and it is
slightly different. Recall the expression of the constant cn in (3.32).

Theorem 5.1 (First variation, I). We have

d

dλ
Fφo(Eλ)|λ=0 = cn

∫

∂E

(
divX − niφνφo

j∇iX
j
)
φo(ν) dHn−1. (5.4)

Proof. Let u ∈ C2(M) be such that E = {u ≤ 0}, ∂E = {u = 0}, and ∇u 6= 0 on ∂E.

Then(35) νE = ∇uT

|∇u| on ∂E. Define vλ : M → R as

vλ(Ψλ(x)) := u(x), x ∈M. (5.5)

If |λ| is small enough, we have

Eλ = {Ψλ(x) : u(x) ≤ 0} = {y : u(Ψ−1
λ (y) ≤ 0} = {vλ ≤ 0},

∂Eλ = {vλ = 0}, ∇vλ 6= 0 on ∂Eλ, hence

νEλ =
∇vTλ
|∇vλ|

on ∂Eλ.

In order to proceed in the proof, we recall the area and coarea(36) formulas [94].

- The area formula: if g : M → R is integrable, f : M → M is an injective Lipschitz
map, and Ω ⊆M , then

∫

f(Ω)
gdy =

∫

Ω
g(f)|det(∇f)| dx.

- The coarea formula: if w ∈ Lip(M) satisfies ess − inf |∇w| > 0, g : M → R is integrable,
and µ ∈ R, then

∫

{w>µ}
g dHn−1 =

∫ +∞

µ

(∫

{w=s}

g

|∇w|dH
n−1

)
ds. (5.6)

It is now useful to make the following observation: for a given λ with |λ| small enough, we
have

Hn−1(∂Eλ) =

∫

∂E

|∇vλ(Ψλ)||det(∇Ψλ)|
|∇u| dHn−1. (5.7)

Indeed, if ρ > 0 is small enough, the area formula with the choice f = Ψλ, Ω = {|u| < ρ} (so
that f(Ω) = {|vλ| < ρ}) and g = |∇vλ|, gives

∫

{|vλ|<ρ}
|∇vλ(y)| dy =

∫

{|u|<ρ}
|∇vλ(Ψλ(x))||det(∇Ψλ(x))| dx. (5.8)

35νE = ν is considered as a covector field (row), while ∇u as a vector field (column). Sometimes in the
sequel of these notes we will omit the transposition symbol, identifying νE with ∇u

|∇u|
.

36An historical comment: the coarea formula appeared implicitely in [76].
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Hence, by the coarea formula applied to the left hand side of (5.8) with the choice w = vλ,
and by the smoothness of ∂Eλ it follows

lim
ρ→0+

1

2ρ

∫

{|u|<ρ}
|∇vλ(Ψλ)||det(∇Ψλ)| dx

= lim
ρ→0+

1

2ρ

∫ ρ

−ρ
Hn−1 ({vλ = s}) ds = Hn−1(∂Eλ).

(5.9)

On the other hand, using again the coarea formula with the choice w = u and the smoothness
of u it follows

lim
ρ→0+

1

2ρ

∫

{|u|<ρ}
|∇vλ(Ψλ)||det(∇Ψλ)| dx =

∫

∂E

|∇vλ(Ψλ)||det(∇Ψλ)|
|∇u| dHn−1. (5.10)

Then (5.7) follows from (5.9) and (5.10).

We now pass to the proof of (5.4). Using the area formula, and arguing as in the proof of
(5.7), we have

1

cn
Fφo(Eλ) =

∫

∂Eλ

φo
( ∇vλ
|∇vλ|

)
dHn−1 =

∫

∂E
φo
( ∇vλ
|∇vλ|

(Ψλ)

)
|det∇Ψλ|

|∇vλ(Ψλ)|
|∇u| dHn−1.

(5.11)

Differentiating (5.5) with respect to xj and using (5.1) it follows ∂u
∂xj = ∂vλ

∂yi (δij+λ
∂Xi

∂yj ), hence
if we set

J(x) := (∇X(x))T , x ∈ U,

we have(37)
∇vλ(Ψλ(x))

T = ∇u(x)T (Id + λJ(x))−1, x ∈ U. (5.12)

In particular
∇vλ(Ψλ) = ∇u if λ = 0, that is on ∂E.

From (5.12) it follows

d

dλ

(
∇vλ(Ψλ(x))

T
)
|λ=0

= −∇u(x)TJ(x), x ∈ U. (5.13)

Using (5.13) and (5.3) it follows

d

dλ

(
|det∇Ψλ|

|∇vλ(Ψλ)|
|∇u|

)

|λ=0

= tr

((
Id − ∇u

|∇u| ⊗
∇u
|∇u|

)
∇X

)
. (5.14)

As a consequence of (5.12) and (5.13), at any point x ∈ U we have

d

dλ

[∇vλ(Ψλ)
T

|∇vλ(Ψλ)|

]

|λ=0

= −∇uT
|∇u|J + 〈∇u

T

|∇u|J,
∇u
|∇u| 〉

∇uT
|∇u| . (5.15)

37Recall that with our conventions the gradient vector field ∇u(x) is a column.
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Using (3.5), (5.11), (5.15) and (5.14) we have

1

cn

d

dλ
Fφo(Eλ)|λ=0 =

∫

∂E
〈 −ν∇XT + 〈ν∇XT , νT 〉 ν, nφ 〉 dHn−1

+

∫

∂E

(
divX − 〈νT∇X, νT 〉

)
φo(ν) dHn−1.

(5.16)

Recalling (3.13) we have that the second addendum 〈〈νT∇X, νT 〉ν, nφ〉 under the integral on
the right hand side of (5.16) can be written as

〈νT∇X, νT 〉〈νφo , nφ〉φo(ν) = 〈νT∇X, νT 〉φo(ν)

(where we have used (3.13)), and therefore cancels with the the fourth addendum. Then (5.4)
follows.

Remark 5.2. We note once more that Theorem 5.1 is valid without assuming that φo is
convex.

Remark 5.3. The previous computation holds also for a function σ (resp. φo) defined on
a relatively open subset S of S

n−1 (resp. on {λξ⋆ : ξ⋆ ∈ S, λ ∈ R}), provided ∇vλ
|∇vλ|

(x) still
belongs to S.

Definition 5.4. We set

divτ,φX := tr
((

Id − nφ ⊗ νφo

)
∇X

)
= divX − niφνφo

j∇iX
j .

Notice that the matrix(38) Id − nφ ⊗ νφo is not symmetric.
Let φo ∈ Mreg(T

⋆M) and let Nφ : U →M be the extension of nφ as defined in (3.24).

Definition 5.5 (φ-mean curvature). We define(39)

κφ := divτ,φNφ, Hφ := κφνφo on ∂E.

The following result shows that we can equivalently define the φ-mean curvature using the
divergence in the ambient space M .

Lemma 5.6. Let φo ∈ Mreg(T
⋆M) and let Nφ : U → M be the extension of nφ as defined

in (3.24). Then(40)

κφ = divNφ = φoξ⋆
i ξ

⋆
j
(∇dφ)∇2

ijdφ = (φo2/2)ξ⋆
i ξ

⋆
j
(∇dφ)∇2

ijdφ = divτNφ = ∆φdφ on ∂E.

(5.17)

Proof. For a fixed x ∈ ∂E define f(z) := 〈νE(x), Nφ(z)〉 for any z ∈ U . Then f has a

maximum at x (with value φo(νE(x))). Therefore ∇f(x) = 0, i.e., νEj (x)∇iN
j
φ(x) = 0. Hence

νφo
j(x)∇iN

j
φ(x) = 0, and therefore divτ,φNφ = divNφ = divτNφ.

38To be consistent with the indices, here Id has one lower index and one upper index, and nφ ⊗ νφo is a
(1, 1) tensor.

39With this definition Hφ is viewed as a covector. The corresponding vector is κφNφ.
40Observe that the matrix ∇Nφ is the product of two symmetric matrices, since ∇Nφ = ∇2(φo2/2)∇2dφ,

and ∇2(φo2/2) is positive definite. It is then possible to prove that ∇Nφ is diagonalizable and its eigenvalues
are real.
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Corollary 5.7 (First variation, II). Let φo ∈ Mreg(T
⋆M). We have

d

dλ
Fφo(Eλ)|λ=0 = cn

∫

∂E
〈Hφ,X〉 φo(ν) dHn−1. (5.18)

Proof. Split X as

X = X⊥,φ +Xτ,φ, X⊥,φ := 〈∇dφ,X〉 Nφ =: ψNφ, Xτ,φ := X −X⊥,φ.

Note that 〈X⊥,φ,∇dφ〉 = 〈X,∇dφ〉, and that 〈Xτ,φ,∇dφ〉 = 0, namely Xτ,φ is a tangent
vector field to ∂E. From (5.4) it follows that the function

X → d

dλ
Fφo(Eλ)|λ=0

is linear with respect to X. Moreover, it is possible to show that the contribution of Xτ,φ to
Fφo(Eλ) is of order o(λ). Therefore we can neglect Xτ,φ in the first variation, and consider
only X⊥,φ. We have

1

cn

d

dλ
Fφo(Eλ)|λ=0 =

∫

∂E

(
div(ψNφ) −N i

φνφo
j∇i(ψN

j
φ)
)
φo(ν) dHn−1

=

∫

∂E

(
ψdivNφ − ψN i

φνφo
j∇iN

j
φ

)
φo(ν) dHn−1,

where, recalling (3.13), we have usedN i
φνφo

j∇i(ψN
j
φ) = 〈∇ψ,Nφ〉+ψN i

φνφo
j∇iN

j
φ. Therefore

d

dλ
Fφo(Eλ)|λ=0 = cn

∫

∂E
ψ
(
divNφ −N i

φνφo
j∇iN

j
φ

)
φo(ν) dHn−1

which is (5.18).

Corollary 5.8. We have the integration by parts formula
∫

∂E
divτ,φX φo(ν) dHn−1 =

∫

∂E
〈Hφ,X〉φo(ν) dHn−1, X ∈ C1

c (M ; Λ1M).

Bφ has constant φ-mean curvature. More precisely we have the following

Example 5.9. Let φo ∈ Mreg(T
⋆M) be spatially homogeneous. Then

κφ = n− 1 on ∂Bφ. (5.19)

Take u(x) = φ(x) − 1 for x ∈ M ; then ∇u(x) = φξ(x). Hence φoξ(∇u(x)) = x/φ(x) on M .
Consequently κφ = divφ(φ

o
ξ(∇u(x))) = div(x/φ(x)). Then, as x · φξ(x) = φ(x), we have

div

(
x

φ(x)

)
=

divx

φ(x)
− x · φξ(x)

φ2(x)
=

n

φ(x)
− 1

φ(x)
=
n− 1

φ(x)
.

Example 5.10. Let n = 2, and assume that φo(ξ⋆) = φo(ξ⋆) = ργ(θ), where (ρ, θ) are polar
coordinates in the ξ⋆-plane, i.e., ξ⋆1 = ρ cos θ, ξ⋆2 = ρ sin θ. Then the curvature κφ of a smooth
curve ∂E is (see for instance [47] and the next section)

κφ = κ(γ + γθθ), (5.20)

where γθθ denotes the second derivative of γ with respect to θ.
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5.1.1 Curves: parametric computation

Let us compute the first variation of Fφo in the special case n = 2, using a parametric
approach. Write ν = ν(θ) = −(cos θ, sin θ) = τ(θ)⊥, where ⊥ denotes the counterclock-wise
rotation of π/2, and define γ : [0, 2π) → R as

γ(θ) := σ(ν).

Theorem 5.11 (First variation: curves). Let α : [0, 1] → R
2 be a regular parametrization

of ∂E. Let β ∈ C2
c ([0, 1]; R

2), λ ∈ R, and αλ := α+ λβ. Then

d

dλ
Fσ(Eλ)|λ=0 =

∫ 1

0
〈(γ(θ) + γθθ(θ))κν, β〉 dt, (5.21)

where αλ is a regular parametrization of ∂Eλ, and κ = 1
|α′|2

(α′′−〈α′′, α
′

|α′|〉 α
′

|α′|) is the euclidean

curvature of ∂E, where ′ denotes the derivative with respect to t ∈ [0, 1].

Proof. Set τλ = τλ(t) :=
α′

λ(t)

|α′
λ(t)| = (− sin θλ(t), cos θλ(t)), and set −νλ := τ⊥λ . We have

d

dλ
Fσ(Eλ) =

d

dλ

∫ 1

0
γ(θλ(t))|α′

λ(t)| dt

=

∫ 1

0
γθ(θλ)

dθλ
dλ

|α′
λ| dt +

∫ 1

0
γ(θλ) τλ · β′ dt =: Iλ + IIλ.

We have, integrating by parts and using d
dtτλ|λ=0 = −κν,

II|λ=0 = −
∫ 1

0
γθ(θ)

dθλ
dt |λ=0

τ · β dt+

∫ 1

0
γ(θ)κν · β dt (5.22)

= −
∫ 1

0
γθ(θ)θ

′τ · β dt+

∫ 1

0
γ(θ)κν · β dt.

To compute dθλ
dλ |λ=0

we differentiate α′ + λβ′ = |α′ + λβ′|(− sin θλ, cos θλ) with respect to λ.

We have

β′ = τ · β′ τ + |α′|ν dθλ
dλ |λ=0

which implies
dθλ
dλ |λ=0

= ν · β
′

|γ′| .

Substituting in (5.22), integrating by parts, using dν
dθ = −τ and dθ

dt = κ, gives

I|λ=0 =

∫ 1

0
γθ(θ)ν · β′ dt =

∫ 1

0
γθθ(θ)κν · β dt+

∫ 1

0
γθ(θ)θ

′τ · β dt,

and (5.21) follows.
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5.2 Inhomogeneous φo

We define
κφ := divφ Nφ = divNφ + ∇(log(volφ)) ·Nφ on ∂E, (5.23)

and the vector mean curvature κφ to ∂E as Hφ := κφνφo .
The proof of the next theorem can be found in [47].

Theorem 5.12 (First variation). Let φo ∈ M(T ⋆M). Adopting the same notation of
Theorem 5.1, we have

d

dλ
Fφo(Eλ)|λ=0 =

∫

∂E
〈Hφ,X〉φo(x, ν)volφ dHn−1. (5.24)

5.3 The crystalline case

The computation of the first variation of Fφo is much more complicated in the crystalline
case, because of the nondifferentiability of both the surface and the integrand. We report
here some results from [41], [42], which indicate how to define the crystalline mean curvature.
Let φo be crystalline. Let E be a polyhedral neighbourhood-Lipschitz φ-regular set, let
U ⊃ ∂E be an open set ofM and η ∈ Lip(U ;V ) be such that η ∈ Tφo(∇dφ) almost everywhere
in U , where dφ = dEφ . Let Ψ ∈ Lip(U × R;M), with Ψ(x, λ) := x + λX(x), for a given
initial velocity vector field X ∈ Lip(U ;M). If we follow the reasoning of Section 5.1 for the
computation of the first variation of Fφo , we now encounter some technical difficulties: for
instance we have to be able to consider the divergence of X on ∂E. This is not immediately
guaranteed from the regularity of X, since divX is only in L∞(U), and ∂E has obviously
zero Lebesgue measure. We therefore prefer to slightly change our point of view. Assume
then E to be polyhedral Lipschitz φ-regular, and define

Hdiv :=
{
N ∈ Norφ(∂E;M) : divτN ∈ L2(∂E)

}
.

Let X ∈ Lip(∂E;V ). As in the smooth case, Fφo does not change under infinitesimal tangen-
tial variations. Therefore we restrict ourselves to consider φ-normal vector fields, hence we as-
sume thatX can be written asX = ψη, where ψ ∈ Lip(∂E) and η ∈ Norφ(∂E;M) ∩ Lip(∂E;M).
In order to perform the computation, it appears to be useful to extend ψ and η in a suit-
able neighbourhood of ∂E. We choose the extension by lines along η itself. More precisely,
one can show that there exist ε > 0 and an open set U containing ∂E such that the map
(x, λ) ∈ ∂E × (−ε, ε) → x+ λη(x) ∈ U is bilipschitz. We write (πη(·), λη(·)) ∈ ∂E × (−ε, ε)
on U the inverse of this map. Define ψe ∈ Lip(U), ηe ∈ Lip(U ;M) as ψe(z) := ψ(πη(z))
and ηe(z) := η(πη(z)) for any z ∈ U . For λ ∈ R with |λ| small enough and z ∈ U , define
Ψ(z, λ) := z + λψe(z)ηe(z), and let Ψλ and Eλ be as in Section 5.1.

Theorem 5.13. We have

inf
ψ∈Lip(∂E),cn

R
∂E

ψ2φo(ν)dHn−1≤1
lim
λ→0+

Fφo(Eλ) −Fφo(E)

λ
= − min

N∈Hdiv

(K(N))
1
2 , (5.25)

where

K(N) := cn

∫

∂E
(divτN)2φo(ν)dHn−1. (5.26)
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Figure 9: the vector field Nmin : ∂E → R
2 is, on facets and arcs of ∂E, the linear combination of

the values of η at the vertices. In this example ∂E is not polygonal: indeed κE
φ can be defined for a

generic Lipschitz p-regular set [41], [42].

The minimization problem in (5.25) in general may admit(41) more than one solution, and
two minimizers have the same divergence. In the following we denote by NE

min = Nmin ∈ Hdiv

a minimizer.

Definition 5.14 (Crystalline mean curvature). We define the φ-mean curvature κEφ of

∂E as κEφ = κφ := divτNmin ∈ L2(∂E).

It turns out(42) that the φ-mean curvature of ∂Bφ is constantly equal to n− 1.

Remark 5.15. When φ ∈ Mreg(TM) formula (5.25) reduces to

inf
ψ∈Lip(∂E),cn

R
∂E ψ2φo(ν)dHn−1≤1

∫

∂E
〈ψη, ν〉κφφo(ν) dHn−1 = −

∫

∂E
(κφ)

2φo(ν) dHn−1.

Example 5.16 (Polygonal curves). Let n = 2. Let us compute explicitely the φ-curvature
of a two-dimensional Lipschitz φ-regular set E, letting η ∈ Norφ(∂E; R2)∩Lip(∂E; R2). Given
a facet F ⊂ ∂E (in this case F equals a segment [z,w]), the minimum problem (5.29) becomes

inf
{∫

]z,w[
(N ′(s))2dH1(s) : N ∈ L2(]z,w[; Π[z,w]), N

′ ∈ L2(]z,w[),

N(x) ∈ Tφo(νφo(x)) for a.e. x ∈ ]z,w[, N(z) = cz, N(w) = cw

}
,

where cz (resp. cw) is the orthogonal projection of η(z) (resp. of η(w)) on the line Π[z,w],
with the correct sign, and ]z,w[ is the relative interior of [z,w].

41It would be interesting to find some argument for selecting one preferred minimizer.
42For instance using Remark 5.19 below.
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We now observe that the above minimum problem has a unique solution NF
min, which is

simply the linear function connecting cz at z with cw at w. Hence, when n = 2, not only
the divergence of a minimizer is unique, but also the minimizer itself. If we now repeat this
procedure for any facet, and on each facet we add to NF

min the proper (constant) normal
component to F , we end up with the vector field Nmin : ∂E → R

2 whose divergence is the
φ-curvature of ∂E. An example of this vector field is depicted in Figure 9. Curved regions
in ∂E have zero φ-curvature. On the other hand, if F is a facet of ∂E ⊂ R

2 and BF ⊂ ∂Bφ
is the corresponding facet in ∂Bφ, κ

F
φ is constant in F and

κFφ = δF
|BF |
|F | in int(F ), (5.27)

where δF ∈ {0,±1} is a convexity factor: δF = 1 (resp. δF = −1, δF = 0) if E is locally
convex (resp. if E is locally concave, E is neither locally convex nor locally concave) at F .

Lipschitz φ-regular sets have φ-curvature which is more regular than being only square inte-
grable [42].

Theorem 5.17 (Regularity). We have κφ ∈ L∞(∂E). Moreover, κφ has bounded variation
on all facets of ∂E corresponding to facets of ∂Bφ.

Remark 5.18. Assume that ∂E is a polyhedral Lipschitz φ-regular set. We do not know
under which further conditions on ∂E (if any) the functional K in (5.26) admits a minimizer
in Hdiv ∩ Lip(∂E;M) or not. See also formula (8.5) (and Remark 5.19) below: in that case
a discontinuous minimizing vector field with bounded divergence is constructed on the facet
F .

5.3.1 A minimum problem on F : φ-mean curvature on F

In this section we assume for simplicity that n = 3 and that cn = 1 (the case n = 2 is trivial),
and that E is a polyhedral Lipschitz φ-regular set. We recall some notation that we have
already occasionally used. The symbol F will always denote a (polyhedral) facet of ∂E such
that B̃F

φ is a facet of Bφ. If [p, q] is a closed edge of a polyhedral set, by ]p, q[ we denote the
relative interior of [p, q].
ΠF is the affine plane spanned by the facet F . Whenever necessary, we identify ΠF with the
plane parallel to ΠF and passing through the origin, and F with its orthogonal projection
on this latter plane. We will assume for simplicity that B̃F

φ contains the origin of ΠF in its
interior, and is symmetric with respect to the origin itself.
We let φ̃F : ΠF → [0,+∞[ be the convex and one-homogeneous function on ΠF such that
{φ̃F ≤ 1} = B̃F

φ . We denote by φ̃oF the dual of φ̃F (recall the first item of Remark 3.18). If

no confusion is possible, we omit the dependence on F of φ̃F , thus writing φ̃ in place of φ̃F .
We indicate by κBeφ the φ̃-curvature of the boundary of a Lipschitz φ̃-regular set B ⊂ ΠF . We

also set

Peφ(F ) :=

∫

∂F
φ̃o(ν̃F ) dH1.

We want to recall another way to define the crystalline mean curvature κEφ on a facet F of
∂E, using a localized minimum problem on F . Set

Norφ(F ; ΠF ) :=
{
N ∈ L∞(F ; ΠF ) : N(x) ∈ Tφo(νφo(F )) for H2 a.e. x ∈ F

}
.
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Any N ∈ Norφ(F ; ΠF ) with divN ∈ L2(int(F )) admits a normal trace 〈ν̃F , N〉 on ∂F Set

Hdiv(F ; ΠF ) :=
{
N ∈ Norφ(F ; ΠF ) : divN ∈ L2(F ), 〈ν̃F , N〉 = cF H1 a.e. on ∂F

}
.

We define the functional K(·, F ) : Hdiv(F ; ΠF ) → [0,+∞) as

K(N,F ) :=

∫

F
(divN)2 φo(νE) dH2 = φo(ν(F ))

∫

F
(divN)2 dH2. (5.28)

The minimum problem

inf
{
K(N,F ) : N ∈ Hdiv(F ; ΠF )

}
(5.29)

admits a solution, and two minimizers have the same divergence. Let us denote by NF
min a

solution of problem (5.29). It turns out that

κEφ = divNF
min H2 a.e. in F.

Notice once more that the above equality says that the crystalline φ-mean curvature of ∂E
can be obtained, on the facet F , as the divergence of a vector field which minimizes a problem
on F . However this minimum problem is nonlocal, in the sense that it depends on the shape
of ∂E around F : indeed, we are assigning the normal trace of NF

min on ∂F via the functions
cF .
The following remark is useful in concrete situations, and is a consequence of the strict
convexity of the functional K(·, F ) in the divergence.

Remark 5.19 (Minimality criterion). Let f = divN where N is a vector field belonging
to Hdiv(F ; ΠF ). Assume that f satisfies the Euler-Lagrange inequality

∫

F
fdiv(N −N) dH2 ≤ 0, N ∈ Hdiv(F ; ΠF ). (5.30)

Then N is a solution of (5.29).

As a corollary of this minimality criterion it follows that if f is constant in F then (5.30) is
satisfied (with the equality in place of the inequality).
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6 φ-calibrability

Theorem 5.17 makes possible to speak of the jump set of κφ on the facets of ∂E corresponding
to facets of ∂Bφ. If F ⊂ ∂E is such a facet, it may be of interest finding necessary and
sufficient conditions on E and F ensuring that the jump set of κφ in F is empty: that is, to
prove that κφ is continuous in F . Assume that this is the case: then for small times in the
crystalline mean curvature flow, F is expected to translate parallely to itself if κφ is constant
on F or to bend if κφ is continuous but not constant in F .

Definition 6.1 (Calibrability). We say that F is φ-calibrable if κEφ is constant in F .

Recalling Definition 6.1, the Gauss-Green theorem (applied to
∫
F divN dHn−1) and the results

of Section 5.3.1, we deduce, for instance in n = 3 dimensions, that a facet F is φ-calibrable
if and only if there exists a vector field N : F → R

3 which is a solution to:





N ∈ L∞(F ; R3),

N(x) ∈ Tφo(νφo(F )) for H2 a.e. x ∈ F,

divN =
1

|F |

∫

∂F
cF dH1,

〈ν̃F , N〉 = cF H1 a.e. on ∂F.

(6.1)

We note that what are important here are the two components of N on the plane ΠF con-
taining F , since the third component (the orthogonal one) must be constant (and hence does
not affect the computation of divN).
The quantity

1

|F |

∫

∂F
cF dH1 =: vF

can be interpreted as the mean velocity of F , and is sometimes called weighted mean cur-
vature; in case of a convex F with E convex at F (see Definition 6.3 below) this velocity is
positive. Hence

−vF νφo(F )

represents the normal velocity vector of F .
To construct examples of facet-breaking in crystalline mean curvature flow, the first step
consists exactly in finding facets which are not φ-calibrable. Therefore, we are led to look for
criteria that allow to decide whether a facet is φ-calibrable or not [41], [42].
Given a finite perimeter set [14] B in the (hyper)plane ΠF containing F , we denote by ∂∗B
the reduced boundary of B. We also define the function cB : F → R as follows:

cB(x) :=

{
max

{
ν̃B(x) · p : p ∈ ∂B̃F

φ

}
if x ∈ ∂∗B \ ∂F,

cF (x) otherwise.
(6.2)

The following result (n = 3) is proved in [43].
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Theorem 6.2 (Characterization). F is φ-calibrable if and only if for any B ⊆ F of finite
perimeter we have(43)

vB :=
1

|B|

∫

∂∗B
cB dH1 ≥ 1

|F |

∫

∂F
cF dH1 = vF . (6.3)

Namely, F is a solution of the minimum problem

inf

{
1

|B|

∫

∂∗B
cB dH1 : B of finite perimeter, B ⊆ F

}
.

Before sketching the proof of Theorem 6.2, let us recall [19], [20] that given a function u of
bounded variation in F and a vector field X ∈ L∞(F ; ΠF ) with bounded divergence(44), the
following generalized Gauss-Green formula holds:

∫

F
udivX dx+

∫

F
θ(X,Du)|Du| =

∫

∂F
〈ν̃F ,X〉 u dH1.

Here Du is the distributional derivative of u, which is a Radon measure; moreover, the density
θ(X,Du) the total variation measure |Du| [95], [14], and the normal trace 〈ν̃F ,X〉 of X on
∂F are suitably defined.
Sketch of proof of Theorem 6.2. The implication

F φ−calibrable ⇒ vB ≥ vF for B ⊆ F

can be proved as follows. We know that divN = vF in F . Therefore, integrating divN on F
and using the Gauss-Green theorem we get

|B|divN =

∫

B
divN dx =

∫

∂∗B
ν̃B ·N dH1 ≤

∫

∂∗B
cB dH1,

where in the last equality we use also the definition (6.2) of cB .
The implication

F φ−calibrable ⇐ vB ≥ vF for B ⊆ F

can be proved as follows. Assume by contradiction that F is not φ-calibrable. Given any
λ ∈ R define Ωλ := {x ∈ F : divNmin(x) < λ}. Using Theorem 5.17 it follows(45) that

there exists λ < vF such that Ωλ 6= ∅ has finite perimeter.

We have, using the properties of functions of bounded variations [14] and the Gauss-Green
theorem,

∫

Ωλ

divNmin dx = −
∫

int(F )∩∂∗Ωλ

θ(Nmin,D1Ωλ
) dH1 +

∫

∂F
〈ν̃F , Nmin〉 1Ωλ

dH1

= −
∫

int(F )∩∂∗Ωλ

θ(Nmin,D1Ωλ
) dH1 +

∫

∂F∩∂∗Ωλ

〈ν̃F , Nmin〉 dH1.

43Heuristically, subfacets of F would move faster than F , consistently with the comparison result for crys-
talline mean curvature flow.

44Divergence in L2(F ) would be enough.
45Almost all sublevel sets of a BV function are of finite perimeter.
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It is now possible to prove the following property:

−θ(Nmin,D1Ωλ
)(x) = max

{
ν̃Ωλ(x) · p : p ∈ ∂B̃F

φ

}
for H1 − a.e. x ∈ int(F ) ∩ ∂∗Ωλ,

and also the property 〈ν̃F , Nmin〉 = cF = cΩλ
on ∂F ∩∂∗Ωλ. Therefore −θ(Nmin,D1Ωλ

) = cΩλ

on int(F ) ∩ ∂∗Ωλ, and hence
∫

Ωλ

divNmin dx =

∫

∂∗Ωλ

cΩλ
dH1.

It follows

vF > λ >
1

|Ωλ|

∫

Ωλ

divNmin dx =
1

|Ωλ|

∫

∂∗Ωλ

cΩλ
dH1 ≥ vF ,

which is a contradiction.
Heuristically, proving that a facet instantly breaks during the subsequent crystalline mean
curvature flow means to find a subset B ⊂ F such that vB < vF .

6.1 The case of convex facets

Definition 6.3 (Convexity at a facet). We say that E is convex at F if E lies, locally
around F , from one side of the hyperplane ΠF containing F .

It is possible to prove that if the Lipschitz φ-regular set E is convex at F , then F is Lipschitz
φ̃F -regular (we set φ̃ = φ̃F ). Under this convexity assumption(46), we have(47) that

vF =
1

|F |

∫

∂F
φ̃o(ν̃F ) dH1.

In addition κφ turns out to be convex in F .
The following result, useful in the applications, is proved in [43] (48).

Theorem 6.4 (Characterization for a convex E and a convex F ). Assume that E is
convex at F and that F is convex. Then F is φ-calibrable if and only if

sup
∂F

κFeφ ≤ 1

|F |

∫

∂F
φ̃o(ν̃F ) dH1. (6.4)

46We assume Beφ to be centrally symmetric.
47We recall here that, in the euclidean case, |·|-calibrability under suitable assumptions (essentially convexity

of E at a facet) becomes the notion of Cheeger set. Indeed, a set F ⊂ R
2 is called a Cheeger set if for any

B ⊆ F we have P (B)
|B|

≥ P (F )
|F |

, where P (A) = P|·|(A) is the perimeter of A ⊆ R
2. In the euclidean case

it is known that if F is a Cheeger set then the curvature of its boundary is bounded above by P (F )
|F |

, and

the converse implication is true if F is convex (in accordance with Theorem 6.4). It is also known that the
complement of a bounded convex set if | · |-calibrable. On the other hand, the complement of two bounded
convex sets is not necessarily | · |-calibrable [2], [3], see also [31] for related results. We refer to [66], [67] and
references therein for more, and also for some connections with the capillarity problem. In [66] it is possible
to find relations of the above concepts with the prescribed curvature problem inf{P (B) − λ|B| : B ⊆ F}.
Relations with the isoperimetric problem inf{P (B) : |B| = µ} can be considered as well. Finally, we mention
the paper [65] for recent extensions.

48We do not know whether the convexity assumption on F in Theorem 6.4 can be relaxed, in order to obtain
the same thesis.
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The sup in (6.4) is the essential supremum, since κFeφ is a function in L∞(∂F ). Recall that

κFeφ is the φ̃F -curvature of ∂F (as a subset of ΠF ).

Hence, under the assumptions of Theorem 6.4, problem (6.1) is solvable if and only if the
φ̃-curvature of ∂F is bounded above by the constant on the right hand side of (6.4); this
means, roughly speaking, that the edges of ∂F cannot be too “short”.
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7 Anisotropic mean curvature flow

In this section we quickly recall the definition of anisotropic mean curvature flow, and we
present the main example of evolution. We will not consider the case of unbounded hyper-
surfaces (such as graphs on the whole of R

n−1, for instance).

7.1 Regular case

We assume in this subsection that φ ∈ Mreg(TM).

Definition 7.1 (φ-mean curvature flow). Let T > 0 and, for any t ∈ [0, T ], let E(t) ⊂M
be a set with compact boundary. We say that (E(t))t∈[0,T ] is a smooth φ-mean curvature flow
in [0, T ] starting from E = E(0) if:

(i) there exists an open set A ⊂ M × [0,+∞) such that ∪t∈[0,T ](∂E(t) × {t}) ⊂ A and, if
we define

dφ(z, t) := distφ(z,E(t)) − distφ(z,M \ E(t)), z ∈M, t ∈ [0, T ],

we have dφ ∈ C∞
(
A
)
;

(ii) the following equation holds(49):

∂

∂t
dφ(x, t) = ∆φdφ(x, t), x ∈ ∂E(t), t ∈ [0, T ]. (7.1)

Observe that ∂
∂tdφ is positive for an expanding set.

Example 7.2. Given R0 > 0, let us show that {ξ ∈ M : φ(ξ) < R0} has an evolution
shrinking self-similarly under the flow (7.1). Looking for a solution of the form {ξ ∈ M :
φ(ξ) < R(t)}, we have dφ(z, t) = φ(z) −R(t), and (7.1) becomes Ṙ = −n−1

R (recall Example

5.9). Hence R(t) =
√
R2

0 − 2(n− 1)t for t ∈ [0,
R2

0
2(n−1)), which disappears for times larger

than
R2

0
2(n−1) .

The evolution law (7.1) is the gradient flow of Fφo , see [5], [78], [9]. We refer for instance to
the papers [47] and references therein for more.

7.2 Crystalline case

Assume now that φ is crystalline. Unless n = 2, the definition of crystalline mean curvature
flow is much more involved. Let us begin with the two-dimensional case (M = R

2).

49Recall that from the last equality in (5.17) it follows that ∆φdφ(x, t) is the φ-mean curvature κφ = divN
E(t)
φ

of ∂E(t) at x ∈ ∂E(t). Moreover −
∂dφ

∂t
N

E(t)
φ is the normal velocity of the flow.
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7.2.1 Curves

Let ∂E ⊂ R
2 be a closed simple polygonal curve, Sj ⊂ ∂E be an edge of length Lj > 0 and

νj the exterior euclidean unit normal to Sj. We define δSj to be 1 (resp. -1) if Sj and its
two adjacent edges form a convex (resp. concave) curve, and 0 otherwise. Let LBφ

(νj) be
the length of the edge of ∂Bφ having νj as exterior normal: we will restrict here to consider
polygonal curves ∂E (and ∂E(t)) which consist of a sequence of segments having the same
ordered set of normal orientations as ∂Bφ. Such a ∂E is neighbourhood-Lipschitz φ-regular.
Recall that the crystalline curvature of Sj equals

κjφ := δSj

LBφ
(νj)

Lj
,

see (5.27).
Given two parallel segments S1, S2, we call the distance vector of S2 from S1 the vector having
norm dist(S1, S2) pointing from S1 to S2.
Let us define the local in time crystalline curvature flow of a polygonal Lipschitz φ-regular
curve (with a finite number of sides), supposing that no side disappears.

Definition 7.3. Let ∂E(t) be a family of time-parametrized polygonal Lipschitz φ-regular
curves. We say that ∂E(t) moves by crystalline curvature in [0, T ], T > 0, if each side either
translates parallel to itself or stays still (and does not disappear) for any j, the distance vector
hj(t) between the edge Sj(t) and Sj(0) is of class C1([0, T ]), and(50)

ḣj(t)

φo(νj)
= −κjφ(t)νj , t ∈ [0, T ].

The left hand side of the above equation is the time derivative of the signed φ-distance
function from Sj(t).
Convex portions of the curve contract in the direction of their inner normal, while concave
portions expand in the direction of the outer normal (see Figure 10). See [141], [143], [121],
[98], [101], [107], [108], [102], [103], [121], [137], [138], [148] for various qualitative properties.

7.2.2 Hypersurfaces

In this section we recall a definition of crystalline mean curvature flow (for which the set
Bφ shrinks self-similarly(51)). Recall that ∂E(t) is always assumed to be compact and Lips-
chitz. The next definition has been used in [39] (see also [36] in two dimensions) to prove a
comparison principle for crystalline mean curvature flow.

50See also Remark 10.13 below.
51This self-similar evolution is not expected to be stable (for n = 3) for all choices of φ [129]. It seems to

be reasonable to believe also that, for n = 3, there exist φ ∈ Mreg(TM) for which the evolution of Bφ is not
stable. We recall that if n = 2 and φ is crystalline the evolution of Bφ is stable; but there exist crystalline φs
(still for n = 2) not even for which Bφ is not stable. See also [128].
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Figure 10: The motion by crystalline curvature starting from the curve in bold when Bφ is an

octagone. We depict the motion also after the disappearing of some edge.

Definition 7.4 (Neighbourhood-L∞ φ-regular flow). Let T > 0. A neighbourhood-L∞

φ-regular flow on [0, T ] is a map t ∈ [0, T ] → E(t) ⊂M satisfying the following properties:

(i) there exists an open set A ⊂ M × [0,+∞) such that ∪t∈[0,T ](∂E(t) × {t}) ⊂ A and
dφ(z, t) := distφ(z,E(t)) − distφ(z,M \ E(t)) is Lipschitz in A;

(ii) there exists a bounded vector field n : A → Λ1V such that n ∈ Tφo(∇dφ) almost every-
where in A, divn ∈ L∞(A), and there exists λ > 0 such that

∣∣∣∣
∂dφ
∂t

(z, t) − divn(z, t)

∣∣∣∣ ≤ λ|dφ(z, t)| for a.e. (z, t) ∈ A. (7.2)

In (7.2) the divergence of n is taken in M , hence we avoid to restrict it on a specific boundary.
Notice also that the left hand side of (7.2) tends to zero as dφ(z, t) tends to zero(52).
Other definitions could be given by imposing for instance in addition that E(t) and M \E(t)
satisfy the rBφ-ball condition (see [68], [33])(53), or by imposing the evolution law only on

the flowing manifold, possibly using(54) the vector field N
E(t)
min . We do not give any detail

here. We refer to the already mentioned papers, to [26] and to Section 8.

Remark 7.5. We are not aware of a local existence result of a neighbourhood-L∞ φ-regular
flow even starting from a Lipschitz φ-regular polyhedral set E in n ≥ 3 dimensions, one of

52For euclidean motion by mean curvature (φ(·) = | · |), the left hand side of (7.2) can be controlled by |d| ||
times the L∞-norm squared of the length of the second fundamental form of the flowing boundaries.

53We recall that if φ ∈ Mreg(TM), then ∂E satisfies an interior and exterior ball condition if and only if ∂E
is neighbourhood Lipschitz φ-regular. If φ is crystalline and ∂E is neighbourhood Lipschitz φ-regular, then
∂E satisfies and interior and exterior ball condition. See [32] for more.

54We have not used a minimizer N
E(t)
min (which is a vector field not extended out of ∂E(t)) in the definition

of the flow. Instead, we have given a definition using a vector field n defined in a neighourhood of ∂E(t),
one reason being that, for such a class of flows, a comparison principle is available (see Corollary 9.5 and its
application in Remark 8.4). The hope is that, for almost each t ∈ [0, T ], the divergence of n can be restricted
to ∂E(t) and it solves the minimum problem in (5.26) (with E replaced by E(t)), so that it coincides with the

divergence of N
E(t)
min on ∂E(t).
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the reasons probably being the presence of the facet-breaking phenomenon [148], [40], [43],
[28]. A short time existence and uniqueness result (as well as the existence of a global weak
solution) has been proved in [32], provided E is convex. In view of the poor knowledge on
existence and uniqueness of crystalline mean curvature flow in three dimensions, it is not yet
completely clear that Definition 7.4 is the most natural one for this kind of geometric flows.
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Figure 11: the initial set E = E(0) and Bφ = [−1, 1]3.

8 Facet-breaking in crystalline mean curvature flow in three

dimensions

In this section we assume n = 3 (so that M = R
3), we fix Bφ := [−1, 1]3 and we let

E = E(0) be the set depicted in Figure 11. We want to construct a short-time crystalline
mean curvature flow E(t) starting from E (under proper choices of a, b, c, d, e) in the sense
of Definition 7.4, in the case when the frontal facet F (and its opposite one) splits (at time
zero) into two facets, while all the other facets (some of which do not remain rectangular for
small positive times) do not split.
In what follows, we often use the same symbol to indicate an edge and its length.

8.0.3 On φ-calibrability of F

It is clear that E is convex at F , but F is not convex, hence Theorem 6.4 cannot be applied.
Nevertheless, the following proposition holds [40].

Proposition 8.1. F is φ-calibrable if and only if

b ≥ cd

c+ d
, c ≥ ab

a+ b
. (8.1)

Remark 8.2. The implication F φ-calibrable ⇒ (8.1) is proved in [40] applying Theorem
6.2, taking B as the rectangle with sides c and d, and next as the rectangle with sides a and
b. The opposite implication is proved using Remark 8.3 below to three subrectangles of F
partitioning F .
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We notice however that inequalities (8.1) express exactly condition (6.4). Indeed κFeφ = 0 on

the edges ]S, T [ and ]T,U [. Moreover if |L| stands for the length of one of the four remaining
edges d = [R,Z], a = [Z, V ], b = [U, V ] and c = [R,S], which we generically denote by L, we
have, recalling (5.27),

κFeφ =
2

|L| on int(L).

Therefore the supremum of κFeφ is reached either at the edge b or at the edge c. We distinguish

two cases. The first case is when b ≤ c (as in Fig. 11), so that the supremum of κFeφ is reached

at the edge b. Then the second inequality in (8.1) is automatically satisfied, since a/(a+b) < 1.
A direct computation gives cF = 1 on ∂F (see (4.1) and Example 4.11; therefore

∫

∂F
cF dH1 = 2(a+ d).

Since |F | = cd + b(a − c), the inequality (6.4) reads as 2
b ≤ 2(a+d)

cd+ab−bc , which is equivalent to

b ≥ cd
c+d , and gives the first inequality in (8.1).

If b ≥ c, the supremum of κFeφ is reached at the edge c. Then the first inequality in (8.1) is

automatically satisfied. Moreover inequality (6.4) reads as 2
c ≤ 2(a+d)

cd+ab−bc , which is equivalent

to c ≥ ab
a+b .

8.0.4 On φ-calibrability of the other facets of ∂E

All facets of ∂E different from F and its opposite one are φ-calibrable, since they are rect-
angles. For rectangular facets F such that E is convex at F this is a direct consequence of
Theorem 6.4. For instance, consider the right lateral facet F2 of E: the edges of F2 are b and
e. Assume b ≤ e. Theorem 6.4 reads as 2

b ≤
2(b+e)
be , which is always satisfied (with the strict

inequality).
However there are rectangular facets Q ⊂ ∂E such that E is not convex at Q. The φ-
calibrability of those facets(55) follows from the following result.

Remark 8.3. Let R ⊂ R
2 be a rectangle with edges l1, . . . , l4 parallel to the coordinate axes,

let ν̃i be the exterior unit normal to R at int(li) and let |li| be the length of li. Let l1 and l3 be
the edges parallel to the x-axis, l1 the lower one, and l2 be the right edge. Fix for simplicity
the origin at the intersection between l4 and l1. Let αi ∈ [−1, 1] for i = 1, . . . , 4. Consider
the vector field n := (n1, n2) defined, for (x, y) ∈ R, as

n1(x, y) :=
α2x

|l1|
− α4

(
1 − x

|l1|

)
= n1(x), n2(x, y) :=

α3y

|l4|
− α1

(
1 − y

|l4|

)
= n2(y).

Notice that n1 (resp. n2) depends only on x (resp. on y). Then

divn =
α2 + α4

|l1|
+
α3 + α1

|l4|
=

|l2|(α2 + α4)

|R| +
|l3|(α3 + α1)

|R| = |R|−1
4∑

i=1

αi|li|.

Moreover, 〈ν̃i, n〉 = αi for i = 1, . . . , 4. Indeed, for instance on l3 (resp. on l4) we have
〈ν̃3, n(x, y)〉 = n2(x, |l4|) = α3 (resp. 〈ν̃4, n(x, y)〉 = −n1(0, y) = α4).

55After adding the proper constant third component on each Q to the vector field (n1, n2) defined in Remark
8.3.
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The vector field n satisfies also |n1|, |n2| ≤ 1. Summarizing





max {|n1|, |n2|} ≤ 1 in int(R),

div n = |R|−1
∑4

i=1 αi|li| in int(R),
〈n, ν̃i〉 = αi in int(li).

(8.2)

Fix now
a = 2, b = 1/4, c = 1, d = 1, e = 1/2. (8.3)

With these choices,
the facet F is not φ− calibrable,

in view of Proposition 8.1.

8.0.5 On φ-calibrability of facets of ∂E(t), t > 0

Let us consider a set E(t) of the form depicted in Figure 13, for a fixed t > 0 small enough,
hence in particular the edge [α(t), β(t)] is short enough.
Let us consider facets F2(t), F5(t), F6(t), P (t) and its opposite one: these are rectangular
facets where the set E(t) is convex. These facets are φ-calibrable as a consequence of Theorem
6.4.
Concerning facets F3(t), (F \ P )(t) and its opposite one: these are rectangular facets, and
they are φ-calibrable thanks to Remark 8.3.
Facets F1(t) and F4(t): these are non rectangular facets. Notice that F1 = F1(0) satisfies

sup∂F1
κF1

eφ
< Peφ(F1)/|F1|, which implies that sup∂F1(t) κ

F1(t)
eφ

< Peφ(F1(t))/|F1(t)| for short

times. φ-calibrability of F1(t) follows from Theorem 6.2.
The most delicate analysis concerns the facet F4(t), since E(t) is neither convex nor concave
at F4(t). It is possible to prove that F4(t) is φ-calibrable under the assumptions (8.3), for
t > 0 small enough (this is due to the specific form of the normal traces to ∂F4(t)).

8.0.6 Construction of the flow

We now want to show that E(t) is a crystalline mean curvature flow, in the sense of Definition
7.4. Each set E(t) is polyhedral Lipschitz φ-regular, since a vector field in Norφ(∂E(t); R3)∩
Lip(∂E(t); R3) can be constructed by hand.

Step 1. Construction of the velocity field divN(·, 0) on ∂E.
We construct a vector field N(·, 0) ∈ Hdiv at time 0 as follows. Let Q be a facet of ∂E,
consider NQ

min, and define, for H2-almost every x ∈ int(Q), the two components of N(x, 0)

lying in the plane ΠQ as NQ
min(x). Add the proper constant third component on int(Q) in

such a way that the three-dimensional vector field (still denoted by N(·, 0)) belongs to Hdiv.
The initial normal velocity of ∂E is then divN(·, 0) on int(Q). For the moment, this definition
of velocity is not explicit.

Step 2. Identification of divN(·, 0) on facets different from F and its opposite one.
Each facet Q of ∂E different from F and its opposite is φ-calibrable. It follows that, on Q,
the initial normal velocity equals the constant appearing on the right hand side of the partial
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F \ P

P

l

d

c

b

a−c

Figure 12: P and F \ P is a partition of the frontal facet F of ∂E. We depict the vector field N on
∂P and on ∂(F \ P ). The construction is based on Remark 8.3.

differential equation in (8.2) expressing the divergence of the vector field, namely vQ. This
is a consequence of Remark 5.19 and the sentence after it.
To determine this constant we have to find the values of αi, i.e. the value of cQ on each facet
Q. We have

(i) cF6
= 1 on ∂F6, cF1

= 1 on ∂F1, cF2
= 1 on ∂F2, cF5

= 1 on ∂F5. Hence

divNE
min = 2(d+e)

de in int(F6)

divNE
min = 2(a+e)

ae in int(F1),

divNE
min = 2(b+e)

be in int(F2),

divNE
min = 2(c+e)

ce in int(F5).

(ii) cF3
= 1 on ∂F3 and cF4

= 1 on ∂F4 except that on ]T, J [, where cF3
= cF4

= −1, see

Figures 11 and 7. Hence divNE
min = 2

e in int(F3) and divNE
min = 2

e in int(F4).

Step 3. Identification of divN(·, 0) on F and on its opposite facet.
Let us consider the facet F (the arguments for the facet opposite to F are the same). We
have cF = 1 on ∂F . We know that there does not exist a vector field defined on int(F ) having
constant divergence, whose normal trace on ∂F is one and lying in Tφo(νφo(F )).
Let us subdivide F into two rectangles P and F \ P as in Figure 11; in Figure 12 the two
rectangles are depicted disjoint. We use the explicit construction of Remark 8.3 separately
on P and F \ P , taking the constants αi as follows.

- On ∂P all αi are equal to one;

- on ∂(F \ P ) the αi are equal to one except that on the dotted segment l, where the
corresponding αj is equal to −1.

Remark 8.3 provides two explicit vector fields

MP : P → R
2, MF\P : F \ P → R

2,

with the following properties:

(a) MP ∈ Hdiv(P ; ΠF ), divMP ≡ 2(d+c)
dc on int(P );
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Figure 13: Picture of the set E(t) for small positive t

(b) MF\P ∈ Hdiv(F \ P ; ΠF ), divMF\P ≡ 2(a−c)
b(a−c) = 2

b .

We let

N :=

{
MP in int(P ),
MF\P in int(F \ P ).

The vector field N is explicit, since the construction in Remark 8.3 is explicit.
Observe that

1

2
= divMP < divMF\P = 1. (8.4)

It is interesting to observe that the component of N in ΠF orthogonal to l is continuous along
l, see Figure 12. On the other hand, the component of N in ΠF tangent to l is discontinuous
along l. It follows that

N is discontinuous on int(F ),

and
divN ∈ L∞(F ).

In particular, N ∈ Hdiv(F ; ΠF ).
Let us now check that N satisfies the Euler-Lagrange inequality (5.30). The divergence of N
is constant in the interior of P and F \ P , and therefore, to check that (5.30) holds, we have
to prove that

2(d+ c)

dc

∫

int(P )
div(N −N) dH2 +

2

b

∫

int(F\P )
div(N −N) dH2 ≤ 0 ∀N ∈ Hdiv(F ; ΠF ).

(8.5)
We have

2(d + c)

dc

∫

int(P )
div(N −N) dH2 +

2

b

∫

int(F\P )
div(N −N) dH2

=
2(d + c)

dc

∫

∂P
〈ν̃P ,N −N〉 dH1 +

2

b

∫

∂(F\P )
〈ν̃F\P ,N −N〉 dH1

=

(
2(d+ c)

dc
− 2

b

)∫

l
〈ν̃P ,N −N〉 dH1 ≤ 0,
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since 2(d+c)
dc − 2

b < 0 by (8.4), and since, by construction, the normal trace of N on int(l) is
maximal (in the direction of ν̃P ) among all vector fields satisfying the same constraints (see
Figure 12), so that 〈ν̃P (x),N (x) −N(x)〉 ≥ 0 for H1-almost every x ∈ l.
Using Remark 5.19, we conclude that N is a solution of (5.29), and therefore divN is the
φ-mean curvature of ∂E on int(F ), and divN = divN(·, 0) on int(F ).

Step 4. Construction of the normal velocity of ∂E(t).
Let us now consider the set E(t) for small positive times, constructed by flowing (shrinking)
a generic facet Q(t) of ∂E(t) with constant normal velocity equals to 1

|Q(t)|

∫
∂Q(t) cQ(t) dH1.

Observe that all facets of ∂E(t) are φ-calibrable, so they do not further subdivide. In addition,
on each int(Q(t)) the normal velocity equals the divergence of a solution of (5.29) (where F
is replaced by Q(t))(56)
Through steps 1-4 we have constructed a flow starting from E. Actually, this is the unique
crystalline mean curvature flow of E in a reasonably large class of flows, as explained in the
following observation.

Remark 8.4. The vector field N previously defined admits an extension (by lines) in U ×
[0, T ], where U is a suitable open set containing ∂E(t), t ∈ [0, T ], and T > 0 is small enough.
More precisely, let y ∈ U and let x ∈ ∂E(t) be the unique point with the property that y
belongs to the straight line

{
x+sN(x, t)

}
s∈R

(this property is fulfilled if U is sufficiently thin,
and for those points x where N(x, t) is continuous, hence if t ∈ (0, T ] for all points, while if
t = 0 excluding points on the segment l). Then we define N(y, t) := N(x, t) (extension of
N by lines). With this definition the evolution that we have constructed is in the sense of
Definition 7.4. It turns out that this evolution is unique in that class (see the next section).

Before concluding this section, we remark that various qualitative properties of the jump set
of divNE

min on F (such as the facts that the jump set must reach the boundary of ∂F , and

that it must be contained in the boundary of an homothetic of B̃F
φ ) can be found in [42].

Moreover, in [28] it is discussed with some detail an example of facet bending(58), previously
described in [43], see also [148].

Remark 8.5. It interesting to point out here a connection between anisotropic mean curva-
ture flow and the total variation flow [30] (see also [130]). Let us consider in R

3 the cylindrical
anisotropy Bφ := {(ξ1, ξ2) ∈ R

2 : ξ21 + ξ22 ≤ 1} × [−1, 1]. Let u : R
2 × [0,+∞) → R be a

solution to the total variation flow [16] starting from the characteristic function of a bounded

56This step requires solving a system of ordinary differential equations for(57) a(t), b(t), c(t), d(t) and e(t).
For instance, the equation for ȧ, using the evolution of the facets F6 and F2 is given by

ȧ(t)

φo(νF2
)

= −2
d(t) + e(t) + (β(t) − α(t))

d(t)[e(t) + (β(t) − α(t))]
− 2

b(t) + e(t)

b(t)e(t)
.

Similarly, the evolution for ḋ is given by

ḋ(t)

φo(νF5
)

= −2
c(t) + e(t) + (β(t) − α(t))

c(t)[e(t) + (β(t) − α(t))]
− 2

a(t) + e(t) + (β(t) − α(t))

a(t)[e(t) + (β(t) − α(t))]
,

and so on.
58This example shows that the class of polyhedral Lipschitz φ-regular sets is a too restricted class when

looking for a solution of crystalline mean curvature flow (starting from a polyhedral Lipschitz set). Curved
portions on ∂E(t) may appear, and the constraint of being polyhedral must be abandoned.
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set Ω ⊂ R
2. The graph of the BV -function u(·, t) (i.e., the boundary of the subgraph E(t)

of u(·, t)) has in general flat portions and curved portions and vertical walls. If Ω is | · |-
calibrable (| · | as usual is the euclidean norm) the solution u(·, t) remains a characteristic
function (of the same initial set E), and typically it moves in vertical direction with velocity
P (Ω)/|Ω|. If Ω is not | · |-calibrable then curved portions in the graph of u(·, t) appear(59) in
correspondence of points of ∂Ω of large curvature.

59The evolution of the curved smooth regions of ∂E(t) and of the vertical walls is not the one given by
φ-mean curvature flow.
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9 The reaction-diffusion approximation

Motion by mean curvature can be approximated by the zero-level sets of solutions of a singu-
larly perturbed parabolic equation of Ginzburg-Landau type [83], [71]. This approximation
result can be generalized to anisotropic and crystalline mean curvature flow, and several au-
thors contributed to the final results (for instance [93], [126], [87]), which are sometimes valid
even efter the onset of singularities (excluding fattening). A partial list of references can be
found for instance in the papers [46], [35]. In this section we briefly recall the main statement
in the crystalline case, and one of its consequences, namely the comparison principle, which
implies a uniqueness result.

Assume that φo is crystalline. Let us introduce the relaxed evolution law. Let Ω ⊂ M be a
smooth bounded open set. For s ∈ [−1, 1] let W (s) := (1 − s2)2 and ψ := W ′/2. We denote
by γ the unique smooth strictly increasing function(60) exponentially asymptotic, at ±∞, to
the two stable zeroes ±1 of ψ, satisfying

−γ′′ + ψ(γ) = 0, γ(0) = 0. (9.1)

Let δ ≥ 3 be a fixed natural number such that, if for any ε ∈ (0, 1] we let ξε := δ| log ε|, then
γ(±ξε) = ±1 + O(ε2δ), γ′(±ξε) = O(ε2δ). Denote by γε a smooth increasing function which
coincides with γ on [−ξε, ξε] and assumes the corresponding asymptotic values ±1 outside
the interval (−2ξε, 2ξε).

Let Ω be a smooth bounded open st, let ε ∈ (0, 1], T > 0 and let u0 belong to the Sobolev
space H1(Ω), and suppose also that

Eφ(u0) :=

∫

Ω
φo(∇u0)

2 +W (u0) dx < +∞.

Let us consider the problem





εut − εdiv(Tφo(∇u)) +
1

ε
ψ(u) ∋ 0 in Ω × (0, T ),

u(·, 0) = u0(·) in Ω,

Tφo(∇u) · νΩ = 0 on ∂Ω × (0, T ).

(9.2)

Let us define what is a solution to (9.2). For the definitions of parabolic spaces, we refer for
instance to [88]. For an introduction to parabolic partial differential equations we refer for
instance to [122] and [54].

60An hyperbolic tangent.
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Definition 9.1 (Sub/super solutions). A pair (u, ζ) is a subsolution of (9.2) if, for any
T > 0, the following properties hold:

(i) u ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)) and ζ ∈ (L2(Ω × (0, T )))n;

(ii) for any ϕ ∈ H1(Ω; [0,+∞)) and a.e. t ∈ (0, T )

∫

Ω

(
εutϕ+ εζ · ∇ϕ+

1

ε
ψ(u)ϕ

)
dx ≤ 0; (9.3)

(iii) u(x, 0) ≤ u0(x) for a.e. x ∈ Ω;

(iv) for a.e. (x, t) ∈ Ω × (0, T )
ζ(x, t) ∈ Tφo(∇u(x, t)). (9.4)

The pair (u, ζ) is a supersolution of (9.2) if (i) and (iv) hold, and conditions (ii) and (iii)
hold with ≥ in place of ≤. The couple (u, ζ) is a solution of (9.2) if it is both a subsolution
and a supersolution.

By (i), (iv) and the one-homogeneity of Tφo , it follows that ζ ∈ L∞
(
0, T ; (L2(Ω))n

)
.

The following results hold.

Lemma 9.2 (Comparison). Let (u−, ζ−) and (u+, ζ+) be respectively a subsolution and a
supersolution of (9.2). Then u− ≤ u+ a.e. in Ω × (0, T ).

Theorem 9.3 (Existence and uniqueness). Problem (9.2) admits a solution (u, ζ). More-
over, if (u1, ζ1) and (u2, ζ2) are two solutions of (9.2), then u1 = u2 a.e. in Ω × (0, T ).

9.1 Approximation and comparison principle

Following [36] and [39] we recall the convergence and comparison results.

Theorem 9.4 (Convergence). Let E(t) be a neighbourhood-L∞ φ−regular flow on [0, T ].
For any ε > 0 let uε be the solution of problem (9.2) with the ε-dependent initial datum

uε(x, 0) = u0
ε(x) := γε

(
dφ(x, 0)

ε

)
, (9.5)

where as usual dφ(x, 0) := distφ(x,E(0))−distφ(x,M \E(0)). Let Σε(t) denote the zero level
set of uε(·, t)(61). Then there exist ε0 ∈ (0, 1] and a constant C depending on (E(t))t∈[0,T ],
and independent of ε ∈ ]0, ε0], such that for any ε ∈ (0, ε0]

Σε(t) ⊂ {x ∈ Ω : dist(x, ∂E(t)) ≤ Cε| log ε|2},
∂E(t) ⊂ {x ∈ Ω : dist(x,Σε(t)) ≤ Cε| log ε|2},

t ∈ [0, T ]. (9.6)

Using Lemma 9.2 and Theorem 9.4 it is possible to deduce the following result.

61Since uε(·, t) is not a priori a continuous function, this zero level set must be properly defined.
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Corollary 9.5 (Uniqueness). Let E1(t) and E2(t) be two neighbourhood-L∞ φ-regular flows
on [0, T ]. Then

E1(0) ⊆ E2(0) ⇒ E1(t) ⊆ E2(t), t ∈ [0, T ].

Hence E1(0) = E2(0) ⇒ E1(t) = E2(t) for any t ∈ [0, T ].

As a consequence, a φ-regular flow depends only on E(0), hence it does not depend on the
choice of the vector field which makes it neighbourhood-L∞ φ-regular.

Remark 9.6. We are not aware of a direct proof of the comparison principle for crystalline
mean curvature flow in n ≥ 3 dimensions, without using the reaction-diffusion approximation,
or without using a heat-type approximation [68], [69](62).

Remark 9.7. The comparison result of Corollary 9.5 should allow to implement the barriers
method, and produce a global notion of weak solution to crystalline mean curvature flow.
Namely, one should define what is for instance a neighbourhood L∞ φ-regular subsolution
in the spirit of Definition 7.4, and then should take the family of all these (local in time)
subsolutions as the test family for constructing the minimal barrier and its regularized ver-
sions. See [45] and [38] for more on the barriers method. Another notion of weak solution in
the convex case has been used in [32], and previously in [4] in two dimensions and without
convexity assumptions.

62The uniqueness result in [68] is obtained among flows in the sense of Definition 7.4, and satisfying a further
interior/exterior ball condition.
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10 Anisotropic functionals on partitions and crystalline flow

of planar triods

Functionals defined on boundaries have a rather natural extension as functionals defined on
bounded variation functions taking a finite number of values (sometimes called functionals
on partitions)(63). As in the two-phases case, we will not study such functionals in full
generality(64), and we will confine ourselves to the following particular situation: only one
anisotropy φo will be used, that will be assumed convex and spatially homogeneous. Only
special partitions will be considered, consisting of a finite number of Lipschitz phases.
Let φ ∈ M(TM) be spatially homogeneous. By a Lipschitz hypersurface with Lipschitz
boundary we mean a (n − 1)-dimensional set Σ ⊂ M which can be written locally as the
graph of a Lipschitz function defined on an open subset of R

n−1, and such that each point of
its relative boundary ∂Σ can be written locally as the graph of a Lipschitz function defined
on an open Lipschitz subset of R

n−2. If x ∈ Σ (resp. x ∈ ∂Σ) we denote by Tx(Σ) (resp.
Tx(∂Σ)) the tangent space to Σ (resp. to ∂Σ) at x. We also denote by ΠTx(Σ) (resp. ΠTx(∂Σ))
the orthogonal projection on Tx(Σ) (resp. on Tx(∂Σ)). Any Lipschitz function or vector field
defined on Σ will be considered as defined up to ∂Σ.
Given a Lipschitz hypersurface Σ ⊂M with boundary, we define

Mφ(Σ) :=

∫

Σ
φo(ν) dHn−1, (10.1)

where ν(x) is a euclidean unit normal vector to Σ at Hn−1-almost every x ∈ Σ.

Definition 10.1 (Lipschitz partitions). A Lipschitz (resp. smooth) partition of M is a
finite family {Ei}i of subsets(65) of M such that ∪iEi = R

n, Ei ∩ Ej = ∅ for i 6= j, and
∂Ei ∩ ∂Ej , when it is nonempty, is a Lipschitz (resp. smooth) hypersurface with Lipschitz
(resp. smooth) boundary, called interface. If n = 2, by a m-multiple junction of {Ei} (m ≥ 3
a natural number) we mean a point q belonging to m distinct interfaces. If in addition m = 3
we say that q is a triple junction of {Ei}.

Given a Lipschitz partition {Ei} of M , we set

Σij := ∂Ei ∩ ∂Ej , i 6= j, Γ :=
⋃

i,j

Σij, J :=
⋃

i,j

∂Σij, (10.2)

and
Mφ(Γ) :=

∑

i,j

Mφ(Σij). (10.3)

We denote by νij a Hn−1-a.e. defined euclidean unit normal to Σij and we set νφo
ij :=

νij/φo(νij). For notational simplicity, when n = 2 the sets ∂Ei∩∂Ej are also denoted by Σk,
using one index only, and νφo

ij will be denoted by νφo
k. When n = 2 the set Γ is sometimes

called network.

63These latter functionals are in turn generalized by functionals defined on special functions of bounded
variation, such as the Mumford-Shah functional [14].

64See [14], [63], [64], [70] and references therein.
65Called phases.
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When {E1, E2, E3} is a partition of R
2 into three sets having only one triple junction (denoted

by q) the set Γ defined in (10.2) will be called triod, and denoted by Π. If the partition is
Lipschitz φ-regular in the sense of Definition 10.8 below, the triod is said to be Lipschitz
φ-regular. We call angles of Π the three angles at q between Σ1, Σ2, Σ3.

10.1 First variation

Assume φ ∈ Mreg(TM) is spatially homogeneous. We assume that Σ is a (n−1)-dimensional
smooth bounded embedded orientable manifold with (smooth) boundary. ν is a smooth
euclidean unit normal vector field to Σ, smoothly defined up to ∂Σ. We define, at each point
of Σ, νφo := ν/φo(ν), nφ := Tφo(νφo), and on Σ the φ-mean curvature κφ of Σ as κφ := divτnφ.

Definition 10.2 (φ-conormal vector). We denote by n∂Σ
φ : ∂Σ → M the vector field

defined as follows: if x ∈ ∂Σ then

(i) n∂Σ
φ (x) ∈

{
span

(
Tx(∂Σ), nφ(x)

)}⊥
;

(ii) |n∂Σ
φ (x)| = |nφ(x) − ΠTx(∂Σ)nφ(x)|;

(iii) n∂Σ
φ (x) points out of Σ.

Observe that dim

{
span

(
Tx(∂Σ), nφ(x)

)⊥}
= 1, since nφ(x) and Tx(∂Σ) are linearly inde-

pendent, as a consequence of 〈νφo(x), nφ(x)〉 = 1.
If φ(ξ) = |ξ|, then n∂Σ

φ is the usual conormal unit euclidean vector pointing out of Σ. Note

also that in n = 2 dimensions condition (i) reduces to n∂Σ
φ (x) · nφ(x) = 0, and condition (ii)

reduces to |n∂Σ
φ (x)| = |nφ(x)|.

10.1.1 The smooth 2-dimensional case

In this subsection we assume n = 2 (hence M = R
2) and we compute the first variation of

Mφ using a parametric approach [44], for φ ∈ Mreg(TM).

Theorem 10.3 (Curves with boundary). Let Σ ⊂ R
2 be a smooth simple curve with

boundary ∂Σ = {p, q}, p 6= q. Let α : [0, 1] → R
2 be a regular parametrization of Σ with

α(0) = p and α(1) = q. Let β ∈ C2([0, 1]; R2), λ ∈ R, and let Σλ be the curve parametrized
by α+ λβ. Then

d

dλ
Mφ(Σλ)|λ=0 =

∫

Σ
κφνφo · β φo(ν)dH1 + n∂Σ

φ (q) · β(1) + n∂Σ
φ (p) · β(0). (10.4)

Proof. Set τ := α′

|α′| and ν := τ⊥, where ⊥ is the counterclockwise rotation of π/2. Recalling

(10.1) we have

d

dλ
Mφ(Σλ)|λ=0 =

d

dλ

∫ 1

0
φ◦
((
α′ + λβ′

)⊥)
dt|λ=0

(10.5)

=

∫ 1

0
φoξ(ν) · (β⊥)′ dt = −

∫ 1

0

d

dt
(φoξ(ν)) · β⊥ dt − φoξ(ν(q))

⊥ · β(1) + φoξ(ν(p))
⊥ · β(0).
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We now observe that β⊥ = −β ·ντ+β ·τν. Moreover, φoξ(ν) = nφ by definition, and from [47]
we have φoξξ(ν)τ · ν = 0 and κφ = κφoξξ(ν)τ · τ , where κ is the euclidean curvature. Therefore,

using dν
dt = dν

ds
ds
dt = κν|α′| where s is the arclength parameter, we have

∫ 1

0

d

dt
(φoξ(ν)) · β⊥ dt = −

∫ 1

0
κφoξξ(ν)τ · τ ν · β|α′| dt = −

∫

Σ
κφνφo · β φo(ν)dH1. (10.6)

Then (10.4) follows from (10.5) and (10.6).

Corollary 10.4 (Networks). Let {Ei} be a smooth partition of R
2 and let q be a m-

multiple junction of {Ei}, m ≥ 3. Let Σ1, . . . ,Σm be the m arcs of the partitions meeting
at q. Let αi : [0, 1] → R

2 be a regular parametrization of Σi such that αi(1) = q for any
i = 1, . . . ,m. Let βi ∈ C2([0, 1]; R2) be such that βi(0) = 0 and βi(1) = βj(1) =: β(1)
for every i, j ∈ {1, . . . ,m}, let λ ∈ R and Σi

λ be the curve parametrized by αi + λβi and
Γλ :=

⋃m
i=1 Σi

λ. Then

d

dλ
Mφ(Γλ)|λ=0

=

∫

Γ
κφνφ · β φo(ν)dH1 + β(1) ·

m∑

i=1

n∂Σi
φ (q). (10.7)

In particular, if for any βi as above we have d
dλMφ(Γλ)|λ=0

= 0, then each Σi has zero φ-mean
curvature, and

m∑

i=1

n∂Σi
φ (q) = 0. (10.8)

10.1.2 The smooth n-dimensional case

In this subsection we assume n ≥ 2 and we state the first variation of Mφ [44]. Let Ψλ and
X be as in Section 5.1.

Theorem 10.5 (First variation: manifolds with boundary). Let Σ ⊂ M be a smooth
hypersurface with boundary. Set Σλ := Ψλ(Σ). Then

d

dλ
Mφ(Σλ)|λ=0

=

∫

Σ
κφνφo ·X φo(ν)dHn−1 +

∫

∂Σ
n∂Σ
φ ·X dHn−2. (10.9)

Remark 10.6. If n = 2, the right hand side of (10.9) reduces to right hand side of (10.4).

Corollary 10.7 (Partitions). Let {Ei} be a smooth partition of M . Set Σij
λ := Ψλ(Σij)

and Γλ :=
⋃m
i=1 Σij

λ . Then

d

dλ
Mφ(Γλ)|λ=0

=

∫

Γ
κφνφ ·X φo(ν)dHn−1 +

∫

Γ



∑

i,j

n
∂Σij

φ


 ·X dHn−2. (10.10)

In particular, if d
dλMφ(Γλ)|λ=0

= 0, then each Σij has zero φ-mean curvature and the balance
condition holds: ∑

i,j

n
∂Σij

φ = 0 on Γ. (10.11)

From now on, up to the end of the notes, we will assume n = 2 (so that M = R
2) and φ

crystalline.

52



S

qq

(iii)(i) (ii)

Σ ΣΣ

Σ

Σ

1

2

3

1 1

q

2Σ

γ

Σ2

4

Σ 3

S4

Σ 3
S3

3

Figure 14: (i) Elementary, (ii) quasi-elementary, (iii) non-polygonal triod (Bφ = P8). Note that
κφ = 0 on S3 in (i) and (ii), κφ < 0 on S4 in (ii), and κφ = 0 on γ4 in (iii).

10.1.3 The crystalline case in n = 2 dimensions

We denote by Lipν,ϕ(Γ; R2) the space of vector fields N : Γ → R
2 such that N|Σij

∈
Lip(Σij; R

2) and N|Σij
(x) ∈ Tφo(νφo

ij(x)) for H1-almost every x ∈ Σij. Set

N :=

{
N ∈ Lipν,ϕ(Γ,R2) :

∑

i,j

(N|Σij
) ∂Σij = 0 on J

}
. (10.12)

See the appendix for more on the balance condition.

Definition 10.8 (Lipschitz φ-regular partitions). If N 6= ∅, the partition {Ei} is said
to be Lipschitz φ-regular.

We now want to define the φ-curvature of Γ. if {Ei}i is a Lipschitz φ-regular partition of M
then the minimum problem

min

{∫

Γ
(divτN)2 φo(ν) dH1 : N ∈ N

}
(10.13)

admits a unique(66) solution which identifies the direction along which the functional (10.3)
decreases most quickly. Let Nmin : Γ → R

2 be the solution of problem (10.13).

Definition 10.9 (Crystalline curvature of a network). Let {Ei} be a Lipschitz φ-regular
partition. We define the φ-curvature κφ of Γ as

κφ := divτNmin, a.e. on Γ.

10.2 Triods

In this section we report some results on triods from [34]. We denote by n a positive integer
and we assume that Bφ = Pn, where Pn denotes the regular polygon of n (n even) sides of
length L inscribed in the unit circle centered at the origin of R

2, having two horizontal sides
and oriented in clockwise sense.

66Remember that we are considering partitions in the plane.
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Figure 15: These triods have the same evolution according to system (10.15). Our convention is to
take the orientation as in (i).

Definition 10.10 (Elementary, quasi-elementary and non-polygonal triods). Let
Π = ∪3

j=1Σj be a Lipschitz φ-regular triod. We say that Π is elementary if

(E) each interface Σj is the union of a segment Sj of finite length Lj > 0 and a half-line
Rj such that Sj and Rj reproduce two consecutive sides of Bφ, see Figure 14 (i).

We say that Π is degenerate if two interfaces satisfy (E) and the remaining one is a half-line.
We say that Π is quasi-elementary if two interfaces satisfy (E) and the remaining one Σk is
the union of two segments S4 and Sk of finite lengths, L4 > 0 and Lk > 0 respectively, and a
half-line Rk such that S4 and Sk, and Sk and Rk, reproduce two consecutive sides of Bφ, see
Figure 14 (ii).
We say that Π is non-polygonal if two interfaces satisfy (E) and the remaining one Σk is the
union of a curve γ4, a segment Sk of finite length Lk > 0 and a half-line Rk such that Sk and
Rk reproduce two consecutive sides of Bφ, see Figure 14 (iii).

Given a triod Π and N ∈ N , we set Aj := Sj ∩ Rj for any j = 1, 2, 3 such that Rj 6= ∅,
A4 := S4 ∩ Sk if Π is quasi-elementary, and A4 := γ4 ∩ Sk if Π is non-polygonal.

Conventions: let ν be the H1-almost everywhere defined euclidean unit normal to Π oriented
in such a way that ν|int (Sj) ·N(Aj) > 0. We set νj := ν|int (Sj), τj := −ν⊥j and lj := Lj τj, for

any j = 1, 2, 3, and also j = 4 if Π is quasi-elementary. Thus {τj , νj} is a positively oriented
basis of R

2 and, without loss of generality, we assume that each lj points towards q. We
denote by κφ(lj) the φ-curvature of Sj.
For an elementary triod, we assume that S1 is horizontal and Σ2 and Σ3 are given in coun-
terclockwise sense as in Figure 15. We denote by Vj , Wj the vertices of the side of Pn

(in clockwise sense) having νj as outer normal and by Mj the middle point of the segment
[Vj ,Wj ]. Note that

τ1 · ν3 = −τ1 · ν2, ν1 · τ3 = −ν1 · τ2, τ1 · ν3 = −ν1 · τ3. (10.14)
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We recall the notion of stability [44].

Definition 10.11 (Stable triods). Let Π be a φ-regular triod. We say that Π is stable if
(Nmin)|Σj

(q) is not a vertex of Bφ for any j = 1, 2, 3. We say that Π is unstable if it is not
stable.

Non-polygonal triods are always unstable, while elementary, degenerate and quasi-elementary
triods can be either stable or unstable.

10.3 Crystalline flows of triods

As usual, given two parallel (possibly infinite) segments S1, S2, we call the distance vector of
S2 from S1 the vector having norm dist(S1, S2) pointing from S1 to S2.

Definition 10.12. Let T > 0 and Π be an elementary triod (resp. degenerate). For any
t ∈ [0, T ], let Π(t) be a Lipschitz φ-regular triod and q(t) its triple junction. We say that
t ∈ [0, T ] 7→ Π(t) is a φ-curvature flow starting from Π = Π(0) if for any t ∈ (0, T )

(i) Π(t) is either elementary or quasi-elementary or non-polygonal (resp. degenerate);

(ii) for any j = 1, 2, 3, each Rj(t) has zero normal velocity and each Sj(t) is parallel to
Sj(0) = Sj;

(iii) for each j = 1, 2, 3, and also j = 4 if Π(t) is quasi-elementary, denoting by hj(t) the
distance vector of the segment Sj(t) from Sj(0) = Sj , then hj ∈ C1([0, T ]; νjR) and





ḣj(t)

φo(νj)
= −κφ(lj(t)) νj = − 1

Lj(t)

[
Nmin|Σj(t)

( q(t) ) −Nmin(Aj(t) )
]
· τj νj.

hj(0) = 0.

(10.15)

Remark 10.13. Sj(t) moves in the same direction of νj if and only if κφ(lj(t)) < 0. Further-
more, system (10.15) is invariant under the change of the orientation of Π(t) (see Figure 15).

Finally, it is possible to prove the following short time existence and uniqueness theorem for
the φ-curvature flow of a triod.

Theorem 10.14. Let Π be elementary and stable. Then there exist T >0 and a unique stable
φ-curvature flow t ∈ [0, T ) 7→ Π(t) starting from Π for any t ∈ [0, T ].

10.4 Appendix

The angles of an elementary triod are given by the angles between the vectors νj ’s and are
determined by the balance condition at q (see (10.12)) that, in turn, is related to the existence
of admissible triplets.

Definition 10.15 (Admissible triplets). We call admissible triplet any triplet of vectors
(X,Y,Z) ∈ (∂Bφ)

3 satisfying
X + Y + Z = 0. (10.16)
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Figure 16: P4 admits infinitely many unordered pairs {Y, Z} satisfying X0 +Y +Z = 0 in correspon-
dence of X0 = M1. P6 has a unique pair in correspondence of all X ∈ ∂P6.

It is possible to prove the following result.

Lemma 10.16 (Geometry of admissible triplets). Let ψ : R
2 → [0,+∞) be a convex

norm on R
2. Let X ∈ ∂Bψ. Then there exist two distinct vectors Y, Z in ∂Bψ such that

(X,Y,Z) is an admissible triplet. Moreover, if either Bψ is strictly convex or for any segment
S ⊂ ∂Bψ parallel to X ∈ ∂Bψ we have |S| ≤ |X|, then the unordered pair {Y, Z } is unique.
Finally, if there exist X0 ∈ ∂Bψ and a segment S ⊂ ∂Bψ parallel to X0 with |S| > |X0|,
then there are infinitely many unordered pairs {Y, Z } of distinct vectors in ∂Bψ such that
(X0, Y, Z) is an admissible triplet.

Example 10.17. If Bψ = P4 and X0 = M1 (see Figure 16), then |S| = 2|X0|; hence there are
infinitely many pairs {Y,Z} of distinct vectors in ∂P4 satisfying X0 + Y +Z = 0. Moreover,
any elementary triod has always two angles of π/2. If Bψ = P6 and X = V1 (see Figure 16),
then |S| = |V1|; hence for any X ∈ Bψ there exists a unique unordered pair {Y,Z} satisfying
(10.16).
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56



[7] M. Amar, G. Bellettini, S. Venturini, Integral representation of functionals defined on
curves of W 1,p, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 193-217.

[8] L. Ambrosio, Lecture notes on geometric evolution problems, distance function and vis-
cosity solutions, In: Calculus of Variations and Partial Differential Equations. Topics on
Geometrical Evolution Problems and Degree Theory, 5-94, Springer-Verlag, 1999.

[9] L. Ambrosio, Movimenti minimizzanti, Rend. Acc. Naz. Sc. XL, Mem. Mat. Appl. 113
(1995), 191-246.

[10] L. Ambrosio, A. Braides, Functionals defined on partitions in sets of finite perimeter.
I: Integral representation and Γ-convergence, J. Math. Pures Appl., IX Sér. 69 (1990),
285-306.

[11] L. Ambrosio, A. Braides, Functionals defined on partitions in sets of finite perimeter.
II: Semicontinuity, relaxation and homogenization, J. Math. Pures Appl., IX Sér. 69
(1990), 307-333.

[12] L. Ambrosio, B. Kirchheim, Rectifiable sets in metric and Banach spaces, Math. Ann.
318 (2000), 527-555.

[13] L. Ambrosio, B. Kirchheim, Currents in metric spaces, Acta Mat. 185 (2000), 1-80.

[14] L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Disconti-
nuity Problems, Mathematical Monographs, Oxford University Press, 2000.

[15] L. Ambrosio, M. Miranda jr., D. Pallara, Sets of finite perimeter in Wiener
spaces, perimeter measure and boundary rectifiability , Preprint 2010 (available at
http://cvgmt.sns.it/papers/ambmirpal10/bvrect.pdf).

[16] F. Andreu-Vaillo, V. Caselles, J.M. Mazon, Parabolic quasilinear equations minimizing
linear growth functionals, Progress in Mathematics (Boston, Mass.), Birkäuser, Basel,
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[117] G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential
Geom. 20 (1984), 237-266.

[118] G. Huisken, Local and global behaviour of hypersurfaces moving by mean curvature,
Proc. of Symp. Pure Math. 54 (1993), 175-191.

[119] T. Ilmanen, Elliptic Regularization and Partial Regularity for Motion by Mean Curva-
ture, Mem. Amer. Math. Soc. 108 (1994).

[120] T. Ilmanen, Lectures on mean curvature flow and related equations, Notes for the Con-
ference on Partial Differential Equations and Applications, 1995 ICTP, Trieste.

[121] K. Ishii, H. S. Soner, Regularity and convergence of crystalline motion, SIAM J. Math.
Anal. 30 (1998), no. 1, 19-37.

[122] G.M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Pub.,
1996.

63



[123] C. Mantegazza, Lecture Notes on Mean Curvature Flow, to appear.

[124] F. Morgan, G. French, S. Greenleaf, Wulff clusters in R
2, J. Geom. Anal. (1998) 8(1),

97-115.

[125] W. Mullins, Two-dimensional motion of idealized grain boundaries, J. Appl. Phys. 27
(1956), 900-904.

[126] R. Nochetto, M. Paolini, C. Verdi, Optimal interface error estimate for the mean cur-
vature flow, Ann. Sc. Norm. Sup. Pisa Cl. Sci. 21 (1994), 193-212.

[127] M. Novaga, E. Paolini, A computational approach to fractures in crystal growth, Atti
Acc. Lincei Cl. Sci. Fis. Mat. Natur. Ser. IX, X (1999), 47-56.

[128] M. Novaga, E. Paolini, Stability of crystalline evolutions, Math. Mod. Methods Appl.
Sci. 15 (2005), 1-17.

[129] M. Paolini, From the Stefan problem to crystalline evolution, FM-DM Lecture notes,
Warsaw, july 2002 (2002), 1-31.

[130] M. Paolini, Capillarity and calibrability of sets in crystalline mean curvature flow, Ober-
wolfach Reports 2 (2005), 560-562.

[131] M. Paolini, F. Pasquarelli, Numerical simulations of crystalline curvature flow in 3D by
interface diffusion, in: Free Boundary Problems: theory and applications II, GAKUTO
Intern. Ser. Math. Sci. Appl. 14 (N. Kenmochi ed.), Gakkötosho (2000), 376-389, to
appear.

[132] P. Pozzi, On the gradient flow of the anisotropic area functional, Preprint 2010.

[133] R.T. Rockafellar, Convex analysis. Princeton Landmarks in Mathematics. Princeton,
NJ, Princeton University Press, 1997.

[134] R. Schneider, Convex bodies: the Brunn-Minkowski theory. Encyclopedia of Mathemat-
ics and its Applications 44. Cambridge University Press, 2008.

[135] Z.Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publish-
ers, 2001.

[136] L. Simon, Lectures on Geometric Measure Theory, Proc. Centre Math. Anal. Australian
Nat. Univ. 3, 1983.

[137] A. Stancu, Uniqueness of self-similar solutions for a crystalline flow, Indiana Univ.
Math. J. 45 (1996), no. 4, 1157-1173.

[138] A. Stancu, Asymptotic behavior of solutions to a crystalline flow, Hokkaido Math. J.
27 (1998), no. 2, 303-320.

[139] J. E. Taylor, Crystalline variational problems, Bull. Amer. Math. Soc. 84 (1978), 568-
588.

64



[140] J.E. Taylor, Constructions and conjectures in crystalline nondifferential geometry, In:
Differential Geometry. A Symposium in honour of Manfredo Do Carmo, 321-336, Long-
man Scientifical and Technical, 1991.

[141] J. E. Taylor, Motion by crystalline curvature, in Computing Optimal Geometries, Jean
E. Taylor, ed., Selected Lectures in Mathematics, Amer. Math. Soc. (1991), 63-65, and
accompanying video.

[142] J.E. Taylor, II-Mean curvature and weighted mean curvature, Acta Metall. Mater. 40
(1992), 1475-1485.

[143] J. E. Taylor, Motion of curves by crystalline curvature, including triple junctions and
boundary points, Differential Geometry, Proc. Sympos. Pure Math. 54 (part 1) (1993),
417-438.

[144] J. E. Taylor, The motion of multi-phase junctions under perscribed phase-boundary
velocities, J. Differential Equations 119 (1995), no. 1, 109-136.

[145] J. E. Taylor, A variational approach to crystalline triple-junction motion, J. Statist.
Phys. 95 (1999), no. 5-6, 1221-1244.

[146] A.C. Thompson, Minkowski Geometry. Encyclopedia of Mathematics and Its Applica-
tions, 63. Cambridge University Press, 1996.

[147] A. Visintin, Introduction to Stefan-type problems, in Handbook of Differential Equa-
tions: Evolutionary Differential Equations, vol. IV (C. Dafermos and M. Pokorny, eds)
North-Holland, Amsterdam (2008), chap. 8, 377-484.

[148] J. Yunger, Facet stepping and motion by crystalline curvature, Ph.D. Thesis, Rutgers
University (1998).

65


