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In this walk, we discuss the weak Harnack inequality for LP-viscosity
supersolutions of

PT(D*u) + p(z)|Dul™ > —f(z) in Q,

where 1 € LE(Q) (¢ > n), and f € L% (Q) (¢ > p > po for some py € [n/2,n))
are given functions, 2 C R" a domain, and m > 1 a constant. Fixing
0 < XA <A, we use the following Pucci operators:

PH(X) := max{—trace(AX) | \[ < A< AI} (X eSS

The interior/boundary weak Harnack inequality is a key tool to establish
Holder continuity of LP-viscosity solutions, strong maximum principle, maxi-
mum principle in unbounded domains, and also the local maximum principle.

Motivated by a pioneering work [1] by Caffarelli, the notion of LP-viscosity
solutions was introduced by Caffarelli-Crandall-Kocan-Swiech [3] to study
fully nonlinear PDEs. Our aim is to establish the weak Harnack inequality
even when f belongs to a wider space than L", u is unbounded, and the
superlinear growth in Du is considered.

After [3], Fok [4] first studied LP-viscosity solutions of fully nonlinear
PDEs with unbounded ingredients. In [6], we extend some results in [4], e.g.
the ABP maximum principle and the strong solvability, by which we mean
the existence of LP-strong solutions. Under some restriction, we also obtain
the ABP maximum principle in case when m > 1 (see [5], [6]).

In order to prove the weak Harnack inequality, we follow Caffarelli’s ar-
gument (cf. [2]). However, to this end, we need some modifications because
we deal with unbounded coefficients. For instance, we cannot use “explicite”
fundamental solutions associated with Pucci operators.

We note that Sirakov [10] obtained the Holder continuity of LP-viscosity
solutions without the weak Harnack inequality when m = 1, ¢ > n and
p=n.

Moreover, to establish the weak Harnack inequality in the superlinear
case (i.e. m > 1), we obtain the strong solvability of Pucci extremal PDEs
with superlinear terms in [8]. We will mention the local maximum principle
in [9].
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