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1 Introduction

This is a joint work with Akio Ito1 and Nobuyuki Kenmochi2.
In this talk we consider the following phase-field model of grain boundaries with con-

straint, denoted by (P):

(P)





ηt − κ∆η + g(η) + α′(η)|∇θ| = 0 a.e. in QT := Ω× (0, T ),

α0(η)θt − ν∆θ − div

(
α(η)

∇θ
|∇θ|

)
+ ∂I[−θ∗,θ∗](θ) 3 0 a.e. in QT ,

∂η

∂n
= 0, θ = 0 a.e. on ΣT := Γ× (0, T ),

η(x, 0) = η0(x), θ(x, 0) = θ0(x) for a.e. x ∈ Ω,

where Ω is a bounded domain in RN (N ≥ 1) with regular boundary Γ := ∂Ω, T > 0 is
a fixed finite time, κ > 0 and ν > 0 are given small constants, g(·), α(·) and α0(·) are
given functions on R, ∂I[−θ∗,θ∗](·) is the subdifferential of the indicator function I[−θ∗,θ∗](·)
on the closed interval [−θ∗, θ∗] with some constant θ∗ > 0, ∂/∂n is the outward normal
derivative on Γ, and η0(x), θ0(x) are given initial data.

The system (P) is called a grain boundary motion model of Kobayashi-Warren-Carter
type [12, 13]. In the dynamics of grain structure in various materials, the variable θ is an
indicator of the mean orientation of crystallines and the variable η is an order parameter
for the degree of crystalline orientational order; η = 1 implies the completely oriented
state and η = 0 is the state where no meaningful value of orientation exists. There are
many mathematical models of grain boundary formation. For some related works, we
refer to [3, 4, 15, 16].

In connection with this subject, the singular diffusion equations,

ut = div

( ∇u
|∇u|

)
, more generally, ut =

1

b(x)
div

(
a(x)

∇u
|∇u|

)
,

kindred to the second equation of (P), have been studied by a lot of mathematicians from
various view-points (cf. [1, 2, 5, 11, 14, 17]).
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Kobayashi et al. [12] considered η and θ as a polar coordinate system (η, θ) in two
dimensional space, and they proposed a grain boundary motion model (P) without con-
straint ∂I[−θ∗,θ∗](·). Moreover, in [12, 13], some numerical experiments were obtained
when ĝ(η) := 1

2
(1− η)2, α0(η) = α(η) = η2 and Ω is a bounded domain in R2.

Recently assuming that {η0, θ0} is a pair of good initial data in H1(Ω)×H1
0 (Ω), system

(P) without constraint ∂I[−θ∗,θ∗](·) was studied in [6, 7, 8] from the theoretical point of
view. In the case when α0 ≥ δ(> 0) on R for a positive constant δ, Ito et al. [6]
showed the existence-uniqueness of solutions to the one-dimensional model (P) without
∂I[−θ∗,θ∗](·) and with −κ∆η replaced by −(σηt + κη)xx, 0 < σ <∞, in the first equation.
Also in the case when α0 ≥ δ(> 0) on R, the authors [7] showed the existence of a global
solution to (P) without ∂I[−θ∗,θ∗](·) in higher dimensional spaces and the uniqueness in
one dimensional space. Furthermore the authors [8] constructed global weak solutions to
(P) without ∂I[−θ∗,θ∗](·) in the case when α0 ≥ 0 on R (namely, α0 is possibly degenerate)
and Ω is a bounded domain in RN (1 ≤ N ≤ 3).

In this talk we consider the problem (P) in the physical situation that the whole
region is already solidified and filled with some grains, so that we may assume that the
orientation angle θ has two threshold values −θ∗ and θ∗, where θ∗ is a prescribed positive
constant. Hence we take account of ∂I[−θ∗,θ∗](·) in the second equation of (P).

The main object of this talk is to show the global existence of a weak solution to (P)
in the case when [η0, θ0] is the initial data in L2(Ω) × L2(Ω). Moreover we establish a
result on the large-time behavior of solutions to (P), which was suggested by numerical
experiments in [12, 13].

2 Existence-uniqueness of solutions for (P)

Here we assume the following conditions:

(A1) α0 is a function in C2(R) such that α0 ≥ δ0 on R for a positive constant δ0.

(A2) α is a non-negative function in C1(R), whose derivative α′ is non-decreasing and
bounded on R such that α′(0) = 0.

(A3) g is a Lipschitz continuous function on R. Suppose that g ≤ 0 on (−∞, 0] and g ≥ 0
on [1,∞). Also we denote by ĝ a primitive of g, and assume that ĝ is non-negative
on R.

(A4) κ, ν and θ∗ are real positive constants.

(A5) η0 ∈ L2(Ω) with 0 ≤ η0 ≤ 1 a.e. on Ω, and θ0 ∈ L2(Ω) with |θ0| ≤ θ∗ a.e. on Ω.

Next we give a weak formulation for (P) in the variational sense.

Definition 2.1. Let 0 < T < ∞. Then, given initial data {η0, θ0} ∈ L2(Ω) × L2(Ω), a
pair {η, θ} of functions η : [0, T ] → L2(Ω) and θ : [0, T ] → L2(Ω) is called a solution of
(P) on [0, T ], if the following conditions are satisfied:

(i) η ∈ C([0, T ];L2(Ω))∩W 1,2
loc ((0, T ];L2(Ω))∩L∞loc((0, T ];H1(Ω))∩L2

loc((0, T ];H2(Ω)).
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(ii) θ ∈ C([0, T ];L2(Ω)) ∩W 1,2
loc ((0, T ];L2(Ω)) ∩ L∞loc((0, T ];H1

0 (Ω)), and |θ| ≤ θ∗ a.e. on
QT .

(iii) The following parabolic equation holds:

η′(t)− κ∆Nη(t) + g(η(t)) + α′(η(t))|∇θ(t)| = 0 in L2(Ω) for a.e. t ∈ (0, T ),

where η′ := dη
dt

and ∆N : D(∆N) := {z ∈ H2(Ω); ∂z
∂n

= 0 a.e. on Γ} −→ L2(Ω) is
the Laplacian with homogeneous Neumann boundary condition.

(iv) For a.e. t ∈ (0, T ) the following variational inequality holds:

(α0(η(t))θ′(t), θ(t)− z) + ν (∇θ(t),∇θ(t)−∇z)

+

∫

Ω

α(η(x, t))|∇θ(x, t)|dx ≤
∫

Ω

α(η(x, t))|∇z(x)|dx,
∀z ∈ H1

0 (Ω) with |z| ≤ θ∗ a.e. in Ω,

where θ′ := ∂θ
∂t

and (·, ·) is the standard inner product in L2(Ω).

(v) η(0) = η0 and θ(0) = θ0 in L2(Ω).

A pair {η, θ} of functions η : [0,∞) → L2(Ω) and θ : [0,∞) → L2(Ω) is called a
solution of (P) on [0,∞) or a global (in time) solution of (P), if it is a solution of (P) on
[0, T ] for every finite T > 0.

The first main result of this talk is concerned with an existence of solutions for (P).

Theorem 2.2 (cf. [9]). Assume (A1)–(A5) hold, and let T be any finite positive real
number. Then there is at least one solution {η, θ} of (P) on [0, T ] in the sense of Definition
2.1, and η satisfies 0 ≤ η ≤ 1 a.e on QT .

Also the next main result is concerned with a uniqueness of solutions for (P).

Theorem 2.3 (cf. [9]). Assume (A1)–(A4), η0 ∈ H1(Ω) with 0 ≤ η0 ≤ 1 a.e. on
Ω, θ0 ∈ H1

0 (Ω) with |θ0| ≤ θ∗ a.e. on Ω, and the space dimension of Ω is one, i.e.,
Ω = (−L,L) for a positive number L. Then the solution {η, θ} obtained by Theorem 2.2
is unique.

3 Large-time behavior of solutions to (P)

In this section we discuss the large-time behavior of solutions to (P) as t→∞.
Now we consider the steady-state system for (P), which is of the form:

(S)





−κ∆η + g(η) + α′(η)|∇θ| = 0 in Ω

−ν∆θ − div

(
α(η)

∇θ
|∇θ|

)
+ ∂[−θ∗,θ∗](θ) 3 0 in Ω

∂η

∂n
= 0, θ = 0 on Γ
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A pair of functions {η, θ} is a solution of (S), called a steady-state solution of (P), if and
only if θ = 0 in L2(Ω) and −κ∆Nη+ g(η) = 0 in L2(Ω). In fact, let {η, θ} be any solution
of (S). Then it follows from the second equation of (S) that

ν

2
‖∇θ‖2

L2(Ω) +

∫

Ω

α(η)|∇θ|dx = min
z∈H1

0

{
ν

2
‖∇z‖2

L2(Ω) +

∫

Ω

α(η)|∇z|dx+

∫

Ω

I[−θ∗,θ∗](z)dx
}
,

where ‖ · ‖L2(Ω) is the inner product in L2(Ω). The above minimum is 0 and is taken at
z = 0. Hence θ = 0 and the first equation of (S) is −κ∆Nη + g(η) = 0 in L2(Ω). Also it
is clear that any pair of functions θ = 0 and η satisfying −κ∆Nη + g(η) = 0 in L2(Ω) is
a solution of (S).

Here, for simplicity, we denote by S0 the set of all solutions of (S), namely

S0 := {{η, 0}; η ∈ D(∆N),−κ∆Nη + g(η) = 0 in L2(Ω)}.

Then we have the following third main result of this talk, which is concerned with the
large-time behavior of solutions to (P) as t→∞.

Theorem 3.1 (cf. [10]). Assume (A1)–(A5) hold, and let {η, θ} be a solution of (P) on
[0,∞). Denote by ω(η, θ) the ω-limit set of {η(t), θ(t)} as t→∞, namely

ω(η, θ) :=

{
{ξ, z} ∈ L2(Ω)× L2(Ω)

∣∣∣∣
η(tn)→ ξ in L2(Ω), θ(tn)→ z in L2(Ω)

for some tn with tn ↑ ∞
}
.

Then ω(η, θ) ⊂ S0.

Note that the solution of (S) is not unique, namely, the set S0 is not a singleton in
general, because of the term g(η). So, we assume the additional condition for g. Then we
have the following main result, which is concerned with the asymptotic convergence of all
solutions of (P) as t→∞ in a special case of g.

Theorem 3.2 (cf. [10]). In addition to (A1)–(A5), suppose that g < 0 on [0, 1) and
g(1) = ĝ(1) = 0. Let {η, θ} be any solution of (P) on [0,∞). Then

η(t) −→ 1 in H1(Ω) and θ(t) −→ 0 in H1
0 (Ω) as t→∞, (3.1)

and the convergence (3.1) is uniform with respect to all the initial data {η0, θ0}, and {1, 0}
is a unique steady–state solution of (P).
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