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1 Introduction

When a block of ice crystal is illuminated by strong beams, the ice crystal starts to melt
inside of the crystal as well as the surface and each water region forms a snowflake-like-
pattern which has six petals, called “Tyndall figure” (see Figure 1 (a)). This figure has a
vapor bubble in water region and when this figure is refrozen, the vapor bubble remains in
the ice as a hexagonal disk (see Figure 1 (b)). This hexagonal disk is a kind of negative
crystals and the interior region is filled with water vapor saturated at that temperature.
McConnel([6]) found these disks in the ice of Davos lake. Nakaya called this hexagonal disk
“Kuuzou(空像)” in Japanese and investigated its properties [7].

(a) (b)
Figure 1: (a) Tyndall figures (seen from 45◦ to the c-axis) and (b) a negative crystal (by U.

Nakaya).

In [5], we proposed a motion equation for a polygonal curve in the plane as a simple
model of the formation process of negative crystals after the water region in a Tyndall figure
is completely refrozen. This model equation is obtained by a gradient flow of total surface
energy under an area-preserving constraint:

Vi = H − Hi.

Here Vi is the outward normal velocity on the i-th facet Fi of vapor region Ω(t) (enclosed
region by a polygon), Hi is the crystalline curvature of Fi and H is the average of all
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crystalline curvatures. This equation is called area-preserving crystalline motion or area-
preserving crystalline curvature flow. Crystalline motion is a singular weighted curvature flow
with non-smooth surface energy γ and J. Taylor[8] and Angenent and Gurtin [1] proposed
the framework of crystalline motions. In this framework, the interfaces are restricted in
the class of polygonal curves (two dimensional case) which satisfy an admissibility condition
based on the equilibrium shape of the crystal. This equilibrium shape is called the Wulff
shape and plays important roles for not only the definition of the crystalline curvature and
admissibility condition, but also the asymptotic behavior of the solution polygons. The
detailed formulations will be mentioned in next section.

In the case that an initial shape Ω0 is convex, the solution polygon Ω(t) keeps its con-
vexity. S. Yazaki [9, Part I] show that no facets disappear globally in time and the solution
polygon converges to the rescaled Wulff shape whose area is equal to that of Ω0 in the Haus-
dorff metric. However, when the vapor region is surrounded by the ice region in refreezing
process, many fine facets appear on the interface and the shape of the vapor region is not
convex in general. Thus, in this talk, we consider the case that Ω0 is not convex. In this
case, there is a possibility that the solution has some singularities in finite time, for exam-
ple, facet-extinction and self-intersection of the interface. We show the sufficient conditions
on the Wulff shape and an initial polygon to keep admissibility of the solution polygons.
Moreover, we also show that the solution polygon from non-convex initial polygon becomes
convex in finite time.

2 Area-preserving crystalline motion

Crystalline energy and the Wulff shape. Let γ = γ(n) be a positive continuous function
defined on S1 and describe interfacial energy density for the direction n. In this note, we
consider the case where the Wulff shape of γ, Wγ = {x ∈ R2|x · n ≤ γ(n) for all n ∈ S1},
is a convex polygon. Such γ is called crystalline energy. If Wγ is a J-sided convex polygon
(J ≥ 3), then Wγ is expressed as

Wγ =
J∩

i=1

{
x ∈ R2; x · νi ≤ γ(νi)

}
,

where νi = n(ϕi) and ϕi is the exterior normal angle of the i-th facet with ϕi ∈ (ϕi−1, ϕi−1 +
π) for all i (ϕ0 = ϕJ , ϕJ+1 = ϕ1). We define a set of normal vectors of Wγ by Nγ =
{ν1, ν2, . . . , νJ}.
Polygons and polygonal curves. Let Ω be N -sided polygon in the plane R2, P its bound-
ary, that is, P = ∂Ω and label the position vector of vertices pi (i = 1, 2, . . . , N) in an
anticlockwise order: P =

∪N
i=1 Fi, where Fi = {(1 − t)pi + tpi+1; t ∈ [0, 1]} is the i-th facet

(p0 = pN , pN+1 = p1). The length of Fi is di = |pi+1 − pi|, and then the i-th unit tangent
vector is ti = (pi+1 − pi)/di and the i-th unit outward normal vector is ni = −t⊥i , where
(a, b)⊥ = (−b, a). We define a set of normal vectors of P by N = {n1, n2, . . . , nN}. Let θi be
the exterior normal angle of Fi. Then ni = n(θi) and ti = t(θi) hold (θ0 = θN , θN+1 = θ1),
where t(θ) = (− sin θ, cos θ).

We define the i-th hight function hi = pi · ni = pi+1 · ni (h0 = hN , hN+1 = h1). By
using {hi−1, hi, hi+1} and {ni−1, ni, ni+1}, the length of i-th facet di is described as follows:

di =
χi−1,i(hi−1 − (ni−1 · ni)hi)√

1 − (ni−1 · ni)2
+

χi,i+1(hi+1 − (ni · ni+1)hi)√
1 − (ni · ni+1)2

, i = 1, 2, . . . , N,



where χi,j = sgn(ni ∧ nj) and a1 ∧ a2 = det(a1, a2) is the determinant of the 2 × 2 matrix
with column vectors a1, a2. Since ni · nj = cos(θi − θj), we have another expression:

di = −(cotϑi + cot ϑi+1)hi + hi−1 cosec ϑi + hi+1 cosec ϑi+1, i = 1, 2, . . . , N, (1)

where ϑi = θi − θi−1. Note that 0 < |ϑi| < π holds for all i. Furthermore, the i-th vertex pi

(i = 1, 2, . . . , N) is described as follows:

pi = hini +
hi−1 − (ni−1 · ni)hi

ni−1 · ti
ti. i = 1, 2, . . . , N. (2)

Admissibility and crystalline curvature. We call Ω and P admissible (associated with
Wγ) if and only if N = Nγ holds and any adjacent two normal vectors in the set N are also
adjacent in the set Nγ , i.e., for any i, there exists j such that {νj , νj+1} = {ni, ni+1} holds.

Let P be an admissible polygonal curve. For each facet Fi a crystalline curvature is
defined by

H(Fi) = χi
lγ(ni)

di
, i = 1, 2, . . . , N,

where χi = (χi−1,i + χi,i+1)/2 is the transition number and it takes +1 (resp. −1) if P is
convex (resp. concave) around Fi in the direction of −ni, otherwise χi = 0; and lγ(ni) is
the length of the j-th facet of Wγ if ni = νj . If Ω is an admissible convex polygon, then
ni = νi and χi = 1 for all i = 1, 2, . . . , N = J ; and moreover, if Ω = Wγ , then the crystalline
curvature is 1. In this note, we call a facet which zero transition number “inflection facet.”

We note that the total interfacial crystalline energy on P is

Eγ =
N∑

i=1

γ(ni)di, (3)

and the crystalline curvature H(Fi) is characterized as the first variation of Eγ on P at Fi

with a suitable norm. Here and hereafter, we denote H(Fi) by Hi for short.
Area-preserving crystalline motion. The normal velocity on Fi in the direction ni is
Vi = ḣi. Here and hereafter, we denote that the derivative of a function u = u(t) with respect
to time t by u̇. The area-preserving crystalline motion is the gradient flow of Eγ along P
which encloses a fixed area, and it is described as follows:

Vi = H − Hi, i = 1, 2, . . . , N, (4)

where

H =
∑N

i=1 Hidi

L
is the average of the crystalline curvature, and L =

∑N
k=1 dk is the total length of the curve

P. From (1), we have

ḋi = −(cot ϑi + cot ϑi+1)Vi + Vi−1 cosec ϑi + Vi+1 cosec ϑi+1, i = 1, 2, . . . , N. (5)

Furthermore, by (2) we have

ṗi = Vini +
Vi−1 − (ni−1 · ni)Vi

ni−1 · ti
ti, i = 1, 2, . . . , N. (6)

Note that (4), (5) and (6) are equivalent each other. It is easy to check that the enclosed
area A(t) =

∑N
i=1 hidi/2 is preserving in time: Ȧ(t) =

∑N
i=1 Vidi = 0.



3 Results

For any given admissible initial polygon Ω0, we have short time existence and uniqueness
result by the standard argument since (5) is the system of ordinary differential equations.

Known results for convex polygons. What might happen to Ω(t) as t tends to the
maximal existence time T ≤ ∞? For this question, we have the following result.

Theorem 1 Let the crystalline energy be γ > 0. Assume the initial polygon Ω0 is an N -
sided admissible convex polygon. Then the solution admissible polygon Ω(t) exists globally
in time keeping the area enclosed by the polygon constant A, and Ω(t) converges to the shape
of the boundary of the Wulff shape ∂Wγ∗ in the Hausdorff metric as t tends to infinity, where
γ∗(ni) = γ(ni)/W , W =

√
|Wγ |/A for all i = 1, 2, . . . , N and |Wγ | =

∑N
k=1 γ(nk)lγ(nk)/2

is enclosed area of Wγ .

This theorem is proved in Yazaki [9, Part I] by using the anisoperimetric inequality or Brünn
and Minkowski’s inequality and the theory of dynamical systems.

Our results for non-convex polygons.
In the previous case, the solution polygon keeps its convexity and admissibility, that is,

the length of each facet is positive globally in time and the self-intersection of P(t) never
occur. However, if Ω0 is non-convex, the facet-extinction or the self-touching may occur
in finite time. Indeed, we can easily construct the example of the self-intersection of P(t)
and Ω(t) becomes non-admissible after the singularity. Thus, the admissibility of solution
polygons may break down in finite time. To track the motion globally in time in the class
of admissible polygons, we prepare the following assumptions:

(A1) Wγ is symmetric with respect to the origin.

(A2) Transition numbers of Ω0 are all nonnegative: χi ≥ 0 for any i.

Theorem 2 Assume the assumptions (A1) and (A2). Let Ω0 be an N -sided non-convex
admissible polygon. Then, there exists T1 > 0 such that the solution polygon is an N-sided
admissible polygon for 0 ≤ t < T1 and there exists at least one inflection facet whose length
tends to zero as t → T1. Moreover, Ω(t) converges to an admissible polygon Ω∗ in the
Hausdroff topology as t → T1 and area of Ω∗ is equal to area of Ω0.

This theorem means that we can restart the motion with the initial polygon Ω∗ and
obtain the solution in the class of admissible polygons beyond the singularity. If Ω∗ is non-
convex, then we can apply Theorem 2 again and again. We finally have a finite sequence
of facet-extinction time : 0 < T1 < T2 < · · · < Tm < +∞. Then, we obtain the following
convexity result.

Theorem 3 Assume that the same assumption as in Theorem 2. Then, the solution polygon
becomes convex at t = Tm.

After the convexity phenomena occurs, we can apply Theorem 1. Therefore, the solution
polygon exists globally in time in the class of admissible polygons and the solution polygon
finally converges to the rescaled Wulff shape.



4 For negative crystals

For usual crystal case, enclosed region describes the crystal and then normal vector n is
direction from the crystal to its outside region. However, for negative crystal case, the
outside region describes the crystal. Thus, applying the area-preserving crystalline motion
to understand the motion of the boundary of negative crystals, we need to use γ(−n) as the
interfacial energy density. Therefore, we use the figure:

J∩
i=1

{
x ∈ R2; x · (−νi) ≤ γ(νi)

}
,

as the Wulff shape for negative crystal case.
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