MODULUS OF CONTINUITY OF THE DIRICHLET
SOLUTIONS

HIROAKI ATKAWA

AssTrRACT. Let D be a bounded domain in R” with n > 2. For a function
f on D we denote by HPf the Dirichlet solution of f over D. It is
classical that if D is regular, then " maps the family of continuous
boundary functions to the family of harmonic functions in D continuous
up to the boundary dD. We show that the better continuity of a boundary
function f ensures the better continuity of H” f in the context of general
modulus of continuity.

1. INTRODUCTION

Let D be a bounded domain in R” with n > 2. For a function f on D we
denote by HP f the Dirichlet solution of f over D, i.e., H” f is harmonic
in D and H”f = f on dD. It is well known that if D is regular, then H”
maps the family of continuous boundary functions to the family of harmonic
functions in D continuous up to the boundary dD. It may be natural to
think that the better continuity of a boundary function f ensures the better
continuity of H”f. Let 0 < 8 < 1. We say that f is 8-Holder continuous if
|f(x) — f()| < Clx — yl. Here, C stands for an absolute positive constant
whose value is unimportant and may change from one occurrence and the
next. In the previous paper [1] we characterized the family of domains
for which the g-Holder continuity is preserved by H”. In particular, we
showed that there is no domain which preserves the 1-Holder (or Lipschitz)
continuity. See [2] for further generalizations to p-harmonic functions in
metric measure spaces.

This paper is devoted to investigation for similar problems in the con-
text of general modulus of continuity. Let y(¢) be a positive nondecreasing
function on (0, co) with ¥(0) = lim,o¥(t) = 0. In view of the Holder
continuity case, we assume that () is concave. See Section 5 for these
assumptions. Let M be the family of positive nondecreasing concave func-
tions ¥(¢) on (0, c0) with ¥(0) = lim,o ¥ () = 0. Obviously, the Holder
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continuity y(¢) = min{#*, 1} belongs to M for 0 < 8 < 1. For a > 0 let

(—logt)™ for0<t<1/e™!,
wa(t) = : —-a a+l
(+1) fort > 1/e*".

Then i, (1) € M. In fact, if 0 < 7 < 1/e*!, then ¥/, () = %(— logt)™! >

—-a-2
0 and ¥/ (?) = %(a + 1 + logr) < 0. We see that ,(¢) is a
modulus of continuity weaker than the Holder continuity. We observe that
M includes a lot of functions besides these two types of functions. See
Proposition 2.1.
Let ¥ € M. For an arbitrary set E C R”, n > 2, we consider the family
Ay (E) of all bounded continuous functions f on E with

_ V@O - fOI
Ml = SO 28 S5 ©

XEY

Take another ¢ € M and define the operator norm

D
Ol = sup O e

freng@p) N flly.an

1/ lly.op#0
The finiteness of ||H"||,_,, is of interest. Hinkkanen [3] considered the
problem mainly for planar domains. However, the most interesting case
¥ = ¢ was treated only for the Holder continuity. Our previous papers [1]
and [2] also dealt with only the Holder continuity.

The case ¥ = ¢ = ¢, with the above ¥, appeared (at least tacitly) in con-
nection with Kleinian groups. Shiga [6] and [5] proved a Hardy-Littlewood
type theorem for holomorphic functions with respect to (). Let us state
his result [5, Theorem 2.2], which is slightly changed for our disposal.

Theorem A. Let f be a holomorphic function on the unit disk A and con-
tinuous on A = A U 0A. Suppose that there exists a > 0 such that
f(€™) = f(e™)] < Cyo (16, = 6a).  for 0 < 6,,6, < 2.
Then
(1.1) |f' @I < C6A(2) ' ¥a(62())  forz,w € A,
where 65(2) = 1 — |z] = dist(z, OA).

Taking the real part, we obtain the harmonic counterpart: just simple re-
placement of “holomorphic” by “harmonic”. Obviously, harmonic Hardy-
Littlewood type result yields Theorem A immediately. Hardy-Littlewood
type theorems and the modulus of continuity of the Dirichlet solution have
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close relationships. Proposition 2.3 below in Section 2 shows that Theorem
A follows from

Theorem B. Let D be the unit disk A. Then ||7’(D||¢_>¢, < oo for every
U(t) = Yo (t) with a > 0.

Shiga [5] proved Theorem A by means of the explicit form of Cauchy’s
integral formula for the unit disk with the aid of very smart calculations.
Our motivation is to establish a theorem which generalizes Theorem B with
general domain and modulus of continuity. Since there is no explicit form
of the Poisson integral for general domains, we need an approach different
from Shiga’s. One might think of Widman’s estimates for the Green func-
tion [8]; these are not applicable because of the generality of domains and
the subtleness of modulus of continuity. Instead, we shall apply barrier and
harmonic measure method as in [1]. This method enables us to deal with
not only ¥, (#) but also general modulus of continuity ¥ € M. It also reveals
that the smoothness of the domain has no significance.

Without loss of generality, we may assume that D is a bounded regular
domain (see [1, Proposition 1]). For each a € dD we define a test function
Tay ON 0D by

Tau(&) = Y(|€ —al) for & € AD.
We shall see in Lemma 2.4 that 7, , € A, (0D).

Theorem 1.1. Let € M. Then the following are equivalent:

(@) 1H llymy < oo
(i1) There is a constant C > 1 such that

H 7,,(x) < Cy(x—al) forx e D,
whenever a € 0D.

The second condition of Theorem 1.1 can be verified by using the har-
monic measure. By w(x, E, U) we denote the harmonic measure evaluated
at x of £ in U. We write B(x, r) and S (x, r) for the open ball and the sphere
of center at x and radius r, respectively.

Definition 1.2 (Global Harmonic Measure Decay property). We say that D
enjoys the Global Harmonic Measure Decay property with ¢ (abbreviated
to the GHMD(y) property) if

(1.2) w(x,0D \ B(a,r),D) < CM for x e DN B(a,r),

w(r)

whenever a € D and r > 0 is small.
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Theorem 1.3. Lety € M. If |H|ly—y < oo, then D satisfies the GHMD(y))
property. Conversely, let Y € M and suppose that there is ro > 0 such that
40l
dy(1) < Cl//(r)
0] ¥(r)
If D satisfies the GHMD('Y) property, then ||H”||,—, < o.

Corollary 1.4. Let 0 < a < . If D satisfies the GHMD(, ) property, then
IH gy < 00 with y(t) = Yo ().

(1.3) for0 <r<r.

More geometrically we have the following corollaries.

Corollary 1.5. Let D C R", n > 2, be a Lipschitz domain. Then ||[JH{? lly—y <
oo for every Y(t) = Y, (t) witha > 0.

Corollary 1.6. Let D C R? be a finitely connected plane domain with no
puncture. Then ||HP||,_, < oo for every y(t) = ,(t) with a > 0.

Remark 1.7. The above corollary gives an extension of Theorem B and
hence an alternative proof of Theorem A.

The plan of this paper is as follows. In the next section we shall prove
Theorem 1.1 after preliminary observations for M. In Section 3 we shall
show Theorem 1.3 and Corollary 1.4. In Section 4 we shall give further
notes for the harmonic measure decay property and M, which derive Corol-
lary 1.5 and Corollary 1.6. Finally, we shall give an observation, due to S. T.
Kuroda [4], for the relevance of the class M, which may be of independent
interest.

Acknowledgments. The author would like to thank Shiga for showing his
preprints [6] and [5]. These give a starting point of this paper. The author
also would like to thank Kuroda for showing his preprint [4].

2. ProOF OF THEOREM 1.1
Let us begin with elementary observations.
Proposition 2.1. Let ¢,y € M. Then g oy € M.

Proof. 1t is easy to see that ¢ o i is a nondecreasing function and that ¢ o
¥(0) = 0. For the concavity, let s, > 0and 0 < A < 1. Then

Ap o y(s) + (1 = D o Y1) < p(AY(s)) + (1 = Dp((1)))
< @(A(s) + (1 = DY) < e(W(As + (1 = D)),

where the concavity of ¢, the monotonicity of ¢ and the concavity of ¢
are used in this order. Thus the concavity of ¢ o iy follows, and hence

poy e M. O
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Lemma 2.2. Let y € M. Then
o)

(1) w(t)/t is nonincreasing, i.e., if 0 < s < t, then — > .
s
(11) ¥ is subadditive, i.e. if s,t > 0, then (s + t) < Y(s) + Y(1).
(i11) Y(¢) is doubling, i.e., If 0 < s <t < 2s, then Y(s) < Y(t) < 2¢(s).
Proof. (i) Since (0) = 0, the concavity of ¢ proves (i).
(i1) Let f(¢r) = ¥(r)/t. This is a nonincreasing function by (i). If 5,7 > 0,
then

Y() +y() —Y(s+ 1) = sf() +1f () = (s + D f(s +1)
= s(f(s) = fs+ D) +1(f() = f(s +1) 2 0.

Hence (ii) follows.
(ii1) Let 0 < s <t < 2s. It follows from (i) that

U(s) _wn) | u2s)

b

s t  2s
so that
w(s) < y(t) < Y(2s) < 24(s),
since () is nondecreasing. Thus (iii) follows. |

Let 6p(x) = dist(x, dD).
Proposition 2.3. Let € M. Suppose h is a harmonic function on D. If
|h(x) = h(y)l < Cy(lx = yl) forx,y € D,
then
(2.1) \VA(x)| < COp(x)"'W(6p(x)) for x € D.
Proof. Let x € D. By assumption

1
Ih(x) = h(Y) < C(op(x))  fory € B(x, 50p(x),

where the doubling property of ¢ is used. Represent 4 as the Poisson in-
tegral on B(x, %6 p(x)) and differentiate it under the integral sign. Then we
obtain

1
IVh(y)l < Cop(x)" ' (Sp(x)) fory € B(x, Zéu(X))-
Hence (2.1) holds. i

Lemma 2.4. Let y € M and let 7,y be as above. Then t,, € A,(0D) and
there is C independent of a € 0D such that

ITaylly.on < C.
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Proof. By definition

sup [74,(8)| < Y(diam(D)) < co.
£€dD

Let £, &" € dD. Let us estimate|7,, (&) — 74| = W(I§ — al) — ¢ (& — al)l.
Putt = |£ — al and s = |£ — a|. Without loss of generality we may assume

that 0 < s < t. It follows from Lemma 2.2 (ii) and the monotonicity that
Tay (&) =Tay (€N < WD) —Y(9)] < Y(t=5)+Y(s)—¢(s) = Y(t—5) < Y(IE-&'D),
since t — s < |¢£ — &’|. Hence
Ta,0(&) = Tay(E) <1
vl - &N
Thus 7, € Ay(0D) and ||t4yllyop < Y(diam(D)) + 1 < co. O

Proof of Theorem 1.1. (i) = (ii). Suppose ||H"||,—, < co. Then Lemma
2.4 gives

||7{DTa,.p||.p,D < ||7{D||¢—>¢||Ta,.//||¢,aD < C||7{D||.p—>¢ < 0o,
Hence
[H 0y (x) = H 7,050 < Cy(lx —yl) forx,y € D.

Let x* € dD be a point such that §,(x) = |x — x*|. Letting y — x*, we obtain
H7,,(x) < CY(Sp(x)). Thus (ii) follows.

(i) = (i). Suppose (ii) holds. Let ' € A,(dD) and let x,y € D. It is
sufficient to show that

[H f(x) = HP F3)l < Cll fllyaplx = y)).
Without loss of generality, we may assume that 0 < d,(y) < 0p(x). Let
x*,y* € dD be points such that §,(x) = |x — x*| and 6p(y) = [y — y*|. Let
Jo€) = f(§) = f(x7). It is easy to see that || folly.op < 2| flly.0p < oo and

(2.2) fo@I < I flly.ont(I€ = XD = 1 flly.o0T2 4 ().
Let us consider two cases.

Case 1. [x—y| < 16p(x). Letus estimate VH” f = VH? f, on B(x, 25p(x)).
If z € B(x, 36p(x)), then (ii) and (2.2) give

IH” fo(2)| < C||f||¢,61)7’(1)7x*.w(2) < Cllflly.op¥(z = x7) < Cllfllyap¥(0p(x)),

where the doubling property of ¢ is used in the last inequality. Representing
HP f; as the Poisson integral and differentiating under the integral sign, we
obtain

0
VH £ = VH (@) < Clfllan et

Op(x)

|
for ZE B(X, 561)()()).
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The mean value theorem gives

Y(6p(x)

[H f(x) = HP FO)I < Cliflly.an 500

lx =y < Cll flly.ap(6p(x)).

Thus (i) follows in this case.
Case 2. |x —y| > 16p(x). By assumption we have |x — y| > 16p(x) >
%61)@). It is easy to see that
X" =y < [x =yl + dp(x) + 0p(y) < 5lx =yl
Since D is regular, it follows from (ii) and (2.2) that
[HP £ (x) = f() = [HP fy(x)l
< CllfllyapH T 4(0) < CllfllyapGp(x)) < ClIflly.apt(x = Y,

where the doubling property of ¢ is used in the last inequality. Similarly,
we have

(HP ) = FOON < Cliflly.antr(lx = Y.
The doubling property of ¢ gives again
f ) = FOON < 1 llyont(IX” =y < Cllflly.ap¥(x = yI).

Collecting the above inequalities, we obtain

[HP f(x) = H )] < Cllfllyan(lx = yD.
Thus (i) follows. |

3. Proors or THEOREM 1.3 AND COROLLARY 1.4

Proof of Theorem 1.3. The first assertion of the theorem is easy. Let us
prove the second assertion. Because of the local nature we may assume that
rop = oo in (1.3), i.e., we may assume that

ORC
3.1) f P <D foro<r<e,

Now leta € dD and x € dD. Let r = |x — a|. Define an increasing sequence
{r;} by y(rj) = 2/y(r). Then

Tdy() o (M de() ]
%-Zf Yo > L), WO

7

w(rﬁl) (rj) 2]lﬁ(r]) - w(rjﬂ)
- Z W(rjs1) Z (i) 4 ]Z::‘ W(r)

(3.2)




8 HIROAKI ATIKAWA

where the definition of ; is used in the last two equalities. By definition

H70(x) < HPW(rXopnsian) () + Z W(r )M Oonpar) (%)

Jj=0

<Y + Z Y(rj1)w(x,0D \ B(a, r;), D)

N
<y + Z lﬁ(l’ﬁl)\{,((r))
N
=yY(r)+ lﬂ(h)\P( " Z Y(r j+1)\P((r))
]
d
< 3u(r) + 4¥(r) f %(tt))

where the last inequality follows from ry = r, Y(r;) = 2¢(r) and (3.2). By
(3.1) we have

H 744(x) < 34(r) + C¥(r )% < Cy(r).

Thus (ii) in Theorem 1.1 holds, and hence ||H” lly—y < o0. |

Proof of Corollary 1.4. Let0 < a < a’. Let 0 < r < 1/e**'. Then

1/e7! d ¢ 1/e"*! 1 1/07¢ ! dt 1er! 1\a'—o-1dt
f %() :af %_:a\f (log—) —_—.
M0 , (logl/ny@ 1 . ‘ !

Letting s = log 1/t, we obtain that this integral is equal to

log 1/r , , 1\’ -
ozf selgg = 4 [s¥ 07081/ < ,01 (log —) __ 2 YD

" @ —a ol T o —q @ —ay(r)

Thus (1.3) holds. Hence Theorem 1.3 proves ||H”||,—, < . m|

4. Proors or CoroLLARY 1.5 AND COROLLARY 1.6
Let us begin with observations of the harmonic measure decay property.

Definition 4.1 (Local Harmonic Measure Decay property). We say that D
enjoys the Local Harmonic Measure Decay property with i (abbreviated to
the LHMD(y) property) if

4.1) wkx,DnS(a,r),DNB(a,r)) < CM for x € DN B(a,r),

w(r)

whenever a € D and r > 0 is small.
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Remark 4.2. Let y € M. If the LHMD(¥) property holds for D, then so
does the GHMD(y) property. If y/(¢) = t*, then the converse is true as well
(see [1]). For general ¢ € M, we do not know whether the converse holds
or not.

Remark 4.3. See Sugawa [7] for the plane case.

Remark 4.4. If y(t) = #, then we can replace y(|x — al) /y(r) by y(lx — al/r)
in (1.2) and (4.1). For general ¢ € M, however, such a replacement is not
valid because of the inhomogeneity of .

It is convenient to introduce a certain order among functions in M.
Definition 4.5. Let ¢,y € M. We say that ¢ < y if there are ry > 0 and
C > 0 such that

o(s) _ W)
o(r) — Y(r)
The definition of the GHMD property readily gives

Proposition 4.6. Let ¢,y € M and let ¢ < . If the GHMD(p) property
holds for D, then so does the GHMD(\y) property.

forO< s<r<n.

The order < and the composition have the following relationship.
Proposition 4.7. Let ¢,y € M. Then <5 @ o .

Proof. Let0 < s <r.PutS =¢(s)and R = ¥(r). Since 0 < s < R from the
monotonicity of i, it follows from Lemma 2.2 (i) that
e () _ ¢(R) < ¢(S) _ p(s)
W(r) R S w(s)

Yls) _ eW(s)) _ ¢ oy(s)
U ~ W) poy(r)

Hence

a

Let @ > 0 and B8 > 0. Then ,(*) = B~ %Y, (1), so that # < ¢,(f) by
Proposition 4.7. Hence Corollary 1.4 and Proposition 4.6 give

Corollary 4.8. Let B > 0. If D satisfies the GHMD(?®) property, then
IHP ||y < o0 for every y(t) = ,(t) with @ > 0.
Proof of Corollary 1.5. 1t is well-known that every Lipschitz domain D sat-

isfies the LHMD(#*) property for some 8 > 0, and so the GHMD(#*) prop-
erty. Hence Corollary 4.8 gives Corollary 1.5. m

Proof of Corollary 1.6. We observe that a finitely connected plane domain
with no puncture satisfies the GHMD(#*) property for 0 < 8 < 1/2. Hence
Corollary 4.8 gives Corollary 1.6. m
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5. REMARK

In Section 1 we have assumed that (r) is concave. We observe that
this assumption can be essentially relaxed to the nonincreasing property of
W(t)/t. This observation is due to S. T. Kuroda [4]. We include it with his
permission.

Proposition 5.1. Let () be a positive nondecreasing function on (0, 00)
with y(0) = lim,_,o¥(t) = 0. Suppose that y(t)/t is nonincreasing. By U,
we denote the family of concave functions ¢ on (0, 0o) such that < ¢. Let

Y(t) = infl{e() : p € U,} fort>0

be the concave upper envelope of . Then
(i) Y is a concave nondecreasing function on on (0, o) with \¥(0) = 0.
(i) 3P < y(@) <Y() fort > 0.

Proof. (i) We prove only the concavity of ¥ as the remaining is easy. Let
s>0and¢>0andlet0 < A < 1. Then for every ¢ € U, we have

Ap(s) + (1 = De(t) < o(As + (1 = )1)).
Taking the infimum for ¢ € U,,, we obtain
AY(s) + (1 = )W) = A inf @(s) + (1 =) inf ¢(7)
peUy, peUy

< inf (Ap(s) + (1 — De(1))
veUy

< inf o(As + (1 = D)t) =P(As + (1 = ).
peUy

Thus ¥ is a concave function.

(i1) Let us prove the first inequality since the second is obvious. Let 7y >
0. If Y(ty) = (1), then there is nothing to prove. Suppose y¥(ty) < ‘F(t).
By definition we infer that W(z) is a linear function in a neighborhood of
to. Let (t;,1,) be the largest interval including #, and on which () < ‘Y(z).
Then W(7) is linear on [#,, t;], Y(t;) = ¥(t;) and W(12) = ¥(t,). Let p(f) be the
linear function whose graph is the line connecting the points (¢, ¥(t,)) and
(t2, Y(1,)). Let g(¢) be the linear function whose graph is the line connecting
the points (0, ¥(ty)) and (¢y, ¥(#)). We observe that p(ty) = q(ty) = Y(t)
and p(0) < ¥ () = ¢(0), and hence

q(t) < p(t) fort > t.

See Figure 1. Evaluate p(f) and ¢(f) at ¢t = f,. Then the explicit form
q() = 15" (p(to) — Y(10))(t — to) + p(to) gives

p(to) — Y(to)
f

0

(f2 — ty) + p(to) < p(t2) = Y(12),
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a(0) = ¢(to) —
pO) r u(t)

t fo t

Ficure 1. The concave upper envelope.

so that
Ih—1

fo

th — 1y

2 ) = (2 + 1)) < Zut) + y().
0

Since ¥ (t)/t is nonincreasing, it follows that
t—t f (to)
W) = plio) < Z0y(0) + u(t) < i) + 10" 2 = 200,
2 2 0

Thus the first inequality of (ii) follows. |

Remark 5.2. The nonincreasing property of y/(f)/t in the assumptions of the
proposition can be replaced by the subadditivity of . See Lemma 2.2 (i1).
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