Spacelike submanifolds in de Sitter space

Masaki Kasedou*

Abstract

We investigate the differential geometry of spacelike submanifolds of codimension at least two in de Sitter space as an application of the theory of Legendrian singularities. We also discuss related geometric property of spacelike hypersurfaces in de Sitter space.

Key words: de Sitter space, spacelike submanifold, spacelike hypersurface.

1 Introduction

It is known that de Sitter space is a Lorentzian space form with a positive curvature. Recently, Izumiya, Pei and Sano [3] investigated the extrinsic differential geometry of hypersurfaces in the hyperbolic space by applying the theory of Legendrian singularities. The main tool is a lightcone Gauss indicatrix, which is defined by a lightlike normal of hypersurface, and their singularity sets correspond to lightcone parabolic sets of hypersurfaces. For higher codimension case, the normal vector is not uniquely determined, however it is possible to construct hypersurfaces from the normal unit vector fields of the subspace. Izumiya, Pei, Romero Fuster and Takahashi [6] introduced the notion of canal hypersurfaces and horospherical hypersurfaces from the normal frames of submanifolds in the hyperbolic space, and investigated submanifolds of higher codimension in the hyperbolic space from the viewpoint of singularity theory. On the other hand, the differential geometry of de Sitter space is also studied. In [7] we introduced the notion of lightcone Gauss image which is an analogous tool introduced in [3], and investigate the case of spacelike hypersurface in de Sitter space. For codimension two case, Fusho and Izumiya [2] firstly introduced the notion of lightlike surface of a spacelike curve in the de Sitter three-space. In [8] we investigated singularities of lightlike hypersurface of spacelike submanifold of codimension two in de Sitter n-space for $n \geq 3$, which is an analogous study in the Minkowski space [4, 5].

In this paper, we argue an analogous study of the submanifolds of higher codimension in hyperbolic space [6] and introduce the notions of horospherical hypersurfaces and spacelike canal hypersurfaces by using timelike unit normal vector fields. The singular point of horospherical surface corresponds to the parabolic point of spacelike canal hypersurface, which we call a horospherical point, and the spacelike submanifold is tangent to a de Sitter hyperhorosphere.

*This work was supported by the JSPS International Training Program(ITP).
at the horospherical point. If we assume a hypothesis of Theorem 6.5, then a contact type of a de Sitter hyperhorosphere and a spacelike submanifold corresponds to a singular type of horospherical hypersurface, and also corresponds to a singular type of lightcone Gauss image of spacelike canal surface. In §2 we review briefly the basic notions of differential geometry of spacelike hypersurfaces in de Sitter space [7]. In §3, 4 we define a timelike normal vector field of spacelike submanifolds in de Sitter space. and introduce a notion of horospherical height function and horospherical hypersurface. We also define a spacelike canal hypersurface, whose lightcone Gauss image is diffeomorphic to a horospherical hypersurface. In §5 we naturally interpret a horospherical hypersurfaces of a spacelike submanifold as a wave front set of horospherical height functions in the theory of Legendrian singularities. In §6 we use the theory of contacts between the submanifolds due to Montaldi [10], and we discuss geometric properties of singularities of horospherical hypersurfaces. We consider generic properties of spacelike submanifolds in §7.

2 Spacelike hypersurfaces in de Sitter space

In this section we review the extrinsic differential geometry of spacelike hypersurfaces in de Sitter space [7], which is an analogous study of [3]. Let $\mathbb{R}^{n+1} = \{x = (x_0, \ldots, x_n) \mid x_i \in \mathbb{R} (i = 0, \ldots, n)\}$ be an $(n+1)$-dimensional vector space. For any vectors $x = (x_0, \ldots, x_n)$, $y = (y_0, \ldots, y_n)$ in \mathbb{R}^{n+1}, the pseudo scalar product of x and y is defined by $\langle x, y \rangle = -x_0y_0 + \sum_{i=1}^n x_iy_i$. We call $(\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle)$ a Minkowski $(n+1)$-space and write \mathbb{R}^{n+1} instead of $\mathbb{R}^{n+1}_{\mathbb{R}}$.

We say that a vector $x \in \mathbb{R}^{n+1}_{\mathbb{R}} \setminus \{0\}$ is spacelike, timelike or lightlike if $\langle x, x \rangle > 0$, $\langle x, x \rangle = 0$ or $\langle x, x \rangle < 0$ respectively. The norm of the vector $x \in \mathbb{R}^{n+1}_{\mathbb{R}}$ is defined by $||x|| = \sqrt{\langle x, x \rangle}$. For a vector $v \in \mathbb{R}^{n+1}_{\mathbb{R}} \setminus \{0\}$ and a real number c, we define a hyperplane with pseudo normal v in the Minkowski space by $HP(v, c) = \{x \in \mathbb{R}^{n+1}_{\mathbb{R}} \mid \langle x, v \rangle = c\}$. We say that a hyperplane $HP(v, c)$ is spacelike, timelike or lightlike if the vector v is timelike, spacelike or lightlike.

We now respectively define hyperbolic n-space and de Sitter n-space by

$$H^n_{\mathbb{R}}(-1) = \{x \in \mathbb{R}^{n+1}_{\mathbb{R}} \mid \langle x, x \rangle = -1, \text{sgn}(x_0) = \pm 1\},$$

$$S^n_{\mathbb{R}} = \{x \in \mathbb{R}^{n+1}_{\mathbb{R}} \mid \langle x, x \rangle = 1\},$$

and we write $H^n(-1) = H^n_{\mathbb{R}}(-1) \cup H^n_{\mathbb{R}}(-1)$. For any $x_1, x_2, \ldots, x_n \in \mathbb{R}^{n+1}_{\mathbb{R}}$, we can define a vector $x_1 \wedge x_2 \wedge \ldots \wedge x_n$ with the property $\langle x, x_1 \wedge \ldots \wedge x_n \rangle = \det(x, x_1, \ldots, x_n)$, so that $x_1 \wedge \ldots \wedge x_n$ is pseudo-orthogonal to any x_i for $i = 1, \ldots, n$. We also define future (resp. past) lightcone at the origin by

$$LC^n_+ = \{x \in \mathbb{R}^{n+1} \mid \langle x, x \rangle = 0, \ x_0 > 0 \ (x_0 < 0\} ,$$

and we write $LC^n = LC^n_+ \cap LC^n_.$

Let $X : U \to S^n_{\mathbb{R}}$ be an embedding, where $U \subset \mathbb{R}^{n-1}$ is an open subset. We say X is a spacelike hypersurface in $S^n_{\mathbb{R}}$ if every non zero vector generated by $\{X_{u_i}(u)\}_{i=1}^n$ is always spacelike, where $u = (u_1, \ldots, u_{n-1})$ is an element of U and X_{u_i} is a partial derivative of X with respect to u_i. We denote $M = X(U)$ and identify M with U through the embedding X. Since $\langle X, X \rangle \equiv 1$, we have $\langle X_{u_i}, X \rangle \equiv 0$ for $i = 1, \ldots, n - 1$. It follows that a hyperplane spanned by $\{X, X_{u_1}, \ldots, X_{u_{n-1}}\}$ is spacelike. We define a vector
$e(u) = X(u) \wedge X_{u_1}(u) \wedge \cdots \wedge X_{u_{n-1}}(u)/||X(u) \wedge X_{u_1}(u) \wedge \cdots \wedge X_{u_{n-1}}(u)||$. Then e is pseudo orthogonal to X and X_{u_i} for $i = 1, \ldots, n-1$. We define a map $\mathbb{L}^\pm : U \rightarrow LC_\pm^*$ by

$$\mathbb{L}^\pm(u) = X(u) \pm e(u),$$

which is called a *positive* (resp. *negative*) lightcone Gauss image of X.

We now consider a hypersurface defined by $HP(v, c) \cap S_1^n$. We say that $HP(v, c) \cap S_1^n$ is an elliptic hyperquadric or a hyperbolic hyperquadric if $HP(v, c)$ is spacelike or timelike respectively. We say that $HP(v, 1) \cap S_1^n$ is a de Sitter hyperhorosphere if $HP(v, 1)$ is lightlike. We have the following proposition analogous to ([3], Proposition 2.2).

Proposition 2.1 ([7]). Let $X : U \rightarrow S_1^n$ be a spacelike hypersurface in S_1^n. The lightcone Gauss image \mathbb{L}^\pm is constant if and only if the spacelike hypersurface $M = X(U)$ is a part of a de Sitter hyperhorosphere.

We now define the lightcone Gauss-Kronecker curvature and the lightcone mean curvature of the spacelike hypersurface $M = X(U)$. For any $p \in M$ and $v \in T_pM$, we can show $D_v e, D_v \mathbb{L}^\pm \in T_pM$, where D_v is the covariant derivative with respect to the tangent vector v. Under the identification of U and M, $d \mathbb{L}^\pm(u_0)$ is a linear transformation on T_pM. We call $S^\pm = -d \mathbb{L}^\pm(u_0)$ a lightcone shape operator of $M = X(U)$ at $p = X(u_0)$. The lightcone Gauss-Kronecker curvature K^\pm_ℓ of $M = X(U)$ at $p = X(u_0)$ is defined to be the determinant of the lightcone shape operator.

Since X_{u_i} (for $i = 1, \ldots, n-1$) are spacelike vectors, we have the Riemannian metric *(first fundamental form)* $ds^2 = \sum_{i,j=1}^{n-1} g_{ij} du_i du_j$ on $M = X(U)$, where $g_{ij}(u) = \langle X_{u_i}(u), X_{u_j}(u) \rangle$ for any $u \in U$. We define a lightcone second fundamental invariants by $h^\pm_\ell(u) = \langle -\mathbb{L}^\pm(u), X_{u_i}(u) \rangle$ for any $u \in U$. In [7] we obtained explicit expression for the lightcone Gauss-Kronecker curvature:

$$K^\pm_\ell = \det(h^\pm_\ell)/\det(g_{\alpha\beta}).$$

We say that $p = X(u_0)$ is a *lightcone parabolic point* of X if $K^\pm_\ell(u_0) = 0$.

We define a family of functions $H : U \times LC^* \rightarrow \mathbb{R}$ by

$$H(u, v) = \langle X(u), v \rangle - 1,$$

which we call a *lightcone height function* of M. We have the following proposition analogous to ([3], Proposition 3.1).

Proposition 2.2. ([7]) Let H be a lightcone height function, then $H(u, v) = \partial H(u, v)/\partial u_i = 0$ for $i = 1, \ldots, n-1$ if and only if $v = \mathbb{L}^\pm(u)$.

We also naturally interpreted the lightcone Gauss image of a spacelike hypersurface as a wave front set in the framework of contact geometry in [7]. This is the analogous way to the differential geometry of hypersurfaces in hyperbolic space [3].

Let $\pi^\pm : PT^*(LC^*_\pm) \rightarrow LC^*_\pm$ be the projective cotangent bundles with canonical contact structures. Consider the tangent bundle $\tau^\pm : TPT^*(LC^*_\pm) \rightarrow PT^*(LC^*_\pm)$ and the differential
map $d\pi^\pm : TPT^* (LC^+_\pm) \to T (LC^+_\pm)$ of π^\pm. For any $X \in TPT^* (LC^+_\pm)$, there exists an element $\alpha \in T^* (LC^+_\pm)$ such that $\tau^\pm (X) = [\alpha]$. For $v \in LC^+_\pm$ and $V \in T_v (LC^+_\pm)$, the property $\alpha (V) = 0$ does not depend on the choice of representative of the class $[\alpha]$. Thus, we can define the canonical contact structure on $PT^* (LC^+_\pm)$ by

$$K^\pm = \{ X \in TPT^* (LC^+_\pm) | \tau^\pm (X) (d\pi^\pm (X)) = 0 \}.$$

On the other hand, we consider a point $v = (v_0, v_1, \ldots, v_n) \in LC^+_\pm$, then we have the relation $v_0 = \pm \sqrt{\sum v_i^2}$. So we adopt the coordinate system (v_1, \ldots, v_n) of the manifold LC^+_\pm. Then we have the trivialization $PT^* (LC^+_\pm) \equiv LC^+_\pm \times P^* \mathbb{R}^{n-1}$, and call $(v_0, \ldots, v_n, [\xi_1 : \ldots : \xi_n])$ homogeneous coordinates of $PT^* (LC^+_\pm)$, where $[\xi_1 : \ldots : \xi_n]$ are the homogeneous coordinates of the dual projective space $P^* \mathbb{R}^{n-1}$.

It is easy to show that $X_\bullet \in K^+_\pm$ if and only if $\sum_{i=1}^n \mu_i \xi_i = 0$, where $\bullet = (v, [\xi])$ and $d\pi^+_\bullet (X_\bullet) = \sum_{i=1}^n \mu_i \partial / \partial v_i \in T_v LC^+_\pm$. An immersion $i : L \to PT^* (LC^+_\pm)$ is said to be a Legendrian immersion if dim $L = n - 1$ and $d\pi (T_q L) \subset K_{i(q)}$ for any $q \in L$. The map $\pi \circ i$ is also called the Legendrian map and the image $W(i) = \pi (\pi \circ i)$, the wave front of i. Moreover, i (or the image of i) is called the Legendrian lift of $W(i)$.

Let $F : (\mathbb{R}^s \times \mathbb{R}^k, (u_0, v_0)) \to (\mathbb{R}, 0)$ be a function germ. We say that F is a Morse family of hypersurfaces if the map germ $\Delta^s F : (\mathbb{R}^s \times \mathbb{R}^k, (u_0, v_0)) \to (\mathbb{R}^{s+1}, 0)$ defined by

$$\Delta^s F = \left(F, \frac{\partial F}{\partial u_1}, \ldots, \frac{\partial F}{\partial u_s} \right)$$

is non singular. In this case, we have a smooth $(k - 1)$-dimensional smooth submanifold,

$$\Sigma^s (F) = \left\{ (u, v) \in (\mathbb{R}^{n-r} \times \mathbb{R}^k, (u_0, v_0)) \mid F (u, v) = \frac{\partial F}{\partial u_1} (u, v) = \ldots = \frac{\partial F}{\partial u_{n-r}} (u, v) = 0 \right\},$$

and the map germ $\mathcal{L}_F : (\Sigma^s (F), (u_0, v_0)) \to PT^* \mathbb{R}^k$ defined by

$$\mathcal{L}_F (u, v) = \left(v, \left[\frac{\partial F}{\partial v_1} (u, v) : \ldots : \frac{\partial F}{\partial v_k} (u, v) \right] \right)$$

is a Legendrian immersion germ. Then we have the following fundamental theorem of Arnol’d and Zakalyukin [1, 12].

Proposition 2.3. All Legendrian submanifold germs in $PT^* \mathbb{R}^k$ are constructed by the above method.

We call F a generating family of $\mathcal{L}_F (\Sigma^s (F))$. Therefore the wave front is

$$W (\mathcal{L}_F) = \left\{ v \in \mathbb{R}^k \mid \exists u \in \mathbb{R}^{n-r} \text{ such that } F (u, v) = \frac{\partial F}{\partial u_1} (u, v) = \ldots = \frac{\partial F}{\partial u_{n-r}} (u, v) = 0 \right\}.$$

We call it the discriminant set of F. In [9] we showed that the lightcone height function H is a Morse family of hypersurface and its discriminant set is the image of Gauss images $\mathbb{L}^\pm (U)$. Therefore we have an immersion germ $\mathcal{L}^\pm : (\Sigma^+_\pm (H), (u_0, v^+_0)) \to PT^* (LC^+_\pm)$ defined by

$$\mathcal{L}^\pm (u) = \left(v^\pm, \left[\frac{\partial H}{\partial v_1} (u, v^\pm) : \ldots : \frac{\partial H}{\partial v_n} (u, v^\pm) \right] \right),$$

where $v^\pm = \mathbb{L}^\pm (u)$ and $\Sigma^+_\pm (H)$ is a singular set of H.
3 Spacelike submanifolds in de Sitter space

In this section, we consider the differential geometry of spacelike submanifolds in de Sitter space, which is analogous to [6].

Let \(r \) be an integer at least two and \(\mathbf{X} : U \rightarrow S^n_1 \) be an embedding from an open set \(U \subset \mathbb{R}^{n-r} \). We say that \(\mathbf{X} \) is spacelike in \(S^n_1 \) if every non zero vector generated by \(\{ \mathbf{X}_u(u) \}_{i=1}^{n-r} \) is spacelike, where \(u \in U \) and \(\mathbf{X}_u = \partial \mathbf{X}/\partial u_i \). We identify \(M = \mathbf{X}(U) \) with \(U \) through the embedding \(\mathbf{X} \) and call \(M \) a spacelike submanifold of codimension \(r \) in de Sitter space. Since \(\langle \mathbf{X}, \mathbf{X} \rangle \equiv 1 \), so that \(\langle \mathbf{X}_u, \mathbf{X} \rangle \equiv 0 \) for \(i = 1, \ldots, n - r \). The tangent space of \(M \) at \(p = \mathbf{X}(u) \) is spanned by the vectors \(\mathbf{X}_u(u) \) for \(i = 1, \ldots, n - r \).

Let \(N_pM \) be the normal space of \(M \) at \(p \) in \(\mathbb{R}^{n+1}_1 \) and we define \(N^*_p(M) = N_pM \cap T_pS^n_1 \). Let \(\mathbf{n}(u) : U \rightarrow N^*_p(M) \) be a timelike unit normal of \(M \). Since \(\langle \mathbf{n}, \mathbf{n} \rangle \equiv -1 \) and \(\langle \mathbf{X}, \mathbf{n} \rangle \equiv 0 \), \(\mathbf{n}_i \) is pseudo orthogonal to both of \(\mathbf{X} \) and \(\mathbf{n} \) for \(i = 1, \ldots, n - r \). Therefore we have \(\mathbf{n}_u(u) \in T_pM \oplus N^*_p(M) \). Consider two pseudo orthonormal projections

\[
\pi_p^t : T_p^{\mathbb{R}^{n+1}} \rightarrow T_pM, \quad \pi_p^n : T_p^{\mathbb{R}^{n+1}} \rightarrow N_pM.
\]

Let \(d_u \mathbf{n} \) be the derivative of \(\mathbf{n} \) at \(u \), under the identification of \(M \) and \(U \) through \(\mathbf{X} \), we have the linear transformations on \(T_pM \)

\[
d_p \mathbf{n}^T = \pi_p^t \circ d_u \mathbf{n}, \quad d_p \mathbf{n}^N = \pi_p^n \circ d_u \mathbf{n}.
\]

We respectively call the linear transformation \(A_p(\mathbf{n}) = -d_p \mathbf{n}^T \) and \(S_p(\mathbf{n}) = -(\text{id}_{T_pM} + d_p \mathbf{n}^T) \) an \(\mathbf{n} \)-shape operator and a horospherical \(\mathbf{n} \)-shape operator of \(M \) at \(p = \mathbf{X}(u) \). We also call the linear map \(d_p \mathbf{n}^N \) a normal connection with respect to the timelike normal \(\mathbf{n} \) of \(M \).

We denote eigenvalues of \(A_p(\mathbf{n}) \) and \(S_p(\mathbf{n}) \) by \(\kappa_p(\mathbf{n}) \) and \(\bar{\kappa}_p(\mathbf{n}) \), which we respectively call an \(\mathbf{n} \)-principal curvature and a horospherical \(\mathbf{n} \)-principal curvature. The horospherical Gauss-Kronecker curvature with respect to \(\mathbf{n} \) at \(p = \mathbf{X}(u) \) is defined to be

\[
K(\mathbf{n})(u) = \det S_p(\mathbf{n}).
\]

We say that a point \(p_0 = \mathbf{X}(u_0) \) is an \(\mathbf{n} \)-umbilic point if \(\det S_{p_0}(\mathbf{n}) = \bar{\kappa}_{p_0}(\mathbf{n}) \text{id}_{T_{p_0}M} \). Since the eigenvectors of \(\det S_{p_0}(\mathbf{n}) \) and \(\det A_{p_0}(\mathbf{n}) \) are the same, the above condition is equivalent to \(\det A_{p_0}(\mathbf{n}) = \kappa_{p_0}(\mathbf{n}) \text{id}_{T_{p_0}M} \). We say that the spacelike submanifold \(M \) is totally \(\mathbf{n} \)-umbilic if every point on \(M \) is \(\mathbf{n} \)-umbilic. We also say that the timelike unit normal vector field \(\mathbf{n} \) is parallel at \(p \) if \(d_p \mathbf{n}^N = 0_{T_pM} \). The timelike unit normal field \(\mathbf{n} \) is parallel if \(\mathbf{n} \) is parallel at any points on \(M \). Then we have the following result which is analogous to ([6], Proposition 3.1).

Proposition 3.1. Let \(\mathbf{X} : U \rightarrow S^n_1 \) be a spacelike submanifold of codimension \(r \geq 2 \). Suppose that \(M = \mathbf{X}(U) \) is totally \(\mathbf{n} \)-umbilic and timelike unit normal vector field \(\mathbf{n} \) is parallel. Then \(\kappa_p(\mathbf{n}), \bar{\kappa}_p(\mathbf{n}) \) are constant \(\kappa(\mathbf{n}), \bar{\kappa}(\mathbf{n}) \) and there exists a vector \(\mathbf{v} \in \mathbb{R}^{n+1}_1 \) such that \(M \) is a part of hyperplanes \(HP(\mathbf{v}, c) \cap S^n_1 \) in de Sitter space for some vector \(\mathbf{v} \) and real number \(c \). Under this condition we have following cases:

1. If \(1 < |\bar{\kappa}(\mathbf{n}) + 1| = |\kappa(\mathbf{n})| \) then \(M \) is a part of a hyperbolic hyperquadric \(HP(\mathbf{v}, +1) \).
(2) If $0 < |\tilde{\kappa}(n) + 1| = |\kappa(n)| < 1$ then M is a part of an elliptic hyperquadric $HP(v, +1).

(3) If $\tilde{\kappa}(n) + 1 = \kappa(n) = 0$ then M is a part of an elliptic hyperquadric $HP(v, 0)$.

(4) If $\kappa(n) = 1$ (namely $\tilde{\kappa}(n) = 0$) then M is a part of a de Sitter hyperhorosphere $HP(v, +1)$.

Proof. By the assumption, we have $d\nu(u) = \kappa_p d\nu_p$. This means that $\pi^T_p \circ \nu_u(u) = \kappa_p X_u(u)$. Since ν is parallel, we have $\nu_u(u) = \kappa_p X_u(u)$. So that $\nu_u(u) = \kappa_u, p X_u(u) + \kappa_p X_u(u)$. It follows that $X_u(u) = X_u(u)$, and $\nu_u(u) = \nu_u(u)$, then we have $\kappa_u = \kappa u, p X_u(u) = \kappa u, p X_u(u)$. Since $X_v(u)$ and $X_j(u)$ are linearly independent, Therefore $\kappa u, p = \kappa u, p = 0$, this means that κ_p and $\tilde{\kappa}_p$ are constant $\kappa, \tilde{\kappa}$.

We now assume that $\tilde{\kappa} + 1 = \kappa \neq 0$. By the assumption, we have $\nu_u(u) = -\kappa X_u(u)$, so that there exists a constant vector v such that $X(u) = v - (1/\kappa)\nu(u)$. Then the vector v satisfies $\langle v, v \rangle = 1 - 1/\kappa^2$ and $\langle X(u) - v, X(u) - v \rangle = -1/\kappa^2$, so that $\langle X(u), v \rangle = 1$ for any $u \in U$. This means that M is a part of hyperplanes in de Sitter space $HP(v, +1)$. Therefore we have (1), (2) and (4).

On the other hand, if $\kappa + 1 = \kappa = 0$ then there exists a constant timelike vector v such that $\nu(u) = v$ for any $u \in U$. So that $\langle X(u), v \rangle = \langle X(u), \nu(u) \rangle = 0$ for any $u \in U$. This means that $M \subset HP(v, 0)$. Therefore (3) holds. This completes the proof. \square

We now consider the following Weingarten type formula. Since $\{X_u\}_{j=1}^{n-r}$ spans a spacelike vector subspace, we induce a Riemannian metric (the horospherical first fundamental form) by $ds^2 = \sum_{i,j=1}^{n-r} g_{ij} du_i du_j$ on $M = X(U)$, where $g_{ij} = \langle X_u, X_u \rangle$. We respectively define the second fundamental invariant and horospherical second fundamental invariant with respect to the timelike unit normal vector field ν by $h_{ij}(\nu) = -\langle \nu_u, X_u \rangle$ and $h_{ij}(\nu) = -\langle X_u + \nu_u, X_u \rangle$. We have the relation

$$
\tilde{h}_{ij}(\nu) = -g_{ij} + h_{ij}(\nu) \quad \text{(for } i, j = 1, \ldots, n - r).$

Under the above notations, we have the following Weingarten type formula with respect to the timelike unit normal vector field ν, which is analogous to ([6], Proposition 3.2).

$$
\pi^T \circ (X + \nu)_u = -\sum_{k=1}^{n-r} \tilde{h}_{ik}(\nu) X_u,
$$

where $(\tilde{h}_{ik}(\nu))_{ij} = (\tilde{h}_{ik}(\nu))_{ik} (g^{kj})_{kj}$ and $(g^{kj}) = (g_{kj})^{-1}$. Therefore, the Gauss-Kronecker curvature with respect to ν is given by

$$
K(\nu) = \det(\tilde{h}_{ik}(\nu)) / \det(g_{kj}).
$$

Since $\langle X + \nu, X_u \rangle \equiv 0$, the coefficient of the second fundamental form with respect to the timelike parallel unit normal vector field ν is expressed by

$$
\tilde{h}_{ij}(\nu) = -\langle X_u + \nu_u, X_u \rangle
= -\partial \langle X + \nu, X_u \rangle / \partial u_i + \langle X + \nu, X_u, u_j \rangle
= \langle X + \nu, X_u, u_j \rangle.
$$

Therefore the horospherical second fundamental invariant at a point \(p_0 = X(u_0) \) depends only on the timelike vector \(n_0 = n(u_0) \). It is independent of the choice of timelike parallel unit normal vector field \(n \) with \(n(u_0) = n_0 \).

Let \(n_0 \) be a timelike unit normal vector, we say that a point \(p_0 = X(u_0) \) is an \(n_0 \)-parabolic point (resp. \(n_0 \)-umbilic point) of \(M \) if \(K(n)(u_0) = 0 \) (\(S_{p_0}(n) = -\bar{\kappa}_{p_0}id_{T_{p_0}M} \)) for some timelike parallel unit normal vector field \(n \) with \(n(u_0) = n_0 \). We also say that \(p_0 \) is an \(n_0 \)-horospherical point if it is an \(n_0 \)-parabolic point and an \(n_0 \)-umbilic point.

4 Horospherical hypersurfaces and horospherical height functions

In this section we introduce the notions of horospherical height function and horospherical hypersurface.

Let \(X : U \rightarrow S^n_1 \) be a spacelike submanifolds of codimension \(r \geq 2 \) in de Sitter space and \(p = X(u) \), we choose unit orthonormal sections

\[
N_p(M) = \langle X(u), n_0(u), n_1(u), \ldots, n_{r-1}(u) \rangle,
\]

where \(n_0(u) \) is a timelike unit vector and \(n_i(u) \) for \(i = 1, \ldots, r - 1 \) are spacelike unit vectors. We define a map \(e : U \times H^{r-1}(-1) \rightarrow H^{n-1}(-1) \) by

\[
e(u, \mu) = \mu_0 n_0(u) + \sum_{i=1}^{r-1} \mu_i n_i(u),
\]

where \(\mu = (\mu_0, \ldots, \mu_{r-1}) \). Let \(\theta \) be a fixed real number, we also define a map \(\bar{X}_\theta : U \times H^{r-1}(-1) \rightarrow S^n_1 \) by

\[
\bar{X}_\theta(u, \mu) = \cosh \theta X(u) + \sinh \theta e(u, \mu).
\]

We remark that for any spacelike submanifold \(X \) and point \((u_0, \mu_0) \in U \times H^{r-1}(-1)\), there are a real number \(\theta \neq 0 \) and an open neighborhood \(V \) of \((u_0, \mu_0)\) such that \(\bar{X}_\theta \) is spacelike embedding on \(V \). We assume that for any \((u, \mu) \in V\) then \((u, -\mu) \in V\). We write \(CM \) as an image \(\bar{X}_\theta(V) \) and call it a spacelike canal hypersurface of \(M = X(U) \). Izumiya, Pei, Romero Fuster, Takahashi [6] has introduced the notion of canal surfaces of submanifolds in the hyperbolic space.

We now consider the horospherical height function on a spacelike submanifold. For a spacelike submanifolds \(X \) of codimension \(r \), we define a function

\[
H : U \times LC^* \rightarrow \mathbb{R}
\]

by \(H(u, v) = \langle X(u), v \rangle - 1 \), and we call \(H \) a horospherical height function on \(M \). For \(v_0 \in LC^* \) we denote \(h_{v_0}(u) = \langle X(u), v_0 \rangle - 1 \). We have the following proposition which is analogous to ([6], Proposition 3.4).
Proposition 4.1. Let $H : U \times LC^* \longrightarrow \mathbb{R}$ be a horospherical height function of a spacelike submanifold $X : U \longrightarrow S^n_1$ of codimension r. Then $H(u, v) = \partial H(u, v)/\partial u_i = 0$ for $i = 1, \ldots, n - r$ if and only if $v = X(u) + e(u, \mu)$ for some $\mu \in H^{r-1}(-1)$.

The proof for above proposition are parallel to those of Proposition 3.4 in [6], so that we omit it. Therefore the discriminant set of the horospherical height function H is

$$D_H = \{X(u) + e(u, \mu) \mid (u, \mu) \in U \times H^{r-1}(-1)\}.$$ We define a map $HS_X : U \times H^{r-1}(-1) \longrightarrow LC^*$ by

$$HS_X(u, \mu) = X(u) + e(u, \mu),$$

which we call a *horospherical hypersurface of M*. We remark that HS_X depends on the choice of the orthonormal frames of $N(M)$. Let $\{X, n_0, \ldots, n_{r-1}\}$ and $\{X, n'_0, \ldots, n'_{r-1}\}$ be two orthonormal frames of $N(M)$ with $n_0, n'_0 \in H^r_+(1)$. Then we have $n_i = \sum_{j=0}^{r-1} \lambda_i^j n'_j$, where

$$\lambda_i^j(u) = \begin{cases} -\langle n_i, n'_j \rangle & \text{if } j = 0 \\ \langle n_i, n'_j \rangle & \text{if } j = 1, \ldots, r - 1. \end{cases}$$

So that we have a diffeomorphism $\Phi : U \times H^{r-1}(-1) \longrightarrow U \times H^{r-1}(-1)$ defined by

$$\Phi(u, \mu) = \left(u, \left(\sum_{i=0}^{r-1} \lambda_i^0(u)\mu_i, \ldots, \sum_{i=0}^{r-1} \lambda_i^{r-1}(u)\mu_i\right)\right).$$

We also define $e'(u, \mu) = \sum_{i=0}^{r-1} \mu_i n'_i(u)$. It follows from the above definition that $e(u, \mu) = e' \circ \Phi(u, \mu)$ Therefore we have

$$HS_X(u, \mu) = HS'_X \circ \Phi(u, \mu),$$

where $HS'_X = X(u) + e'(u, \mu)$. This means that HS_X is independent to the choice of orthonormal frames of $N(M)$ up to the diffeomorph parametrization. We have a following proposition which is analogous to ([6], Proposition 3.5).

Proposition 4.2. Let $X : U \longrightarrow S^n_1$ be a spacelike hypersurface of codimension $r \geq 2$ in de Sitter space, then $HS_X(u, \mu) = X(u) + e(u, \mu)$ is constant map for some smooth map $\mu : U \longrightarrow H^{r-1}(-1)$ if and only if M is a part of de Sitter hyperhorosphere $HP(v, 1) \cap S^n_1$. By Proposition 3.1, If M is totally $e(u, \mu(u))$-umbilic for some parallel normal vector field $e(u, \mu(u))$ and $K(e(u, \mu(u)))(u) = 0$, then the above assertion holds.

Proof. Suppose that $v_0 = X(u) + e(u, \mu)$ is a constant vector. Since $e(u, \mu)$ is pseudo orthogonal to $X(u)$, then we have $\langle X(u), v_0 \rangle = +1$ for any $u \in U$. This means that M is a part of a de Sitter hyperhorosphere $HP(v_0, 1) \cap S^n_1$. On the other hand, if $M \subset HP(v_0, 1) \cap S^n_1$ for some lightlike vector, then $\langle v_0 - X(u), X(u) \rangle = 0$ for any $u \in U$. Since $X(u)$ is pseudo orthogonal to
$X_{u_i}(u)$, it follows that $\langle v_0 - X(u), X_{u_i}(u) \rangle = 0$. This means that $X(u) - v_0$ is a normal vector of M at $p = X(u)$. We define a function $\mu(u)$ by

$$\mu(u) = -\langle X(u) - v_0, n_0(u) \rangle n_0(u) + \sum_{i=1}^{r-1} \langle X(u) - v_0, n_i(u) \rangle n_i(u).$$

Then we have $v_0 - X(u) = e(u, \mu)$. This completes the proof.

Since the image of HS_X is the discriminant set of the horospherical height function H on M, the singular set of HS_X corresponds to the null set of the Hessian matrix of the horospherical height function with the fixed parameter v at each point. Therefore we have the following proposition which is analogous to ([6], Proposition 3.6).

Proposition 4.3. The singular set of HS_X is given by

$$\Sigma(HS_X) = \{(u, \mu) \in U \times H^{r-1}(-1) \mid K(e(u, \mu))(u) = 0\}.$$

Proof. Let $h_v(u)$ be a horospherical height function with $v \in LC^*$, then we have $\text{Hess} h_v(u) = \langle X_{u_{ij}}(u), v \rangle$. Suppose that $(u, v) \in \Sigma(H)$, then $v = X(u) + e(u, \mu)$ for some $\mu \in H^{r-1}(-1)$. We recall that $\hat{h}_{ij}(v)(u) = \langle X_{u_{ij}}(u), X(u) + e(u, \mu) \rangle$, where $(\hat{h}_{ij}(v)(u))$ is the horospherical second fundamental invariant with respect to the timelike direction $e(u_0, \mu_0)$. The horospherical Gauss-Kronecker curvature is $K(e(u, \mu))(u) = \text{det}(\langle X_{u_{ij}}(u), X(u) + e(u, \mu) \rangle) / \text{det}(g_{ij}(u)) = \text{det} h_v(u) / \text{det}(g_{ij}(u))$, where $(g_{ij}(u))$ is the first fundamental invariant of M. Therefore $\text{Hess} h_v(u) = 0$ if and only if $K(e(u, \mu))(u) = 0$. This completes the proof.

Therefore the singular set of HS_X corresponds to the parabolic set of M with respect to some timelike parallel normal vector field $e(u, \mu)$. By the proof of above proposition, we have $\text{rank} \text{Hess} h_{v_0}(u_0) = \text{rank} (\hat{h}_{ij}(u_0))_{ij}$. Therefore we also have the following proposition which is analogous to ([6], Proposition 3.7).

Proposition 4.4. For any spacelike submanifold X of codimension $r \geq 2$ and lightlike vector $v_0 = X(u_0) + e(u_0, \mu_0)$, we have the following assertions.

1. A point $p_0 = X(u_0)$ is an $e(u_0, \mu_0)$-parabolic point if and only if $\text{det} \text{Hess} h_{v_0}(u_0) = 0$.

2. A point p_0 is an $e(u_0, \mu_0)$-horospherical point if and only if $\text{rank} \text{Hess} h_{v_0}(u_0) = 0$.

Here $h_{v_0}(u_0)$ is a Hessian matrix of $h_{v_0}(u)$ at $u = u_0$.

We now consider the lightcone height function and the lightcone Gauss image of spacelike canal hypersurface $\tilde{X}_\theta : V \rightarrow S^n_1$ with $V \subset U \times H^{r-1}(-1)$. The lightcone height function $\tilde{H} : V \times LC^* \rightarrow \mathbb{R}$ of the spacelike hypersurface \tilde{X}_θ is

$$\tilde{H}((u, \mu), v) = \langle \tilde{X}_\theta(u, \mu), v \rangle - 1.$$

We denote $\tilde{h}_v(u) = \tilde{H}((u, \mu), v)$ for any $v \in LC^*$. Now we define a map $\tilde{e} : V \rightarrow H^{n-1}(-1)$ by $\tilde{e}(u, \mu) = \sinh \theta X(u) + \cosh \theta e(u, \mu)$. Then we have $\langle \tilde{e}(u, \mu), \tilde{X}_\theta(u) \rangle = \langle \tilde{e}(u, \mu), \tilde{X}_\theta(u) \rangle = 0$.
for any \((u, \mu) \in V\) and \(i = 1, \ldots, n - r\). Therefore \(\bar{e}\) is a lightlike normal of \(CM\). The positive lightcone Gauss image \(\mathbb{L}_{CM} : V \longrightarrow LC^*\) is defined by
\[
\mathbb{L}_{CM}(u, \mu) = \bar{X}_\theta(u) + \bar{e}(u, \mu) = (\cosh \theta + \sinh \theta)(X(u) + e(u, \mu)).
\]
By Proposition 2.2, \(\bar{H}((u, \mu), v) = \bar{H}_u((u, \mu), v) = \bar{H}_\mu((u, \mu), v) = 0\) for \(i = 1, \ldots, n - r\) and \(j = 0, \ldots, r - 1\) if and only if \(v = X_\theta(u) \pm \bar{e}(u, \mu) = e^{\pm \theta}(X(u) + e(u, \pm \mu))\). By assumption, \((u, -\mu)\) is also an element of \(V\). Therefore the discriminant set of the lightcone height function \(\bar{H}\) is
\[
D(\bar{H}) = \{e^{\pm \theta}(X(u) + e(u, \mu)) \mid (u, \mu) \in V\}.
\]
We now define a diffeomorphism
\[
\mathcal{M}_c : LC^* \longrightarrow LC^*
\]
given by \(\mathcal{M}_c(v) = cv\) for a fixed positive real number \(c\). Then we have the following lemma, which is analogous to ([6], Proposition 3.9).

Lemma 4.5. Under the above notations, we have
\[
\mathcal{M}_c \circ HS_X(u, \mu) = \mathbb{L}_{CM}(u, \mu)
\]
on \(V \subset U \times H^{r-1}(-1)\), where \(c = e^{\pm \theta}\).

By the above lemma, the horospherical hypersurface \(HS_X\) is locally diffeomorphic to the lightcone Gauss image of the spacelike canal hypersurface \(\bar{X}_\theta\).

5 Horospherical hypersurfaces as wave fronts

In this section we naturally interpret the horospherical hypersurfaces of \(M\) as a wave front set of the horospherical height functions in the theory of Legendrian singularities.

By proceeding arguments in §2, the horospherical hypersurface \(HS_X\) is the discriminant set of the horospherical height function \(H\), and the singular point set of the horospherical hypersurface is the horospherical point set. We have the following proposition which is analogous to ([6], Proposition 4.1).

Proposition 5.1. Let \(X : U \longrightarrow S^n_r\) be a spacelike submanifold of codimension \(r \geq 2\) and \(H : U \times LC^* \longrightarrow \mathbb{R}\) be a horospherical height function of \(M\). Then \(H\) is a Morse family.

Proof. We denote \(X(u) = (X_0(u), \ldots, X_n(u))\) and \(X_{u_i}(u) = (X_{0, u_i}(u), \ldots, X_{n, u_i}(u))\). For any \(v = (v_0, \ldots, v_n) \in LC^*\), we have \(v_0 \neq 0\). Without loss of generality, we assume that \(v_0 = \sqrt{v_1^2 + \cdots + v_n^2} > 0\), so that we have
\[
H(u, v) = \langle X(u), v \rangle - 1 = -X_0v_0 + \sum_{i=1}^{n} X_n v_n - 1.
\]
We now prove a map
\[
\Delta^* H = \left(H, \frac{\partial H}{\partial u_1}, \ldots, \frac{\partial H}{\partial u_{n-r}} \right)
\]
is non singular at any \((u, v) \in \Sigma_*(H)\). The Jacobian matrix of \(\Delta^* H\) is
\[
J\Delta^* H(u, v) = \begin{pmatrix}
\ast & \frac{\partial H}{\partial v_j}(u, v)_{j=1, \ldots, n} \\
\ast & \left(\frac{\partial^2 H}{\partial u_i \partial v_j}(u, v) \right)_{j=1, \ldots, n, i=1, \ldots, n-r}
\end{pmatrix}.
\]
We denote an \((n - r + 1) \times n\) matrix \(B\) by \(J\Delta^* H = (\ast | B)\). It is sufficient to show that \(\text{rank } B = n - r + 1\) at \((u, v) \in \Sigma_*(H)\). We also denote an \((n - r + 3) \times (n + 1)\) matrix \(C\) by
\[
C = \begin{pmatrix}
1 & 0 & \cdots & 0 \\
v_0 & v_1 & \cdots & v_n \\
X_0 & X_1 & \cdots & X_n \\
X_{0,u_1} & X_{1,u_1} & \cdots & X_{n,u_1} \\
\vdots & \vdots & \ddots & \vdots \\
X_{0,u_{n-r}} & X_{1,u_{n-r}} & \cdots & X_{n,u_{n-r}}
\end{pmatrix}
\]
We now show that the rank of the matrix \(C\) is equal to \(n - r + 3\). Since \(v, X(u)\) and \(X_{u_i}(u)\) are linearly independent for all \((u, v) \in \Sigma_*(H)\), it is sufficient to show that timelike unit vector \(e = (1, 0, \ldots, 0)\) can not be written by a linear combination of \(v, X(u)\) and \(X_{u_i}(u)\). If that is not so, there exists some real numbers \(\eta, \mu, \xi\) such that \(e = \eta v + \mu X(u) + w = \sum_{i=1}^{n-r} \xi_i X_{u_i}(u)\). Then we have \(\langle e, e \rangle = \mu^2 + \langle w, w \rangle\). However, \(w\) is a spacelike vector, so that \(\langle e, e \rangle\) would not be negative, which contradicts our assumption. This means that \(e, v, X(u)\) and \(X_{u_i}(u)\) are linearly independent, therefore we have rank \(C = n - r + 3\).

We now show rank \(B = \text{rank } C' - 2\). We subtract the second row multiplied by \(X_0/v_0\) from the third row of the matrix \(C\), and add the second row multiplied by \(X_{0,u_k}(u)/v_0\) from the \((3 + k)\)-th row for \(k = 1, \ldots, n - r\). Then we have a matrix
\[
C'' = \begin{pmatrix}
1 & 0 & \cdots & 0 \\
v_0 & v_1 & \cdots & v_n \\
0 & v_1 & \cdots & v_n \\
\vdots & \vdots & \ddots & \vdots \\
0 & v_1 & \cdots & v_n \\
\vdots & \vdots & \ddots & \vdots \\
0 & v_1 & \cdots & v_n \\
\end{pmatrix} B
\]
Therefore we have rank \(B = \text{rank } C' - 2 = n - r + 1\). This completes the proof.

Since \(H\) is a Morse family of hypersurfaces, we have the Legendrian immersion germ \(L_H : (\Sigma_*(H), (u_0, v_0)) \to PT^*(LC^*)\) defined by
\[
L_H(u, v) = \left(v, \left[\frac{\partial H}{\partial u_1}(u, v) : \ldots : \frac{\partial H}{\partial u_{n-r}}(u, v) \right] \right).
\]
We remark that the wave front set of the Legendrian immersion germ L_H is the horospherical hypersurfaces HS_X of M. On the other hand, we define a contact diffeomorphism $\tilde{M}_c : PT^*(LC^*) \longrightarrow PT^*(LC^*)$ by

$$\tilde{M}_c(v, [\xi]) = (cv, [\xi]),$$

where c is a fixed real parameter with $c \neq 0$. By definition, we have the following theorem.

Theorem 5.2. For a spacelike submanifold $X : U \longrightarrow S^n_1$, we have

$$\tilde{M}_c \circ L_H = L_{\tilde{H}},$$

where $c = e^{\pm \theta}$ and $L_{\tilde{H}}$ is a Legendrian lift of the lightcone Gauss image L_{CM} of the spacelike canal hypersurface of M.

By the above theorem, the Legendrian lift of the lightcone Gauss image L_{CM} is \mathcal{A}-equivalent to the Legendrian lift of the horospherical hypersurface HS_X of M.

6 Contact with de Sitter hyperhorospheres

In this section we use the theory of contacts between the spacelike submanifolds and the de Sitter hyperhorospheres due to Montaldi [10].

Let X_i and Y_i $(i = 1, 2)$ be submanifolds of \mathbb{R}^n with $\dim X_1 = \dim X_2$, $\dim Y_1 = \dim Y_2$ and $y_i \in X_i \cap Y_i$ for $i = 1, 2$. We say that the contact of X_1 and Y_1 at y_1 is the same type as the contact of X_2 and Y_2 at y_2 if there is a diffeomorphism germ $\Phi : (\mathbb{R}^n, y_1) \longrightarrow (\mathbb{R}^n, y_2)$ such that $\Phi((X_1, y_1)) = (X_2, y_2)$ and $\Phi((Y_1, y_1)) = (Y_2, y_2)$. In this case we write $K(X_1, Y_1; y_1) = K(X_2, Y_2; y_2)$. Two function germs $g_1, g_2 : (\mathbb{R}^n, a_i) \longrightarrow (\mathbb{R}, 0)$ $(i = 1, 2)$ are \mathcal{K}-equivalent if there are a diffeomorphism germ $\Phi : (\mathbb{R}^n, a_1) \longrightarrow (\mathbb{R}^n, a_2)$ and a function germ $\lambda : (\mathbb{R}^n, a_1) \longrightarrow \mathbb{R}$ with $\lambda(a_1) \neq 0$ such that $f_1 = \lambda \cdot (g_2 \circ \Phi)$. In [10] Montaldi has shown the following theorem.

Theorem 6.1. ([10]) Let X_i and Y_i $(i = 1, 2)$ be submanifolds of \mathbb{R}^n with $\dim X_1 = \dim X_2$, $\dim Y_1 = \dim Y_2$ and $y_i = X_i \cap Y_i$ for $i = 1, 2$. Let $g_i : (X_i, x_i) \longrightarrow (\mathbb{R}^n, y_i)$ be immersion germs and $f_i : (\mathbb{R}^n, y_i) \longrightarrow (\mathbb{R}, 0)$ be submersion germs with $(Y_i, y_i) = (f_i^{-1}(0), y_i)$. Then $K(X_1, Y_1; y_1) = K(X_2, Y_2; y_2)$ if and only if $f_1 \circ g_1$ and $f_2 \circ g_2$ are \mathcal{K}-equivalent.

We now consider the function $\mathcal{H} : S^n_1 \times LC^* \longrightarrow \mathbb{R}$ defined by $\mathcal{H}(x, v) = \langle x, v \rangle - 1$. Given $v_0 \in LC^*$, we denote $h_{v_0}(x) = \mathcal{H}(x, v_0)$, so that we have $h_{v_0}^{-1}(0) = HP(v_0, +1) \cap S^n_1$. Let $X : U \longrightarrow \mathbb{R}^n_1$ be a spacelike submanifold of codimension $r \geq 2$. For any $u_0 \in U$ and $\mu_0 \in H^{r-1}(-1)$, we take a point $v_0 = X(u_0) + e(u_0, \mu_0)$. By Proposition 4.1, we have

$$\frac{\partial (h_{v_0} \circ X)}{\partial u_i}(u_0) = \frac{\partial H}{\partial u_i}(u_0, X(u_0) + e(u_0, \mu_0)) = 0.$$

It follows that the de Sitter hyperhorosphere $h_{v_0}^{-1}(0) = HP(v_0, +1) \cap S^n_1$ is tangent to M at $p_0 = X(u_0)$. In this case we call $HP(v_0, +1) \cap S^n_1$ a tangent de Sitter hyperhorosphere (briefly,
tangent hyperhorosphere) with respect to $X(u_0) + e(u_0, \mu_0)$. We may also consider the contacts of the spacelike canal surface $CM = \bar{X}(V)$ and the de Sitter horospheres. (see [7])

We now review some notions of Legendrian singularity theory to study the contact between hypersurfaces and de Sitter hyperhorospheres. We say that Legendrian immersion germs $i_1 : (U_1, u_1) \rightarrow (PT^*\mathbb{R}^n, p_1)$ $(i = 1, 2)$ are Legendrian equivalent if there are a contact diffeomorphism germ $H : (PT^*\mathbb{R}^n, p_1) \rightarrow (PT^*\mathbb{R}^n, p_2)$ and a diffeomorphic germ $\tau : (U_1, u_1) \rightarrow (U_2, u_2)$ such that H preserves fibers of π and $H \circ i_1 = i_2 \circ \tau$. A Legendrian immersion germ at a point is said to be Legendrian stable if for every map with the given germ there is a neighborhood in the space of Legendrian immersions (in the Whitney C^∞-topology) and a neighborhood of the original point such that each Legendrian map belonging to the first neighborhood has in the second neighborhood a point at which its germ is Legendrian equivalent to the original germ. (see [1])

Proposition 6.2. ([13]) Let i_1, i_2 be Legendrian immersion germs such that regular sets of $\pi \circ i_1$ and $\pi \circ i_2$ are respectively dense. Then i_1, i_2 are Legendrian equivalent if and only if corresponding wave front sets $W(i_1)$ and $W(i_2)$ are diffeomorphic as set germs.

Let $F_i : ((\mathbb{R}^n \times \mathbb{R}^k, (a_i, b_i)) \rightarrow (\mathbb{R}, c)$ $(k = 1, 2)$ be k-parameter unfoldings of function germs f_i, we say F_1 and F_2 are \mathcal{P}-\mathcal{K}-equivalent if there exists a diffeomorphism germ $\Phi : (\mathbb{R}^n \times \mathbb{R}^k, (a_1, b_1)) \rightarrow (\mathbb{R}^n \times \mathbb{R}^k, (a_2, b_2))$ of the form $\Phi(u, x) = (\phi_1(u, x), \phi_2(x))$ for $(u, x) \in \mathbb{R}^n \times \mathbb{R}^k$ and a function germ $\lambda : (\mathbb{R}^n \times \mathbb{R}^k, (a_1, b_1)) \rightarrow \mathbb{R}$ such that $\lambda(a_1, b_1) \neq 0$ and $F_1(u, x) = \lambda(u, x) \cdot (F_2 \circ \Phi)(u, x)$.

Theorem 6.3. ([1, 12]) Let $F, G : (\mathbb{R}^k \times \mathbb{R}^n, 0) \rightarrow (\mathbb{R}, 0)$ be Morse families and denote the corresponding Legendrian immersion germs by $\mathcal{L}_F, \mathcal{L}_G$. Then

1. \mathcal{L}_F and \mathcal{L}_G are Legendrian equivalent if and only if F and G are \mathcal{P}-\mathcal{K}-equivalent.

2. \mathcal{L}_F is Legendrian stable if and only if F is \mathcal{K}-versal deformation of f.

Let $G_i : (\mathbb{R}^m, a_i) \rightarrow (\mathbb{R}^n, b_i)$ $(i = 1, 2)$ be map germs. We say that G_1 and G_2 are \mathcal{A}-equivalent if and only if there exist diffeomorphism germs $\phi : (\mathbb{R}^m, a_1) \rightarrow (\mathbb{R}^m, a_2)$ and $\Phi : (\mathbb{R}^n, b_1) \rightarrow (\mathbb{R}^n, b_2)$ such that $\Phi \circ G_1 = G_2 \circ \phi$.

We denote $h_{i,u_i} : (U, u_i) \rightarrow (\mathbb{R}, 0)$ $(i = 1, 2)$ by $h_{i,u_i}(u) = H_i(u, u_i)$. Then we have $h_{i,u_i}(u) = (h_{i,u_i} \circ X_i)(u)$. By Theorem 6.1,

$$K(X_1(U), HP(v_1, 1) \cap S^n_1; p_1) = K(X_2(U), HP(v_2, 1) \cap S^n_1; p_2)$$

if and only if h_{1,u_1} and h_{2,u_2} are \mathcal{K}-equivalent.

Let $Q(X, u_0)$ be the local ring of the horospherical height function germ $h_{v_0} : (U, u_0) \rightarrow \mathbb{R}$ defined by

$$Q(X, u_0; \mu_0) = C^\infty_{u_0}(U)/\langle h_{v_0} \rangle_{C^\infty_{u_0}(U)},$$

where $v_0 = X(u_0) + e(u_0, \mu_0)$, $\mu_0 \in H^{-1}(-1)$ and $C^\infty_{u_0}(U)$ is the local ring of function germs at u_0 with the unique maximal ideal \mathfrak{M}. We also denote $Q(\bar{X}_\theta, (u_0, \mu_0))$ as the local ring of the lightcone height function germ $\bar{h}_{v_0} : (U \times H^{-1}(-1), (u_0, \mu_0)) \rightarrow (\mathbb{R}, 0)$ of the canal hypersurface \bar{X}_θ, where $v_0' = L_{CM}(u_0, \mu_0)$.
Proposition 6.4. ([3], Proposition A.4) Let $F, G : (\mathbb{R}^k \times \mathbb{R}^n, 0) \rightarrow (\mathbb{R}, 0)$ be Morse families. Suppose that Legendrian immersion germs \mathcal{L}_F and \mathcal{L}_G are Legendrian stable, then the following conditions are equivalent:

1. $(W(\mathcal{L}_F), \lambda)$ and $(W(\mathcal{L}_G), \lambda')$ are diffeomorphic as set germs.
2. \mathcal{L}_F and \mathcal{L}_G are Legendrian equivalent.
3. $Q(f)$ and $Q(g)$ are isomorphic as \mathbb{R}-algebras, where $f = F |_{\mathbb{R}^k \times \{0\}}$ and $g = G |_{\mathbb{R}^k \times \{0\}}$.

By the above arguments, we have following theorem.

Theorem 6.5. Let $X_i : (U_i, u_i) \rightarrow (S^1_1, p_i)$ $(i = 1, 2)$ be spacelike submanifold germs of codimension at least two in de Sitter space. For $\mu_i \in H^{-1}(-1)$ $(i = 1, 2)$, we denote $v_i = HS_i(u_i, \mu_i), v'_i = \mathbb{L}_{CM}(u_i, \mu_i), h_{i,v_i} = H_i |_{U \times \{v_i\}}, \tilde{h}_{i,v'_i} = H_i |_{U \times \{v'_i\}}$ and $p'_i = X_i, \theta_i(u_i)$. If the corresponding Legendrian immersion germs \mathcal{L}_{H_i} are Legendrian stable, then the following conditions are equivalent:

1. Horospherical hypersurface germs HS_{X_1} and HS_{X_2} are \mathcal{A}-equivalent.
2. Legendrian immersion germs \mathcal{L}_{H_1} and \mathcal{L}_{H_2} are Legendrian equivalent.
3. Horospherical height function germs H_1 and H_2 are \mathcal{P}-\mathcal{K}-equivalent.
4. h_{1,v_1} and h_{2,v_2} are \mathcal{K}-equivalent.
5. $K(X_1(U), HP(v_1, 1) \cap S_1^n; p_1) = K(X_2(U), HP(v_2, 1) \cap S_1^n; p_2)$.
6. $Q(X_1, U_1)$ and $Q(X_2, U_2)$ are isomorphic as \mathbb{R}-algebras.
7. Lightcone Gauss image germs \mathbb{L}_{CM_1} and \mathbb{L}_{CM_2} are \mathcal{A}-equivalent.
8. Legendrian immersion germs \mathcal{L}_{H_1} and \mathcal{L}_{H_2} are Legendrian equivalent.
9. Lightcone height function germs \tilde{H}_1 and \tilde{H}_2 are \mathcal{P}-\mathcal{K}-equivalent.
10. \tilde{h}_{1,v'_1} and \tilde{h}_{2,v'_2} are \mathcal{K}-equivalent.
11. $K(CM_1, HP(v'_1, 1) \cap S_1^n; p'_1) = K(CM_2, HP(v'_2, 1) \cap S_1^n; p'_2)$.
12. $Q(\tilde{X}_{\theta_1}, (u_1, \mu_1))$ and $Q(\tilde{X}_{\theta_2}, (u_2, \mu_2))$ are isomorphic as \mathbb{R}-algebras.

In this case $(X_1^{-1}(HP(v_1, 1) \cap S_1^n), u_1)$ and $(X_2^{-1}(HP(v_2, 1) \cap S_1^n), u_2)$ are diffeomorphic as set germs.
Proof. Since \mathcal{L}_{H_1} and \mathcal{L}_{H_2} are Legendrian stable, regular sets of HS_{X_1} and HS_{X_2} are respectively dense, by applying Proposition 6.2, the conditions (1) and (2) are equivalent. And we apply Theorem 6.3, the conditions (2) and (3) are equivalent. By the previous arguments from Theorem 6.1, the conditions (4) and (5) are equivalent. If we assume the condition (3), then the P-K-equivalence of H_i $(i = 1, 2)$ preserves the K-equivalence of h_{i,v_i}, so that the condition (4) holds. Since the local rings $Q(X_i, u_i)$ are K-invariant, this means that the condition (6) holds. By Proposition 6.4, the condition (6) implies the condition (2). Therefore the conditions from (1) to (6) are equivalent.

By theorem 5.2, (2) and (8) are equivalent. Since \mathcal{L}_{H_i} are Legendrian stable, \mathcal{L}_{R_i} are also Legendrian stable. So that we may similarly show the equivalence of the conditions from (7) to (12). On the other hand, $h_{i,v_i}^{-1}(0) = (X_i^{-1}(HP(v_i, 1) \cap S^1_n), u_i)$ and K-equivalence preserves the zero level sets, so that $(X_i^{-1}(HP(v_i, 1) \cap S^1_n), u_i) (i = 1, 2)$ are diffeomorphic as set germs. This completes the proof.

7 Generic properties

In this section we consider generic properties of spacelike submanifolds of codimension $r \geq 2$ in S^1_n. Let U be an open subset of \mathbb{R}^{n-r}. We consider the space of spacelike embeddings $\text{Sp-Emb}(U, S^1_n)$ with Whitney C^∞-topology. We define a function $\mathcal{H} : S^1_n \times LC^* \longrightarrow \mathbb{R}$ by $\mathcal{H}(x, v) = \langle x, v \rangle$, and denote $h_u(x) = \mathcal{H}(x, v)$ Then h_u is a submersion for any $v \in LC^*$. For spacelike submanifolds $X \in \text{Sp-Emb}(U, S^1_n)$, we have $H = h_u \circ (X \times \text{id}_{LC^*})$. We also have the ℓ-jet extension $j^\ell \mathcal{H} : U \times S^1_n \longrightarrow J^\ell(U, \mathbb{R})$ defined by $j^\ell \mathcal{H}(x, v) = j^\ell h_u(u)$. We consider the trivialization $J^\ell(U, \mathbb{R}) \equiv U \times \mathbb{R} \times J^\ell(n - r, 1)$. For any submanifold $Q \subset J^\ell(n - r, 1)$, we denote $\tilde{Q} = U \times \{0\} \times Q$. Then we have the following proposition as a corollary of Lemma 6 of Wassermann [11].

Proposition 7.1. ([11]) Let Q be a submanifold of $J^\ell(n - 1, 1)$. Then the set

$$T_Q = \{x \in \text{Sp-Emb}(U, S^1_n) \mid j^\ell \mathcal{H} \text{ is transversal to } \tilde{Q}\}$$

is a residual subset of $\text{Sp-Emb}(U, S^1_n)$. If Q is a closed subset, then T_Q is open.

We remark that if the corresponding horospherical height function h_{uv} is ℓ-determined relative to K, then H is a K-versal deformation if and only if $j^\ell H$ is transversal to $\tilde{K}^\ell_{h_{uv}}$, where $\tilde{K}^\ell_{h_{uv}}$ is the K-orbit through $j^\ell h_{uv}(0) \in J^\ell(n - r, 1)$. Applying Theorem 6.3, this condition is equivalent to the condition that the corresponding Legendrian immersion germ is Legendrian stable. From the previous arguments and §5 in [6], we have the following proposition. (See also [1].)

Theorem 7.2. If $n \leq 6$, there exists an open subset $\mathcal{O} \subset \text{Sp-Emb}(U, S^1_n)$ such that for any $X \in \mathcal{O}$, the corresponding Legendrian immersion germ L is Legendrian stable.

Acknowledgment

The author wishes to express his thanks to Professor Shyuichi Izumiya for useful advices and valuable discussions.
References

Masaki Kasedou,
Department of Mathematics, Hokkaido University,
Sapporo 060-0810, Japan.
e-mail: kasedou@math.sci.hokudai.ac.jp