On decay rate of quenching profile at space infinity for axisymmetric mean curvature flow* ${ }^{*}$

Yoshikazu Giga, Yukihiro Seki and Noriaki Umeda
Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8914, Japan

Abstract

We study the motion of noncompact hypersurfaces moved by their mean curvature obtained by a rotation around x-axis of the graph a function $y=u(x, t)$ (defined for all $x \in \mathbf{R}$). We are interested to estimate its profile when the hypersurface closes open ends at the quenching (pinching) time T. We estimate its profile at the quenching time from above and below. We in particular prove that $u(x, T) \sim$ $|x|^{-a}$ as $|x| \rightarrow \infty$ if $u(x, 0)$ tends to its infimum with algebraic rate $|x|^{-2 a}($ as $|x| \rightarrow \infty$ with $a>0)$.

1 Introduction and main theorem

This is a continuation of our study [4] on motion of noncompact axisymmetric n-dimensional hypersurface Γ_{t} moved by its mean curvature. Let Γ_{t} be given by a rotation of the graph of a function $y=u(x, t)$ (defined on $x \in \mathbf{R}$) around the x-axis (cf [1, 2]). In our previous paper [4], among other results, we have proved that if $u(x, 0) \rightarrow m:=\inf _{x \in \mathbf{R}} u(x, 0)>0$ as $|x| \rightarrow \infty$, then Γ_{t} closes open ends at the time $T(m)$, where $T(m)$ is the quenching (pinching) time of the regular cylinder with radius m. (Moreover, there is no neck-pinch in \mathbf{R} at $t=T(m)$.) These results imply that

$$
\lim _{x \rightarrow \infty} u(x, T(m))=0 \quad \text { or } \quad \lim _{x \rightarrow-\infty} u(x, T(m))=0
$$

[^0]but it does not provide the convergence rate.
We are interested in studying the profile of $u(x, T(m))$, especially the behavior as $|x| \rightarrow \infty$ which is affected by initial data.

The equation for u is of the form

$$
\begin{equation*}
u_{t}=\frac{u_{x x}}{1+u_{x}^{2}}-\frac{n-1}{u}, \quad x \in \mathbf{R}, t>0 \tag{1}
\end{equation*}
$$

supplemented by initial data

$$
\begin{equation*}
u(x, 0)=u_{0}(x)>0, \quad x \in \mathbf{R} . \tag{2}
\end{equation*}
$$

The function u_{0} is assumed to satisfy

$$
\begin{align*}
& u_{0} \text { is bounded and uniformly continuous in } \mathbf{R}, \tag{3}\\
& m:=\inf _{x \in \mathbf{R}} u_{0}(x)>0 . \tag{4}
\end{align*}
$$

The Cauchy problem (1)-(2) has a unique positive classical solution with the conditions (3)-(4) to the initial data (cf [4]). However, the solution quenches in finite time. For a given initial datum u_{0}, we see

$$
T\left(u_{0}\right)=\sup \left\{t>0 ; \inf _{x \in \mathbf{R}} u(x, t)>0\right\}<\infty
$$

and call it the quenching time of u. It is clear that

$$
\lim _{t \rightarrow T\left(u_{0}\right)} \inf _{x \in \mathbf{R}} u(x, t)=0 .
$$

Let v be a solution of (1) with initial datum $m=\inf _{x \in \mathbf{R}} u_{0}(x)$. It is easily seen that

$$
\begin{equation*}
v^{\prime}=-\frac{n-1}{v}, t>0, \quad v(0)=m, \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
v(t)=\sqrt{2(n-1)(T(m)-t)} \quad \text { with } \quad T(m)=\frac{m^{2}}{2(n-1)} . \tag{6}
\end{equation*}
$$

It is immediate that $T\left(u_{0}\right) \geq T(m)$ by a comparison argument. We treat the case $T\left(u_{0}\right)=T(m)$. The notion of "minimal quenching time" was defined in [4], which is recalled below.

Definition 1.1. A solution of the Cauchy problem (1)-(2) is said to have a minimal quenching time, if

$$
T\left(u_{0}\right)=T(m) .
$$

In [4] we characterized solutions of (1)-(2) quenching only at space infinity. The following conditions on initial data u_{0} play essential roles in [4].
A. There exists a sequence $\left\{x_{k}\right\} \in \mathbf{R}$ such that $x_{k} \rightarrow \infty$ and $u_{0}\left(x+x_{k}\right) \rightarrow m$ a.e. in \mathbf{R} as $k \rightarrow \infty$.
B. There exists a sequence $\left\{x_{k}\right\} \in \mathbf{R}$ such that $x_{k} \rightarrow-\infty$ and $u_{0}\left(x+x_{k}\right) \rightarrow$ m a.e. in \mathbf{R} as $k \rightarrow \infty$.

For an initial datum satisfying (3)-(4), we proved in [4] the following results for the Cauchy problem (1)-(2):

1. A solution of (1)-(2) has a minimal quenching time, if and only if the conditions A or B holds.

Moreover, if u_{0} is not constant as well as the conditions A or B holds, then:
2. For an initial datum satisfying $u_{0} \not \equiv m$, the solution (1)-(2) quenches only at space infinity.
3. There exists a function $u(\cdot, T(m)) \in C^{\infty}(\mathbf{R})$ such that $u(\cdot, t) \rightarrow u(\cdot, T(m))$ in the Frechét space $C^{\infty}(\mathbf{R})$ as $t \rightarrow T(m), u(x, T(m))>0$ in the whole \mathbf{R} and

$$
\liminf _{x \rightarrow-\infty} u(x, T(m))=0 \quad \text { or } \quad \liminf _{x \rightarrow-\infty} u(x, T(m))=0
$$

For a solution u of (1)-(2) with minimal quenching time $T(m)$, we call $u(\cdot, T(m))$ the profile of u (at the quenching time $T(\mathrm{~m})$). The hypersurface corresponding to $u(\cdot, T(m))$ is called limit surface.

These are related studies on blow-up at infinity for the reaction-diffusion equations $[8,5,6,3,10,9,11]$ (see also [7]). We shall explain these papers at the end of this introduction. In particular, blow-up profile was discussed, for example, in [8] and [11] for a semilinear heat equation.

In this paper we consider the relation between the profile of a quenching solution at quenching time $T(m)$ and the form of initial data. Our goal, which is investigating the shape of limit surface, is similar to studying blowup profile. Inspired by the method used in $[8, \S 2 b]$ and $[11$, Theorems 1.3 and 1.5], we construct a subsolution and a supersolution of the form $\phi(T(m)-t+$ $g(x, t))$ with some function $g(x, t)$ decaying to zero at space infinity, where

$$
\begin{equation*}
\phi(s)=v(T(m)-s)=\sqrt{2(n-1) s} \tag{7}
\end{equation*}
$$

in order to estimate the profile at the quenching time. Let $\psi(x)$ be a positive function satisfying the following conditions:

$$
\begin{align*}
& \sqrt{\psi(x)} \text { is bounded and uniformly continuous in } \mathbf{R} ; \tag{8}\\
& \psi(x)>0 \text { for } x \in \mathbf{R} ; \tag{9}\\
& \lim _{x \rightarrow \infty} \psi(x)=0 \text { or } \lim _{x \rightarrow-\infty} \psi(x)=0 ; \tag{10}
\end{align*}
$$

there exist constants $C_{1}>0$ and $C_{2}>0$ such that

$$
\begin{align*}
& \psi(x) \leq C_{1} \max \left\{\inf _{z \in[x-1, x]} \psi(z), \inf _{z \in[x, x+1]} \psi(z)\right\} \quad \text { for } x \in \mathbf{R} ; \tag{11}\\
& \psi(x-y) \leq C_{2} \exp \left(a|y|^{2}\right) \psi(x) \quad \text { for } x, y \in \mathbf{R}, a \in\left(0, \frac{1}{4 T(m)}\right) . \tag{12}
\end{align*}
$$

Example 1.2. The functions $\psi(x)=\left(|x|^{2}+1\right)^{-b / 2}, e^{-b|x|}$ and $(\log (|x|+e))^{-b}$ with $b>0$ satisfy (8)-(12).

Theorem 1.3. Let ψ be a function satisfying (8)-(12). Assume that (3)-(4) hold and that there exist constants $C_{I}>0$ and $C_{I I}>0$ such that

$$
\begin{equation*}
u_{0}^{2}(x)-m^{2} \geq C_{I} \psi(x) \quad\left(\text { or } \leq C_{I I} \psi(x)\right) \tag{13}
\end{equation*}
$$

Then there exists $C=C\left(C_{1}, C_{2}, a, T(m), C_{I}\right)>0$ (or $C^{\prime}=C^{\prime}\left(C_{1}, C_{2}, a\right.$, $\left.T(m), C_{I I}\right)>0$) such that the solution of the Cauchy problem (1)-(2) satisfies

$$
u(x, T(m)) \geq C \sqrt{\psi(x)} \quad\left(o r \leq C^{\prime} \sqrt{\psi(x)}\right)
$$

By setting $\psi(x)=\langle x\rangle^{-2 a_{1}}$ (or $\langle x\rangle^{-2 a_{2}}$) with $\langle x\rangle=\left(1+|x|^{2}\right)^{1 / 2}$, we obtain algebraic decay at the space infinity.

Corollary 1.4. Assume that there exist constants $a_{1}>0, a_{2}>0, C_{I}>0$ and $C_{I I}>0$ such that

$$
\begin{equation*}
u_{0}^{2}(x)-m^{2} \geq C_{I}\langle x\rangle^{-2 a_{1}} \quad\left(\text { or } \leq C_{I I}\langle x\rangle^{-2 a_{2}}\right) . \tag{14}
\end{equation*}
$$

Then there exists $C=C\left(a_{1}, T(m), C_{I}\right)>0\left(\right.$ or $\left.C^{\prime}=C^{\prime}\left(a_{2}, T(m), C_{I I}\right)>0\right)$ such that

$$
u(x, T(m)) \geq C\langle x\rangle^{-a_{1}} \quad\left(\text { or } \leq C^{\prime}\langle x\rangle^{-a_{2}}\right)
$$

We conclude this introduction by giving a short review on blow-up (or quenching) at the space infinity. Lacey [8] considered problems in a half line of $u_{t}=u_{x x}+f(u)$ in $\mathbf{R}^{+}=\{x: x>0\}$ and constructed solutions blowing up only at space infinity. Gladkov [7] studied problems of the equation
$u_{t}=u_{x x}+f(x, t, u)$ in \mathbf{R}^{+}and showed that solutions of the problem uniformly converge as $x \rightarrow \infty$ to the solution of the ODE obtained by dropping $u_{x x}$ in the equation.

Giga-Umeda [5] proved that blow-up only at space infinity occurs under the condition $\lim _{|x| \rightarrow \infty} u_{0}(x)=\sup _{x \in \mathbf{R}} u_{0}(x)=: M$ and $u_{0} \not \equiv M$ for nonnegative solutions of $u_{t}=\Delta u+u^{p}$ in \mathbf{R}^{n} (cf. also [12] for a related study). For generalization, see [6] and a review article by Giga-Seki-Umeda [3]. More recently, Shimojō [11] discussed blow-up profile $u(x, T):=\lim _{t \rightarrow T} u(x, t)$ for $x \in \mathbf{R}^{n}$. See also Seki-Suzuki-Umeda [10] and Seki [9] for quasilinear parabolic equations, which generalized the result of [6]. They also gave necessary and sufficient conditions for a solution to have "minimal blow-up time (or the least blow-up time)". See $[9,10,3]$ for the precise definition of the last notion.

2 Profile at quenching

In order to prove Theorem 1.3, we construct a subsolution and supersolution of the form $\phi(T(m)-t+g(x, t))$, as we have explained before. This is a modification of the method employed in [8] and [11] to study blow-up profile for a semilinear heat equation. The function

$$
g(x, t)=\int_{-\infty}^{\infty} G(x-y, t) \psi(y) d y
$$

with the Gauss kernel of heat equation

$$
G(x, t)=(4 \pi t)^{-1 / 2} \exp \left(-\frac{x^{2}}{4 t}\right)
$$

is used there. However, because the problem which we treat here is a quasilinear equation, the Gauss kernel is not appropriate in our problem. We use the following function instead of $G(x, t)$:

$$
\begin{equation*}
g_{\alpha, \beta}^{\gamma}(x, t)=g_{\alpha, \beta}^{\gamma, \psi}(x, t)=\int_{-\infty}^{\infty} G_{\alpha, \beta}^{\gamma}(x-y, t) \psi(y) d y \tag{15}
\end{equation*}
$$

where

$$
G_{\alpha, \beta}^{\gamma}(x, t)=\frac{|x|^{\beta}}{(t+\gamma)^{\alpha}} \exp \left(-\frac{x^{2}}{4(t+\gamma)}\right)
$$

with $\alpha \geq 0, \beta \geq 0$ and $\gamma>0$ being constants. Note that this $g_{\alpha, \beta}^{\gamma}$ may be expressed by

$$
g_{\alpha, \beta}^{\gamma}(x, t)=\int_{-\infty}^{\infty} G_{\alpha, \beta}^{\gamma}(y, t) \psi(x-y) d y
$$

It is easily seen that the derivatives are calculated and estimated as follows:

$$
\begin{align*}
& \left|\partial_{x} g_{\alpha, 0}^{\gamma}\right| \leq \frac{g_{\alpha+1,1}^{\gamma}}{2} \tag{16}\\
& \partial_{x x} g_{\alpha, 0}^{\gamma}=\frac{g_{\alpha+2,2}^{\gamma}}{4}-\frac{g_{\alpha+1,0}^{\gamma}}{2}, \tag{17}\\
& \partial_{t} g_{\alpha, 0}^{\gamma}=\frac{g_{\alpha+2,2}^{\gamma}}{4}-\alpha g_{\alpha+1,0}^{\gamma}, \tag{18}
\end{align*}
$$

and

$$
\begin{equation*}
g_{\alpha, \beta}^{\gamma}(x, t)=\frac{g_{0, \beta}^{\gamma}}{(t+\gamma)^{\alpha}} . \tag{19}
\end{equation*}
$$

Before proving the Theorem 1.3 we prepare two propositions.
Proposition 2.1. Let ψ be a positive bounded uniformly continuous function. For any $C>0$ and $\gamma>0$ the function

$$
\begin{equation*}
W(x, t)=\phi\left(T(m)-t+C g_{0,0}^{\gamma}(x, t)\right) \tag{20}
\end{equation*}
$$

is a supersolution of (1) in $\mathbf{R} \times(0, T(m))$, where ϕ is defined in (7).
Proof. By a direct calculation we have

$$
\begin{aligned}
W_{t}-\frac{W_{x x}}{1+W_{x}^{2}}+ & \frac{n-1}{W} \\
& =-\phi^{\prime}+C \phi^{\prime} \partial_{t} g_{0,0}^{\gamma}-\frac{C \phi^{\prime} \partial_{x x} g_{0,0}^{\gamma}+\left(C \partial_{x} g_{0,0}^{\gamma}\right)^{2} \phi^{\prime \prime}}{1+\left(C \phi^{\prime} \partial_{x} g_{0,0}^{\gamma}\right)^{2}}+\frac{n-1}{\phi} .
\end{aligned}
$$

Noting that $\phi^{\prime} \partial_{t} g_{0,0}^{\gamma} \geq 0$ from (18) and $\phi^{\prime}=(n-1) / \phi$, we obtain

$$
W_{t}-\frac{W_{x x}}{1+W_{x}^{2}}+\frac{n-1}{W} \geq \frac{C \phi^{\prime} \partial_{t} g_{0,0}^{\gamma}-C \phi^{\prime} \partial_{x x} g_{0,0}^{\gamma}-\left(C \partial_{x} g_{0,0}^{\gamma}\right)^{2} \phi^{\prime \prime}}{1+\left(C \phi^{\prime} \partial_{x} g_{0,0}^{\gamma}\right)^{2}} .
$$

Since $\left(\partial_{t}-\partial_{x x}\right) g_{0,0}^{\gamma}=g_{1,0}^{\gamma} / 2$ by (17)-(18), we have

$$
W_{t}-\frac{W_{x x}}{1+W_{x}^{2}}+\frac{n-1}{W} \geq \frac{1}{1+\left(C \phi^{\prime} \partial_{x} g_{0,0}^{\gamma}\right)^{2}}\left(\frac{C \phi^{\prime} g_{1,0}^{\gamma}}{2}-\left(C \partial_{x} g_{0,0}^{\gamma}\right)^{2} \phi^{\prime \prime}\right) .
$$

Due to the fact that $\phi^{\prime \prime} \leq 0$, we see that W is a supersolution of (1).

Proposition 2.2. Assume that ψ is a function satisfying (8)-(12) and

$$
\begin{equation*}
\gamma \in\left(0, \frac{1}{a}-4 T(m)\right) \tag{21}
\end{equation*}
$$

with the constant a in (12). Then, for each constant $C>0$, the function

$$
\begin{equation*}
w(x, t)=\phi\left(T(m)-t+C g_{\alpha, 0}^{\gamma}(x, t)\right) \tag{22}
\end{equation*}
$$

is a subsolution of (1) in $\mathbf{R} \times(0, T(m))$ provided that α satisfies $\alpha \geq \alpha_{0}$ with some constant $\alpha_{0}=\alpha_{0}\left(C_{1}, C_{2}, a, T(m), \gamma\right)>0$, where ϕ is the function defined in (7).

Before proving Proposition 2.2, we prepare a lemma on estimates for $g_{0, \beta}^{\gamma}$.
Lemma 2.3. Assume the same hypotheses as in Proposition 2.2. Then for $\beta=0,1,2$, there exist constants $C_{3}=C_{3}\left(C_{1}, \gamma\right)>0$ and $C_{4}=$ $C_{4}\left(C_{2}, a, T(m), \gamma\right)>0$ such that

$$
C_{3} \psi(x) \leq g_{0, \beta}^{\gamma}(x, t) \leq C_{4} \psi(x) \quad \text { in } \mathbf{R} \times[0, T(m)],
$$

where C_{1} and C_{2} are the constants in (11) and (12), respectively.
Proof. First we show $g_{0, \beta}^{\gamma} \geq C_{3} \psi(x)$ with some $C_{3}>0$. From (11)

$$
\begin{equation*}
\psi(x) \leq C_{1} \inf _{z \in[x-1, x]} \psi(z) \tag{23}
\end{equation*}
$$

or

$$
\begin{equation*}
\psi(x) \leq C_{1} \inf _{z \in[x, x+1]} \psi(z) \tag{24}
\end{equation*}
$$

for each $x \in \mathbf{R}$. If (23) holds, then there exists a constant $C_{3}>0$ such that

$$
\begin{aligned}
g_{0, \beta}^{\gamma}(x, t) & \geq \inf _{z \in(x-1, x)} \psi(z) \times \int_{0}^{1}|y|^{\beta} \exp \left(-\frac{|y|^{2}}{4 \gamma}\right) d y \\
& \geq \psi(x) \frac{1}{C_{1}} \int_{0}^{1}|y|^{\beta} \exp \left(-\frac{|y|^{2}}{4 \gamma}\right) d y
\end{aligned}
$$

Set

$$
C_{3}=\min _{\beta=0,1,2} \frac{1}{C_{1}} \int_{0}^{1}|y|^{\beta} \exp \left(-\frac{|y|^{2}}{4 \gamma}\right) d y=\frac{1}{C_{1}} \int_{0}^{1}|y|^{2} \exp \left(-\frac{|y|^{2}}{4 \gamma}\right) d y
$$

We then see that

$$
g_{0, \beta}^{\gamma}(x, t) \geq C_{3} \psi(x)
$$

A similar argument shows that if (24) holds, then

$$
g_{0, \beta}^{\gamma}(x, t) \geq C_{3} \psi(x)
$$

Thus we see that

$$
g_{0, \beta}^{\gamma}(x, t) \geq C_{3} \psi(x)
$$

for any $x \in \mathbf{R}$.
We next prove $g_{0, \beta}^{\gamma}(x, t) \leq C_{4} \psi(x)$ with some $C_{4}>0$. For (21) it is possible to take a constant $\gamma>0$ depending only a and m that satisfies

$$
\frac{1}{4(T(m)+\gamma)}-a>0
$$

Thus we see that from (12)

$$
g_{0, \beta}^{\gamma}(x, t) \leq C_{2} \psi(x) \int_{-\infty}^{\infty}|y|^{\beta} \exp \left\{-\left(\frac{1}{4(T(m)+\gamma)}-a\right)|y|^{2}\right\} d y
$$

for $t \in[0, T(m)]$. Let

$$
C_{4}=\max _{\beta=0,1,2} C_{2} \int_{-\infty}^{\infty}|y|^{\beta} \exp \left\{-\left(\frac{1}{4(T(m)+\gamma)}-a\right)|y|^{2}\right\} d y .
$$

Then we see

$$
g_{0, \beta}^{\gamma}(x, t) \leq C_{4} \psi(x)
$$

for $t \in[0, T(m)]$.
Proof of Proposition 2.2. As before, for $\phi=\phi\left(T(m)-t+C g_{\alpha, 0}^{\gamma}(x, t)\right)$ we have

$$
\begin{align*}
w_{t}- & \frac{w_{x x}}{1+w_{x}^{2}}+\frac{n-1}{w} \\
& =-\phi^{\prime}+C \phi^{\prime} \partial_{t} g_{\alpha, 0}-\frac{C \phi^{\prime} \partial_{x x} g_{\alpha, 0}^{\gamma}+\left(C \partial_{x} g_{\alpha, 0}^{\gamma}\right)^{2} \phi^{\prime \prime}}{1+\left(C \phi^{\prime} \partial_{x} g_{\alpha, 0}^{\gamma}\right)^{2}}+\frac{n-1}{\phi} \\
& \leq \frac{C(n-1) \partial_{t} g_{\alpha, 0}^{\gamma}}{\phi}+\frac{C(n-1)\left|\partial_{x x} g_{\alpha, 0}^{\gamma}\right|}{\phi}+\frac{\left\{C(n-1) \partial_{x} g_{\alpha, 0}^{\gamma}\right\}^{2}}{\phi^{3}} \tag{25}
\end{align*}
$$

by using the fact that $\phi^{\prime}=(n-1) / \phi$ and $\phi^{\prime \prime}=-(n-1)^{2} / \phi^{3}$. It is easily seen that

$$
\begin{equation*}
\phi^{2}=2(n-1)\left(T(m)-t+C g_{\alpha, 0}^{\gamma}\right) \geq 2(n-1)\left(C g_{\alpha, 0}^{\gamma}\right) . \tag{26}
\end{equation*}
$$

From Lemma 2.3, (16), (19) and (26), it follows that

$$
\begin{equation*}
\left|\frac{\partial_{x} g_{\alpha, 0}^{\gamma}}{\phi^{2}}\right| \leq \frac{g_{0,1}^{\gamma}}{4(n-1)(t+\gamma) g_{0,0}^{\gamma}} \leq \frac{C_{4}}{4 \gamma(n-1) C C_{3}} . \tag{27}
\end{equation*}
$$

Substituting (27) for (25), and using (17)-(19), we have

$$
\begin{aligned}
w_{t}- & \frac{w_{x x}}{1+w_{x}^{2}}+\frac{n-1}{w} \\
& \leq \frac{C(n-1)}{2(t+\gamma)^{\alpha+2} \phi}\left[g_{0,2}^{\gamma}+(t+\gamma)\left\{-2 \alpha g_{0,0}^{\gamma}+g_{0,0}^{\gamma}+\frac{C_{4} g_{0,1}^{\gamma}}{4 C_{3}}\right\}\right] \\
& \leq \frac{C(n-1) \psi}{2(t+\gamma)^{\alpha+2} \phi}\left[-2 \alpha \gamma C_{3}+C_{4}\left\{1+(T(m)+\gamma)\left(1+\frac{C_{4}}{4 C_{3}}\right)\right\}\right]
\end{aligned}
$$

in $\mathbf{R} \times[0, T(m)]$. If α satisfies

$$
\begin{equation*}
\alpha \geq \alpha_{0} \equiv \frac{C_{4}}{2 \gamma C_{3}}\left\{1+(T(m)+\gamma)\left(1+\frac{C_{4}}{4 C_{3}}\right)\right\}, \tag{28}
\end{equation*}
$$

then w is a subsolution of (1) in $\mathbf{R} \times(0, T(m))$.

Proof of Theorem 1.3. There exist positive constants $c_{1}=c_{1}\left(C_{2}, a, \gamma, \alpha\right)$ and $c_{2}=c_{2}\left(C_{1}, \gamma\right)$ such that

$$
g_{\alpha, 0}^{\gamma}(x, 0) \leq c_{1} \psi(x), \quad g_{0,0}^{\gamma}(x, 0) \geq c_{2} \psi(x)
$$

by Lemma 2.3 and (19), and thus

$$
u_{0}^{2}(x) \geq m^{2}+C_{l} g_{\alpha, 0}^{\gamma}(x, 0) \quad\left(\text { or } \leq m^{2}+C_{h} g_{0,0}^{\gamma}(x, 0)\right)
$$

with $C_{l}=C_{I} / c_{1}\left(\right.$ or $\left.C_{h}=C_{I I} / c_{2}\right)$.
Since $m^{2}=2(n-1) T(m)$ by (6), we have

$$
\begin{aligned}
u_{0}(x) & \geq \sqrt{2(n-1) T(m)+C_{l} g_{\alpha, 0}^{\gamma}(x, 0)} \geq w(x, 0) \\
\quad(\text { or } & \left.\leq \sqrt{2(n-1) T(m)+C_{h} g_{0,0}^{\gamma}(x, 0)} \leq W(x, 0)\right) .
\end{aligned}
$$

Propositions 2.1, 2.2 and the comparison principle yield

$$
u(x, t) \geq w(x, t) \quad(\text { or } \leq W(x, t)) \quad \text { in } \mathbf{R} \times[0, T(m))
$$

We thereby get

$$
u(x, T(m)) \geq \sqrt{C_{l} g_{\alpha, 0}^{\gamma}(x, T(m))}\left(\text { or } \leq \sqrt{C_{h} g_{0,0}^{\gamma}(x, T(m))}\right)
$$

By using Lemma 2.3 and letting $C=\sqrt{C_{l} C_{3}}$ and $C^{\prime}=\sqrt{C_{h} C_{4}}$, we obtain

$$
u(x, T(m)) \geq C \psi^{1 / 2}(x) \quad\left(\text { or } \leq C^{\prime} \psi^{1 / 2}(x)\right)
$$

We may choose

$$
\gamma=\frac{1}{2 a}-2 T(m), \quad \alpha=\alpha_{0}
$$

with α_{0} in (28), and then the constant C (or C^{\prime}) depends only on C_{1}, C_{2}, a, $T(m), C_{I}\left(\right.$ or $\left.C_{1}, C_{2}, a, T(m), C_{I I}\right)$.

References

[1] Y. Giga, Surface Evolution Equations. A level set approach, Birkhäuser, Basel, 2006.
[2] M.-H. Giga, Y. Giga and J. Saal, Nonliear Partial Differential Equations - Asymptotic Behaviour of Solutions and Self-Similar solutions, Progress in Math. Birkhäuser, to appear (expanded from original Japanese version M.-H. Giga and Y. Giga, Nonliear Partial Differential Equations Asymptotic Behaviour of Solutions and Self-Similar Solutions, Kyoritsu, Tokyo, 1999.)
[3] Y. Giga, Y. Seki and N. Umeda, Blow-up at space infinity for nonlinear heat equations, Recent Advances in Nonlinear Analysis, World Scientific Publishing, 77-94. (also in EPrint Series of Department of Mathematics, Hokkaido University, 2007.)
[4] Y. Giga, Y. Seki and N. Umeda, Mean curvature flow closes open sets of noncompact surface of rotation, to apper in Comm. Partial Differential Equations.
[5] Y. Giga and N. Umeda, On blow-up at space infinity for semilinear heat equations, J. Math. Anal. Appl. 316 (2006), 538-555.
[6] Y. Giga and N. Umeda, Blow-up directions at space infinity for solutions of semilinear heat equations, Bol. Soc. Parana. Mat. (3) 23 (2005), 9-28: Correction is avairable in Bol. Soc. Parana. Mat. (3) 24 (2006), 19-24.
[7] A. L. Gladkov, Behavior of solutions of semilinear parabolic equations as $x \rightarrow \infty$, Math. Notes, 51 (1992), 124-128.
[8] A. A. Lacey, The form of blow-up for nonlinear parabolic equations. Proc. Roy. Soc. Edinburgh Sect. A 98 (1984), 183-202.
[9] Y. Seki, On directional blow-up for quasilinear parabolic equations with fast diffusion, J. Math. Anal. Appl., 338 (2008), 572-587.
[10] Y. Seki, R. Suzuki and N. Umeda, Blow-up directions for quasilinear parabolic equations, Proc. Roy. Soc. Edinburgh Sect. 138 (2008), 379405.
[11] M. Shimojō, The global profile of blow-up at space infinity in semilinear heat equations, J. Math. Kyoto Univ. 48 (2008), 339-361.
[12] M. Shimojō and N. Umeda, Blow-up at space infinity for solutions of cooperative reaction-diffusion systems, preprint.

[^0]: *2000 Mathematics Subject Classification. Primary: 53C44, Secondary: 35K55, 35K15.
 ${ }^{\dagger}$ Key words and phrases: at space infinity, axisymmetric mean curvature flow equation, quenching profile, decay rate.

