
On decay rate of quenching profile at space
infinity for axisymmetric mean curvature flow∗†

Yoshikazu Giga, Yukihiro Seki and Noriaki Umeda
Graduate School of Mathematical Sciences,

University of Tokyo,
3-8-1, Komaba, Meguro-ku, Tokyo, 153-8914, Japan

Abstract

We study the motion of noncompact hypersurfaces moved by their
mean curvature obtained by a rotation around x-axis of the graph
a function y = u(x, t) (defined for all x ∈ R). We are interested
to estimate its profile when the hypersurface closes open ends at the
quenching (pinching) time T . We estimate its profile at the quenching
time from above and below. We in particular prove that u(x, T ) ∼
|x|−a as |x| → ∞ if u(x, 0) tends to its infimum with algebraic rate
|x|−2a (as |x| → ∞ with a > 0).

1 Introduction and main theorem

This is a continuation of our study [4] on motion of noncompact axisymmetric
n-dimensional hypersurface Γt moved by its mean curvature. Let Γt be given
by a rotation of the graph of a function y = u(x, t) (defined on x ∈ R) around
the x-axis (cf [1, 2]). In our previous paper [4], among other results, we have
proved that if u(x, 0) → m := infx∈R u(x, 0) > 0 as |x| → ∞, then Γt closes
open ends at the time T (m), where T (m) is the quenching (pinching) time
of the regular cylinder with radius m. (Moreover, there is no neck-pinch in
R at t = T (m).) These results imply that

lim
x→∞

u(x, T (m)) = 0 or lim
x→−∞

u(x, T (m)) = 0,
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but it does not provide the convergence rate.
We are interested in studying the profile of u(x, T (m)), especially the

behavior as |x| → ∞ which is affected by initial data.
The equation for u is of the form

ut =
uxx

1 + u2
x

− n − 1

u
, x ∈ R, t > 0 (1)

supplemented by initial data

u(x, 0) = u0(x) > 0, x ∈ R. (2)

The function u0 is assumed to satisfy

u0 is bounded and uniformly continuous in R, (3)

m := inf
x∈R

u0(x) > 0. (4)

The Cauchy problem (1)-(2) has a unique positive classical solution with
the conditions (3)-(4) to the initial data (cf [4]). However, the solution
quenches in finite time. For a given initial datum u0, we see

T (u0) = sup{t > 0; inf
x∈R

u(x, t) > 0} < ∞

and call it the quenching time of u. It is clear that

lim
t→T (u0)

inf
x∈R

u(x, t) = 0.

Let v be a solution of (1) with initial datum m = infx∈R u0(x). It is easily
seen that

v′ = −n − 1

v
, t > 0, v(0) = m, (5)

and

v(t) =
√

2(n − 1)(T (m) − t) with T (m) =
m2

2(n − 1)
. (6)

It is immediate that T (u0) ≥ T (m) by a comparison argument. We treat the
case T (u0) = T (m). The notion of “minimal quenching time” was defined in
[4], which is recalled below.

Definition 1.1. A solution of the Cauchy problem (1)-(2) is said to have a
minimal quenching time, if

T (u0) = T (m).
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In [4] we characterized solutions of (1)-(2) quenching only at space infinity.
The following conditions on initial data u0 play essential roles in [4].

A. There exists a sequence {xk} ∈ R such that xk → ∞ and u0(x+xk) → m
a.e. in R as k → ∞.

B. There exists a sequence {xk} ∈ R such that xk → −∞ and u0(x+xk) →
m a.e. in R as k → ∞.

For an initial datum satisfying (3)-(4), we proved in [4] the following results
for the Cauchy problem (1)-(2):

1. A solution of (1)-(2) has a minimal quenching time, if and only if the
conditions A or B holds.

Moreover, if u0 is not constant as well as the conditions A or B holds, then:

2. For an initial datum satisfying u0 6≡ m, the solution (1)-(2) quenches
only at space infinity.

3. There exists a function u(·, T (m)) ∈ C∞(R) such that u(·, t) → u(·, T (m))
in the Frechét space C∞(R) as t → T (m), u(x, T (m)) > 0 in the whole
R and

lim inf
x→−∞

u(x, T (m)) = 0 or lim inf
x→−∞

u(x, T (m)) = 0.

For a solution u of (1)-(2) with minimal quenching time T (m), we call
u(·, T (m)) the profile of u (at the quenching time T(m)). The hypersurface
corresponding to u(·, T (m)) is called limit surface.

These are related studies on blow-up at infinity for the reaction-diffusion
equations [8, 5, 6, 3, 10, 9, 11] (see also [7]). We shall explain these papers
at the end of this introduction. In particular, blow-up profile was discussed,
for example, in [8] and [11] for a semilinear heat equation.

In this paper we consider the relation between the profile of a quenching
solution at quenching time T (m) and the form of initial data. Our goal,
which is investigating the shape of limit surface, is similar to studying blow-
up profile. Inspired by the method used in [8, §2b] and [11, Theorems 1.3 and
1.5], we construct a subsolution and a supersolution of the form φ(T (m)−t+
g(x, t)) with some function g(x, t) decaying to zero at space infinity, where

φ(s) = v(T (m) − s) =
√

2(n − 1)s, (7)
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in order to estimate the profile at the quenching time. Let ψ(x) be a positive
function satisfying the following conditions:√

ψ(x) is bounded and uniformly continuous in R; (8)

ψ(x) > 0 for x ∈ R; (9)

lim
x→∞

ψ(x) = 0 or lim
x→−∞

ψ(x) = 0; (10)

there exist constants C1 > 0 and C2 > 0 such that

ψ(x) ≤ C1 max{ inf
z∈[x−1,x]

ψ(z), inf
z∈[x,x+1]

ψ(z)} for x ∈ R; (11)

ψ(x − y) ≤ C2 exp
(
a|y|2

)
ψ(x) for x, y ∈ R, a ∈

(
0,

1

4T (m)

)
. (12)

Example 1.2. The functions ψ(x) = (|x|2 +1)−b/2, e−b|x| and (log(|x|+e))−b

with b > 0 satisfy (8)-(12).

Theorem 1.3. Let ψ be a function satisfying (8)-(12). Assume that (3)-(4)
hold and that there exist constants CI > 0 and CII > 0 such that

u2
0(x) − m2 ≥ CIψ(x) (or ≤ CIIψ(x)) . (13)

Then there exists C = C(C1, C2, a, T (m), CI) > 0 (or C ′ = C ′(C1, C2, a,
T (m), CII) > 0) such that the solution of the Cauchy problem (1)-(2) satisfies

u(x, T (m)) ≥ C
√

ψ(x)
(
or ≤ C ′

√
ψ(x)

)
.

By setting ψ(x) = 〈x〉−2a1 (or 〈x〉−2a2) with 〈x〉 = (1+ |x|2)1/2, we obtain
algebraic decay at the space infinity.

Corollary 1.4. Assume that there exist constants a1 > 0, a2 > 0, CI > 0
and CII > 0 such that

u2
0(x) − m2 ≥ CI〈x〉−2a1

(
or ≤ CII〈x〉−2a2

)
. (14)

Then there exists C = C(a1, T (m), CI) > 0 (or C ′ = C ′(a2, T (m), CII) > 0)
such that

u(x, T (m)) ≥ C〈x〉−a1
(
or ≤ C ′〈x〉−a2

)
.

We conclude this introduction by giving a short review on blow-up (or
quenching) at the space infinity. Lacey [8] considered problems in a half line
of ut = uxx + f(u) in R+ = {x : x > 0} and constructed solutions blowing
up only at space infinity. Gladkov [7] studied problems of the equation
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ut = uxx+f(x, t, u) in R+ and showed that solutions of the problem uniformly
converge as x → ∞ to the solution of the ODE obtained by dropping uxx in
the equation.

Giga-Umeda [5] proved that blow-up only at space infinity occurs under
the condition lim|x|→∞ u0(x) = supx∈R u0(x) =: M and u0 6≡ M for nonneg-
ative solutions of ut = ∆u + up in Rn (cf. also [12] for a related study). For
generalization, see [6] and a review article by Giga-Seki-Umeda [3]. More
recently, Shimojō [11] discussed blow-up profile u(x, T ) := limt→T u(x, t)
for x ∈ Rn. See also Seki-Suzuki-Umeda [10] and Seki [9] for quasilinear
parabolic equations, which generalized the result of [6]. They also gave nec-
essary and sufficient conditions for a solution to have “minimal blow-up time
(or the least blow-up time)”. See [9, 10, 3] for the precise definition of the
last notion.

2 Profile at quenching

In order to prove Theorem 1.3, we construct a subsolution and supersolution
of the form φ(T (m) − t + g(x, t)), as we have explained before. This is a
modification of the method employed in [8] and [11] to study blow-up profile
for a semilinear heat equation. The function

g(x, t) =

∫ ∞

−∞
G(x − y, t)ψ(y)dy

with the Gauss kernel of heat equation

G(x, t) = (4πt)−1/2 exp

(
−x2

4t

)
is used there. However, because the problem which we treat here is a quasi-
linear equation, the Gauss kernel is not appropriate in our problem. We use
the following function instead of G(x, t):

gγ
α,β(x, t) = gγ,ψ

α,β (x, t) =

∫ ∞

−∞
Gγ

α,β(x − y, t)ψ(y)dy, (15)

where

Gγ
α,β(x, t) =

|x|β

(t + γ)α
exp

(
− x2

4(t + γ)

)
with α ≥ 0, β ≥ 0 and γ > 0 being constants. Note that this gγ

α,β may be
expressed by

gγ
α,β(x, t) =

∫ ∞

−∞
Gγ

α,β(y, t)ψ(x − y)dy.
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It is easily seen that the derivatives are calculated and estimated as fol-
lows:

|∂xg
γ
α,0| ≤

gγ
α+1,1

2
, (16)

∂xxg
γ
α,0 =

gγ
α+2,2

4
−

gγ
α+1,0

2
, (17)

∂tg
γ
α,0 =

gγ
α+2,2

4
− αgγ

α+1,0, (18)

and

gγ
α,β(x, t) =

gγ
0,β

(t + γ)α
. (19)

Before proving the Theorem 1.3 we prepare two propositions.

Proposition 2.1. Let ψ be a positive bounded uniformly continuous func-
tion. For any C > 0 and γ > 0 the function

W (x, t) = φ(T (m) − t + Cgγ
0,0(x, t)) (20)

is a supersolution of (1) in R × (0, T (m)), where φ is defined in (7).

Proof. By a direct calculation we have

Wt −
Wxx

1 + W 2
x

+
n − 1

W

= −φ′ + Cφ′∂tg
γ
0,0 −

Cφ′∂xxg
γ
0,0 + (C∂xg

γ
0,0)

2φ′′

1 + (Cφ′∂xg
γ
0,0)

2
+

n − 1

φ
.

Noting that φ′∂tg
γ
0,0 ≥ 0 from (18) and φ′ = (n − 1)/φ, we obtain

Wt −
Wxx

1 + W 2
x

+
n − 1

W
≥

Cφ′∂tg
γ
0,0 − Cφ′∂xxg

γ
0,0 − (C∂xg

γ
0,0)

2φ′′

1 + (Cφ′∂xg
γ
0,0)

2
.

Since (∂t − ∂xx)g
γ
0,0 = gγ

1,0/2 by (17)-(18), we have

Wt −
Wxx

1 + W 2
x

+
n − 1

W
≥ 1

1 + (Cφ′∂xg
γ
0,0)

2

(
Cφ′gγ

1,0

2
− (C∂xg

γ
0,0)

2φ′′
)

.

Due to the fact that φ′′ ≤ 0, we see that W is a supersolution of (1).
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Proposition 2.2. Assume that ψ is a function satisfying (8)-(12) and

γ ∈
(

0,
1

a
− 4T (m)

)
(21)

with the constant a in (12). Then, for each constant C > 0, the function

w(x, t) = φ(T (m) − t + Cgγ
α,0(x, t)) (22)

is a subsolution of (1) in R × (0, T (m)) provided that α satisfies α ≥ α0

with some constant α0 = α0(C1, C2, a, T (m), γ) > 0, where φ is the function
defined in (7).

Before proving Proposition 2.2, we prepare a lemma on estimates for gγ
0,β.

Lemma 2.3. Assume the same hypotheses as in Proposition 2.2. Then
for β = 0, 1, 2, there exist constants C3 = C3(C1, γ) > 0 and C4 =
C4(C2, a, T (m), γ) > 0 such that

C3ψ(x) ≤ gγ
0,β(x, t) ≤ C4ψ(x) in R × [0, T (m)],

where C1 and C2 are the constants in (11) and (12), respectively.

Proof. First we show gγ
0,β ≥ C3ψ(x) with some C3 > 0. From (11)

ψ(x) ≤ C1 inf
z∈[x−1,x]

ψ(z) (23)

or

ψ(x) ≤ C1 inf
z∈[x,x+1]

ψ(z) (24)

for each x ∈ R. If (23) holds, then there exists a constant C3 > 0 such that

gγ
0,β(x, t) ≥ inf

z∈(x−1,x)
ψ(z) ×

∫ 1

0

|y|β exp

(
−|y|2

4γ

)
dy

≥ ψ(x)
1

C1

∫ 1

0

|y|β exp

(
−|y|2

4γ

)
dy.

Set

C3 = min
β=0,1,2

1

C1

∫ 1

0

|y|β exp

(
−|y|2

4γ

)
dy =

1

C1

∫ 1

0

|y|2 exp

(
−|y|2

4γ

)
dy.

We then see that
gγ
0,β(x, t) ≥ C3ψ(x).
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A similar argument shows that if (24) holds, then

gγ
0,β(x, t) ≥ C3ψ(x).

Thus we see that
gγ
0,β(x, t) ≥ C3ψ(x)

for any x ∈ R.
We next prove gγ

0,β(x, t) ≤ C4ψ(x) with some C4 > 0. For (21) it is
possible to take a constant γ > 0 depending only a and m that satisfies

1

4(T (m) + γ)
− a > 0.

Thus we see that from (12)

gγ
0,β(x, t) ≤ C2ψ(x)

∫ ∞

−∞
|y|β exp

{
−

(
1

4(T (m) + γ)
− a

)
|y|2

}
dy

for t ∈ [0, T (m)]. Let

C4 = max
β=0,1,2

C2

∫ ∞

−∞
|y|β exp

{
−

(
1

4(T (m) + γ)
− a

)
|y|2

}
dy.

Then we see
gγ
0,β(x, t) ≤ C4ψ(x)

for t ∈ [0, T (m)].

Proof of Proposition 2.2. As before, for φ = φ(T (m) − t + Cgγ
α,0(x, t)) we

have

wt−
wxx

1 + w2
x

+
n − 1

w

= −φ′ + Cφ′∂tgα,0 −
Cφ′∂xxg

γ
α,0 + (C∂xg

γ
α,0)

2φ′′

1 + (Cφ′∂xg
γ
α,0)

2
+

n − 1

φ

≤
C(n − 1)∂tg

γ
α,0

φ
+

C(n − 1)|∂xxg
γ
α,0|

φ
+

{C(n − 1)∂xg
γ
α,0}2

φ3
(25)

by using the fact that φ′ = (n − 1)/φ and φ′′ = −(n − 1)2/φ3. It is easily
seen that

φ2 = 2(n − 1)(T (m) − t + Cgγ
α,0) ≥ 2(n − 1)(Cgγ

α,0). (26)
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From Lemma 2.3, (16), (19) and (26), it follows that∣∣∣∣∂xg
γ
α,0

φ2

∣∣∣∣ ≤ gγ
0,1

4(n − 1)(t + γ)gγ
0,0

≤ C4

4γ(n − 1)CC3

. (27)

Substituting (27) for (25), and using (17)-(19), we have

wt−
wxx

1 + w2
x

+
n − 1

w

≤ C(n − 1)

2(t + γ)α+2φ

[
gγ
0,2 + (t + γ)

{
−2αgγ

0,0 + gγ
0,0 +

C4g
γ
0,1

4C3

}]
≤ C(n − 1)ψ

2(t + γ)α+2φ

[
−2αγC3 + C4

{
1 + (T (m) + γ)

(
1 +

C4

4C3

)}]
in R × [0, T (m)]. If α satisfies

α ≥ α0 ≡
C4

2γC3

{
1 + (T (m) + γ)

(
1 +

C4

4C3

)}
, (28)

then w is a subsolution of (1) in R × (0, T (m)).

.

Proof of Theorem 1.3. There exist positive constants c1 = c1(C2, a, γ, α) and
c2 = c2(C1, γ) such that

gγ
α,0(x, 0) ≤ c1ψ(x), gγ

0,0(x, 0) ≥ c2ψ(x)

by Lemma 2.3 and (19), and thus

u2
0(x) ≥ m2 + Clg

γ
α,0(x, 0)

(
or ≤ m2 + Chg

γ
0,0(x, 0)

)
with Cl = CI/c1 (or Ch = CII/c2).

Since m2 = 2(n − 1)T (m) by (6), we have

u0(x) ≥
√

2(n − 1)T (m) + Clg
γ
α,0(x, 0) ≥ w(x, 0)(

or ≤
√

2(n − 1)T (m) + Chg
γ
0,0(x, 0) ≤ W (x, 0)

)
.

Propositions 2.1, 2.2 and the comparison principle yield

u(x, t) ≥ w(x, t) (or ≤ W (x, t)) in R × [0, T (m)).

We thereby get

u(x, T (m)) ≥
√

Clg
γ
α,0(x, T (m))

(
or ≤

√
Chg

γ
0,0(x, T (m))

)
.
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By using Lemma 2.3 and letting C =
√

ClC3 and C ′ =
√

ChC4, we obtain

u(x, T (m)) ≥ Cψ1/2(x)
(
or ≤ C ′ψ1/2(x)

)
.

We may choose

γ =
1

2a
− 2T (m), α = α0

with α0 in (28), and then the constant C (or C ′) depends only on C1, C2, a,
T (m), CI (or C1, C2, a, T (m), CII).
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