-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by EPrint Series of Department of Mathematics, Hokkaido University

On decay rate of quenching profile at space
infinity for axisymmetric mean curvature flow™

Yoshikazu Giga, Yukihiro Seki and Noriaki Umeda
Graduate School of Mathematical Sciences,
University of Tokyo,

3-8-1, Komaba, Meguro-ku, Tokyo, 153-8914, Japan

Abstract

We study the motion of noncompact hypersurfaces moved by their
mean curvature obtained by a rotation around z-axis of the graph
a function y = wu(z,t) (defined for all z € R). We are interested
to estimate its profile when the hypersurface closes open ends at the
quenching (pinching) time 7. We estimate its profile at the quenching
time from above and below. We in particular prove that u(xz,T’) ~
|z|~* as |x| — oo if u(x,0) tends to its infimum with algebraic rate
|z|72® (as |z| — oo with a > 0).

1 Introduction and main theorem

This is a continuation of our study [4] on motion of noncompact axisymmetric
n-dimensional hypersurface I'; moved by its mean curvature. Let I'; be given
by a rotation of the graph of a function y = u(x,t) (defined on z € R)) around
the x-axis (cf [1, 2]). In our previous paper [4], among other results, we have
proved that if u(z,0) — m = infer u(x,0) > 0 as |z| — oo, then I'; closes
open ends at the time T'(m), where T'(m) is the quenching (pinching) time
of the regular cylinder with radius m. (Moreover, there is no neck-pinch in
R at t = T'(m).) These results imply that

lim u(x,T(m)) =0 or lim wu(z,T(m)) =0,
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but it does not provide the convergence rate.

We are interested in studying the profile of w(x,T'(m)), especially the
behavior as |z| — oo which is affected by initial data.

The equation for u is of the form

Uy n—1

ut:l—i—u%_ _— reR, t>0 (1)
supplemented by initial data
u(z,0) = ug(x) >0, x€R. (2)
The function wug is assumed to satisfy
ug is bounded and uniformly continuous in R, (3)
m := inf ug(x) > 0. (4)

zeR

The Cauchy problem (1)-(2) has a unique positive classical solution with
the conditions (3)-(4) to the initial data (cf [4]). However, the solution
quenches in finite time. For a given initial datum wug, we see

T'(up) = sup{t > 0; ig}f{u(x,t) >0} < 00

and call it the quenching time of u. It is clear that

lim inf u(z,t) = 0.
t—T(uo) €R

Let v be a solution of (1) with initial datum m = inf,cr up(z). It is easily

seen that .
o =2 , t>0, v(0)=m, (5)
v

and

m2

2(n—1)

u(t) = V2 — D)(T(m) —t) with T(m)= (6)

It is immediate that T'(ug) > T'(m) by a comparison argument. We treat the
case T'(ug) = T'(m). The notion of “minimal quenching time” was defined in
[4], which is recalled below.

Definition 1.1. A solution of the Cauchy problem (1)-(2) is said to have a
mainimal quenching time, if

T(ug) = T(m).



In [4] we characterized solutions of (1)-(2) quenching only at space infinity.
The following conditions on initial data ug play essential roles in [4].

A. There exists a sequence {z;} € R such that x; — oo and ug(x+z5) — m
a.e. in R as k — oo.

B. There exists a sequence {x;} € R such that z;, — —oo and ug(x + ) —
m a.e. in R as k — oo.

For an initial datum satisfying (3)-(4), we proved in [4] the following results
for the Cauchy problem (1)-(2):

1. A solution of (1)-(2) has a minimal quenching time, if and only if the
conditions A or B holds.

Moreover, if ug is not constant as well as the conditions A or B holds, then:

2. For an initial datum satisfying uy # m, the solution (1)-(2) quenches
only at space infinity.

3. There exists a function u(-, 7’(m)) € C*°(R) such that u(-, ) — u(-,T(m))
in the Frechét space C*°(R) as t — T'(m), u(xz, T(m)) > 0 in the whole
R and

liminfu(z,T(m)) =0 or liminfu(x,T(m)) = 0.
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For a solution w of (1)-(2) with minimal quenching time 7'(m), we call
u(+, T(m)) the profile of u (at the quenching time T(m)). The hypersurface
corresponding to u(-,T(m)) is called limit surface.

These are related studies on blow-up at infinity for the reaction-diffusion
equations [8, 5, 6, 3, 10, 9, 11] (see also [7]). We shall explain these papers
at the end of this introduction. In particular, blow-up profile was discussed,
for example, in [8] and [11] for a semilinear heat equation.

In this paper we consider the relation between the profile of a quenching
solution at quenching time 7'(m) and the form of initial data. Our goal,
which is investigating the shape of limit surface, is similar to studying blow-
up profile. Inspired by the method used in [8, §2b] and [11, Theorems 1.3 and
1.5], we construct a subsolution and a supersolution of the form ¢(7'(m)—t+
g(x,t)) with some function g(x,t) decaying to zero at space infinity, where

6(s) = v(T(m) — s) = \/2(n - D)s, (7)



in order to estimate the profile at the quenching time. Let ¢(x) be a positive
function satisfying the following conditions:

VvV ¥(x) is bounded and uniformly continuous in R;
(x) >0 for z € R;
lim ¢¥(z) =0or lim v¥(z)=0; (

r—00 r——00

=~
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there exist constants C; > 0 and C5 > 0 such that

Y(zr) < Cymax{ inf (z), inf (z)} forz e R, (11)

Y
z€|z—1,x] z€|z,x+1]

Y(x —y) < Coexp (aly]’) ¥(z) forz,yeR, ac (O, ﬁ) . (12)

Example 1.2. The functions ¢(z) = (Jz|>+1)7%2, e7tl*l and (log(|z| +e¢))
with b > 0 satisfy (8)-(12).

Theorem 1.3. Let ¢ be a function satisfying (8)-(12). Assume that (3)-(4)
hold and that there exist constants Cr > 0 and Cr; > 0 such that

wa) —m? > Crp)  (or < Crr(a)). (13)

Then there exists C = C(Cy,Cy,a,T(m),Cy) > 0 (or C" = C'(Cy,Cy,a,
T(m),Crr) > 0) such that the solution of the Cauchy problem (1)-(2) satisfies

u(z, T(m)) > C\/Y(x) <or < w(x)) .

By setting 1(x) = (2)72% (or (z)72%2) with (x) = (1+ |z|?)"/2, we obtain
algebraic decay at the space infinity.

Corollary 1.4. Assume that there exist constants a; > 0, as > 0, C; > 0
and Cyr > 0 such that
ug(z) —m? > Crz) > (or < COpr(z)?%). (14)

Then there exists C' = C(ay,T(m),Cr) > 0 (or C" = C'(ag, T(m),Cyr) > 0)
such that
u(z,T(m)) > C{z)~ (or < C'(z)"®).

We conclude this introduction by giving a short review on blow-up (or
quenching) at the space infinity. Lacey [8] considered problems in a half line
of uy = Uz, + f(u) in RY = {& : © > 0} and constructed solutions blowing
up only at space infinity. Gladkov [7] studied problems of the equation
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U = Uge+ f(x,t,u) in RT and showed that solutions of the problem uniformly
converge as £ — 00 to the solution of the ODE obtained by dropping u,, in
the equation.

Giga-Umeda [5] proved that blow-up only at space infinity occurs under
the condition limyg| . to(x) = sup,eg to(x) =: M and ug # M for nonneg-
ative solutions of u; = Au + w? in R™ (cf. also [12] for a related study). For
generalization, see [6] and a review article by Giga-Seki-Umeda [3]. More
recently, Shimojo [11] discussed blow-up profile u(z,T) := lim; 7 u(z,1)
for x € R". See also Seki-Suzuki-Umeda [10] and Seki [9] for quasilinear
parabolic equations, which generalized the result of [6]. They also gave nec-
essary and sufficient conditions for a solution to have “minimal blow-up time
(or the least blow-up time)”. See [9, 10, 3] for the precise definition of the
last notion.

2 Profile at quenching

In order to prove Theorem 1.3, we construct a subsolution and supersolution
of the form ¢(T(m) —t + g(x,t)), as we have explained before. This is a
modification of the method employed in [8] and [11] to study blow-up profile
for a semilinear heat equation. The function

sat) = [ Gla -y 0ty
with the Gauss kernel of heat equation

o) = (i) Ve (2

is used there. However, because the problem which we treat here is a quasi-
linear equation, the Gauss kernel is not appropriate in our problem. We use
the following function instead of G(z,1):

st = 25at) = [ Gyle = v 0w, (15

3 2
G, 5z, t) = il —~ exp <— ’ )

where

(t+7) 4(t+7)

with a > 0, § > 0 and v > 0 being constants. Note that this glﬁ may be
expressed by

Jop(@,t) = /Gaﬁy, —y)dy.
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It is easily seen that the derivatives are calculated and estimated as fol-
lows:

97+11
0,70 < 2L (16)
¥ ¥
Ja+2,2  Ya+1,0
Oullog ==~ — —5 (17)
97+22
Ao = aT — QGai1,0 (18)
and y
90,8
L glw,t) = ——. 19
gaﬁ(‘r7 ) (t‘l'/}/)a ( )

Before proving the Theorem 1.3 we prepare two propositions.

Proposition 2.1. Let ) be a positive bounded uniformly continuous func-
tion. For any C' > 0 and v > 0 the function

Wiz, t) = ¢(T(m) —t + Cggo(,1)) (20)
is a supersolution of (1) in R x (0,7 (m)), where ¢ is defined in (7).
Proof. By a direct calculation we have

W o n—1
Wt_1+W§+ W

C¢/ammgg,0 + (Cargg,o)2¢/, 4 n—1
1+ (C¢'0:90,) ¢

Noting that ¢'0ygg, > 0 from (18) and ¢/ = (n — 1)/¢, we obtain

=—¢'+C¢'Oigg —

W n—1 S C<Z5/8t93,0 - C’gb’@mg&() - (C&Bg&o)%"

Wi 14+ W2 Ty 2 1+ (C¢'0,90,)?

Since (9 — Oua)900 = 91,0/2 by (17)-(18), we have

W, n—1 1 Cd'glo
- —= > = — (CO.900)°0" ) -
CrywE T W T 1+ (CdDagi0)? ( 2 (COsgo0)"® )
Due to the fact that ¢” < 0, we see that W is a supersolution of (1). O



Proposition 2.2. Assume that 1 is a function satisfying (8)-(12) and

1
v E (0, - — 4T(m)) (21)
a
with the constant a in (12). Then, for each constant C' > 0, the function

w(m, t) = ¢(T(m) —t+ ngp(x’ t)) (22)

is a subsolution of (1) in R x (0,7(m)) provided that « satisfies a« > ay
with some constant oy = a(C1, Co, a,T(m),v) > 0, where ¢ is the function
defined in (7).

Before proving Proposition 2.2, we prepare a lemma on estimates for g 5

Lemma 2.3. Assume the same hypotheses as in Proposition 2.2. Then
for 3 = 0, 1, 2, there exist constants C3 = C3(Cy,v) > 0 and Cy =
Cy(Cy,a,T(m),~y) > 0 such that

Catla) < gl t) < Cote)  in R x [0,Tm))
where Cy and Cy are the constants in (11) and (12), respectively.

Proof. First we show gy 5 > C3tp(x) with some C3 > 0. From (11)

V@) <G _int (2 23
or
Y(z) < Cp  inf YP(2) (24)
z€[x,x+1]

for each € R. If (23) holds, then there exists a constant Cs > 0 such that

2
97 t) > inf BeX[) |y|
0.5 («T, ) zE(}Efl,x) / |y| (

> I} ﬂ du.
> v(o) / ot exw (-2 ay
1! ly|? e ly|?
_ : - 15} A — 2 AN
Cs = aam e ly|” exp ( ™ ) dy c, /0 ly|” exp ( ™ ) dy

We then see that
gg,ﬁ(mat) 2 03?/1(33)
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A similar argument shows that if (24) holds, then

9&5(377 t) > Cstp(x).

Thus we see that
9o 5(w,t) > Csy)(x)

for any x € R.
We next prove gj4(7,t) < Cytp(z) with some Cy > 0. For (21) it is
possible to take a constant v > 0 depending only a and m that satisfies

v
A(T(m) +7)

Thus we see that from (12)

(o) < Cooe) [P esp {— (m - ) w} dy

for t € [0,T(m)]. Let

00 1
Cs = o o [ 1 eXp{ (4(T(m)+v) ) 'y'}d‘”'

Then we see

—a > 0.

gg,ﬁ(xvt) < Cﬂﬁ(%)
for t € [0, T(m)]. O

Proof of Proposition 2.2. As before, for ¢ = ¢(T(m) —t + Cgl o(z,1)) we
have

| Wae . n—1
YT w? w
Cd0uugro+ (C0:900)°¢"  n—1
=—¢ + Cd0igao — = >
N ST WL ;
-1 .l -1 - Y -1 . Y 12
S C(n )atga,o + O(TL >|a ga,0| + {O(n za ga,O} (25)
¢ ¢ ¢
by using the fact that ¢’ = (n — 1)/¢ and ¢" = —(n — 1)?/¢3. It is easily
seen that
¢* =2(n —1)(T(m) —t + Cg] 4) > 2(n —1)(Cgy ). (26)



From Lemma 2.3, (16), (19) and (26), it follows that

3x93,0 93,1 < Cy
¢* | T dn—1)(t+7)gon ~ dv(n—1)CCs’

Substituting (27) for (25), and using (17)-(19), we have

Wy n—1
1+ w? w
C(n—1)

= 50+ )%
C(n—1)y

Cy
in R x [0,7'(m)]. If « satisfies

a>ap = 2%3 {1 + (T(m) +~) <1 + 4%:)} (28)

then w is a subsolution of (1) in R x (0,7(m)). O

Wy —

” - ~ 0493,1
Joo T (t+7) 20900+ Joo T —A—
404

Proof of Theorem 1.3. There exist positive constants ¢; = ¢1(Cy, a, v, ) and
ca = c2(CY, ) such that

Jao(,0) < crtp(x), ggo(x,0) = et ()
by Lemma 2.3 and (19), and thus
up(x) > m* + Cigg o(w,0) (or < m*+ Chggo(z,0))

with Cl = C[/Cl (01" Ch = C[[/CQ).
Since m? = 2(n — 1)T(m) by (6), we have

\/2 n —1)T(m) + Cig, o(2,0) > w(z,0)

(or < \/2 n — 1)T(m) + Chggo(r,0) < Wiz, 0))

Propositions 2.1, 2.2 and the comparison principle yield
u(z,t) > w(x,t) (or <W(x,t)) inR x[0,7(m)).
We thereby get

u(a, T(m) > /Cigh ol T(m) (or < 1/Cuglole, T(m)).
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By using Lemma 2.3 and letting C' = +/C;C3 and C" = \/(},Cy, we obtain
u(z, T(m)) > Cp?(z) (or < C'Y'%(2)).

We may choose
1

7:%—2T(m), a=ap
with ag in (28), and then the constant C' (or C”) depends only on C4, Cs, a,
T(m), C[ (OI’ Cl, Cg, a, T(m), O][). O
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