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This is a short summary of the joint work with Naoto Kumano-go pub-
lished in The Journal of Math. Soc. Japan [11].

Feynman path integral was invented by Feynman to quantize the mo-
tion of a particle moving in a potential field. It gives the integral kernel of
evolution operator, which is the operator describing time evolution of wave
function of a particle moving in a potential field. Contrary to Schrödinger
equation, it does not use Hamiltonian but uses Lagrangian function.

Let V (t, x) be a time dependent potential on the configuration space Rd.
Then the Lagrangian is

L(t, ẋ, x) =
1

2
|ẋ|2 − V (t, x).

A path γ is a continuous or sufficiently smooth map from the time interval
[s, s′] to Rd. The action S(γ) of a path γ is the functional

S(γ) =

∫ s′

s

L(t,
d

dt
γ(t), γ(t))dt. (2)
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In [4] Feynman introduced the notion of an integral over the path space Ω,
which is called Feynman path integral and is often denoted by∫

Ω

eiνS(γ)F (γ)D[γ], (3)

where ν = 2πh−1 with Planck’s constant h. It was expected that Feynman
path integral could have been defined as a measure theoretic integral if a
suitable complex measure on the path space had been defined. However,
Cameron [2] proved that this is not the case. (cf. also Johnson & Lapidus
[13].)

Feynman himself gave the meaning to (3) as the limit of integrals over
finite dimensional spaces. We call this method time slicing approximation
method. Before we explain it in more detail, we make some preparation.

We assume that V (t, x) is continuous in t and smooth in x and that it
satisfies the following estimate: For any non-negative integer m there exists
a non-negative constant vm such that

max
|α|=m

sup
(t,x)∈[0,T ]×Rd

|∂α
x V (t, x)| ≤ vm(1 + |x|)max {2−m,0}. (4)

Our assumption is close to that of Pauli [3].
Let [s, s′] be an interval of time. A path γ is called classical if it is a

solution to the Euler equation

d2

dt2
γ(t) + (∇V )(t, γ(t)) = 0 for s < t < s′. (5)

Here and hereafter ∇ stands for the nabla operator in the space Rd.
For arbitrary pair of points x, y ∈ Rd there exists one and only one

classical path γ which satisfies the boundary condition

γ(s) = y, γ(s′) = x (6)

if |s′ − s| ≤ µ with sufficiently small µ, say for instance,

µ2dv2

8
< 1. (7)

In this case the action S(γ) of γ is a function of (s′, s, x, y) and is denoted
by S(s′, s, x, y), i.e.,

S(s′, s, x, y) =

∫ s′

s

L(t,
d

dt
γ(t), γ(t)) dt. (8)
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Now we explain time slicing approximation method. Let

∆ : 0 = T0 < T1 < · · · < TJ < TJ+1 = T (9)

be a division of the interval [0, T ]. Then we set tj = Tj −Tj−1 and define the
mesh |∆| of the division ∆ by |∆| = maxj{tj}. We always assume that

|∆| ≤ µ. (10)

Let
xj ∈ Rd, j = 0, 1, . . . , J, J + 1, (11)

be arbitrary J + 2 points of the configuration space Rd. The piecewise
classical path γ∆ with vertices (xJ+1, xJ , . . . , x1, x0) ∈ Rd(J+2) is the broken
path that satisfies the Euler equation

d2

dt2
γ∆(t) + (∇V )(t, γ∆(t)) = 0 (12)

for Tj−1 < t < Tj(j = 1, 2, . . . , J + 1) and boundary conditions

γ∆(Tj) = xj, j = 0, 1, . . . , J, J + 1, (13)

where x = xJ+1 and y = x0. When we emphasize the fact that this path γ∆

depends on (xJ+1, xJ , . . . , x1, x0), we denote it by γ∆(xJ+1, xJ , . . . , x1, x0) or
γ∆(t; xJ+1, xJ , . . . , x1, x0), where t is the time variable.

Let F (γ) be a functional defined for paths γ. Its value F (γ∆) at γ∆ can
be written as a function F∆(xJ+1, xJ , . . . , x1, x0) of (xJ+1, xJ , . . . , x1, x0). For
example the action functional S(γ∆) of γ∆ is given by

S∆(xJ+1, xJ , . . . , x1, x0) = S(γ∆) =

∫ T

0

L(t,
d

dt
γ∆(t), γ∆(t))dt (14)

=
J+1∑
j=1

Sj(xj, xj−1),

where we used the abbreviation

Sj(xj, xj−1) = S(Tj, Tj−1, xj, xj−1) =

∫ Tj

Tj−1

L(t,
d

dt
γ∆(t), γ∆(t)) dt. (15)
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A piecewise classical time slicing approximation to Feynman path integral
(3) with the integrand F (γ) is an oscillatory integral

I[F∆](∆; x, y) (16)

=
J+1∏
j=1

(
ν

2πitj

)d/2 ∫
RdJ

eiνS(γ∆)F (γ∆)
J∏

j=1

dxj

=
J+1∏
j=1

(
ν

2πitj

)d/2 ∫
RdJ

eiνS∆(xJ+1,xJ ,...,x1,x0)F∆(xJ+1, xJ , . . . , x1, x0)
J∏

j=1

dxj,

where xJ+1 = x and x0 = y.
Feynman’s definition of path integral (3) is∫

Ω

eiνS(γ)F (γ)D[γ] = lim
|∆|→0

I[F∆](∆; x, y), (17)

if the limit on the right hand side exists. See Feynman [4].

One can ask questions:

1. Does this limit exists ?

2. What does this limit looks like if it exists ?

1 Existance of the limit.

In the case F (γ) ≡ 1 existence of the limit in (17) was proved by [5], [6].
[7],[16] and the Feynman path integral is in fact the fundamental solution of
Schrödinger equation as Feynman expected.

In the case F (γ) 6≡ constant we give here a sufficient condition for the
limit in (17) to converge. To explain our assumptions we make some prepa-
ration. The set Γ(∆) of all piecewise classical paths associated with the
division ∆ forms a differentiable manifold of dimension d(J + 2). For a pair
of divisions ∆′ and ∆ we use symbol ∆ ≺ ∆′ if ∆′ is a refinement of ∆. The
set Γ of all piecewise classical paths is the inductive limit of {Γ(∆),≺},i.e.,
Γ = lim→ Γ(∆). Γ is a dense subset of the Sobolev space H1([0, T ];Rd) of
order 1 with values in Rd and hence it is also dense in the space C([0, T ];Rd)
of all continuous paths. Let γ∆ ∈ Γ(∆). Then the tangent space Tγ∆

Γ to Γ
at γ∆ is the inductive limit lim→ Tγ∆

Γ(∆′), which is a dense linear subspace
of the Sobolev space H1([0, T ];Rd).
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Let F (γ) be a functional defined on Γ. We denote its Fréchet differential
at γ ∈ Γ by DFγ if it exists. And DFγ[ζ] stands for its value at the tangent
vector ζ ∈ TγΓ. For any integer n > 0 and for ζj ∈ TγΓ (j = 1, 2, . . . , n),
we denote by DnFγ[ζ1 ⊗ ζ2 ⊗ · · · ⊗ ζn], the symmetric n-linear form on the
tangent space arising from the n-th jet modulo n − 1-th jet of F at γ.

Our assumptions are the followings:.

Assumption 1 Let m ≥ 0. For any non-negative integer K there exist
positive constants AK and XK such that for any division ∆ of the form (9)
and any integer nj (0 ≤ j ≤ J + 1) with 0 ≤ nj ≤ K∣∣∣DPJ+1

j=0 njFγ∆
[⊗J+1

j=0 ⊗nj

k=1 ζj,k]
∣∣∣ (18)

≤ AKXJ+2
K (1 + ‖γ∆‖ + ‖|γ∆‖|)m

J+1∏
j=0

nj∏
k=1

‖ζj,k‖,

as far as ζj,k ∈ Tγ∆
Γ satisfies

suppζj,k ⊂


[0, T1] if j = 0

[Tj−1, Tj+1] if 1 ≤ j ≤ J

[TJ , TJ+1] if j = J + 1,

(19)

where ‖ζ‖ = max0≤t≤T |ζ(t)| and ‖|γ∆‖| = total variation of γ∆.

Assumption 2 [15] [9]. There exists a positive bounded Borel measure
ρ on [0, T ] such that with the same AK , XK as above∣∣∣D1+

PJ+1
j=0 njFγ∆

[η ⊗⊗J+1
j=0 ⊗nj

k=1 ζj,k]
∣∣∣ (20)

≤ AKXJ+2
K (1 + ‖γ∆‖ + ‖|γ∆‖|)m

∫
[0,T ]

|η(t)|ρ(dt)
J+1∏
j=0

nj∏
k=1

‖ζj,k‖,

for any division ∆, integer nj ≤ K and ζj,k which are the same as in As-
sumption 1. And η is an arbitrary element of Tγ∆

Γ.

Example:
Let m ≥ 0, f(t, x) be a smooth function and ρ be a function of bounded vari-
ation. Assume that for any multi-index α there exists a constant a constant
Cα such that

|∂α
x f(t, x)| ≤ Cα(1 + |x|)m. (21)
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Then the Stieltjes integral

F (γ) =

∫ T

0

f(t, γ(t)) dρ. (22)

is an example satisfying our assumptions.
We have the following

Theorem 1 Assume that the integrand F (γ) satisfies Assumption 1 and As-
sumption 2 above and T is so small that |T | ≤ µ, Then the limit of the right
hand side of (17) converges compact-uniformly with respect to (x, y) ∈ R2d.

We remark that Feynman [4] used also piecewise linear paths in place of
piecewise classical paths. N. Kumano-go [15] proved the limit in (17) exists
in the case of more general class of functional F using piecewise linear paths
in place of piecewise classical paths.

We shall make more precise statement. In what follows we always assume
that 0 < T ≤ µ. For any fixed (x, y) ∈ R2d the action S(γ) has a unique
critical point γ∗, which is the unique classical path starting y at time 0 and
reaching x at time T . The critical point is non-degenerate. Similarly, if
0 < T ≤ µ, the function S∆(xJ+1, xJ , . . . , x1, x0) of (xJ , . . . , x1) has only
one critical point, which is non-degenerate. Regarding ν as a parameter
satisfying ν ≥ 1, we can apply stationary phase method to (16). Stationary
phase method says that I[F∆](∆; x, y) is of the following form:

I[F∆](∆; x, y) (23)

=
( ν

2πiT

)d/2

D(∆; x, y)−1/2eiνS(γ∗)
(
F (γ∗) + ν−1R∆[F∆](ν, x, y)

)
.

Here we used the following symbol

D(∆; x, y) =

(
tJ+1tJ . . . t1

T

)d

det HessS(γ∆), (24)

where HessS(γ∆) denotes the Hessian of S(γ∆) with respect to (xJ , xJ−1, . . . , x1)
evaluated at the critical point.

We know (cf. [7]) that D(T, x, y) = lim|∆|→0 D(∆; x, y) exists.
The function T−dD(T, x, y) coincides with the famous Morette-VanVleck

determinant ( cf. [7]).
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Theorem 2 Under the same assumption as in Theorem 1 we can write the
limit lim|∆|→0 I[F∆](∆; x, y) in the following way:∫

Ω

eiνS(γ)F (γ)D[γ] = lim
|∆|→0

I[F∆](∆; x, y) (25)

=
( ν

2πiT

)d/2

D(T, x, y)−1/2eiνS(γ∗)
(
F (γ∗) + ν−1R[F ](ν, x, y)

)
.

For any non-negative integer K there exist a positive constant CK and a
non-negative integer M(K) independent of ν such that

|∂α
x ∂β

y R[F ](ν, x, y)| ≤ CKAM(K)T (T + ρ([0, T ]))(1 + |x| + |y|)m. (26)

2 The second term of semi-classical asymp-

totic expansion

Although ν is a constant in Physics, it is offten treated as a large positive
parameter. It is expected that the Newton’s classical mechanics is the limit
of ν → ∞ (semi-classical limit) of quantum mechanics. Feynman discussed
the asymptotic behaviour of Feynman path integral (3) as ν → ∞. i.e.,
the semiclassical asymptotic behaviour of Feynman path integrals. And he
explained that the asymptotic behaviour of (3) is a result of ”stationary phase
method on path space”. This is very interesting and challenging idea. Can
one make it mathematically rigorous? Here is our partial answer.

It is expected that the following semi-classical asymptotic expansion holds;∫
Ω

eiνS(γ)F (γ)D[γ] (27)

=
( ν

2πiT

)d/2

D(T, x, y)−1/2eiνS(γ∗)
(
A0 + ν−1A1 + O(ν−2)

)
as ν → ∞.

Theorem 2 implies A0 = F (γ∗). What is the next term A1 ?
In the case F (γ) ≡ 1 assuming the existence of expansion, Birkhoff gave

the answer [1]. In fact, he gave even higher order terms of asymptotic ex-
pansion. However, if F (γ) 6= constant, then his method does not apply.

We write down the second term A1 of (27) for general F (γ) and prove that
the asymptotic expression (27) actually holds. For this purpose we introduce
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a new piece-wise classical path. Let ε be an arbitrary small positive number.
And ∆(t, ε) be the division

∆(t, ε) : 0 = T0 < t < t + ε < T. (28)

Let z be an arbitrary point in Rd. We abbreviate the piecewise classical path
γ∆(t,ε)(s; x, γ∗(t + ε), z, y) associated with the division ∆(t, ε) by γ{t,ε}(s, z),
i.e., γ{t,ε}(s, z) is the piecewise classical path which satisfies conditions:

γ{t,ε}(0, z) = y, γ{t,ε}(t, z) = z, γ{t,ε}(t+ε, z) = γ∗(t+ε), γ{t,ε}(T, z) = x.
(29)

It is clear that γ{t,ε}(s, z) coincides with γ∗(s) for t+ε ≤ s ≤ T independently
of z. Therefore, ∂zγ{t,ε}(s, z) = 0 for t + ε ≤ s ≤ T .

Lemma 1 Under Assumption 1 and Assumption 2 we have bounded conver-
gence of the limit

q(t) = lim
ε→+0

[
∆z(D(t, z, y)−1/2F (γ{t,ε}(∗, z)))

∣∣∣
z=γ∗(t)

]
, (30)

where ∆z stands for the Laplacian with respect to z.

Theorem 3 In addition to Assumptions 1 and 2 we further assume that the
function q(t) of Lemma 1 is Riemannian integrable over [0, T ]. Set

A1 =
i

2

∫ T

0

D(t, γ∗(t), y)1/2q(t)dt. (31)

Then, there holds the asymptotic formula, as ν → ∞,∫
Ω

eiνS(γ)F (γ)D[γ] (32)

=
( ν

2πiT

)d/2

D(T, x, y)−1/2eiνS(γ∗)
(
A0 + ν−1A1 + ν−2r(ν, x, y)

)
,

where for any α, β the remainder term r(ν, x, y) satisfies estimate

|∂α∂βr(ν, x, y)| ≤ Cα,βT 2(1 + |x| + |y|)m. (33)

We can calculate q(t) in more detail for simple functionals F (γ) of exam-
ple (22).

Since our method is based on ”stationary phase method of oscillatory
integrals over a space of large dimension [8] and [10] ”, it is completely dif-
ferent from Birkhoff’s method, it may be interesting to see that this formula
coincides with Birkhoff’s result in the case of F (γ) ≡ 1.
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Remark 1 In this note the Lagrangian has no vector potential. Kitada-
Kumano-go[14], Yajima [17] and Tshuchida-Fujiwara [12] discussed the case
of Lagrangian with non zero vector potential. They proved that the limit (17)
exists and the limit is the fundamental solution of Schrödinger equation if
F (γ) ≡ 1. However we do not know whether the limit (17) exists or not if
F (γ) 6= constant and Lagrangian has non-zero vector potential.
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Sciences Mathématiques, Vol. 129, No. 1, pp. 57–79, 2005.

9



[10] D. Fujiwara and N. Kumano-go. An improved remainder estimate of
stationary phase method for some osicillatory integrals over a space of
large dimension. Funkcialaj Ekvacioj, Vol. 49, pp. 59–86, 2006.

[11] D. Fujiwara and N. Kumano-go. The second term of the semi-classical
asymptotic expansion for feynman path integrals with integrand of poly-
nomial growth. Journa of Mathematical Society of Japan, Vol. 58, No. 3,
pp. 837–867, 2006.

[12] D. Fujiwara and T. Tsuchida. The time slicing approximation of the
fundamental solution for the schrödinger equation with electromagnetic
fields. Journal of Mthematical Society of Japan, Vol. 40, pp. 299–327,
1997.

[13] G.W. Johnson and M.L. Lapidus. The Feynman integral and Feynman’s
operational calculus. Claredon Press Oxford, 2000.

[14] H. Kitada and H. Kumano-go. A family of fourier integral operators and
the fundamental solution for a schrödinger equation. Osaka Journal of
Mathematics, Vol. 18, pp. 291–360, 1981.

[15] N. Kumano-go. Feynman path integrals as analysis on path space by
time slicing approximation. Bulletin des Sciences Mathématiques, Vol.
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