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1. Motivation and background

This is a preliminary account of joint work in progress which serves
as an (very) extended abstract for a presentation of one of us ( $E.M$ .O.)
in the Awajishima conference on Representation Theory, November
16-19, 2004, Japan.

To motivate the questions which we will address we will describe in
some detail the beautiful ideas that were initiated by Sarnak [18] and
by Bernstein and Reznikov [2], and then further explored by Kr\"otz and
Stanton [9].

Inspired by Sarnak [18], Bernstein and Reznikov [2] proposed a new
method for estimating the coefficients in the expansion of the square of
a Maass form on a compact locally symmetric space $Z=\Gamma\backslash X$ (where
$X=G/K$ denotes a noncompact Riemannian symmetric space, and
$\Gamma\subset G$ is a $co$-compact discrete subgroup of $G$ ) with respect to an
orthonormal basis of $L^{2}(Z)$ consisting of Maass forms. The method
is based on holomorphic extension of irreducible representations of $G$

to a certain $G$-invariant domain in $X_{\mathbb{C}}:=G_{\mathbb{C}}/If_{\mathbb{C}}$ (we assume that
$G\subset G_{\mathbb{C}})$ .

In [2] the method was applied in the case of $G=SL_{2}(\mathbb{R})$ . The
method was carried further by Kr\"otz and Stanton in [9], where the re-
sults of [2] were slightly improved for $G=SL_{2}(\mathbb{R})$ , and similar results
for other rank 1 Riemannian symmetric spaces $G/K$ were obtained. In
addition some higher rank cases were considered in [9]. These consid-
erations gave rise to various interesting issues concerning holomorphic
extensions of representations and their matrix coefficients.

A predominant role for these matters is played by the complex crown
(or Akhiezer-Gindikin domain) $--\cup\subset X_{\mathbb{C}}$ of $X$ . This is a G-invariant
domain in $X_{\mathbb{C}}$ on which $G$ acts properly and which possesses the re-
markable universal property that for all irreducible spherical Hilbert
representations $(\pi, \mathcal{H})$ of $G$ with spherical vector $v\in \mathcal{H}say--$

, the map
$X\ni gK=xarrow v^{x}=\pi(g)v$ extends holomorphically to $\cup[9]$ . An-
other instance of this universal property of $\cup--is$ the fact that every
eigenfunction of the algebra of $G$-invariant differential operators on $X$

extends holomorphically $to_{\cup}^{-}-[10]$ . The $domain_{\cup}^{-}-$ was recently studied
by several authors from various points of view. It has truly remarkable
properties and which show up naturally in other applications as well.

We first discuss some basic facts about $\cup--$ . Then we will describe its
distinguished boundary $\partial_{d}(_{\cup}^{-}-)$ (this is the “extremal part” of the subset
of the boundary $\partial(_{\cup}^{-}-)$ consisting of points with closed $It_{\mathbb{C}}’$-orbits). The
important r\^ole of $\partial_{d}(_{\cup}^{-}-)$ for lower estimates of holomorphic functions
on $\cup--$ is clear from the fact that a bounded holomorphic function $f$

$-39-$



SINGULARITIES OF SPHERICAL FUNCTIONS

which extends continuously to $----will$ have the same $\sup$-norm as its
restriction to $\partial_{d}(_{-}^{-}-)$ .

We will then explain the basic computation behind the method of [2]
in order to motivate the problem of finding both good upper and lower
estimates for the norm of $v^{x}$ , with $v$ a unit spherical vector of an unitary
irreducible spherical representation, when $x$ approaches radially a point
of $\partial_{d}(_{-}^{-}-)$ . These problems will occupy us for the remaining part of this
report.

The lower estimates need to be given uniformly in the spectral pa-
rameter $\mu$ of the spherical vector. For the above application it suffices
to do this for the spherical minimal principal series $(\mathcal{H}_{i\lambda}, \pi_{i\lambda})$ with
spherical vector $v_{i\lambda}$ . We will give an uniform exponential lower bound
for the norm of $v_{i\lambda}^{x}$ when $x\in\cup--approaches$ a point of $\partial_{d}(_{\cup}^{-}-)$ . The
method is quite direct, using a suitable integral representation for the
spherical function $\phi_{i\lambda}[9]$ .

We obtain the upper estimates as an application of the theory of
hypergeometric functions for root systems (cf. [4], [5], [17]). Accord-
ing to this theory there exists a commutative free $\mathbb{C}[m_{\alpha}]$ -algebra $\mathcal{R}$

of $W$-invariant differential operators on $A(A\subset G/K$ a maximal flat
subspace) such that the specialization $m_{\alpha}arrow m_{\alpha}^{X}$ of $\mathcal{R}$ , with $m_{\alpha}^{X}$ the
multiplicities of the restricted roots of $\mathfrak{g}$ with respect to $a:=T_{eK}(A)$ ,
is equal to the algebra $\mathcal{R}_{X}=Rad(D(X))$ of radial parts of G-invariant
differential operators on $X$ . The key point is the fact that “hypergeo-
metric system of differential equations”, which is the holonomic system
of eigenfunction equations for this algebra of commuting differential op-
erators, is generically simpler than the original system of eigenfunction
equations for the restrictions of the spherical functions of $X$ to $A$ . It
is therefore possible to compute the exponents of the hypergeometric
system at its singularities, using techniques similar to [14], [15]. We ob-
tain the desired upper estimates for the extended spherical functions by
specialization from the appropriate formulae of generic hypergeometric
functions.

2. The crown domain of $X$ and holomorphic exten-
sions

Let $G$ be a connected, real semisimple, noncompact algebraic group.
Then $G$ is contained in its universal complexification $G_{\mathbb{C}}$ . Let $K$ be
a maximal compact subgroup of $G$ , and let $X=G/K$ . We denote
the base point $eIf_{\mathbb{C}}$ of $X_{\mathbb{C}}$ by $x_{0}$ , and we identify $X$ with the totally
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real submanifold $Gx_{0}\subset X_{\mathbb{C}}$ (this can be done by our assumption that
$G\subset G_{\mathbb{C}})$ .

Let $g=\not\in+\mathfrak{p}$ be the Cartan decomposition, and choose $\alpha$ a maximal
abelian subspace in $\mathfrak{p}$ . The complex crown $--\cup ofX$ was introduced in
[1] and is by definition

(2.1) $\cup--:=G\exp(i\pi\Omega/2)x_{0}\subset X_{\mathbb{C}}$ ,

where $\Omega\subset\alpha$ is the defined in terms of the restricted root system
$\Sigma=\Sigma(g, a)$ as follows:

(2.2) $\Omega:=\{X\in a||\alpha(X)|<1\forall\alpha\in\Sigma\}$ .

The following properties $of_{\cup}^{-}-$ are crucially important in all that follows:
(i) $--\cup is$ connected, $G$-invariant and open in $X_{\mathbb{C}}([1],[9])$ .
(ii) The $G$ action on $\cup--is$ proper ([1]).
(iii) We $have\cup--\subset N_{\mathbb{C}}A_{\mathbb{C}}x_{0}([9], [6],[13])$ .
(iv) In fact we have $even_{\cup}^{-}-\subset N_{\mathbb{C}}A\exp(i\pi\Omega/2)x_{0}([8])$ .
(v) $\cup--is$ a Stein domain ([10] and see the references therein).

By $(i),(iv)$ one can easily show [9] that the Iwasawa projections $a$ :
$Garrow A,$ $n$ : $Garrow N$ and $k$ : $Garrow K$ defined by $g=n(g)a(g)k(g)$ all
have unique extensions to holomorphic maps $a$ : $\cup--\simarrow A\exp(i\pi\Omega/2)$ ,
$n:-\sim\cup-arrow N_{\mathbb{C}}$ and $k:_{\cup}--\simarrow If_{\mathbb{C}}$ respectively ( $where_{\cup}^{\simeq}-$ is the pull-back of
$--\cup toG_{\mathbb{C}})$ . Since the tube domain $AT_{\Omega}:=A\exp(i\pi\Omega/2)\subset A_{\mathbb{C}}$ is simply
connected we obtain that the function

$\Phi:_{\cup}--\simarrow \mathbb{C}^{x}$

$garrow a(g)^{\mu+\rho}:=\exp(\mu+\rho)(\log a(g))$

is well defined and holomorphic for all $\mu\in\alpha_{\mathbb{C}}$ . Using the compact
realization of a spherical minimal principal series module $(\pi_{\mu}, \mathcal{H}_{\mu})$ this
result allows one to show [9] that the orbit map of a spherical vector
$v_{\mu}\in \mathcal{H}_{\mu}$

$F$ : $Xarrow \mathcal{H}_{\mu}$

$gKarrow\pi_{\mu}(g)v_{\mu}$

extends to a holomorphic map
$F$ : $--\cuparrow \mathcal{H}_{\mu}$

$xK_{\mathbb{C}}arrow\pi_{\mu}(x)v_{\mu}$ .

It follows that every spherical function $\phi_{\mu}(gK)=\langle v_{\mu}, \pi(g)v_{\mu}\rangle$ can be
holomorphically continued $to_{\cup}^{-}-$ (where we have adopted the physicist’s
convention that sesquilinear pairings are linear on the right hand side,
and anti-linear on the left hand side) $to\cup--$ . For general $\mu,$

$\phi_{\mu}$ can not
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be continued to a larger $G$-invariant domain. This can be seen already
in the example $G=SL_{2}(\mathbb{R})$ using the classical integral formula

(2.3) $\phi_{\mu}(g):=\int_{h^{r}}a(kg)^{\mu+\rho}dk$

for the spherical function.
However, the spherical function will continue to a doubly $IC_{\mathbb{C}}$-invariant

function on $If_{\mathbb{C}}AT_{\Omega}^{2}If_{\mathbb{C}}$ which is holomorphic on the tube $AT_{\Omega}^{2}$ . This
can be easily seen from the following “doubling trick” [9]. If $\pi^{*}$ de-
notes the conjugate contragredient representation, then we have for
$at\in AT_{\Omega}$ :

(2.4) $\phi_{\mu}(I\iota_{\mathbb{C}}’a^{2}t^{2}It_{\mathbb{C}}’)=\langle\pi^{*}(\overline{a^{-1}t^{-1}})v_{\mu}, \pi(at)v_{\mu}\rangle$

$=\langle\pi^{*}(a^{-1}t)v_{\mu}, \pi(at)v_{\mu}\rangle$

In particular we see from this formula in the case of the unitary spher-
ical minimal principal series $\mu=i\lambda\in i\alpha^{*}$ that the function $\phi_{i\lambda}$ is pos-
itive on $T_{\Omega}^{2}$ , and that for all $x=gtIf_{\mathbb{C}}\in GT_{\Omega}/It_{\mathbb{C}}’$ (recall the notation
$v_{i\lambda}^{x}:=\pi(x)v_{i\lambda})$ :

(2.5) $\langle v_{i\lambda}^{x}, v_{i\lambda}^{x}\rangle=\phi_{i\lambda}(t^{2})$

$= \int_{A’}|a(kt)^{2(\lambda+\rho)}|dk$ .

3. The distinguished boundary of $\partial(_{-}^{-}-)$

The topological boundary $\partial(_{-}^{-}-)$ of the $domain_{\cup}^{-}-$ is a union of G-orbits
in $X_{\mathbb{C}}$ . Not all the $G$-orbits in the boundary contain points of $Acx_{0}$ ,
but for many applications it is in fact enough to consider only those
$G$-orbits in $\partial(_{\cup}^{-}-)$ which do meet $A_{\mathbb{C}}x_{0}$ . This part of the boundary $of_{\cup}^{-}-$

is equal to (see [1]) $G\partial(T_{\Omega})If_{\mathbb{C}}/A_{\mathbb{C}}’$ . In fact we will restrict further and
include only the $G$-orbits of the extremal points $\partial_{e}(T_{\Omega})$ of $\partial(T_{\Omega})$ . This
set of orbits in the boundary is called the distinguished boundary $\partial_{d}(_{\cup}^{-}-)$

$of_{\cup}^{-}-$ (see [7]). Its r\^ole is clearly illustrated by the following elementary
result:

Proposition 3.1. ([7]) Let $f\in A(_{\cup}^{-}-)$ be holomorphic function on $---$

which extends to a bounded continuous function $on-\cup--$ . Then

(3.1) $\sup_{x\epsilon_{--}^{-(}}|f(x)|)=\sup_{x\in\partial_{d}(_{--}^{-})}(|f(x)|)$ .

Essentially the same result holds for the space of bounded continuous
plurisubharmonic functions $on_{\cup}^{-}-([7])$ .

It is therefore an important problem to describe the distinguished
boundary $of_{-}^{-}-$ or, what amounts to the same problem, to describe the
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set $\partial_{e}(T_{\Omega})$ of extremal points of $T_{\Omega}$ . We can now summarize and extend
the results of [7] in the following way:

Theorem 3.2. Let $\Sigma=\Sigma(\mathfrak{g}, a)$ be the restricted root system and let $\Sigma^{l}$

denote the reduced subsystem of roots $\alpha\in\Sigma$ such that $2\alpha\not\in\Sigma$ . Let $D$ be
the dynkin diagram of $\Sigma^{l}$ a $n$ d let $D^{*}$ denote the corresponding extended
diagram (corresponding to the affine root system $\Sigma^{a}=\Sigma^{l}\cross \mathbb{Z}$). We
assume that $D$ is connected. For each vertex $k\in D$ we denote by $\omega_{k}$

the corresponding fundamental coweight of $\Sigma^{l}$ . Let $n_{k}=\theta(\omega_{k})$ denote
the corresponding coefficient of the highest root $\theta\in\Sigma^{l}$ .

(i) (Ill]) $\partial_{e}(T_{\Omega})$ consists precisely of the $W$ -orbits of the points $\{t_{k}=$

$\exp(i\pi\omega_{k}/2n_{k})\}$ , where $k$ runs over the set of vertices of $D$ such
that $D^{*}\backslash \{k\}$ is connected.

(ii) $(Il1])[7])$ Thus $\partial_{m}(T_{\Omega}):=$ { $t_{k}|\omega_{k}$ is a minuscule coweight} $\subset$

$\partial_{e}(T_{\Omega})$ . We will refer to $\partial_{m}T_{\Omega}$ as the set of minuscule boundary
points of $T_{\Omega}$ .

(iii) $(|7])$ We have: $t_{k}$ is minuscule iff the component $Gt_{k}$ of $\partial_{d}(_{\cup}^{-}-)$ is
a non-compactly causal symmetric space.

4. Holomorphic extensions of Maass forms

This material is from [9], [10]. Let $Y=\Gamma\subset G$ be a cocompact
discrete subgroup. A Maass eigenfunction $\psi_{\mu}\in C^{\infty}(Z)$ on the compact
locally symmetric space $Z=Y/K$ admits a decomposition as a finite
linear combination of Maass forms $\psi_{\mu}^{\eta,v}$ on $Z$ of the form

(4.1) $\psi_{\mu}^{\eta,v}(\Gamma gK)=(\eta, \pi_{\mu}(g)v)$

where $(\pi_{\mu}, \mathcal{H}_{\mu})$ is a unitary, spherical representation of $G$ with spherical
vector $v$ , and where $\eta\in \mathcal{H}_{\mu}^{-\infty}$

. is a $\Gamma$-invariant distribution vector. Here
we parametrize the spherical unitary dual by a subset of $a_{\mathbb{C}}^{*}$ as usual.
We can and will choose $\eta$ in such a way that the map

(4.2) $\mathcal{H}_{\mu}^{\infty}arrow C^{\infty}(Y)$

$varrow\{\Gamma garrow(\eta, \pi_{\mu}(g)v)\}$

extends to an isometry $\mathcal{H}_{\mu}arrow L^{2}(Y)$ . Using the techniques described
in the previous sections, it is clear that $\psi_{\mu}^{\eta,v}$ allows a holomorphic ex-
tension to $\Gamma\backslash _{\cup}^{-}-$ .

Let $\{\psi_{i}\}_{i\in I}$ denote a orthonormal basis of $L^{2}(Z)$ consisting of Maass
forms $\psi_{i}=\psi_{\mu i}^{\eta_{i},v_{i}}$ . In [9] a method is explained for obtaining estimates
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for the coefficients $c_{i}$ in an expansion of the form

(4.3)
$\psi_{j}^{2}=\sum_{i\in I}c_{i}\psi_{i}$

.

These coefficients are thus of the form

(4.4) $c_{i}= \int_{Z}\psi_{j}^{2}\overline{\psi_{i}}d_{Z}$ .

Estimating such integrals of triple products of Maass forms was the
original motivation of Sarnak [18].

Let $\epsilon\in(0,1)$ and let $t=\exp(-\pi iH/2)\in\partial(T_{\Omega})$ . Consider the ray
to the boundary point $t\in\partial(T_{\Omega})$ given by $t_{\epsilon}=\exp(-\pi i(1-\epsilon)H/2)$

$(\epsilon\in(0,1))$ . For every $\epsilon$ we define a function $\psi^{\epsilon}\in C^{\infty}(Y)$ by

(4.5) $\psi_{i}^{\epsilon}(y):=\psi_{i}(yt_{\epsilon})=(\eta_{i}, \pi_{\mu i}(y)v_{i^{\epsilon}}^{t})$ .

The ingredients for obtaining estimates for the $c_{i}$ are the following:
(i) Uniform (in $\mu_{i}$ ) lower bounds for the $L^{2}$ -norms of $\psi_{i}^{\epsilon}$ on $Y$ . To

obtain the best lower bounds it is clear, in view of Proposition
3.1 and (2.5), that should take $t$ equal to one of the distinguished
boundary points and that should take the limit $\epsilonarrow 0$ .

(ii) Upper estimates for $||\psi_{j}^{\epsilon}||$ in $L^{2}(Y)$ , where $\epsilonarrow 0$ and $t$ is as in
(i).

(iii) Upper estimates for $||\psi_{i}^{\epsilon}||_{\infty}$ in $L^{\infty}(Y)$ , where $\epsilonarrow 0$ and $t$ is as in
(i).

The $L^{\infty}$ -estimates are by far the hardest, and this is the battle ground
where serious improvements of the estimates have to be conquered.
We will restrict ourselves here to improvements of the first two type
of estimates in the higher rank cases. These results are basic and are
likely to also find applications outside of the present context.

Let us assume for simplicity that $\mu_{i}=i\lambda\in ia^{*}$ (For the lower es-
timates this simplifies matters; it is also the most important case for
estimating the $c_{i}$ ). Using (4.2), (2.5) we get:

(4.6) $||\psi_{i}^{\epsilon}||^{2}=(v_{i\lambda}^{t_{\epsilon}}, v_{i\lambda}^{t_{\epsilon}})$

$=\phi_{i\lambda}(t_{\epsilon}^{2})$

$= \int_{h’}|a(kt_{\epsilon})^{2(i\lambda+\rho)}|dk$ .

5. Lower $L^{2}$ estimates

The lower estimates for $||\psi_{i}^{\epsilon}||^{2}$ that we can give are based on the use
of the integral in the last equality of 4.6. Since the kernel of the integral
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is positive we have lower estimates of the form

(5.1) $|| \psi_{i}^{\epsilon}||^{2}\geq\int_{U_{\epsilon}}|a(kt_{\epsilon})^{2(i\lambda+\rho)}|dk$

where $U_{\epsilon}$ is any neighborhood of $e\in K$ . Suppose that $t=t_{0}$ is a
boundary point corresponding to a causal boundary component, i.e. $t$

is a minuscule boundary point of $\partial(T_{\Omega})$ . Another way of saying this
is that $t^{4}\in Z(G_{\mathbb{C}})$ , the center of $G_{\mathbb{C}}$ . We have the following useful
lemma:

Lemma 5.1. If $t^{4}$ is central in $G_{\mathbb{C}}$ and $k\in U$ , a suitably small neigh-
bourhood of $e\in K$ , then $a(kt)\in A_{\mathbb{C}}$ is well defined and we have
$a(kt)=r(kt)t$ with $r(kt)\in A\subset G$ .

The lemma implies that there exists $\epsilon_{0}>0$ and $R>0$ such that the
angular part of $t^{-1}a(kt_{\epsilon})$ can be estimated by $R\epsilon$ for all $k\in U$ and for
all $\epsilon<\epsilon_{0}$ . Therefore we can now take $U_{\epsilon}$ independent of $\epsilon<\epsilon_{0}$ in this
case, and we obtain:

Lemma 5.2. Let $t=\exp(-\pi i\omega/2)$ be a boundary point of $T_{\Omega}$ such that
$t^{4}$ central in $G_{\mathbb{C}}$ . Then there exist constants $\epsilon_{0}\in(0,1)$ (independent of
$\lambda\in\alpha)$ and $R>0,$ $C>0$ (independent of $\lambda\in a$ and $\epsilon\in(0,$ $\epsilon_{0})$) such
that

(5.2) $|| \psi_{i}^{\epsilon}||^{2}\geq C\exp(\max_{w\in W}\pi\lambda(w\omega)(1-R\epsilon)),$ $\forall\lambda\in a,$ $\forall\epsilon\in(0, \epsilon_{0})$

The general case is obtained by considering the above Lemma in the
centralizer $G’=C_{G}(t^{4})$ , a reductive subgroup of $G$ . Let $K’=K\cap G’$ .
We obtain

Theorem 5.3. Let $t=\exp(-\pi i\omega/2)$ be an extremal boundary point
of $T_{\Omega}$ . Then there exist constants $\epsilon_{0}\in(0,1)$ (independent of $\lambda$) and
$R>0,$ $C>0$ (independent of $\lambda\in\alpha,$ $\epsilon<\epsilon_{0}$) such that

(5.3) $|| \psi_{i}^{\epsilon}||^{2}\geq C\epsilon^{(\dim(K)-\dim(K’))/2}\exp(\max_{w\in W}\pi\lambda(w\omega)(1-R\epsilon))$

for all $\lambda\in\alpha_{f}$ and for all $\epsilon\in(0, \epsilon_{0})$ .

6. Upper $L^{2}$ estimates

In this final section we consider the problem to give upper estimate
for the $L^{2}$ norm in $L^{2}(Y)$ of the extended Maass form $\psi_{i}^{\epsilon}$ . Recall from
(4.6) that

$||\psi_{i}^{\epsilon}||^{2}=(v_{i\lambda}^{t_{\epsilon}}, v_{i\lambda}^{t_{\epsilon}})$

$=\phi_{i\lambda}(t_{\epsilon}^{2})$
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Therefore we can concentrate on the question of estimating the holo-
morphically extended spherical function $\phi_{\mu}(t_{\epsilon}^{2})$ when $\epsilonarrow 0$ , where
$t=\exp(\pi i\omega/2)$ is a extremal boundary point of $T_{\Omega}$ and where we
choose $\omega\in\alpha_{+}$ dominant.

We will deal with this problem using the system of differential eigen-
function equations defining the restriction of the spherical function $\phi_{\mu}$

to $AT_{\Omega}^{2}$ . We will establish the estimates by computing the exponents
of the solutions of these differential equations at the singular point $t$ ,
when restricted to a small punctured complex disc embedded in $A_{\mathbb{C}}^{reg}$

and centered at $t$ . We have to take several steps in order to compute
these exponents. Before we discuss this in general we remark that
in the complex case (all root multiplicities are equal to 2 for the ele-
ments of $\Sigma_{l}$ , and equal to $0$ for the other roots) the problem becomes
completely elementary because the algebra of differential equations is
conjugate to the algebra of $W$-invariant differential equations by a con-
jugation with the Weyl denominator. Looking at the explicit form of
the eigenfunctions in this case we easily find that:

Proposition 6.1. In the complex case $\phi_{i\lambda}(t_{\epsilon}^{2})\wedge\vee\epsilon^{n_{\omega}}$ as $\epsilonarrow 0$ , where
$-n(v$ is equal to $|\Sigma_{+,\omega}\backslash \Sigma_{+,(v}^{f}|$ . Here $\Sigma_{+,\omega}$ is the set of positive affine roots
which vanish on $\omega_{f}$ and where $\Sigma_{+,(v}^{f}:=\Sigma_{+,\omega}\cap\Sigma_{+}^{l}$ . In other words, $-n_{\omega}$

is the number of roots $a$ in $\Sigma_{+}^{l}$ with $\alpha(\omega)=1$ .

6.0.1. Connection form of the equations. It does not make sense to re-
strict the system of eigenfunction equations to an embedded complex
disc. Therefore we rewrite the system as a flat connection with log-
arithmic singularities, in such a way that the exponents at $t$ of the
restriction of this connection to the disc coincide with the exponents of
the restrictions of the solutions of the system of eigenfunction equations
for the spherical function.

Using the exponential map $Xarrow\exp(\pi iX)$ we will work on $i\alpha+\Omega\subset$

$a_{\mathbb{C}}$ rather than on $AT_{\Omega}^{2}\subset A_{\mathbb{C}}$ (recall that the logarithm is well defined
on $AT_{\Omega}^{2}$ ). It is well known [4] that the spherical system of eigenfunction
equations can be cast in the form of an integrable connection on $a_{\mathbb{C}}$ with
singularities along the collection of affine hyperplanes $\alpha(H)\in \mathbb{Z}$ (not
the usual $\pi i\mathbb{Z}$ , since we have multiplied everything by $(\pi i)^{-1})$ . The
point $\omega\in a$ is in the singular locus of this connection. For the above
application we need to adapt the construction in [4] slightly so as to
get logarithmic sigularities at (the blow-up of) the point $\omega$ .

We consider a parametrized line $xarrow\omega+xV_{1}$ through this singular
point, where $V_{1}$ is small and chosen in such a way that this line is
not contained in the union of the singular affine hyperplanes. We will
choose coordinates $(y_{1}, y_{2}, \ldots y_{n})(y_{i}\in(0,1))$ in an open truncated
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cone $\subset a$ which is in the complement of the singular hyperplanes, with
top $\omega$ and containing a neighborhood of the segment $\omega+(0,1)V_{1}$ as
follows. First we choose $V_{2},$

$\ldots$ , $V_{n}$ in $a$ such that $||V_{i}||$ is small for all
$i$ , and such that $(V_{1}, V_{2}, \ldots , V_{n})$ is a basis of the real vector space $a$ .
Then our coordinate map is given by

(6.1) $(y_{1}, y_{2} \ldots , y_{n})arrow\omega+y_{1}(V_{1}+\sum_{i\geq 2}yiVi)\in\alpha$
.

If we lift this coordinate map to the blow-up of $\alpha_{\mathbb{C}}$ at $\omega$ then the coordi-
nates can be naturally extended to the polydisk $PD:=\{$ $(y_{1}, \ldots , y_{n})\in$

$\mathbb{C}^{n}||y_{i}|<1\}$ , and this is then a coordinate neighborhood of a regular
point of the exceptional divisor $E$ . The intersection of this neighbour-
hood with $E$ is described by the equation $y_{1}=0$ .

Let $p$ be a point in the pounctured polydisc $PD^{*}$ and let $\mathcal{O}_{p}$ de-
note the ring of holomorphic germs at $p$ . Following [15], consider the
complex vector space $U^{*}$ spanned by the linear partial differential op-
erators $b_{i}=y_{1}^{\deg(qi}\partial$

)
$(q_{i})$ , where $q_{i}$ runs over a homogeneous basis of

$W$-harmonic polynomials ordered such that $iarrow\deg(q_{i})$ is nondecreas-
ing. Let $O_{p}\otimes U^{*}$ be the corresponding free $O_{p}$ module. This free
$O_{p}$-module is a complement, in the localization of the ring of holo-
morphic partial linear differential operators at $p$ , for the left ideal $\mathcal{I}_{\mu}$

generated by $D-\gamma(D)(\mu)$ , with $D$ running over the commutative ring
$\mathcal{R}_{X}:=Rad(D(X))$ of radial parts of $G$-invariant operators on $X_{\mathbb{C}}$ , and
$\gamma$ the Harish-Chandra homomorphism. We can rewrite the differential
equations (with $\mu\in\alpha_{\mathbb{C}}^{*}$ )

(6.2) $(D-\gamma(D)(\mu))\phi=0\forall D\in \mathcal{R}_{x}$

in connection form with respect to the above basis and coordinates.
We define matrices $M^{i}\in End_{\mathcal{O}_{p}}(O_{p}\otimes U)$ (where $U$ denotes the dual
of $U^{*}$ , with dual basis $b_{i}^{*}$ ) which are characterized by the requirement
that

(6.3) $\frac{\partial}{\partial y_{i}}\circ b_{k}\in\sum_{j}(M^{i})_{jk}^{tr}b_{j}+\mathcal{I}_{\mu}$ .

Then the desired (flat) connection form of (6.2) is defined on the free
$O_{p}$-module $O_{p}\otimes U$ by

(6.4) $\frac{\partial\Phi}{\partial y_{i}}=M^{i}\Phi$ $(\Phi\in O_{p}\otimes U)$ .

By construction, if $\phi$ is a solution of (6.2) then $\Phi=\sum_{i}b_{i}(\phi)b_{i}^{*}$ is a
solution vector of (6.4). Conversely, if $\Phi$ is a solution vector of (6.4)
then the first coordinate $\phi=\langle b_{1}, \Phi\rangle$ is a solution of (6.2). These are
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inverse isomorphisms between the solution spaces of these two systems
of differential equation.
Remark 6.2. Since the local solution space of an integrable connection
at a regular point $p$ can be identified with the fiber of the underlying
vector space at $p$ ) the above gives an isomorphism (depending on $p$)
between the local solution space $\mathcal{L}_{p}(\mu, m^{X})$ of (6.2) at $p$ and the complex
vector space $U$ .

By the homogeneity of the basis $b_{i}$ which we chose, one can easily
show (using that the “lowest homogeneous part at $\omega$

” of the radial
part $D$ contains the highest order term of $D$ ) that the matrices $M^{i}$

$(i=2, \ldots , n)$ are holomorphic in the coordinates $(y_{1}, \ldots , y_{n})$ , and that
$M^{1}$ has a simple pole at $y_{1}=0$ . As in [15] one can in fact show that

Lemma 6.3. The exponents of the solutions of the system 6.2, pulled
back to the punctured coordinate polydisk $PD^{*}:=PD\cap y_{1}\neq 0$ , are
equal to the eigenvalues of the residue $R_{m}$ of the matrix $M^{1}$ at $y_{1}=0$

(it is well known that these eigenvalues are independent of $(y_{2}, \ldots , y_{n})_{f}$

cf. [3] $)$ .
6.0.2. Monodromy of the local braid group. The above analysis “re-
duces” our problem to the computation of the eigenvalues of the residue
matrix $R_{X}$ (specialized for example at $y_{2}=y_{3}=\ldots y_{n}=0$ ) of $M^{1}$ .
This seems a daunting task, since we have no explicit information on
$R_{X}$ at all.

Now we will start to make use of the remarkable fact which was al-
ready mentioned in the first section, namely that the commutative ring
$\mathcal{R}_{X}$ of radial parts of the ring $D(X)$ of $G$-invariant operators on $X_{\mathbb{C}}$

is equal to the specialization $m_{\alpha}arrow m_{\alpha}$ of a commutative, free $\mathbb{C}[m_{\alpha}]-$

algebra 7? of linear partial differential operators with coefficients in the
polynomial ring $\mathbb{C}[m_{\alpha}]$ . There exists a generalized Harish-Chandra ho-
momorphism $\gamma$ : $\mathcal{R}arrow \mathbb{C}[m_{\alpha}][a_{\mathbb{C}}^{*}]^{W}$ , and we can define for all multiplic-
ity functions $m=(m_{\alpha})$ on $\Sigma$ the hypergeometric system of differential
equations (cf. [4], [5]) on $A_{\mathbb{C}}x_{0}=Ac/F$ (with $F=I\iota_{\mathbb{C}}’\cap A_{\mathbb{C}}$ , a finite
2-group):

(6.5) $(D-\gamma(D)(\mu))\phi=0\forall D\in \mathcal{R}_{m}$

The system is equal to (6.2) when we take $m=m^{X}$ , the multiplicity
function associated with our symmetric space $X$ . The system is invari-
ant for the action of the (extended) affine Weyl group $W^{a}=W\ltimes L$ on
$a_{\mathbb{C}}$ , where $L\subset a$ such that $\pi iL$ is the lattice of cocharacters of $A_{\mathbb{C}}/F$

(recall that we have multiplied everything by $(\pi i)^{-1}$ ; observe that the
coroot lattice of $\Sigma$ is always contained in $L$ ). Hence the system de-
scends to the space of regular orbits for the action of $W^{a}$ on $a_{\mathbb{C}}$ . It is
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known that it is holonomic of rank $|W|$ and that it is regular singular
(see e.g. [4], [17], Remark 6.10).

The whole construction of the connection form of the system and of
the residue matrix $R_{X}$ can now be performed over the ring $\mathbb{C}[m_{\alpha}]$ , and
we obtain a residue matrix $R$ as before, but with coefficients in $\mathbb{C}[m_{\alpha}]$ ,
such that $R_{X}=R_{m^{X}}$ , the specialization of $R$ at $m^{X}$ .

Still this does not seem to help too much, if anything we have made
the situation more complicated-or so it seems. But now something
comes to rescue us, namely our explicit knowledge of the action of
the fundamental group $\Pi_{1}(W^{a}\backslash a_{\mathbb{C}}^{reg}, p)$ (at a regular base point $p\in$

$a_{\mathbb{C}}^{reg}$ , chosen near $\omega$ ) by monodromy on the local solution space $\mathcal{L}_{p}=$

$\mathcal{L}_{p}(\mu, m)$ of (6.5). By a well known result of Looijenga and Van der Lek
([12], also see [4], [5], [17]) this fundamental group is isomorphic to the
(extended) affine braid group $B^{a}$ of $W^{a}=W\ltimes L$ . The monodromy
action on $\mathcal{L}_{p}(\mu, m)$ factors through the (extended) affine Hecke algebra
$H(W^{a}, q)$ , where $q$ is the label function on the set of simple affine roots
$(\alpha_{0}=1-\theta, \alpha_{1}, \ldots , \alpha_{n})$ of the affine extension $\Sigma^{a}$ of $\Sigma^{l}$ given by

$q_{i}=\exp(-\pi i(m_{\alpha_{i}}+m_{\alpha_{i/2}}))$ for $i=1,$ $\ldots$ , $n$ , and
$q_{0}=\exp(-\pi im_{\theta})$ .

Theorem 6.4. (cf. [4], [5], [17]) The monodromy action of $B^{a}$ on
$\mathcal{L}(\mu, m)$ factors through the extended affine Heck algebra $H(W^{a}, q)$ and
depends analytically on $m$ and $\mu$ .

Let us assume now that $W$ is irreducible and put $n=\dim_{\mathbb{R}}(a)$ . Let
$W_{\omega}$ be the isotropy subgroup of $\omega$ in the non-extended affine Weyl group
$W^{aff}\subset W^{a}$ , and let $\Sigma_{\omega}$ be the corresponding root system. We fix simple
roots of $\Sigma_{\omega}$ by taking the complement of $\{k\}\subset D^{*}$ in the set of affine
simple roots, where $k$ is such that $\omega=\omega_{k}/n_{k}$ (notations as in Theorem
3.2). According to Theorem 3.2, $W_{\omega}$ is a finite, irreducible reflection
group of rank $n$ , isomorphic to a reflection subgroup $\tilde{W}_{\omega}\subset W$ which
is equal to $W$ iff $\omega$ is a minuscule extremal point. Put $N_{\omega}=[W : \tilde{W}_{\omega}]$

for the index of $\tilde{W}_{\omega}$ in $W$ .
Let us denote by $B_{\omega}\subset B^{a}$ the braid group of $W_{\omega}$ , which we can

identify, by Brieskorn’ $s$ theorem on the fundamental group of the regu-
lar orbit space of a finite reflection group, with the fundamental group
based at $\overline{p}$ of the regular orbit space of $W_{\omega}$ , acting on the complement of
its reflection hyperplanes in a small $W_{\omega}$-invariant ball centered around
$\omega$ (and containing $p$ ) in $\alpha_{\mathbb{C}}$ . We will refer to the subgroup $B_{\omega}\subset B^{a}$ as
the local fundamental group at $\omega$ .

Let $q_{\omega}$ be the restriction of $q$ to $\Sigma_{\omega}$ , and let $m_{\omega}$ be correspond-
ing the corresponding root multiplicity function on $\Sigma_{\omega}$ . In a dense,
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open set $Q^{reg}$ of values of $m$ , the finite dimensional Hecke algebra
$H_{\omega}=H(W_{\omega}, q_{\omega})$ (with $q_{\omega}=q(m_{\omega})$ ) is semisimple. If we assume
that $m\in Q^{reg}$ then, by Tits’ deformation lemma, we can index its
set of irreducible modules by $\hat{W}_{\omega}$ , the set of irreducible representations
of $W_{\omega}$ . Given $\tau\in\hat{W}_{\omega}$ and $m\in Q^{reg}$ we will write $\pi_{\tau}(m)$ for the
corresponding irreducible $H_{\omega}(W_{\omega}, q(m_{\omega}))$-module. Upon restriction of
the monodromy action on $\mathcal{L}_{p}(\mu, m)$ to $B_{\omega}$ we get, using the rigidity of
semisimple finite dimensional algebras (Tits’ deformation lemma):

Corollary 6.5. Let $q=q(m)$ and $q_{\omega}=q(m_{\omega})$ for $m\in Q^{reg}$ . Under
the monodromy action of $H(W_{\omega}, q_{\omega})_{\rangle}$ the local solution space $\mathcal{L}_{p}(\mu, m)$

is isomorphic to

(6.6)
$\mathcal{L}_{p}(\mu, m)\simeq\sum_{\tau\in\hat{W}_{\omega}}K(\tau, m)\otimes\pi_{\tau}(m)$

where the multiplicity space $K(\tau, m)=Hom_{H(W_{\omega},q_{\omega})}(\pi_{\tau}(m), \mathcal{L}_{p}(\mu, m))$

has dimension independent of $m$ . In particular, its dimension is equal
to the multiplicity $N_{\omega}\deg_{\mathcal{T}}$ of $\tau$ in the restriction of the regular repre-
sentation of $W$ to $\tilde{W}_{\omega}$ (this follows by restriction to the case $m=0$).

6.0.3. The residual eigenvalues and monodromy. The following topo-
logical observation is crucial for our purpose:

Lemma 6.6. Let $\beta_{\omega}\in B_{\omega}$ denote the braid which corresponds to a re-
duced expression of the longest element of $W_{\omega}$ . Let $\sigma_{\omega}$ denote the $clo$. $sed$

loop based at $p$ going once around the hyperplane $y_{1}=0$ , in positive di-
rection, in the punctured polydisc $PD^{*}$ . In the local fundamental group
at $\omega$ we have the identity $\beta_{\omega}^{2}=\sigma_{\omega}$ . This element is central in $B_{\omega}$ .

If $m\in Q^{reg}$ then the monodromy action of the local fundamental
group $B_{\omega}$ on the local solution space $\mathcal{L}_{p}(\mu, m)$ is semisimple. Hence
we have (using standard results on flat connections with logarithmic
poles, see e.g. [3] $)$ :

Corollary 6.7. (see [14], [15]) Assume that $m\in Q^{reg}$ . Identify the
local solution space $\mathcal{L}_{p}(\mu, m)$ with the $U$ (see Remark 6.2) and let $R_{m}$

be the residue of $M_{m}^{1}$ acting on U. Then $\exp(2\pi iR_{m})$ is conjugate to
the monodromy action of $\beta_{\omega}^{2}$ . In $particular_{J}R_{m}$ is semisimple.

It is an easy matter to compute the scalar action of the central
element $\beta_{\omega}^{2}$ on $\pi_{\tau}(m)$ :

Proposition 6.8. The scalar value of the central element $\beta_{\omega}^{2}$ on $\pi_{7}\cdot(m)$

is equal to $\exp(-\pi ic_{\tau}(m))$ , where $c_{\tau}(m)$ is the polynomial of degree at
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most 1 in the $m_{\alpha}$ given by

(6.7) $c_{\tau}(m)= \sum_{\alpha\in\Sigma_{\omega+}},m_{\alpha}(1-\frac{\chi_{\tau}(s_{\alpha})}{\deg_{\mathcal{T}}})$ .

The coefficients of the $m_{\alpha}$ in $c_{\tau}(m)$ are positive integral.

From Corollary 6.7 and Proposition 6.8 we deduce as in [15] that

Corollary 6.9. The characteristic polynomial of the residue matrix $R$

splits completely over the ring $\mathbb{C}[m_{\alpha}]$ . Its roots (counted with multi-
plicity) are of the form $n_{7}^{i}$. $=p_{\tau}^{i}$ $- \frac{1}{2}c_{\tau}(m)$ for certain integers $p_{\tau)}^{i}$ with
$\tau\in\hat{W}_{\omega}$ and where for each $\tau,$

$i$ runs from 1 to $N_{\omega}\deg_{\tau}^{2}$ .

We need to be more precise. Notice that the residue matrix was
computed using only the “lowest homogeneous parts at $\omega$

” of the op-
erators $D\in \mathcal{R}_{m}$ (in particular, $R_{m}$ is independent of $\mu$ ). Using the
theory of Dunkl-Cherednik operators it is easy to see that these lowest
homogeneous parts at $\omega$ form a subalgbra $\tilde{R}$ of the commutative alge-
$bra\mathcal{R}_{m_{\omega}}^{\omega,B}$ of “Bessel differential operators” for the root system $\Sigma_{\omega}$ (with
$\omega$ as origin of $a_{\mathbb{C}}$ ), and root multiplicities $m_{\omega}$ . In fact, $\tilde{\mathcal{R}}$ is precisely
the inverse image in $\mathcal{R}_{m_{\omega}}^{\omega,B}$ under the ($‘ Harish$-Chandra isomorphism”
$\gamma^{\omega,B}$ : $\mathcal{R}_{m_{\omega}}^{\omega,B\sim}arrow \mathbb{C}[\alpha^{*}]^{W_{\omega}}$ of $\mathbb{C}[a^{*}]^{W}\subset \mathbb{C}[a^{*}]^{W_{\omega}}$ . Let $\mathcal{L}_{p}^{\omega,B}(m)$ be the local
solution space of the homogeneous system of equations

(6.8) $D\phi=0,$ $\forall D\in(\gamma^{\omega,B})^{-1}(\mathbb{C}[\alpha^{*}]^{W})$ .

From [15] it is easy to see that, provided that we are in the semisimple
situation $m\in Q^{reg}$ , the monodromy representations on $\mathcal{L}_{p}^{\omega,B}(m)$ and
$\mathcal{L}_{p}(\mu, m)$ of $B_{\omega}$ are isomorphic (for all $\mu\in a_{\mathbb{C}}^{*},$ as the monodromy type
of $\mathcal{L}_{p}(\mu, m)$ is independent of $\mu$ in the semisimple case).

Using general theory of regular singular connections [3] we can show
that there exists (for all $m$ an $\mu$ ) a natural map $gr^{\omega}$ : $\mathcal{L}_{p}(\mu, m)arrow$

$\mathcal{L}_{p}^{\omega,B}(m)$ such that $gr^{\omega}(\emptyset)$ is the lowest homogeneous term of $\phi$ with
respect to the coordinate $y_{1}$ the logarithmic expansion of $\phi$ in the co-
ordinate $y_{1}$ on the punctured polydisc $PD^{*}$ (in the coordinate system
$(y_{1}, \ldots , y_{n})$ as we used before). Using the flatness of the residue matrix
$R_{m}$ with respect to the residual connection on the singular hyperplane
$E$ (the exceptional divisor of the blow-up of $a_{\mathbb{C}}$ at $\omega$ ) we deduce

Proposition 6.10. The map $gr^{\omega}$ : $\mathcal{L}_{p}(\mu, m)arrow \mathcal{L}_{p}^{\omega,B}(m)$ commutes
with the local monodromy action of $B_{\omega}$ . The residue $R_{mf}$ considered
as an endomorphism $U$ , commutes with the local monodromy action on
$\mathcal{L}_{p}^{\omega,B}(m)$ .

From this result we obtain:

$-51-$



SINGULARITIES OF SPHERICAL FUNCTIONS

Theorem 6.11. (extends results of [15 $]$ ) Identify $\mathcal{L}_{p}^{\omega,B}(m)$ with $U$ as
before.

(i) The $R$ -eigenvalues are of the form

(6.9) $n_{\tau}^{i}( m)=p_{\tau}^{i}-\frac{1}{2}c_{\tau}(m)$

where $i=1,$ $\ldots$ , $N_{\omega}\deg_{\tau}$ and where $p_{\tau}^{i}$ denotes the embedding
degrees of $\tau\in\hat{W}_{\omega}$ in the graded vector space of W-harmonic
polynomials. Each eigenvalue $n_{\tau}^{i}$ has multiplicity $\deg_{\tau}$ .

(ii) If we assume $m\in Q^{reg}$ then we can decompose $\mathcal{L}_{p}^{\omega,B}(m)$ into
$R_{m}$ -eigenspaces $E_{\tau}^{i}(m)$ with eigenvalue $n_{\tau}^{i}(m)$ which are invariant
and irreducible of type $\pi_{\tau}(m)$ for the local monodromy action of
$B_{\omega}$ . Thus $R_{m}$ is semisimple in this case.

Remark 6.12. We choose the harmonic embedding degrees so that
$iarrow p_{\tau}^{i}$ is a non-decreasing sequence. In particular, $p_{7^{\sim}}^{1}$ is the “har-
monic birthday” of $\tau$ in the $W$ -harmonic polynomials.

6.0.4. Computation of the exponents. Let $\phi_{i\lambda,m}$ denote the hypergeo-
metric function, the unique normalized solution of the hypergeometric
equations (6.5) which extends holomorphically to a neighborhood of
$0\in a_{\mathbb{C}}$ . It is holomorphic in $m,$ and it is easy to see that it extends
holomorphically to $ia+\Omega$ . At $m=m^{X}$ it is identical with our holo-
morphically extended spherical function. In particular, these functions
have the property that they are fixed vectors in $\mathcal{L}_{p}(i\lambda, m)$ for the action
of the subgroup $B_{\omega}^{f}\subset B_{\omega}$ of the local braid group corresponding to the
walls of $\Sigma_{\omega}f$ (we may and will assume $\omega$ is dominant).

Using Theorem 6.11 we can now compute the exponents of $\epsilon$ which
show up when we take the limit $\epsilonarrow 0$ in $\phi_{i\lambda,m}(t_{\epsilon,V}^{2}),$ where $t_{\epsilon,V}=$

$\exp(\pi i(\omega-\epsilon V)/2)$ with $\omega$ an extremal point of $\Omega,$ and $V$ a regular
direction. Before we explain this we warn the reader that there are
some minor subtleties which deserve our attention at this point.

First of all, in the original problem which we set out we took $V=\omega$ ,
and this is not a regular direction (unless we are in the rank 1 case).
One can show however (using that the monodromy along the walls of
$\Sigma_{\omega}^{j}$ commutes with $R_{m}$ ) that the logarithmic expansions with respect
to $y_{1}$ extend over the walls of $\Sigma_{\omega}f$ . Therefore the result of sending $V$

to the singular direction $\omega$ will possibly be a positive integral jump in
the exponent for generic regular directions $V$ (but no worse things can
happen).

Next we should underline that $m^{X}$ is usually NOT in $Q^{reg}$ . In
some sense, the split real case corresponds to the worst possible non-
semisimple degeneration of the Hecke algebra $H(W_{\omega}, q(m_{\omega}))$ , since all
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second order relations are now of the form $(T_{i}-1)^{2}=0$ . Therefore
logarithmic terms can show up in the leading $\epsilon$-expansion for the limit
$\epsilonarrow 0$ . The above method also gives good estimates for the power of
$\log(\epsilon)$ which may show up (in fact, $\log(\epsilon)$ will appear only in a limited
number of cases), but we will ignore this for now.

Finally we may have a positive integraljump in the leading exponent
if we specialize $m$ at $m^{X}$ , simply because the leading asymptotic term
vanishes for the substitution $m=m^{X}$ in the family $marrow\phi_{i\lambda,m}$ .

For these reasons we will now only formulate the exact leading expo-
nent for a generic $m\in Q^{reg}$ and a ray $t_{\epsilon,V}$ in a generic regular direction
V. By the above remarks we get for the spherical function itself pos-
sibly additional powers of $log(\epsilon)$ (but this can be handled with some
care), and the order $\epsilon^{n}$-estimate that we get by substitution of $m^{X}$

instead of the generic $m$ may not be optimal by the phenomena de-
scribed above. We believe however that the results are in fact optimal
for generic $i\lambda$ .

With all these reservations we now state the main result:

Theorem 6.13. Assume that $m\in Q^{reg}$ . The leading exponent $\epsilon^{n_{\omega}(m)}$

of $\phi_{i\lambda,m}(t_{\epsilon,V}^{2})$ for $\epsilonarrow 0$ is equal to

(6.10) $n_{\omega}(m)= \min_{\tau}n_{\tau}^{1}(m)$

(see Theorem 6.11 and Remark 6.12), where $\tau$ runs over the set of
irreducible constituents of the induced representation $Ind_{W_{\omega}^{f}}^{W_{\omega}}(1)$ (where
$W_{\omega}^{f}:=W(\Sigma_{\omega}f)$ (see Proposition 6.1).

This value can be easily determined by hand for all classical root sys-
tems using the Littlewood-Richardson rule. For the exceptional cases
they can also be determined, with some help of the Chevie package of
GAP. We remark that the specialization of this value for the complex
case matches with Proposition 6.1, and this is a main point in the proof
that the computed value is optimal generically in $m$ .

Example 6.14. For $\Sigma=A_{n-1}$ all the nodes of the Dynkin diagram
are minuscule and thus extremal according to Theorem 3.2. We order
the nodes of the diagram linearly. Let $k\leq n/2$ , and let $\omega_{k}$ be the k-th
node of the Dynkin diagram. Then

(6.11) $n_{\omega_{k}}(m)=k(1-(n+1-k)m/2))$ .

This value corresponds to the representation $\tau_{k}$ of $S_{n}$ labeled by the
partition $(n-k, k)$ occurring in the induction $Ind_{S_{n-k}\cross S_{k}}^{S_{n}}(1)$ . If $m=2$
(complex case, see Proposition 6.1) we get: $n_{\omega_{k}}(2)=-k(n-k)$ , which
is indeed in accordance with Proposition 6.1 (check.$f$). Notice also the
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case of $SL_{2}(\mathbb{R})$ ($i.e.$ $n=2$ and $m=$ 1). Here we get $n_{\omega}(1)=0$ ,
but there will occur a $\log(\epsilon)$ term in the $\epsilon$ -expansion of the spherical
function. This is the only case (in type $A$) where a logarithmic term
occurs.
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