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Abstract

We discuss the motion of noncompact axisymmetric hypersurfaces Γt

evolved by mean curvature flow. Our study provides a class of hyper-
surfaces that share the same quenching time with that of the shrinking
cylinder evolved by the flow and prove that they tend to a smooth hyper-
surface having no pinching neck and having closed ends at infinity of the
axis of rotation as the quenching time is approached. Moreover, they are
completely characterized by a condition on initial hypersurface.
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1 Introduction and main results

We discuss the motion of noncompact hypersurfaces Γt evolved by mean curva-
ture flow

V = H on Γt, (1.1)

where V andH denote normal velocity and mean curvature of the hypersurfaces,
respectively. (Here and henceforth we do not take average of principal curvatures
to define mean curvature.) We assume that initial hypersurface Γ0 is rotationally
symmetric to an axis and is represented by rotating the graph of a positive
function u0 around the axis. Then Γt remain rotationally symmetric to the axis
so long as they exist (cf. [1, Theorem 4.3a]). Namely, we may assume that the
hypersurfaces are given of the form

Γt = {X = (x, y1, ..., yn) ∈ Rn+1| r = u(x, t)} (1.2)

with some function u, where r =
(∑n

j=1 y
2
j

)1/2

denotes the distance from the
x-axis to Γt. We are interested in the behavior of Γt evolved by (1.1) when the
initial hypersurface has two open ends at the space infinity. Our goal is to give
a condition that an open ends close in finite time with no neck-pinch.
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Mean curvature flow equation (1.1) is rephrased by u as

ut =
uxx

1 + u2
x

− n− 1
u

, x ∈ R, t > 0 (1.3)

(cf. §2). We now consider an initial value problem for a noncompact surface of
rotation with two open ends satisfying (1.1). This problem can be formulated
by the Cauchy problem for (1.3) with initial condition

u(x, 0) = u0(x) > 0, x ∈ R. (1.4)

Throughout the present article, we assume

u0 is bounded and uniformly continuous in R; (H1)
m := inf

x∈R
u0(x) > 0. (H2)

The Cauchy problem (1.3)-(1.4) has a unique positive classical solution lo-
cally in time under the assumption (H1) and (H2). (cf. §2. We do not need
notion of viscosity solution due to [4, 8] except for §5.) We remark that the
solution is forced to reach zero in finite time, referred as quenching in finite
time, as long as bounded initial data are concerned. This fact is readily seen
if one compares the solution with a spatially homogeneous solution vM (t) =√

2(n− 1)(T (M)− t), where M = supx∈R u0(x) and T (M) = M2/2(n − 1).
Once a solution reaches zero, the equation (1.3) does not make sense and hence
the solution cannot be extended globally in time as a classical solution. For a
given initial datum u0, we set

T (u0) = sup{t > 0; inf
x∈R

u(x, t) > 0} <∞

and call it the quenching time of u. It is immediate that

lim inf
t↗T (u0)

inf
x∈R

u(x, t) = 0.

We are concerned with the quenching time and with the behavior of solution u
when the quenching time is approached.

A point a ∈ R is said to be a quenching point (or pinching point) of u if
there exists a sequence {(xk, tk)} ⊂ R× (0, T (u0)) such that

xk → a, tk ↗ T (u0) and u(xk, tk) → 0 as k →∞.

In other words, quenching points of u correspond to positions of pinching necks
of the hypersurface Γt at t = T (u0). The simplest example is a family of
cylinders associated with constant initial function u0 ≡ m > 0. In this case,
the solution of (1.3)-(1.4) coincides with the solution vm(t) of the ordinary
differential equation

v′ = −n− 1
v

, t > 0; v(0) = m, (1.5)

that is,

vm(t) =
√

2(n− 1)(T (m)− t) with T (m) =
m2

2(n− 1)
. (1.6)
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The set of quenching points of vm is nothing but the whole real line R, and the
corresponding hypersurfaces are cylinders {r = vm(t)} shrinking monotonically
toward to the axis and vanishing at the time T (m).

There is a large number of literature on formation of singularities of the
mean curvature flow for compact hypersurfaces. However, as far as the authors
know, there seem to be no articles discussing singularities at space infinity of
noncompact hypersurfaces.

For a compact hypersurface in Rn+1 convexity is preserved and the hyper-
surface shrinks asymptotically self-similarly to a point ([22] for n ≥ 2) ([11] for
n = 1) without developing singularities. It shrinks asymptotically like a sphere.
For a curve evolution even if the initial (embedded) curve is non-convex the
solution becomes convex without developing singularities and self-intersections
[20]. However, for higher dimensional case if the initial hypersurface is non-
convex, the solution may develop singularities in finite time as pointed out by
[21] by giving an example of a thin-neck barbell-like surface: two spherical sur-
face connected by a thin ”neck”. Inward curvature of the neck is so large that
it forces the neck to pinch before the two spherical parts shrink.

In general (not necessarily for axisymentric hypersurfaces) it is known that
the Hausdorff dimension of the singularity is less than or equal to n − 1 by
[37, 38] provided that the initial hypersurface is mean-convex. (This is optimal
since a regular doughnut (solid torus) shrinks to a ring.) About formation of
singularities the reader is referred to a recent book of [7] and papers cited there.

There are several methods to extend a solution after it develops singularities.
The first one is the varifold solution introduced by [3]. The theory is developed
by [24, 34, 36], where the varifold solution is constructed as a limit of the diffused
interval layer of the Allen-Cahn equation. Another one is a level set solution
introduced by [4, 8] based on the theory of viscosity solutions [5]. The reader is
referred to [12] and [13] and references cited there on the level set approach.

The way of shrinking for axisymmetric barbell has been studied. It turns out
that neck-pinching is isolated. This is first observed by [6] under several techni-
cal assumptions like symmetry u(x, t) = u(−x, t). Moreover, the singularity is
type I in the sense the rate of blowup of curvature is self-similar like (T − t)−1/2

where T is the quenching (pinching) time ([35] for special hypersurface and [1]
for general hypersurfaces.) The reader is referred to a recent book of M.-H. Giga
and Y. Giga and J. Saal [14, Chapter 3] for its background. Moreover, type II
singularity where the blowup of curvature is faster than self-similar rate are con-
stucted in [1] and more explicity by [2] by constructing ’degenerate pinching’.
See also [12])

As for general axisymmetric (compact) hypersurfaces, Altschuler, Angenent
and Giga [1] prove that there exists a finite sequence 0 = t0 < t1 < ... < t` such
that hypersurfaces Γt are smooth and compact in all of Rn+1 for tj−1 < t < tj ,
j = 1, 2, ..., `, and the number of components can change only at singular times
tj (j = 1, 2, ..., `). The solution is empty for t > t`. They also prove that, if
Γ∗(t) represents a component of Γt that becomes singular at the time tj , the
following alternative holds: (i) Γ∗(t) shrinks to a point on the axis of rotation;
(ii) one or one more “necks” have been pinched. Notice, however, that we do
not know if each component of the hypersurfaces actually pinches on the axis
at the singular times tj .

Our aim consists in showing the existence of hypersurfaces having no pinch-
ing neck on the axis at a minimal quenching time, a notion defined below, and
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in characterizing such hypersurfaces by a condition on initial hypersurface.
Among the solutions of the Cauchy problem (1.3)-(1.4), we are interested in

the ones that share the same quenching time with vm(t) in (1.6). We say that
such a solution has a minimal quenching time.

Definition 1.1. A solution u of the Cauchy problem (1.3)-(1.4) is said to have
a minimal quenching time, if

T (u0) = T (m).

As is proved in §4, a necessary condition for a solution u of (1.3)-(1.4) to
have a minimal quenching time is that

lim inf
x→−∞

u(x, t) = vm(t) or lim inf
x→+∞

u(x, t) = vm(t)

for every t ∈ [0, T (m)). Therefore a typical hypothesis on initial function is

lim
x→−∞

u0(x) = m (1.7)

or
lim

x→+∞
u0(x) = m, (1.8)

where m > 0 is the infimum of u0 as is stated in (H2). We consider the following
conditions, which are weaker than (1.7) or (1.8):

There exists a sequence {xk} ⊂ R such that xk →∞ and

u0(x+ xk) → m a.e. as k →∞;
(1.9)

There exists a sequence {xk} ⊂ R such that xk → −∞ and

u0(x+ xk) → m a.e. as k →∞.
(1.10)

In face, the above convergence holds at each point x ∈ R since we assume
uniform continuity for u0. Under these assumptions, we are able to prove that
a solution of (1.3)-(1.4) has a minimal quenching time and quenches at spatial
infinity. Here a solution u of (1.3)-(1.4) with quenching time T (u0) is said to
quench at spatial infinity if there exists a sequence {(xn, tn)} ⊂ R× (0, T (u0))
such that

|xn| → ∞, tn ↗ T (u0) and u(xn, tn) → 0 as n→∞. (1.11)

Theorem 1.2. Assume (H1) and (H2). If initial data u0 satisfies condition
(1.9) (or (1.10)), then a solution u of the Cauchy problem (1.3)-(1.4) has a
minimal quenching time. Moreover, for any ε, T ∈ (0, T (m)) and R > 0,

lim
k→∞

sup
|x|≤R, ε≤t≤T

|u(x+ xk, t)− vm(t)| = 0, (1.12)

where the sequence {xk} is as in condition (1.9) (or (1.10)), and the solution
quenches at spatial infinity. Furthermore, if the hypothesis (1.7) (or (1.8)) is
true, then

lim
x→∞

u(x, t) = vm(t) ( or lim
x→−∞

u(x, t) = vm(t) ) (1.13)

and the convergence is uniform on compact subsets of (0, T (m)).
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Theorem 1.2 states that (1.9) (or (1.10)) is a sufficient condition for a solu-
tion of (1.3)-(1.4) to have a minimal quenching time. In the last part of this
introduction, it is shown in fact to be a necessary and sufficient condition (Theo-
rem 1.4). As for such a solution, we are able to prove that the solution is positive
everywhere in R up to the quenching time unless it starts from a flat datum. As
a result, we get its smooth limit function as the quenching time is approached.
In other words, the corresponding hypersurfaces Γt have no pinching neck at
the quenching time and tend to a smooth limit hypersurface.

Theorem 1.3. Assume (H1) and (H2). Let u be a solution of the Cauchy
problem (1.3)-(1.4) having a minimal quenching time T (m). If u0 6≡ m, then
there is no quenching point of u. Moreover, there exists a function u(·, T (m)) ∈
C∞(R) such that u(·, t) → u(·, T (m)) in the Frechét space C∞(R) as t↗ T (m),
u(x, T (m)) > 0 in the whole R and

lim inf
x→−∞

u(x, T (m)) = 0 or lim inf
x→+∞

u(x, T (m)) = 0.

The latter statement is a direct consequence of nonexistence of quenching
points and standard parabolic estimates. It tells us the presence of smooth limit
surface which shrinks at spatial infinity.

Theorem 1.3 may remaind the reader of a version of the strong maximum
principle established in Giga, Ohnuma and Sato [15] for the level set minimal
surface equation. They investigate the large time behavior of viscosity solu-
tions of the level set equation for the generalized mean curvature flow with the
(homogeneous) Neumann boundary condition in a cylindrical domain Ω of the
form

Ω = {x = (x′, xn) ∈ Rn; x′ ∈ Ω′, xn ∈ R},
where Ω′ is a smoothly bounded domain in Rn−1 with n ≥ 2. Among other
things, they showed that if initial data is constant in which |xn| is large enough,
then a solution converges uniformly on Ω̄ as t → ∞ to a solution of the level
set minimal surface equation with the Neumann boundary condition. On the
other hand, we are mainly concerned with the behavior of a classical solution
of (classical) mean curvature flow equation (1.1) up to its quenching time. Our
result described in Theorem 1.3 guarantees that if an initial hypersurface is
different from a cylinder, then a solution never agrees with any cylinder up to
its quenching time provided that the quenching time is minimal.

As is previously noticed, we obtain a necessary and sufficient condition on
initial data for a solution of the Cauchy problem (1.3)-(1.4) to have a minimal
quenching time as a consequence of Theorems 1.2 and 1.3.

Theorem 1.4. Assume (H1) and (H2). Then a solution of the Cauchy problem
(1.3)-(1.4) has a minimal quenching time if and only if the initial datum satisfies
conditions (1.9) or (1.10). Moreover, the limit function obtained in Theorem
1.3 satisfies for any R > 0,

lim
k→∞

u(x+ xk, T (m)) = 0 if |x| ≤ R, (1.14)

where {xk} is the sequence as in (1.9) (or (1.10)). Furthermore, if the hypothesis
(1.7) (or (1.8)) is true, then

lim
x→∞

u(x, T (m)) = 0 ( or lim
x→−∞

u(x, T (m)) = 0 ). (1.15)
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Requiring in the proof of Theorem 1.4, we introduce equivalent conditions
of (1.9) and (1.10) by a weighted mean value of initial data defined by

Aρ(x;u0) = (ρ ∗ u0)(x) =
∫ ∞

−∞
ρ(x− y)u0(y)dy (1.16)

with ρ ∈ L1(R) being a positive smooth function such that ‖ρ‖1 = 1. For
example, we may choose ρ(x) = π−1/2 exp (−|x|2).
Remark 1.5. Conditions (1.9) and (1.10) are equivalent respectively to condi-
tions (1.17) and (1.18) below:

There exists a sequence {xk} ⊂ R such that xk →∞ and

Aρ(xk;u0) → m as k →∞;
(1.17)

There exists a sequence {xk} ⊂ R such that xk → −∞ and

Aρ(xk;u0) → m as k →∞.
(1.18)

The equivalence of these conditions may be proved in the same way as in [32,
Appendix B], where a similar equivalence on initial data is proved, and thereby
the proof of the equivalence above is safely left for the readers.

Theorems 1.2 and 1.3 is an analogue of the recent results of [17, 18, 32, 30]
for related blow-up problems. Giga and Umeda [17, 18] studied semilinear
equations ut = ∆u + f(u) with f(u) = up, p > 1, being a typical example of
nonlinear term, and proved that blow-up occurs only at space infinity if initial
datum is not a constant and takes its maximum at infinity. Their results were
generalized in [32, 30] for degenerate quasilinear parabolic equations

ut = ∆φ(u) + f(u), (1.19)

where typical examples of nonlinear terms are φ(u) = um and f(u) = up with
m > 0 and p > 1. The notion of the least (possible) blow-up time (or minimal
blow-up time) was originally introduced in [32] and the authors of [32] revealed
the fact that the solutions having such a blow-up time may be characterized by
initial data, which had been hidden in the results of [18]. That notion is closely
related to the notion of minimal quenching time given in Definition 1.1 of the
present article. Theorem 1.4 is a variant of those results. On the other hand,
equation (1.1) admits a solution extending as a level set solution (introduced
by [4, 8] based on the theory of viscosity solution; see e.g. [5]) after quenching
time. It contrasts with the corresponding result for (1.19) with φ(u) = um,
m ≥ 1, where every solution with minimal blow-up time exhibits “complete
blow-up”, that is, it has no reasonable extension after the blow-up time [33, 31].
Concerning blow-up at space infinity, the reader is referred to [26, 19] for earlier
results, [16] for survey and [33] for recent development on the blow-up profile.

The reader may be interested in the behavior of solution after quenching
time. It is known that there is a global-in-time level set solution as discussed
in [1]. The results in [1] states for compact hypersurfaces; however, it can be
extended for noncompact hypersurfaces [13]. In this paper we just remark that
our level set solution becomes compact instantaneously after the quenching time
under the assumption (1.7) (or (1.8)). We do not focus the problem whether the
generalized solution develops fattening, which is not expected in our setting.
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The strategies to prove the theorems are the same in spirit with those of
[32, 30]. Indeed, if the term uxx/(1 + u2

x) in equation (1.3) were replaced by
uxx, then the same argument with [32, 30] works for our problem after a cer-
tain transformation of the arguments and thereby analogous results hold for
Kawarada’s equation [25]

ut = uxx +
1

1− u
.

However, the quasilinear structure of equations (1.19) used in [32, 30] is some-
what different from ours. The form of the diffusion term ∆φ(u) in (1.19) is
convenient for weak formulation of solutions based on integration by parts, but
it is difficult to rewrite the right hand side of equation (1.3) in such a form.
Accordingly, a different approach must be required. We use a gradient estimate
due to [1] to control the term uxx/(1 + u2

x) in order to prove Theorem 1.2.
Our basic approach to Theorem 1.3 is to construct a suitable subsolution in
each bounded spatial interval. Single-point pinching lemma, which is recalled
in §2 together with the gradient estimate, plays a crucial role in the construc-
tion. Tools from the theory of linear parabolic equations, such as fundamental
solutions, the strong maximum principle and various parabolic estimates, are
repeatedly used throughout the article.

The rest of the article is organized as follows. In the next §2 we briefly
summarize some fundamental results such as local well-posedness of the Cauchy
problem and recall basic tools from [1]. In §3 we implement the comparison
argument mentioned above to prove Theorem 1.3. Theorem 1.2 is a direct
consequence of Proposition 4.1 proved in the former part of §4. The latter part
of §4 is devoted to proving the necessary and sufficient condition for minimal
quenching time described in Theorem 1.4. Finally profile after quenching is
shortly discussed in §5.

2 Local well-posedness and preliminaries

In this section we summarize some fundamental facts concerning existence and
uniqueness of a local-in-time classical solution of the Cauchy problem (1.3)-(1.4)
and recall some basic results from [1].

Although the equation (1.3) was already derived in [21, 9] for n = 2 and
in [1] for general n by the radial distance u of the hypersurfaces to the axis of
rotation, we give another way to derive the equation using the level set method
(cf. [13]), which describes a hypersurface as the zero level set of an auxiliary
function. Under the assumption (1.2), we may select an auxiliary function as

φ(x, t) := −r + u(x, t),

so that the hypersurfaces are represented as Γt = {X ∈ Rn+1| φ(X, t) = 0}.
Here we observe that |∇φ| = (1 + u2

x)1/2 does not vanish on Γt. With this
function, we may choose a unit normal vector field n of Γt by n = −∇φ/|∇φ|,
so that V and H are

V =
φt

|∇φ|
=

ut

(1 + u2
x)1/2

,

H = −∇ · n = ∇ ·
( ∇φ
|∇φ|

)
=

uxx

(1 + u2
x)3/2

− 1
(1 + u2

x)1/2

n− 1
r

,
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We begin with proving the existence of smooth solution of (1.3)-(1.4) with
bounded uniformly continuous initial data. Such a result is essentially known
based on a priori estimates [27]. However, we rather give its proof based on
analytic semigroup theory [28, 29] for completeness and readers’ convenience,
since it is a nice application of the theory.

In order to prove such a result, we first show that local-in-time existence
and uniqueness of solution to the Cauchy problem for smooth data are obtained
via the theory of analytic semigroup developed in [28] for abstract quasilinear
evolution equations. Let X be a Banach space and let D be a subspace of X .
For 0 < θ < 1, we denote by (X , D)θ,∞ a real interpolation space between X
and D. For fixed T > 0 and θ ∈ (0, 1), let U be an open set in (X , D)θ,∞ and
suppose that the mappings:

A(t, u) : [0, T ]× U → L(D,X ),
f(t, u) : [0, T ]× U → X ,

are Hölder continuous with exponent γ ∈ (0, 1) with respect to t, and locally
Lipschitz continuous with respect to u, i.e.:

(i) For any u0 ∈ U , there exist constants K > 0 and r > 0 such that

‖A(t, u)−A(s, v)‖L(D,X ) + ‖f(t, u)− f(s, v)‖X ≤ K(|t− s|γ + ‖u− v‖θ,∞)

for all u, v in a closed ball B(u0, r) ⊂ (X , D)θ,∞.

Assume moreover:

(ii) For any t0 ∈ [0, T ] and u0 ∈ U , the operator A(t0, u0) : D(A(t0, u0)) ⊂
X → X is a sectorial operator and D(A(t0, u0)) ∼= D.

Consider the Cauchy problem for an abstract quasilinear evolution equation{
u′(t) = A(t, u(t))u(t) + f(t, u(t)), t ∈ (0, T ],
u(0) = u0.

(2.1)

A classical solution in [0, T ] of Problem (2.1) is understood to be a function
u ∈ C([0, T ];X ) ∩ C((0, T ];D) ∩ C1((0, T ];X ) satisfying the equation of (2.1)
for every t ∈ (0, T ]. Under the hypotheses (i) and (ii), Lunardi [28] established
unique existence of local-in-time solution of the problem (2.1).

Proposition 2.1. ([28, Theorem2.1]) For every ū0 ∈ U ∩ (X , D)β,∞ with θ <
β < 1, there exist R = R(ū0) > 0 and δ = δ(ū0) > 0 such that, for each
u0 ∈ B(ū0, R) ⊂ (X , D)β,∞, there exists a classical solution u = u(t) of Problem
(2.2) in [0, δ], and it is unique in

⋃
α,σ>0 BCα([0, δ]; (X , D)θ,∞).

By Proposition 2.1 we are able to prove existence and uniqueness of local-
in-time smooth solution of Problem (1.3)-(1.4) in the “concrete” setting. At
this stage we need that initial data should be taken from BC1+α(R) with some
0 < α < 1. Setting u(t) = u(·, t), we rewrite the Cauchy problem (1.3)-(1.4)
as the abstract Cauchy problem like (2.1) in Banach space X = BC(R). We
set D = BC2(R). It is known then that (X , D)θ,∞ ∼= BC2θ(R) if 1/2 < θ <
1 ([29]). Here we write Y ∼= Z for subspaces Y and Z if Y ⊂ Z and Z ⊂ Y ,
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where the notation “⊂” stands for continuous embedding. Here we choose the
constant θ ∈ (1/2, 1) so that 2θ = 1 + α. We now define a nonlinear function

f(u) = −n− 1
u

in an open set U = {u ∈ (X , D)θ,∞ | infx∈R u(x) > 0} of (X , D)θ,∞ and, for
every ϕ ∈ (X , D)θ,∞ with 1/2 < θ < 1, define a closed operator A(ϕ) : X → X
as

A(ϕ)v =
1

1 + ϕ2
x

vxx, v ∈ D(A(ϕ)),

with
D(A(ϕ)) =

{
u ∈

⋂
p≥1

W 2,p
loc (R)

∣∣∣ u, 1
1 + ϕ2

x

uxx ∈ X
}
.

Then A(ϕ) is a sectorial operator in X and D(A(ϕ)) ∼= D ([29, Corollary 3.1.9]).
It is readily seen that A(ϕ) ∈ L(D,X ) and the property (i) and (ii) above
hold with A(t, u) ≡ A(u) and f(t, u) ≡ f(u). The problem (1.3)-(1.4) can be
rewritten as the abstract Cauchy problem{

u′(t) = A(u(t))u(t) + f(u(t)), t > 0;
u(0) = u0,

(2.2)

for which we may apply Proposition 2.1. Consequently we obtain

Corollary 2.2. For every ū0 ∈ BC1+α(R) with 0 < α < 1 satisfying infx∈R ū0(x) >
0, there exist R′ = R′(ū0) > 0 and δ = δ(ū0) > 0 such that, for each
u0 ∈ B(ū0, R

′) ⊂ BC2β(R), there exists a unique u ∈ BUC(R×[0, δ))∩C∞(R×
(0, δ)) satisfying equation (1.3) in R × (0, δ) and initial condition u(x, 0) = u0

for all x ∈ R.

Proof. For the solution u(t) of (2.2) obtained by Proposition 2.1, we set u(x, t) =
{u(t)}(x) to observe that it is the desired solution by a standard argument
(cf. [28, 29]). Differentiability of u for t > 0 may be proved by the usual
parabolic regularizing argument.

We shall recall some basic results obtained in [1] in the restricted form con-
venient to our aim. In what follows, the half interval (0,∞) is denoted by R+.
Roughly speaking, the next lemma states that a solution of (1.3) has a bounded
gradient provided that the solution itself is bounded away from zero. It allows
us to treat initial data which are necessarily smooth and plays a crucial role in
the following sections.

Lemma 2.3. Let u be a solution of (1.3) in (a, b)× (0, T ) for some −∞ < a <
b <∞. Then there is a function σ : R+ ×R+ → R such that

|ux(x, t)| ≤ σ(t, u(x, t)) (2.3)

holds for all a < x < b, 0 < t < T . The function σ has the form σ(t, u) =
exp (ρ(u)/t) with a positive continuous function ρ on R+ and depends only on
supu(x, 0) and b−a. Moreover, if u solves the equation in R×(0, T ), then (2.3)
holds in R× (0, T ) and σ depends only on supu(x, 0).
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This lemma is proved in [1, Theorem 4.3(b)] with interval (a, b) replaced by
a certain time-dependent interval (a(t), b(t)) without discussing how σ depends
on a and b. By a careful reading of the proof, however, one may have the same
result for an arbitrary fixed interval (a, b) with σ depending on a, b only through
b − a. The last statement is an immediate consequence of the first one, since
the whole real line R is covered by countably many intervals with unit length.

With the aid of Lemma 2.3, we are able to prove local well-posedness of the
Cauchy problem (1.3)-(1.4) for any bounded uniformly continuous initial data
having positive infimum over the whole R as in the next proposition.

Proposition 2.4. For every u0 satisfying (H1) and (H2), there exist τ > 0
and a unique u ∈ BUC(R × [0, τ)) ∩ C∞(R × (0, τ)) satisfying equation (1.3)
in R× (0, τ) and initial condition (1.4) in R.

Proof. First of all, we claim that for any ν > 0 and δ > 0 small enough, there
exists a constant K > 0 depending only on n, ν and δ such that

‖u(t)− v(t)‖∞ ≤ K‖u0 − v0‖∞ in (0, δ) (2.4)

for any classical solutions u and v of the Cauchy problem (1.3)-(1.4) in R×(0, δ)
with smooth initial data u0 and v0, respectively and such that

inf
(x,t)∈R×(0,δ)

{u(x, t), v(x, t)} > ν. (2.5)

Uniqueness of classical solutions in C2,1(R×(0, τ))∩BC(R×[0, τ)) then follows
immediately from (2.4). We set a(ξ) = 1/(1+ ξ2) for ξ ∈ R. By the mean value
theorem, we have

a(p)X − a(q)Y =
∫ 1

0

a′(θp+ (1− θ)q)(θX + (1− θ)Y )dθ(p− q)

+
∫ 1

0

a(θp+ (1− θ)q)dθ(X − Y ).

It is readily seen that w := u− v satisfies the parabolic equation

wt = A(x, t)wxx +B(x, t)wx + C(x, t)w in R× (0, δ), (2.6)

where

A(x, t) =
∫ 1

0

a(θux + (1− θ)vx)dθ(> 0),

B(x, t) =
∫ 1

0

a′(θux + (1− θ)vx)(θuxx + (1− θ)vxx)dθ,

C(x, t) =
n− 1
uv

.

We may take a constant µ > 0 depending only on n and ν such that ‖C‖L∞(R×(0,δ)) ≤
µ by virtue of (2.5). Setting z = e−µtw, we see that zt ≤ A(x, t)zxx +B(x, t)zx

from (2.6) and observe that

sup
x∈R

z(x, t) ≤ sup
x∈R

z(x, 0) (2.7)
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by the maximum principle for unbounded domain (cf. for instance, [23, chapter
1]). Estimate (2.7) implies then that the claim (2.4) holds with K = eµδ.

We then proceed to proving existence of the solution of (1.3)-(1.4) under the
hypotheses (H1) and (H2). We may take a sequence {u0,j} ⊂ BC1+α(R) such
that

inf
x∈R

u0,j(x) > 0 and u0,j → u0 in BC(R) as j →∞.

For every j, there exist a constant δj > 0 and a unique solution uj ∈ BUC(R×
[0, δj)) ∩ C∞(R × (0, δj)) of (1.3)-(1.4) with initial data u0,j by Corollary 2.2.
Moreover, we have infx∈R u0,j(x) ≥ m/2 for j sufficiently large, where m =
infx∈R u0(x) > 0. A comparison argument reveals then that there are positive
constants c1 and c2 such that

c1 ≤ uj(x, t) ≤ c2 in R× [0, τ ], j = 1, 2, ...,

whence existence times δj are estimated below by a positive constant τ depend-
ing only on m and n. We now take advantage of Lemma 2.3 to see that

|(uj)x(x, t)| ≤ σ(t, uj(x, t)) ≤ exp (ρ(c1)/t) in R× (0, τ). (2.8)

It follows from (2.8) and gradient Hölder estimate (cf. [27, Chapter VI, Theorem
1.1]) that for any a > 0, τ ′ ∈ (0, τ) and α ∈ (0, 1), there exists a positive constant
G depending only on c1, c2, n, τ, τ ′, a and α such that

sup
j≥1

‖uj‖BC1+α,(1+α)/2((−a,a)×(τ ′,τ ]) ≤ G.

Schauder’s interior estimate ([10, 27]) then implies that the sequence {uj} is
bounded in BC2+α,1+α/2(Q) for each Q b (−a/2, a/2) × (τ ′, τ ]. Hence uj is
convergent to some positive function u defined on the whole R as j → ∞ in
C

2+β,1+β/2
loc (R× (τ ′, τ ]) with any β ∈ (0, α). Moreover, we may prove that u is

infinitely differentiable in R× (0, τ ], using Schauder’s interior estimate (cf. the
proof of Theorem 1.3 at the end of the next section). Since τ ′ is arbitrary and
uj ∈ BUC(R × [0, τ ]), we see that u belongs to C∞(R × (0, τ ]) ∩ BUC(R ×
[0, τ ]) and satisfies equation (1.3) and initial condition (1.4). The proof is now
complete.

We close this section by recalling a useful tool from [1] to investigate shape
of axisymmetric hypersurfaces Γ(t) evolved by the mean curvature flow (1.1).
To state it, we need to introduce some notations. As is proved in [1, Theorem
4.3(a)], if initial hypersurface Γ(0) is given by rotating the graph of a function
around the x-axis, then so are Γ(t), t > 0, as long as they exist. The number of
necks of Γ(t) over a closed interval I = [a, b] is a finite nonincreasing function
of time provided that there is no neck on ∂I. It follows that, after a while,
the number of necks remain constant and accordingly we may even assume
that hypersurface Γ(t) have m ≥ 0 necks. Then x 7→ u(x, t) will have m
local minima and m + 1 maxima in every bounded interval and the number is
nonincreasing in time (unless they are on the boundary). Their location are
denoted by {ξj(t)}1≤j≤m and {ηj(t)}0≤j≤m, respectively, ordered them so that

η0(t) < ξ1(t) < η1(t) < · · · < ξm(t) < ηm(t). (2.9)
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Then [1, Converging Necks Lemma 5.1] guarantees that even when the solu-
tion becomes singular at some time T , the limits limt↗T ξj(t) = ξ(T ) and
limt↗T ηj(t) = η(T ) exist for each j. Moreover, it follows from [1, Single-Point
Pinching Lemma 5.2], which we recall just below for readers’ convenience, that
there is no quenching point between ξj(T ) and ηj(T ) for every j.

Lemma 2.5. If ηj−1(T ) < ξj−1(T ), then u(x, t) is bounded from below uni-
formly in t ∈ (0, T ), for all x ∈ (ηj−1(T ), ξj−1(T )); i.e., for any compact interval
[c, d] ⊂ (ηj−1(T ), ξj−1(T )) there exists a δ > 0 such that u(x, t) ≥ δ for any
x ∈ [c, d], t ∈ (0, T ).

3 Profile at minimal quenching time

In this section we prove Theorem 1.3. We just recall here some notation
previously introduced in §1. Initial data u0 ∈ BUC(R) is such that m :=
infx∈R u0(x) > 0. The function vm = vm(t) denotes a solution of (1.3) with
initial data m. It is nothing but a solution of ODE obtained by getting rid
of the term uxx/(1 + u2

x) from (1.3). Its quenching time is denoted by T (m).
It gives a lower bound for the quenching times T (u0) of all solutions of (1.3).
We begin with investigating a necessary condition for a solution of (1.3)-(1.4)
to have a minimal quenching time, that is, a necessary condition in order that
T (u0) = T (m).

Proposition 3.1. Suppose that a solution u of the Cauchy problem (1.3)-(1.4)
has a minimal quenching time T (m). Then

lim inf
x→−∞

u(x, t) = vm(t) or lim inf
x→+∞

u(x, t) = vm(t)

for every t ∈ [0, T (m)).

Proof. We argue by contradiction. Since the claim is obvious when u0 ≡ m, we
may hereafter assume that u0 6≡ m. Suppose contrary to the conclusion that
there were t0 ∈ [0, T (m)) such that

`−∞ := lim inf
x→−∞

u(x, t0) > vm(t0) and `+∞ := lim inf
x→+∞

u(x, t0) > vm(t0).

We set `0 := min{`−∞, `+∞}. Then for any vm(t0) < ˜̀
0 < `0, there is an R > 0

such that
u(x, t0) ≥ ˜̀

0 for all |x| ≥ R. (3.1)

We shall begin with the case of t0 > 0. By the strong maximum principle,
we have

u(x, t0) > vm(t0) in R, (3.2)

since otherwise u0 ≡ m. It follows from (3.1) and (3.2) that

u(x, t0) ≥ ` > vm(t0) in R,

where ` := inf−∞<x<+∞ u(x, t0). A comparison argument yields then that

u(x, t) ≥ v`(t− t0) > vm(t) in R× (t0, t0 + T (`)).

12



Thus T (u0) ≥ t0 + T (`) > t0 + T (vm(t0)) = T (m), which contradicts the
assumption that the quenching time of u is minimal, that is, T (u0) = T (m).

We shall proceed to the case of t0 = 0. Take a uniformly continuous function
u0 having the following properties:

u0 is even and nonincreasing (resp. nondecreasing) in x < 0 (resp. x > 0);
u0 ≤ u0 in R;
u0 ≡ m in [−R− 1, R+ 1] and lim inf

x→±∞
u0(x) = `0.

Denote by u the solution of equation (1.3) with initial data replaced by u0.
Then, by the comparison principle, we have

vm(t) ≤ u ≤ u in (−∞,+∞)× (0, T (m)). (3.3)

Combining the assumption that T (u0) = T (m) with (3.3), we see that T (u0) =
T (m).

We then claim that the solution u(·, t) is an even function and nonincreasing
(resp. nondecreasing) for x < 0 (resp. x > 0) for each t ∈ (0, T (m)). To
show this, we appeal to a standard reflection argument. For any λ > 0 we
set ū(x, t) := u(2λ − x, t) and observe that it is a solution of (1.3)-(1.4) with
initial data ū(x, 0) = u0(2λ − x). Since u0(x) ≤ u0(2λ − x) for any x < λ
by assumption and ū(λ, t) = u(λ, t) for any t ∈ (0, T (m)), we may apply the
comparison principle to deduce that

u(x, t) ≤ ū(x, t) in (−∞, λ)× (0, T (m)),

which simultaneously implies that u(·, t) is nondecreasing for x > 0. A similar
argument shows that u(·, t) is nonincreasing for x < 0. Uniqueness of solution
forces u to be even in x.

Since u(x, t) ≥ u(0, t) > vm(t) for any 0 < t < T (m) by the properties on u
mentioned above and the strong maximum principle, we observe that

` := inf
x∈R

u(x, t1) ≥ u(0, t1) > vm(t1) for any t1 ∈ (0, T (m)). (3.4)

Having obtained (3.4), we reach at a contradiction in the same way as in the
first case. The proof is now complete.

From Proposition 3.1, we see that the solution u of (1.3)-(1.4) with a minimal
quenching time necessarily quenches at space infinity in the sense of (1.11) with
T (u0) = T (m).

Corollary 3.2. Suppose that a solution u of the Cauchy problem (1.3)-(1.4)
quenches at minimal quenching time T (m). Then it quenches at x = −∞ or
+∞.

We see that u(x, t0) > vm(t0) in R for any t0 ∈ (0, T (m)) unless u0 is
a constant by the strong maximum principle. Let a > 0 be any constant. We
construct a subsolution of (1.3)-(1.4) in (−a, a)×(t0, T (m)). Let w0 ∈ C2(−a, a)
be a positive even function satisfying

w′′0 (x) < 0, w′0(0) = 0, for x ∈ (−a, a),
vm(t0) ≤ w0 ≤ u(x, t0) in (−a, a), w0(±a) = vm(t0).

(3.5)
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Let us consider the following initial-boundary value problem:
wt =

wxx

1 + (wx)2
− n− 1

w
, in (−a, a)× (t0, T (m)),

w(±a, t) = vm(t), for t ∈ (t0, T (m)),
w(x, t0) = w0(x), in (−a, a).

(3.6)

Lemma 3.3. Assume that w0 satisfies (3.5). Then the solution w(x, t) of (3.6)
is an even function with respect to x in (−a, a) and attains its maximum at
x = 0 for each t ∈ (0, T (m)). Moreover,

wx > 0 in (−a, 0)× (0, T (m)) and wx < 0 in (0, a)× (0, T (m)). (3.7)

Proof. We appeal to a standard reflection argument as was used in the proof
of Proposition 3.1, but we should discuss more precisely to show the strict
monotonicity (3.7). Let λ ∈ [0, a) and denote by wλ the reflection of w in the
point x = λ, that is, wλ(x, t) = w(2λ − x, t). Since the equation is reflection
invariant, if w solves the equation of (3.6) in (λ, a)×(t0, T (m)) [or in (−a,−λ)×
(t0, T (m))], wλ solves the same equation in (−a + 2λ, λ) × (t0, T (m)) [or in
(−λ, a − 2λ) × (t0, T (m))]. In particular, if w(x, t) is a solution of (3.6), so is
w(−x, t). By assumption, w0(x) = w0(−x) in (−a, a). Uniqueness of solution
implies then that w(−x, t) = w(x, t) in (−a, a)×(t0, T (m)) and the first assertion
is concluded.

We next prove that wx > 0 in (−a, 0) × (t0, T (m)). For λ ∈ (0, a), we set
Ψ := wλ − w and observe that it satisfies a parabolic equation of the form

Ψt = A(x, t)Ψxx +B(x, t)Ψx + C(x, t)Ψ in (λ, a)× (t0, T (m)),

where the coefficients A,B,C are continuous functions and that Ψ(λ, t) = 0 for
t ∈ (t0, T (m)). By (3.5), Ψ(x, t0) ≥ 0 and 6≡ 0 in (λ, a). The strong maximum
principle then forces Ψ > 0 in (λ, a) × (t0, T (m)). We thus obtain, by Hopf’s
boundary lemma, that

−Ψx(λ, t) < 0 for t0 < t < T (m)

or equivalently, wx(λ, t) < 0 for t0 < t < T (m). Similarly we obtain wx(−λ, t) >
0 for t0 < t < T (m). Since λ is arbitrary, the assertion (3.7) is concluded and
consequently w(·, t) takes its maximum at x = 0 for each t ∈ (t0, T (m)). The
proof is now complete.

Lemma 3.4. Assume the same hypothses with Lemma 3.3. Then the solution
w of problem (3.6) has no quenching point in (−a, a) at t = T (m).

Proof. By Lemma 3.3, wx(x, t) 6= 0 except x = 0 for each t ∈ (t0, T (m)). We
may apply Lemma 2.5, to get a positivity of the infimum of w in (b, c)×(t0, T (m))
for any −a < b < c < a. Indeed, if there were a quenching point in (−a, a), w
is forced to quench identically by (3.7), which contradicts Lemma 2.5. Hence w
has no quenching point in (−a, a), which completes the proof.

Proof of Theorem 1.3. Let a, t0, w be as in Lemma 3.4. By the comparison
theorem, we have u(x, t) ≥ w(x, t) in (−a, a) × (t0, T (m)). Lemma 3.4 implies
that w has a positive infimum in every compact subinterval of (−a, a) up to
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t = T (m), which simultaneously guarantees that u has no quenching point in
(−a, a). Since a is arbitrary, we see that there is no quenching point in the
whole real line R.

We shall show the latter statement. Let K be a bounded closed interval.
From what we have proved above, the infimum of u in Q := K × (0, T (m)) is
strictly positive, and thus ux is bounded there by Lemma 2.3. It then follows
from [27, Chapter VI, Theorem 1.1] that Hölder norm of ux with any exponent
α ∈ (0, 1) is bounded by a constant in Q′ := K ′ × (T (m)/4, T (m)), where K ′

is any interval such that K ′ b K. The constant depends only on m,n, α, the
bound of ux and the distance between Q and Q′. We shall now regard the
equation (1.3) as the linear equation

ut = a(x, t)uxx + b(x, t)u, x ∈ K, t > 0

with bounded coefficients a(x, t) = 1/(1+u2
x(x, t)) and b(x, t) = −(n−1)/u2(x, t).

Schauder’s interior estimate then implies that u is bounded inBC2+α,1+α/2(K ′′×
(T (m)/2, T (m)) for any K ′′ b K ′. In particular, ut is bounded there and hence
the limit u(x, T (m)) = limt↗T (m) u(x, t) exists. Moreover, for any sequence
{tk} ↗ T (m), {u(·, tk)} forms a Cauchy sequence in C2+α(D) for any open
interval D b K, so that u(·, T (m)) ∈ C2+β(K) for every 0 < β < α. Since
K was chosen arbitrary, it follows that u(·, T (m)) ∈ C2+α(R) and u(·, t) is
convergent to u(·, T (m)) in C2+α

loc (R) for any α ∈ (0, 1). Differentiating the
equation for u by x and invoking Schauder’s interior estimate many times, we
obtain further regularity on u(·, T (m)) to see u(·, T (m)) ∈ C∞(R) eventually
and u(·, t) → u(·, T (m)) as t↗ T (m) in C∞(R) (endowed with the usual semi-
norms). The other assertions on u(x, T (m)) are easily obtained from the former
statement and Proposition 3.1. The proof is now complete.

4 A necessary and sufficient condition for
minimal quenching time

In this section we prove Theorem 1.4. Proposition 3.1 shows a necessary condi-
tion for a solution of the Cauchy problem (1.3)-(1.4) to have a minimal quench-
ing time. However, it is not a sufficient condition. We establish a necessary and
sufficient condition in the following two subsections.

4.1 A sufficient condition for minimal quenching time

In this subsection we will prove that condition (1.7) forces a solution to quench
at minimal quenching time. Theorem 1.1 is concluded immediately as a conse-
quence of the following proposition.

Proposition 4.1. Assume that an initial datum u0 satisfies (1.9) (or (1.10)).
Then the solution u of (1.3)-(1.4) has a minimal quenching time. Moreover, for
any ε, T ∈ (0, T (m)) and R > 0,

lim
k→∞

sup
|x|≤R, ε≤t≤T

|u(x+ xk, t)− vm(t)| = 0, (4.1)

where the sequence {xk} is as in condition (1.9) (or (1.10)).
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Proof. We prove the claim only when u0 fulfills condition (1.9), since the other
case is similarly proved. For a sequence {xk} satisfying (1.9), we set

Wk(x, t) = u(x+ xk, t)− vm(t), k = 1, 2, ...

and then observe that each of them solves the linear parabolic equation

Wt = ak(x, t)Wxx + bk(x, t)W, (4.2)

where ak(x, t) = 1/(1 +ux(x+xk, t)2) and bk(x, t) = 1/(u(x+xk, t)vm(t)). Let
Gk denote fundamental solutions of the Cauchy problems for (4.2), k = 1, 2, ...
Then each Wk satisfies

Wk(x, t) =
∫ ∞

−∞
Gk(x, t; y, 0)

{
u0(y + xk)−m

}
dy. (4.3)

Notice that for any ε, T ∈ (0, T (m)), there is a constant λ1 > 0 such that

λ1 ≤ ak(x, t) ≤ 1 in R× [ε, T ],

since we have the estimate for ‖ux(·, t)‖∞ for t ≤ T due to Lemma 2.3. Hence
each Gk is estimated from above as

Gk(x, t; y, 0) ≤ c1
t1/2

exp
(
−c2|x− y|2

t

)
,

−∞ < x, y <∞, ε ≤ t ≤ T,

(4.4)

where c1 and c2 are positive constants which depend on m,T and λ1, but are in-
dependent of k. (See e.g., [10, Chapter 1].) From (4.3), (4.4) and the comparison
theorem, we have

0 ≤Wk(x, t) ≤ c1
t1/2

∫ ∞

−∞
exp

(
−c2|x− y|2

t

){
u0(y + xk)−m

}
dy

for −∞ < x < ∞ and ε ≤ t ≤ T . By the definition of the sequence {xk} and
the Lebesgue convergence theorem, we then see that limk→∞Wk(x, t) = 0 and
the convergence is uniform in the region of the form {(x, t)| |x| ≤ R, ε ≤ t ≤ T}
with any R > 0, or equivalently,

lim
k→∞

sup
|x|≤R, ε≤t≤T

|u(x+ xk, t)− vm(t)| = 0. (4.5)

The proof is now complete.

Proof of Proposition 1.2. Proposition 1.2 is an immediate consequence of Propo-
sition 4.1.

In view of Proposition 4.1, we see that conditions (1.17) or (1.18), which are
much weaker than (1.7) or (1.8), are sufficient conditions for a solution of the
Cauchy problem (1.3)-(1.4) with initial data u0 to have a minimal quenching
time T (m). In fact, these conditions are also necessary, as we will prove in the
next subsection.
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4.2 A necessary condition for minimal quenching time

The goal in this subsection is to prove that the conditions (1.17) or (1.18) stated
with the weighted mean value function Aρ(x;u0) in (1.16) are necessary condi-
tions on initial data for a solution of (1.3)-(1.4) to have a minimal quenching
time. Namely,

Proposition 4.2. Let u be a solution of the Cauchy problem (1.3)-(1.4) with
initial data u0 having a minimal quenching time T (m). Then the initial data
u0 satisfies condition (1.17) or (1.18).

We need a few lemmata to prove Proposition 4.2.

Lemma 4.3. Assume the same hypotheses with Proposition 4.2. Suppose that

Aρ(0;u0) ≥ ` (4.6)

for some ` > m. Then there exists a positive constant R0 depending only on
supx∈R u0(x), ` and m such that(∫ R0

−R0

ρ(y)dy
)−1

∫ R0

−R0

ρ(−y)u0(y)dy ≥
`+m

2
=: `1(> m). (4.7)

Moreover, there exist x0 ∈ [−R0, R0] and r0 ∈ (0, R0) depending only on
`1, supu0,m and R0 such that

u0(x) ≥
`1 +m

2
for |x− x0| < r0. (4.8)

Proof. Since

1 =
∫ ∞

−∞
ρ(y)dy =

(∫ −R

−∞
+
∫ R

−R

+
∫ ∞

R

)
ρ(y)dy =: I1 + I2 + I3,

we have

1
I2

∫ R

−R

ρ(−y)u0(y)dy ≥ −(I1 + I3) sup
y∈R

u0(y) +Aρ(0;u0). (4.9)

Taking R = R0 sufficiently large, we observe that

(I1 + I3) sup
y∈R

u0(y) ≤
`−m

2
, (4.10)

since ρ ∈ L1(R). It follows from (4.9) and (4.10) that(∫ R0

−R0

ρ(y)dy

)−1 ∫ R0

−R0

ρ(−y)u0(y)dy ≥ −`−m

2
+ ` = `1.

We thus conclude (4.7). Having obtained (4.7), we readily see that there exists
x0 ∈ [−R0, R0] such that

u0(x0) ≥ `1. (4.11)

On the other hand, there is a positive constant δ = δ(`,m) such that

|u0(x1)− u0(x2)| ≤
`1 −m

2
provided |x1 − x2| < δ (4.12)

by the assumption of uniform continuity of u0 in (H1). We thus obtain (4.8)
with r0 = min{δ,R0/2} from (4.11) and (4.12), which completes the proof.
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Let `1, r0 and R0 be as in Lemma 4.3 and let w0 be an even bell-shaped
continuous function in [−R0 − 1, R0 + 1] satisfying

w0(x)

 = m, if r0 ≤ |x| ≤ R0 + 1,
≤ `1, if r0/2 ≤ |x| < r0,
= `1, if |x| ≤ r0/2.

(4.13)

Consider the following problem:
wt =

wxx

1 + w2
x

− n− 1
w

, in (−R0 − 1, R0 + 1)× (0, T (m)),

w(±(R0 + 1), t) = vm(t), for (0, T (m)),
w(x, 0) = w0(x), in (−R0 − 1, R0 + 1).

(4.14)

Lemma 4.4. Let w be a solution of (4.14). Then

inf
−R0≤x≤R0, 0<t<T (m)

w(x, t) > 0.

Proof. Since it may be proved in the same way as Lemmata 3.3 and 3.4, we
omit the precise.

Proof of Proposition 4.2. We prove its contraposition. Namely, we prove that if
an initial datum u0 does not satisfy (1.17) nor (1.18), then the quenching time
of the corresponding solution u is no longer minimal, i.e, T (u0) > T (m).

Suppose that u0 does not satisfy (1.17) nor (1.18). Then there exists ` > m
such that

inf
x∈R

Aρ(x;u0) ≥ `. (4.15)

For any a ∈ R we set ua(x, t) = u(x + a, t) and observe that it is the solution
of (1.3) with initial data u0a(x) := u0(x+ a). Moreover, we have

Aρ(0;u0a) = Aρ(a;u0) ≥ `

from (4.15). Applying Lemma 4.3, we obtain (4.8) with u0 replaced by u0a. A
comparison argument reveals that

ua(x, t) ≥ w(x, t) in (−R0 − 1, R0 + 1)× (0, T (m)),

where w is the solution of (4.14). Application of Lemma 4.4 to ua then implies
that

u(a, t) ≥ inf
−R0≤x≤R0

ua(x, t) ≥ inf
−R0≤x≤R0, 0<t<T (m)

w(x, t) =: C`,m > 0,

whence
inf
x∈R

u(x, t) ≥ C`,m for 0 < t < T (m),

which simultaneously implies that the infimum of u in the whole R at t = T (m)
is strictly positive; T (u0) > T (m). The proof is now complete.

Proof of Theorem 1.4. Theorem 1.4 immediately follows from Propositions 4.1
and 4.2.
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5 Profile after quenching

In this section we assume the conditions (1.7) and (1.8). To study behavior of
an evolving hypersurfaces Γt after the quenching (pinching) time we recall a
level set solution. We say a closed set E in Rn+1 × [0,∞) is a level set solution
of (1.1) with closed initial data E0 ⊂ Rn+1 if there is a viscosity solution
ψ ∈ BUC(Rn+1 × [0, T )) for all T > 0 of

ψt − |∇ψ|∇ ·
( ∇ψ
|∇ψ|

)
= 0 in Rn+1 × (0, T )

with
E = {(X, t) ∈ Rn+1 × [0,∞)| ψ(X, t) ≥ 0}, E(0) = E0,

where E(t) is the cross-section of E at time t, i.e.,

E(t) = {X ∈ Rn+1| (X, t) ∈ E}.

For our problem we take

E0 = {(x, y1, .., yn)| r ≤ u0(x)}.

It is well-known [13] that ∂E(t) is smooth and agrees with the classical solution
of (1.1), i.e.,

∂E(t) = Γt = {(x, y1, .., yn)| r = u(x, t)}
before the quenching time, i.e., t < T (m). By the left continuity of E(t) in time
[13] our Theorem 1.3 implies that ΓT (m) = ∂E(T (m)) is also smooth. We are
able to prove that the open ends of ΓT (m) will be closed for t > T (m).

Proposition 5.1. The set E(t) becomes bounded for t > T (m).

Proof. Clearly, E(t) is in a cylinder of radius supu(x, T (m)). For sufficiently
large x, the motion of E(t) for (T (m)− δ, T (m)) is monotone. Since u(x, T (m))
tends to zero as x tends to infinity, by comparison with the self-similar shrinking
doughnut as in [1] we observe that for any t1 > T (m) there exists R1 such that,
the set E(t1)∩ {(x, y1, .., yn)| |x| > R1} does not contain the x-axis. Thus E(t)
is bounded for t > T (m).

We do not discuss whether E is regular, i.e., E = D̄ after the quenching
time, where D = {ψ > 0}. In other words, we do not discuss whether or not
evolution has a fattening phenomenon [8, 13].
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